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Abstract Despite much progress, image processing remains a significant bottleneck for high-
throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging 
is the mother machine, which enables long-term tracking of microbial cells under precisely 
controlled growth conditions. While several mother machine image analysis pipelines have been 
developed in the past several years, adoption by a non-expert audience remains a challenge. To 
fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image 
viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine 
data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of 
napari-MM3 and test it against several well-designed and widely used image analysis pipelines, 
including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom 
scripts using varied image analysis methods, but a quantitative comparison of the output of 
different pipelines has been lacking. To this end, we show that key single-cell physiological param-
eter correlations and distributions are robust to the choice of analysis method. However, we also 
find that small changes in thresholding parameters can systematically alter parameters extracted 
from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based 
segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training 
data for cell segmentation can propagate to the model output and bias spatial and temporal 
measurements. Finally, while the primary purpose of this work is to introduce the image analysis 
software that we have developed over the last decade in our lab, we also provide information 
for those who want to implement mother machine-based high-throughput imaging and analysis 
methods in their research.

eLife assessment
This article provides a review and test of image-analysis methods for bacteria growing in the 
'mother-machine' microfluidic device, introducing also a new graphical user interface for the compu-
tational analysis of mother-machine movies based on the 'Napari' environment. The tool allows users 
to segment cells based on two previously published methods (classical image transformation and 
thresholding as well as UNet-based analysis), with solid evidence for their robust performance based 
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on comparison with other methods and use of datasets from other labs. While it was difficult to 
assess the user-friendliness of the new GUI, it appears to be valuable and promising for the field.

Introduction
The mother machine (Wang et  al., 2010) is a popular microfluidic platform for long-term, high-
throughput imaging of single cells. It has been widely adopted as a standard for long-term imaging 
of bacteria such as Escherichia coli and Bacillus subtilis (Sauls et al., 2019a), as well as the eukaryote 
Schizosaccharomyces pombe (Nakaoka and Wakamoto, 2017; Spivey et al., 2017). In the mother 
machine, thousands of single cells are trapped in one-ended growth channels that open into a central 
trench (Figure 1-1.1). The cells at the end of the growth channels (mother cells) grow and divide over 
hundreds of generations, while their progeny are successively flushed out of the device (Figure 1-1.2, 
1.3). Data gathered from the mother machine has brought critical insight into diverse domains such 
as aging (Wang et al., 2010), single-cell physiology (Jun et al., 2018), starvation adaptation (Bakshi 

Figure 1. Mother machine workflow, schematic, and applications. (1.1) Mother machine schematic. Growth channels flank a central flow cell that 
supplies fresh media and whisks away daughter cells. In a typical experiment, numerous fields of view (FOVs) are imaged for several hours. (1.2) 
Fluorescence images of E. coli strains expressing cytoplasmic YFP (Wang et al., 2010) (left) and markers for the replisome protein DnaN and division 
protein FtsZ (right) (Si et al., 2019). (1.3) The mother machine setup allows long-term monitoring of the old-pole mother cell lineage (Wang et al., 
2010) and has other versatile applications, including (1.4) the study of the mechanical properties of bacterial cells by applying controlled Stokes forces 
(Amir et al., 2014).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Inexpensive fabrication of cell loader with 3D printing.

https://doi.org/10.7554/eLife.88463
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et al., 2021), antibiotic persistence (Kaplan et al., 2021), cell differentiation (Russell et al., 2017), 
and the mechanics of cell wall growth (Amir et al., 2014; Figure 1-1.4).

Despite the progress in imaging techniques and microfluidics, image processing remains a major 
bottleneck in the analysis pipelines. The unique structure of the mother machine device enables 
precise control of growth conditions and long-term tracking of cells, to the degree that cannot be 
achieved by traditional tracking of cells in microcolonies (Stewart et  al., 2005). However, auto-
mated image processing is essential to process the large amounts of data generated by these high-
throughput experiments. In addition, the unique structure of the mother machine device requires a 
specialized workflow to select and track individual growth channels. As experimentalists often need 
to extract precise statistics over multiple generations or observe rare events, the analysis workflow 
must be modular to allow inspection and curation of intermediate results. To meet these needs, 
numerous mother machine-specific image analysis packages have been introduced in the last few 
years (O’Connor et al., 2022; Sachs et al., 2016; Smith et al., 2019; Ollion et al., 2019), in addition 
to general image analysis packages adaptable to the mother machine workflow (Stylianidou et al., 
2016; Panigrahi et al., 2021; Cutler et al., 2022; Spahn et al., 2022; Schwartz et al., 2019). Much 
recent work has been catalyzed by advances in biomedical image analysis with deep convolutional 
neural networks (CNNs), particularly the U-Net architecture (Ronneberger et  al., 2015). Many of 
these tools (Ollion et al., 2019; Lugagne et al., 2020) have been designed with ease-of-use and 
accessibility in mind. However, they can still present a steep learning curve for first-time users. In 
addition, as the outputs of these pipelines are often used by researchers to derive biological princi-
ples based on correlations, it is important to understand the limitations of and differences between 
different image analysis methods.

This article consists of three parts. First, for first-time users, we provide a brief walkthrough on 
implementing the mother machine in research (Box 1), including how to duplicate microfluidic devices 
at no cost using epoxy replicas and troubleshoot common image analysis problems. Next, we intro-
duce MM3 (Napari hub, 2023), a fast and interactive image analysis pipeline for mother machine 
experiments that we have developed and used internally for over a decade. Our latest version is a 
Python plugin for the multidimensional image viewer napari (napari contributors, 2023). Finally, we 
compare the accessibility, performance, and robustness of various current image analysis platforms. In 
order to trust analysis results, researchers should understand the limitations of their chosen method. 
With this in mind, we show that ‘what you put is what you get’: both classical and deep learning-
based segmentation methods are highly sensitive to user-determined threshold values. As exact cell 
boundaries may be difficult to distinguish by eye, these values are difficult to set definitively, and can 
systematically alter the output of the analysis. Fortunately, we find that key single-cell physiological 
parameter correlations and distributions are robust to the choice of analysis method. However, inter-
preting and comparing the results of different analyses require care.

Results
Mother machine image analysis with napari-MM3
Analysis of time-lapse imaging experiments requires dedicated software due to the sheer volume of 
data produced. For instance, an experiment tracking aging might require imaging 50 fields of view 
(FOVs; Figure 1-1.1) every 2 min for a week, producing a quarter of a million images comprising 
hundreds of gigabytes of data. While the experimental methods for mother machine experiments 
have become increasingly accessible, image analysis tools have lagged behind. Typically, labs using 
the mother machine have developed their own customized analysis pipelines. Many available tools 
require programming experience, familiarity with command line tools, and extensive knowledge of 
image analysis methods. They are also often fine-tuned for specific experimental setups and difficult 
for the average user to adapt. Finally, existing workflows frequently require users to move between 
multiple interfaces such as ImageJ, MATLAB, the command line, Python scripting, and Jupyter note-
books. Newer deep learning approaches are more versatile than traditional computer vision methods. 
Still, they bring new issues for novices: users may need to construct their own training data and train 
a model, requiring a new set of tools and technical expertise, and manual annotation of training data 
is susceptible to human error and bias.

https://doi.org/10.7554/eLife.88463
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Box 1. Mother machine experimental workflow.

Despite the well-appreciated power of single-cell time-lapse imaging approaches, the 
potential user base remains much greater than the number of researchers directly benefiting 
from the technology. A primary reason for this discrepancy between demand and actual 
adoption is the perceived cost in time and resources of investment in the required core 
technology: microfluidics and high-throughput image analysis. Until a few years ago, setting 
up a typical microfluidic system for the first time took several years of training and trial-and-
error, along with significant resources, for most individual labs.
Running a mother machine experiment requires the following steps: (1) fabricating a mold for 
the device, (2) assembling the device, (3) performing time-lapse microscopy, and (4) analyzing 
the images to extract time traces and statistics. To our knowledge, steps (1) and (4) have been 
the primary bottlenecks for most groups. Here, we give a brief overview of the experimental 
workflow. We refer interested readers to our previous review article on single-cell physiology 
(Taheri-Araghi et al., 2015b), along with other recent reviews (Allard et al., 2022; Potvin-
Trottier et al., 2018) and published protocols (Cabeen and Losick, 2018), for a more 
extensive guide to single-cell imaging techniques. 
Device design and fabrication. In the original mother machine design (Wang et al., 2010), 
narrow channels trap bacterial cells perpendicular to a larger main trench through which 
fresh medium flows (Figure 1-1.4). Several constraints apply to the design of the device. 
The height and width of the channels should match the dimensions of the organism under 
study. The channels must be large enough to facilitate the loading of the cells and allow for 
fast diffusion of nutrients to mother cells at the channel ends. If the channels are too deep, 
cells may move out of focus and potentially overlap in the z-direction, both of which impede 
accurate segmentation. Similarly, if channels are too wide, cells may not grow in a single file, 
complicating segmentation and tracking. Longer trenches will retain cells longer and allow 
more cells to be tracked per channel. The prohibitive cost of mold fabrication in clean room 
facilities has been a bottleneck to distributing microfluidic devices. We resolved this problem 
using an epoxy-based fabrication technique (Kamande et al., 2015), allowing us to easily 
and cheaply create replicative molds (Box 1—figure 1). Once the first microfluidic device 
is fabricated in the clean room, the epoxy duplication method allows us to reliably create 
and distribute high-fidelity device molds at a fraction of the cost of the initial fabrication. 
Undergraduate students in our lab routinely perform this procedure. To assist new users of the 
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These considerations guided us in the development of our in-house analysis tool. In building MM3, 
we sought to provide modularity and extensive interactivity while minimizing unnecessary user inter-
vention. MM3 aims to be a complete and flexible solution for mother machine image analysis, taking 
raw images, and producing readily graphable cell data, while accommodating both machine learning-
based and traditional computer vision techniques. It supports phase contrast and fluorescence images, 
and has been tested with different species (bacteria E. coli and B. subtilis, yeast S. pombe), mother 
machine designs, and optical configurations. The modular pipeline architecture allows flexible use of 
mid-stream outputs and straightforward troubleshooting (for instance, while M. mycoides is too small 
to segment with traditional microscopy methods (Rideau et al., 2022), we were able to obtain growth 
rate measurements by running the first half of the pipeline).

MM3 reflects the culmination of several iterations of our in-house mother machine analysis soft-
ware developed over the past decade. Before MM3, we developed our image analysis pipeline in 
C++ (Wang et  al., 2010) and MATLAB (Taheri-Araghi et  al., 2015a). Eventually, Python became 
enormously popular, and we began MM3 as a set of Python scripts run from the command line (Sauls 
et al., 2019b). However, the command-line-based interface had several drawbacks. The interface was 
more difficult for users unfamiliar with the command line or programming. It also had limited inter-
activity. As a result, troubleshooting was difficult and required modifying the source code to display 
image output at intermediate steps or manually inspecting output files in ImageJ. This made the user 
repeatedly move back and forth between different windows and applications, slowing the analysis.

These drawbacks motivated us to convert MM3 into a plug-in for the Python-based interactive 
image viewer napari (napari contributors, 2023). napari provides an N-dimensional display ideal for 
visualizing multichannel time-lapse data. It offers built-in annotation tools and label layers to compare 
and annotate segmentation masks and tracking labels. It also provides a Python interpreter, allowing 
users to move easily between the viewer interface and the underlying data objects. For the best 
usability, we designed the napari-MM3 plug-in to allow the user to run the entire pipeline without 
leaving the napari interface.

Image analysis via napari-MM3 consists of four steps (Figure 2 and Figure 3).

1.	 Crop raw images and compile them into stacks corresponding to individual growth channels.
2.	 Choose channel stacks to be (1) analyzed, (2) used as templates for background subtraction, or 

(3) ignored.
3.	 Segment cells.

mother machine, we include a detailed procedure for the duplication method at Thiermann, 
2023.
Experiment setup. The first step of making the mother machine device is to pour PDMS 
(polydimethylsiloxane) onto a master mold, cure it, and remove it from the mold. Holes are 
punched in the cut devices at the inlet and outlet of the central channel to connect tubing 
for fresh medium (inlet) and waste removal (outlet) before plasma treatment (Figure 1-
1.1). Plasma treatment covalently bonds the PDMS device to a glass cover slide or dish to 
be mounted on the microscope. BSA (bovine serum albumin) passed through the device 
passivates the surface. In our setup, we load cells to the growth channels in the device via a 
custom centrifuge (Thiermann, 2023; Figure 1—figure supplement 1). Growth medium is 
passed through the device using a syringe pump. The medium flow should be fast enough 
to clear dead cells or biofilms in the device, but slow enough that the device does not 
delaminate. Mounting the device on an inverted microscope requires a custom stage insert for 
long-term imaging. The microscope temperature must be controlled tightly.
Data analysis. Most mother machine image analysis workflows share the following steps: 
preprocessing the acquired images, including identification and cropping of cell traps, cell 
segmentation, and cell tracking. Cell segmentation is the most difficult and crucial step, as 
adjacent cells must be separated from each other and from device features. After accurate 
segmentation, the one-dimensional structure of the mother machine – which constrains the 
cells to move only in one direction along the length of the trap without bypassing each other 
– makes cell tracking relatively simple.

https://doi.org/10.7554/eLife.88463
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4.	 Construct cell lineages. napari-MM3 treats individual cells in the lineages as objects that can be 
plotted directly or converted to another data format.

We elaborate on these steps as follows.

Channel detection and curation
The first section of the napari-MM3 pipeline takes in raw micrographs and returns image stacks corre-
sponding to one growth channel through time. napari-MM3 detects channels using a wavelet trans-
form and then aligns them over time to correct for stage drift and vibration. The aligned growth 
channels are saved as unique image stacks with all time points for a given growth channel and color 
channel. As not all growth channels contain cells, napari-MM3 auto-detects channels as full or empty 
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Figure 2. MM3 workflow and example images. (2.1) The MM3 image analysis pipeline takes raw mother machine 
images and produces cell objects. Processes (rounded rectangles) are modular; multiple methods are provided for 
each. (2.2) Example images from the processing of one growth channel in a single field of view (FOV). The growth 
channel is first identified, cropped, and compiled in time. All cells are segmented (colored regions). Lineages 
are tracked by linking segments in time to determine growth and division (solid and dashed lines, respectively), 
creating cell objects.

https://doi.org/10.7554/eLife.88463
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based on the time correlation of the y-profile of the growth channel. The auto-detected growth chan-
nels and their classifications are then displayed in the napari viewer for the user to inspect and modify 
as needed.

Cell segmentation
napari-MM3 offers two methods for cell segmentation, one using traditional computer vision tech-
niques and the other using deep learning. The non-learning method utilizes Otsu’s method to apply 
a binary threshold to separate cell objects from the background. It then labels the isolated cells and 
uses a random walker algorithm (Grady, 2006) to fill out the cell boundaries. This method is fast but 
optimized for specific mother machine designs and phase contrast imaging of bacteria. It also requires 
accurate background subtraction of phase contrast images (Box 2), to ensure that the presence of the 
channel border does not interfere with cell detection. The supervised learning method uses a CNN 
with the U-Net architecture (Ronneberger et al., 2015; Lugagne et al., 2020; Falk et al., 2019). The 
napari viewer can be used to construct training data, with the option to import existing Otsu or U-Net 
segmentation output as a template. The neural net can then be trained directly from napari, with the 
option to check the performance of the model in the napari viewer after successive rounds of training.

Cell tracking and lineage reconstruction
Finally, napari-MM3 links segmented cells in time to define a lineage of cell objects, using a simple 
decision tree based on a priori knowledge of binary fission and the mother machine. Tracking produces 
a dictionary of cell objects containing relevant information derived from the cell segments, including 
the cell lengths and volumes over time, cell elongation rate, and generation time. Plotting and addi-
tional analysis can then be done with the user’s tool of choice. Statistics can be directly extracted from 
the cell objects, or the cell objects can be converted into a.csv file, a pandas DataFrame, or a MATLAB 
structure. We provide a Jupyter notebook demonstrating this analysis at Thiermann et al., 2024a 
(copy archived at Thiermann et al., 2024b).
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Additional features and future extensions
napari-MM3 offers several additional modules supplemental to the main processing pipeline, including 
methods for fluorescence image analysis and U-Net training data construction and model training. 
Integrated fluorescence signal and fluorescence per cell area and volume for each time point can 
be extracted using the ‘Colors’ module. napari-MM3 also includes a module for the detection and 
tracking of fluorescent spots or ‘foci’. For example, we have used it to track fluorescently labeled repli-
some machinery in bacteria in order to measure the timing and synchrony of DNA replication initiation 
(Sauls et al., 2019a; Si et al., 2019). Lastly, U-Net segmentation training data can be constructed 
by manual annotation of raw images in the napari viewer. napari-MM3 offers the option to construct 
training data with existing Otsu or U-Net segmentation data as a template. This allows the user to 
iteratively train a model, correct mistakes in its output, and use the modified output as input for the 
next round of training. We also provide a Jupyter notebook covering training data construction and 
model training at Thiermann et al., 2024a.

Going forward, we plan to add support for additional segmentation and tracking modalities (Cutler 
et al., 2022; Ollion and Ollion, 2020). We will also incorporate support for additional organisms such 
as the budding yeast S. cerevisiae. Finally, we plan to take advantage of napari’s interactive display to 
add interactive data visualization and plotting.

Box 2. Segmentation via Otsu’s method.

The Otsu segmentation method first aligns the growth channel of interest with an empty 
background channel by computing the orientation that maximizes the pixel-wise cross-
correlation (Box 2—figure 1). The empty channel is then subtracted from the full channel, 
and the image is inverted. This background subtraction step is essential, as it removes the 
dark image of the PDMS device, which will otherwise interfere with segmenting the (dark) 
cells. Otsu’s method (Otsu, 1979) is applied to find the binary threshold value that maximizes 
the inter-region variance. We then apply a Euclidean distance transform, wherein each 
pixel is labeled with its distance to the dark region. The image is thresholded again, and a 
morphological opening is applied to erode links between regions. Small objects and objects 
touching the image border are removed. Each region is labeled, and the labels are used to 
seed a random walker algorithm (Grady, 2006) on the original image.

Background subtraction and segmentation via Otsu’s method and random walker algorithm
Di usion from markers OverlayDist. transformOtsu threshold Threshold, label

Otsu threshold

align growth and background
channels and subtract backgroundIntensity

growth channel
with cells Intensity

empty
background
channel

Pixel intensity
distribution

20000
Threshold value

10000 10000

intraclass
variance

Box 2—figure 1. Background subtraction and segmentation via Otsu's method and random walker 
algorithm.

https://doi.org/10.7554/eLife.88463
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Performance test of napari-MM3
To evaluate the speed of napari-MM3, we timed the processing of a typical dataset (Table 1). Using 
consumer-grade hardware, a single-channel stack consisting of several hundred time frames can be 
processed in less than 5 s, and a typical experiment consisting of 25 GB of imaging data can be 
processed in under an hour. These metrics are on par with those reported by other recently published 
mother machine software (Ollion et al., 2019; Lugagne et al., 2020; Banerjee et al., 2020).

Testing napari-MM3 on other published datasets
We tested napari-MM3 on several publicly available mother machine datasets: three from experiments 
on E. coli provided with the mother machine image analysis tools DeLTA, MoMA, and BACMMAN 
(Ollion et al., 2019; Lugagne et al., 2020; Jug et al., 2014) and one from C. glutamicum provided 
with the software molyso (Sachs et al., 2016). We were able to process all four datasets with minimal 
adjustments to the default parameter values (Methods). We quantified the performance of MM3 on 
each dataset by comparing the output of the MM3 segmentation to manually determined ground truth 
masks from a subset of each dataset (Table 2). To evaluate the segmentation quality, we computed 

Table 2. Testing napari-MM3 on external datasets.
Quality of segmentation masks produced by running napari-MM3 on a subset of published datasets 
from other groups (Sachs et al., 2016; Ollion et al., 2019; Lugagne et al., 2020; Jug et al., 
2014). As exact boundaries are difficult to determine by eye, we considered a cell to be correctly 
segmented if the Intersection over Union of the predicted mask and ground truth mask was greater 
than 0.6 (Methods). To evaluate the quality of the segmentation, we report the Jaccard index (Laine 
et al., 2021; Taha and Hanbury, 2015).

Dataset
Correctly segmented 
cells False positives False negatives Jaccard index

Ollion et al. 
(BACMMAN) (Ollion 
et al., 2019) 228 4 1 0.98

Lugagne et al. (DeLTA) 
(O’Connor et al., 
2022; Lugagne et al., 
2020) 247 22 1 0.92

Sachs et al. (molyso) 
(Sachs et al., 2016) 247 4 0 0.98

Jug et al. (MoMA) (Jug 
et al., 2014) 80 0 0 1

Table 1. Performance metrics for napari-MM3.
Processing times were measured on an iMac with a 3.6-GHz 10-Core Intel Core i9 processor with 64 GB of RAM and an AMD Radeon 
Pro 5500 XT 8 GB GPU. Tensorflow was configured to use the AMD GPU according to Apple Inc, 2023. The GPU was used in U-Net 
training and segmentation steps. The dataset analyzed is from Si et al., 2019 and consists of 26 GB of raw image data (12 hr, 262 
time frames, 2 imaging planes, 34 fields of view [FOVs], and ~35 growth channels per FOV). Note that while the Otsu segmentation 
method is slightly faster than the U-Net, it also requires a background subtraction step, such that the total runtimes of the two 
methods are comparable.

Channel 
detection

Background 
subtraction

Segmentation 
(Otsu)

Segmentation 
(U-Net) Tracking Total (Otsu) Total (U-Net)

Frame processing time N/A 2 ms 4 ms 5.3 ms N/A N/A N/A

Channel stack processing time 
(262 time frames) N/A 0.54 s 1.14 s 1.4 s 0.7 s 3.1 s 2.1 s

FOV processing time (35 
channels) 14.1 s 17.5 s 36.5 s 46 s 46.7 s 2 min 1.7 min

Exp. processing time (26 GB, 
34 FOVs, ~20,000 cells) 3.2 min 9.9 min 20.6 min 26 min 26.4 min 60 min 55 min

https://doi.org/10.7554/eLife.88463
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the Jaccard index (JI) (Laine et al., 2021; Taha and Hanbury, 2015) at an intersection-over-union (IoU) 
threshold of 0.6 (Methods). The software performed well on the Ollion et al., Sachs et al., and Jug et 
al. datasets with JI of 0.98, 0.98, and 1, respectively. Segmentation was notably worse on the Lugagne 
et al. dataset, with JI of 0.92. However, we observed that most segmentation errors in the Lugagne 
et al. dataset arose from misclassification of cells near the channel opening, where determining cell 
boundaries is often more difficult.

Comparison with other image analysis software
We also tested napari-MM3’s usability and performance against other popular software. We began 
by surveying a range of existing mother machine image analysis tools (Table 3). Some early analysis 
pipelines used one-dimensional segmentation methods (Sachs et al., 2016; Jug et al., 2014), which 
perform adequately when cells are tightly confined in the growth channels. In recent years, many 
excellent general-purpose CNN-based cell segmentation tools have also been developed (Stylian-
idou et al., 2016; Panigrahi et al., 2021; Cutler et al., 2022; Spahn et al., 2022; Stringer et al., 
2021), which may be extended to process mother machine data.

In this work, we only tested mother machine-specific pipelines. We constrained our analysis to 
DeLTA and BACMMAN, two excellent open-source mother machine-specific pipelines offering 2D 
segmentation and cell tracking, which are also well documented and actively maintained. BACMMAN 
(Ollion et al., 2019) performs 2D segmentation via traditional computer vision methods similar to 
those implemented in napari-MM3 and has recently added support for CNN-based segmentation as 
well (Ollion et al., 2013). DeLTA (O’Connor et al., 2022; Lugagne et al., 2020) uses the U-Net archi-
tecture for channel detection, cell segmentation, and cell tracking, with a mother machine-specific 
and general agar pad mode. We used BACMMAN, DeLTA, and napari-MM3 to analyze the same 
published dataset (Si et  al., 2019; Thiermann et  al., 2024c) consisting of E. coli MG1655 grown 
in minimal growth medium (MOPS modified buffer + 0.4% glycerol + 11 amino acids with ~60 min 
doubling time). Data processed in napari-MM3 was separately segmented with U-Net and traditional 
computer vision methods. We found that the pre-trained mother machine model provided with DeLTA 
did not generalize well to our data. However, after training a new model with representative data, we 
achieved accurate segmentation.

We compared the distributions and correlations of key physiological parameters generated by each 
analysis tool, motivated by our standard approach to single-cell physiology (Jun et al., 2018; Taheri-
Araghi et al., 2015a; Si et al., 2019; Le Treut et al., 2021). First, we confirmed that all four analysis 
methods yield essentially identical correlations between cell length at birth (SB) vs. (1) generation time 
(τ), (2) elongation rate (λ), and (3) the length added between birth and division (Δ) (Figure 4-4.3). Next, 
we compared the distributions of various physiological parameters. The CV (coefficient of variation) of 
a physiological parameter distribution is often taken to reflect the tightness of the underlying biolog-
ical control. We have previously found (Sauls et al., 2019a; Taheri-Araghi et al., 2015a) that the CVs 
of a set of physiological parameters (birth length, division length, length added between divisions, 
growth rate, generation time, and septum position) are invariant across growth conditions in E. coli 

Table 3. Overview of mother machine image analysis tools.
A comparison of several published imaging methods. ‘2D’ or ‘1D’ segmentation indicates whether the cells are labeled in an image 
and analyzed in two dimensions, or projected onto a vertical axis and analyzed in one dimension. Several tools support the use of 
deep learning (in place of or in addition to classical computer vision techniques).

Software Implementation Segmentation Deep learning support

BACMMAN Ollion et al., 2019/DistNet Ollion and Ollion, 2020 ImageJ plugin 2D ✓

DeLTA O’Connor et al., 2022; Lugagne et al., 2020 Python package 2D ✓

napari-MM3 Sauls et al., 2019b, this work napari plug-in 2D ✓

SAM Banerjee et al., 2020 MATLAB 2D

MMHelper Smith et al., 2019 ImageJ plugin 2D

molyso Sachs et al., 2016 Python package 1D

MoMA Jug et al., 2014 ImageJ plugin 1D

https://doi.org/10.7554/eLife.88463
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and B. subtilis, and that the hierarchy of CVs is preserved across the two evolutionarily divergent 
species (Sauls et al., 2019a; Taheri-Araghi et al., 2015a). Here, we confirmed that the distributions of 
these physiological parameters are independent of the analysis methods (Figure 4-4.4). In particular, 
the hierarchy of CVs is preserved by all three methods tested. Last, while in this dataset the old-pole 
‘mother’ cells showed signs of aging (in particular, a reduced elongation rate), this aging phenotype is 
strain- and condition-dependent (Figure 4—figure supplement 1).
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Figure 4. Comparison of various image analysis approaches. (4.1) A time series of a typical cell growing in a nutrient-rich medium. The birth size, 
division size, and added size are indicated. (4.2) The adder principle ensures cell size homeostasis via passive convergence of cell size to the population 
mean. (4.3) We analyzed multiple datasets from our lab using MM3, DeLTA, and BACMMAN, and obtained robust correlations between birth length, 
doubling time, elongation rate, and added length. Representative results from one dataset (Si et al., 2019) for MG1655 background E. coli grown in 
MOPS glycerol + 11 amino acids are shown, with 9000–13,000 cells analyzed depending on the method. Error bars indicate standard error of the mean 
(note the standard error is smaller than marker size in most cases). (4.4) Distributions of key physiological parameters are independent of the analysis 
methods. The data and code used to generate this figure are available at Thiermann, 2024a.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Old-pole aging phenotype is strain specific.

https://doi.org/10.7554/eLife.88463
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Systematic discrepancies in cell segmentation outputs
While we found that the correlations between physiological parameters were preserved across the 
different analysis methods (Figure 4-4.3), we also observed systematic discrepancies in the results 
obtained by different methods, including cell length at birth (Sb), length at division (Sd), and length 
added between birth and division (Δ) (Figure 4-4.4). In particular, napari-MM3’s classical segmentation 
method systematically generated larger cell masks than napari-MM3 U-Net, DeLTA, and BACMMAN 
(Figure 4-4.4). We focused on the discrepancies between the two MM3 outputs. Although the devi-
ation between the two masks may not appear significant when individual masks are inspected by 
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Figure 5. Effect of systematic deviation in segmentation output from different methods. (5.1) Otsu/random walker 
and U-Net segmentation masks. The classical method systematically yields masks that are 5–10% larger than the 
other methods. (5.2) We confirmed that this discrepancy occurs consistently across the cell cycle. (5.3) We trained 
the Omnipose model on masks generated by either napari-MM3-Otsu or napari-MM3-U-Net separately. (5.4) The 
systematic discrepancy in the training data masks propagated to the output of the trained models.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Evaluating segmentation output of napari-MM3 Otsu and U-Net methods.

https://doi.org/10.7554/eLife.88463
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eye (Figure 5-5.1, Figure 5—figure supplement 1), the classical method yields cells that are 5–10% 
larger at each time point than those returned by the U-Net method when averaging over an entire 
experiment with tens of thousands of cells tracked (Figure 5-5.2). Cell birth and division times are also 
systematically shifted in the classical method, as the expanded cell boundaries lead the algorithm to 
split cells one to two time frames later on average.

The root of this discrepancy is as follows. Exact cell boundaries are difficult to distinguish by eye, 
and the classical methods tested here require the user to set threshold values that can systematically 
alter the measured cell size. Indeed, both MM3 and BACMMAN’s non-learning method (which also 
uses Otsu thresholding and a watershed/diffusion algorithm) – output different cell masks with their 
‘default’ parameter settings. On the other hand, binary U-Net segmentation methods, such as those 
implemented in napari-MM3 and DeLTA, tend to output smaller cell sizes because the model must 
leave a gap between cells so that they are not stitched together (note this is not a fundamental limita-
tion of U-Net, but a consequence of our implementation: see, for example Cutler et al., 2022 or 
Ollion and Ollion, 2020 for more complex approaches which avoid this issue).

WYPIWYG (What You Put Is What You Get) in deep learning-based 
image analysis
Given that classical methods are clearly sensitive to this threshold tuning, we predicted that deep 
learning approaches would also be impacted (Laine et al., 2021; Geiger et al., 2021). We chose 
the recent cutting-edge segmentation model Omnipose and separately trained it on masks derived 
from the Otsu segmentation output and masks from the napari-MM3 U-Net segmentation output. 
We chose Omnipose as it assigns different labels to different cells, and can thus segment cells with 
contiguous boundaries, in contrast to MM3 or DeLTA’s U-Net implementations. Indeed, we found that 
the systematic discrepancy in the training masks propagated to the output of the trained models: the 
Omnipose model trained on larger Otsu masks generated larger masks upon evaluation with the same 
data, while the Omnipose model trained on smaller U-Net masks output smaller masks (Figure 5-5.3). 
In computer science, the phrase ‘Garbage in, garbage out’ denotes the concept that undesirable attri-
butes in the input to a program will propagate to the output (Mellin, 2024; Babbage, 1864). Here, 
we propose a related notion WYPIWYG, or ‘what you put is what you get’. That is, at least for our 
setup, systematic differences in training data masks lead the model to learn different threshold inten-
sity values and thus to systematically output larger or smaller masks. We emphasize this result does 
not reflect a flaw in Omnipose – whose performance we found impressive – but rather a well-studied 
feature of machine learning methods in general (Geiger et al., 2021).

Discussion
In this study, we introduced a modular and interactive image analysis pipeline for mother machine 
experiments and compared its effectiveness to other existing tools. Unlike its predecessors, napa-
ri-MM3 is equipped with an intuitive and modular interface, making it highly accessible to new users. 
Our main goal is to lower the barrier to entry in image analysis, which has been a primary obstacle in 
adopting the mother machine, and ultimately increase its user base.

Finally, we discuss common challenges faced by users new to high-throughput image analysis and 
give our prescriptions for overcoming them.

Validating results
We showed that distributions and correlations in key cell cycle parameters are invariant to the choice of 
analysis pipeline, provided that care is taken in parameter adjustment and postprocessing. However, 
this parallel processing of data is not feasible for every experiment. Instead, we suggest users can 
validate their results in the following ways:

1.	 A qualitative ‘eye test’ is an important first step: one should always visually inspect one’s data. 
Often, this may be sufficient to establish whether the analysis is operating as expected.

2.	 When a more quantitative and systematic approach is needed, the user can compare the output 
of their analysis to a subset of manually annotated ‘ground truth’ images. Quantitative measures 
such as the JI, F1 score or dice coefficient may be used (Laine et al., 2021; Taha and Hanbury, 
2015). These metrics are particularly useful for comparing the results of different parameter 

https://doi.org/10.7554/eLife.88463
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choices in a given method, allowing the user to determine the combination that yields the most 
accurate segmentation or tracking results.

3.	 Verify that the averages calculated from single-cell measurements match the results of 
population-level control experiments.

4.	 When possible, filter for subsets of the data that are likely to reflect accurate segmentation and 
continuous tracking, such as cell lineages that are continuously tracked for the duration of the 
experiment.

Choosing an image analysis tool
For many years, published and well-documented pipelines for mother machine image analysis were 
scarce, and existing software required extensive parameter reconfiguration, knowledge of image-
processing techniques, and programming experience to use effectively. In recent years, advances 
in deep learning have contributed to a rapidly growing set of image analysis tools that perform cell 
segmentation and tracking.

Inspired by previous reviews (Laine et  al., 2021; Jeckel and Drescher, 2021), we make the 
following suggestions for new users selecting a tool:

1.	 Tools that are actively maintained, with an easy way to contact the developer, will be more likely 
to work well and will be easier to troubleshoot than others.

2.	 Detailed documentation and tutorials are valuable and will allow the user to troubleshoot the 
software without direct guidance from the developers.

3.	 Depending on the user’s level of comfort with coding, it may be beneficial to choose a tool that 
is implemented through a graphical user interface and does not require additional program-
ming. Moreover, even for programmers, we found within our lab that introducing interactivity 
when necessary dramatically expedited the data analysis process.

4.	 Full stack (vertically integrated) tools that cover the entire analysis pipeline may save time and 
work, relative to those which only perform a portion of the needed analysis.

5.	 It is worthwhile to engage with the online community around the tool. We have found the ​
image.​sc forum (Image.Sc, 2023) valuable in the past for help with napari.

6.	 Consider whether the tool is open source or requires a license. We encourage tool developers 
to avoid proprietary software such as MATLAB, which may not be accessible to all users. The 
open-source Java-based image-processing program ImageJ (Bourne, 2010) has been a domi-
nant tool in biological image analysis for many years. The recent growth of image analysis and 
machine learning tools in Python makes napari (napari contributors, 2023) an attractive alter-
native to ImageJ.

Traditional computer vision vs. deep learning methods
A key choice many users will face is whether to use deep learning-based or traditional methods 
for image analysis. The field has increasingly shifted toward deep learning methods, and this shift 
will likely accelerate. While traditional computer vision methods remain useful, deep learning-based 
methods have a clear advantage in their ability to generalize quickly to new datasets.

In our lab, we have found that traditional computer vision techniques perform excellently on 
cell segmentation and tracking in the mother machine, subject to constraints on the experimental 
setup. However, such methods often require extensive reconfiguration or fail entirely when applied 
to data obtained under new biological conditions (different organisms, different cell morphology) 
and imaging conditions (varied illumination, microscope setup). Our own non-learning segmentation 
method performs well, provided that cells are tightly confined in the mother machine channels and do 
not move substantially. Prior to the adoption of deep learning methods, this requirement necessitated 
the design of different devices for cells grown in different growth conditions, as the cell width in some 
E. coli strain backgrounds varies with the population growth rate.

In contrast, the key strength of deep learning approaches is their ability to generalize to new condi-
tions – whether to different illumination conditions, different types of input images (phase contrast, 
brightfield, fluorescence) or different organisms and cell types entirely. The main barrier to adoption 
of learning-based methods remains the construction of training data, which can be tedious and time 
consuming. A training data set of 50–100 images comprising several hundred cells can be constructed 
in a few hours and will achieve passable segmentation on representative data. However, larger training 
sets on the order of thousands of images are preferable and will yield improved model accuracy and 
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generalizability. The time needed for annotation can be reduced by seeding the data with masks 
generated by classical methods – or iteratively seeding with U-Net output – and then refining the 
masks further by hand. Model performance and generalizability can often be significantly improved 
by augmenting training data via manipulations such as rotating or shearing, distorting the intensity 
profile, and adding noise. Nonetheless, we have found that even with extensive data augmentation, 
applying the U-Net segmentation to new experimental configurations or imaging conditions often 
requires retraining the model on an expanded dataset with more representative data. Ultimately, deep 
learning methods are only as good as the data they are trained on and are most likely to fail when 
training data is insufficient, mislabeled, or not representative. Going forward, sharing of training sets 
and models (Assets, 2023) between different groups can facilitate progress and aid reproducibility.

In addition to deep learning-based segmentation, learning-based cell tracking in the mother 
machine has been implemented recently by multiple groups (O’Connor et  al., 2022; Ollion and 
Ollion, 2020). For cells growing unconstrained on 2D surfaces such as agar pads, U-Net tracking 
dramatically outperforms traditional methods (O’Connor et al., 2022). On the other hand, for steady-
state growth in the mother machine where cells are confined and constrained to move in one dimen-
sion, we have not found a significant difference between the performance of deep learning-based 
tracking and the non-learning tracking method implemented in MM3. In both cases, errors in tracking 
nearly always arise from errors in segmentation. Nonetheless, deep learning-based tracking may offer 
an advantage in cases where cells may move substantially along the length of the channel or undergo 
dramatic morphological changes such as filamentation.

Ultimately, for groups with existing analysis pipelines fine-tuned for specific organisms under 
specific imaging conditions to perform simple tasks such as segmentation and 1D tracking, there may 
be little incentive to switch to deep learning methods. However, for users looking to develop a new 
pipeline or analyze more complex data, the power and generality of deep learning tools will make 
them the method of choice.

Should users worry about the systematic discrepancy in segmentation 
results between different methods?
Given the 5–10% variance in the segmented bacterial cell size is comparable to the CVs of several 
physiological parameters (Figure 4), should researchers be concerned about the robustness of their 
results? The answer depends on the purpose of the image analysis.

If the research critically relies on the absolute cell size, such as cell-size control (Taheri-Araghi 
et al., 2015a; Si et al., 2019), the researcher must be aware of inherent limitations to the accuracy 
of spatial measurements from cell segmentation. These arise in part from the difficulty of consistently 
distinguishing cell boundaries by eye. Once a threshold is chosen, the choice will affect all analyzed 
cells systematically. This limitation applies to both deep learning (through the construction of training 
data) and traditional computer vision methods (through the manual input of a threshold value). For cell 
segmentation, the uncertainties are typically comparable to the pixel size of the images, rather than 
optical resolutions. For example, the pixel size in the images in Figure 5 is 0.065 µm (for the camera 
pixel size 6.5 µm and ×100 magnification), which is non-negligible for many commonly cultured bacte-
rial cells with submicron cell widths – for example, Enterobacterales, Pseudomonas, B. subtilis, and 
Caulobacter crescentus. For most commercially available cameras and objective lenses used in quanti-
tative bacterial cell biology, 10% should be taken as a conservative lower bound for uncertainty when 
comparing absolute spatial measurements of bacterial cell size.

Indeed, researchers should be particularly careful when comparing absolute measurements of cell 
size, for example, at division or initiation of chromosome replication obtained by different groups 
using different image analysis methods. While absolute temporal measurements are more robust than 
spatial measurements (Figure 4-4.4), the differences in spatial measurements can propagate to the 
measured timing of, for example, cell division. For instance, we observed that the classical method 
stitched cells together for slightly longer than the U-Net method did (Figure 5-5.2), but as this shift 
applied equally to birth and division, it did not affect the average cell generation time (Figure 4-4.4).

Fortunately, the examples mentioned above are extreme cases. For instance, the pixel-size uncer-
tainties will reflect a smaller proportion of the cell size when imaging larger cells such as yeast or 
mammalian cells. Even in our research on single-cell bacterial physiology (Sauls et al., 2019a; Taheri-
Araghi et al., 2015a; Si et al., 2019), we find that correlations and relative changes are more likely to 
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be robust than absolute spatial measurements to the choice of analysis method (Figure 4). Further-
more, different applications of deep learning-based image analysis, such as high-throughput pheno-
typic classification (Shiaelis et al., 2023) will be much more robust to the pixel-size uncertainties in 
image segmentation results.

Generating robust and unbiased segmentation results
We have shown that both traditional computer vision and deep learning methods are susceptible 
to biases introduced by imprecise thresholding and human error. How, then, can more precise cell 
boundaries be determined? For non-learning methods, thresholds could be calibrated against data 
from alternate imaging methods such as fluorescence or brightfield. For learning methods, one prom-
ising technique is the generation of synthetic training data (Hardo et al., 2022). This method also 
has the advantage that new training datasets can be instantaneously for different imaging conditions 
or cell types once the appropriate parameters have been determined. For deep learning methods, 
metrics which lead the model to recognize cell interiors or centers (Cutler et al., 2022; Ollion and 
Ollion, 2020; Naylor et al., 2019) may yield more robust results than binary pixel-level classification. 
Once cell centers are known, boundaries can be determined relatively easily via classical watershed or 
random walker diffusion algorithms.

Conclusion and recommendations
Here, we presented a guide to first-time users of the mother machine, introduced our updated image 
analysis software, and validated it against existing tools. napari-MM3 provides a simple and modular 
user-friendly interface, which we believe makes it uniquely accessible and valuable to novice users. By 
lowering the barrier to entry in image analysis – the key bottleneck in mother machine adoption – we 
aim to increase the user base of this powerful tool dramatically.

After testing two other well-constructed mother machine image analysis pipelines, we concluded 
that all four methods (BACMMAN, DeLTA, MM3 Otsu, and MM3 U-Net) yielded consistent and repro-
ducible results, up to previously discussed limitations of segmentation algorithms. Thus, for users 
already comfortable with a given pipeline, there is no strong incentive to switch to a new one. However, 
the different pipelines do have markedly different user interfaces. DeLTA is set up to provide a simple 
‘one-shot’ analysis, in which image preprocessing, channel detection, segmentation, and tracking 
are performed in sequence with minimal user input. This arrangement simplifies the analysis process, 
especially for first-time users. In particular, it can be helpful for users who want to quickly verify that 
the software will serve their purpose, before investing more time in setting up and running the anal-
ysis. On the other hand, the intermediate steps in the pipeline are less accessible, which may make 
debugging and troubleshooting more involved. BACMMAN, like napari-MM3, is more modular than 
DeLTA. This modularity can aid troubleshooting and improves versatility, but configuration can be time 
consuming. With napari-MM3, we attempted to strike a balance between these two well-designed 
and well-performing tools, while taking advantage of the fast-growing next-generation image anal-
ysis platform napari. napari-MM3 attempts to infer or pre-set as many parameters as possible, while 
the napari interface makes midstream output easily accessible. We have been using MM3, and more 
recently napari-MM3, for over a decade since our introduction of the mother machine in 2010, and we 
will continue to actively maintain and improve it in the coming years.

The mother machine setup has become increasingly accessible to researchers in recent years, 
through the distribution of molds and the publication of in-depth protocols and open-source image 
analysis software. At the same time, new variations of the device have found diverse applications, 
including bacterial starvation (Bakshi et al., 2021) and genetic screening (Lawson et al., 2017; Luro 
et al., 2020). Clearly, the combination of microfluidics with high-resolution time-lapse imaging remains 
powerful among single-cell techniques. We hope that this article will prove useful to mother machine 
veterans and first-time users alike.

Methods
Resources

•	 napari-MM3 Github repository (Thiermann et al., 2024a, copy archived at Thiermann et al., 
2024b).

https://doi.org/10.7554/eLife.88463
https://github.com/junlabucsd/napari-mm3
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○ Contains installation instructions and video tutorial.
•	 Jupyter notebook demonstrating analysis of MM3 output data (Thiermann et al., 2024a).

○ A notebook providing functions for postprocessing and plotting of the napari-MM3 output.
•	 Protocols for device fabrication and loading (Thiermann, 2023).
•	 Raw data analyzed in this manuscript (Thiermann et al., 2024c).
•	 Processed data analyzed in this manuscript (Thiermann, 2024a, copy archived at Thiermann, 

2024b).

Getting started with napari-MM3
napari-MM3 is implemented entirely in Python and can be accessed on Github (Thiermann et al., 
2024a), along with documentation covering installation and usage. It will run on a standard Mac, PC, 
or Linux machine. We recommend using the Anaconda Python distribution to simplify installation.

Imaging conditions
The data analyzed in Figures 4 and 5 (originally published in Si et al., 2019) was obtained on an 
inverted microscope (Nikon Ti-E) with Perfect Focus 3 (PFS3), ×100 oil immersion objective (PH3, 
numerical aperture = 1.45), and Obis laser 488 LX (Coherent Inc, CA) as a fluorescence light source, 
and an Andor NEO sCMOS (Andor Technology) camera. The laser power was 18 mW. The exposure 
time was 200 ms for phase contrast imaging and 50 ms for fluorescence.

Image analysis for software comparison
For the software comparison in Figure 4, we analyzed a dataset from Si et al., 2019 consisting of E. 
coli MG1655 expressing a fluorescent protein YPet fused to the replisome protein DnaN. The cells 
were grown in MOPS minimal medium + glycerol and 11 amino acids. The dataset was analyzed end-
to-end starting from the raw.nd2 file with BACMMAN, DeLTA, and MM3. For analysis with DeLTA, 
we used the provided channel detection and tracking models but trained a new model on our own 
data for segmentation. For segmentation with BACMMAN, we used the standard non-learning phase 
contrast segmentation method ‘MicrochannelPhase2D’. Postprocessing of the output of each pipe-
line was done in Python. For each pipeline, we filtered for cells whose mothers and daughters were 
also tracked.

The code and data to reproduce the plots in Figure 4 are available at Thiermann et al., 2024a and 
Thiermann, 2024a, respectively. The raw image data is available at Thiermann et al., 2024c.

Table 4. MM3 parameter values for processed external datasets.
Parameters which were changed from the default values are shaded in yellow. Ollion et al., Jug et al., and Sachs et al. datasets were 
segmented with the non-learning method, while the Lugagne et al. dataset was segmented using the U-Net method.

Default value Ollion et al. Lugagne et al. Jug et al. Sachs et al.

Compile

Channel width (px) 10 20 10 10 10

Channel separation (px) 45 90 45 45 45

Subtract Align pad (px) 10 10 10 10 10

Segment

1st opening (px) 2 3 N/A 3 3

Distance threshold (px) 2 3 N/A 3 3

2nd opening (px) 1 2 N/A 1 2

Otsu threshold scale 1 1.2 N/A 1.0 1.0

Min object size (px2) 25 25 25 25 25

Track

Growth length ratio (min, max) (0.8, 1.3) (0.9, 1.5) (0.8, 1.3) (0.8, 1.3) (0.8, 1.3)

Growth area ratio (min, max) (0.8, 1.3) (0.9, 1.5) (0.8, 1.3) (0.8, 1.3) (0.8, 1.3)

Lost cell time (frames) 3 3 3 3 3

New cell y cutoff (px) 150 300 150 150 150

https://doi.org/10.7554/eLife.88463
https://github.com/junlabucsd/napari-mm3/blob/main/notebooks/napari_mm3_analysis_template.ipynb
https://github.com/junlabucsd/mother-machine-protocols
https://github.com/junlabucsd/mother-machine-data
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For the comparison of Otsu and U-Net outputs from Omnipose in Figure 5, we trained Omnipose 
with a learning rate of.01 without a pre-trained model. We used the same set of 1000 randomly 
selected images for both Otsu and U-Net, the only difference coming from the labeled masks them-
selves. Both models were trained until the loss dipped below 0.9 (390 epochs for U-Net, 210 epochs 
for Otsu). In some cases, the model ‘hallucinated’ cells along the channel features. We excluded these 
images from the final analysis.

Analysis of external datasets
The external datasets were preprocessed as follows: Ollion et al., Jug et al., and Sachs et al. datasets 
were rotated 1–2 degrees to align the channels vertically. Ollion et al., Sachs et al., and Lugagne et al. 
datasets were cropped to remove imaging artifacts from the main trench.

The parameter values used for analysis of each dataset are shown in Table 4. In general, the optimal 
parameter values for the compilation and subtraction steps depend on the size of device features 
as well as the optical resolution and camera pixel size, while the optimal segmentation parameters 
depend on cell size as well as pixel size and optical resolution. Finally, the tracking parameters are 
either sensitive to the imaging frequency and the single-cell elongation rate (growth ratios and lost 
cell time), or the spatial position of the cells in the frame (y cutoff). The output cell size is sensitive to 
the ‘Otsu threshold scale’ parameter, so care should be taken when adjusting this value. In addition, 
the growth length and growth area ratio parameters may filter out fast- or slow-growing cells if they 
are set too close to 1. The remaining parameters will not impact the output statistics.

Each dataset was processed in its entirety with napari-MM3. To evaluate the segmentation quality, 
we selected one to two representative traps (comprising 50–100 time steps) and constructed ground 
truth masks for these images. On this subset, we computed the JI (Taha and Hanbury, 2015) as the 
ratio of true positives (correctly identified cells) to the sum of true positives, false positives (identified 
cells which were not present in the ground truth data), and false negatives (ground truth cells which 
were not identified by the segmentation). The segmentation and ground truth masks were deter-
mined to be matching if their IoU value was at least 0.6. Note that two masks become indistinguish-
able to the human eye at IoU 0.8 and higher (Cutler et al., 2022; Laine et al., 2021).

The output JSON file and kymographs showing reconstructed cell lineages from each sample data-
sets are available at Thiermann, 2024a, along with JSON files containing the parameter values used 
for each step of the analyses.

U-Net model training
Training data was augmented as described below to aid the generalizability of the model. We trained 
the U-Net model using a binary cross-entropy loss function, with pixel-wise weighting to force the 
model to learn border pixels (Ronneberger et  al., 2015; Lugagne et  al., 2020). The model was 
trained using the Adam optimizer with a learning rate of 10−4, a dropout rate of 50%, a batch size of 
eight samples, a patience (early stopping value) of 50 epochs and a train-test split of 90–10.

Overview of the MM3 pipeline
Channel compilation and designation
The first section of the MM3 pipeline takes in raw micrographs and returns image stacks corresponding 
to one growth channel over time. Further pipeline operations are then applied to these stacks.

A standard mother machine experiment consists of thousands of images across multiple FOVs and 
many time points. Images are first collated based on the available metadata. MM3 expects TIFF files 
and looks for metadata in the TIFF header and from the file name.

All images from a particular FOV are analyzed for the location of channels using the phase contrast 
plane. Channel detection is performed using a wavelet transform, in which a mask is made which 
is applied across all time points. Channels are cropped through time using the masks and saved as 
unique image stacks that include all time points for a given channel and imaging plane. MM3 saves 
channel stacks in TIFF format.

MM3 attempts to compile all channels. However, not all channels contain cells, and some channels 
may have undesirable artifacts from the device preparation. It is, therefore, desirable to only process 
certain channels for analysis. Consequently, MM3 auto-detects empty and full channels based on 
the time correlation of the y-profile of the channel (empty channels are highly correlated in time, 
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while channels containing cells are not). The auto-detected channels and their classifications are then 
displayed in the napari viewer for the user to inspect and modify as needed. The user may also 
manually select empty channels free of artifacts to be used as templates for phase or fluorescence 
background subtraction.

Background subtraction
MM3’s Otsu segmentation method requires background subtraction of phase contrast images. The 
subtraction ensures that the presence of the channel border does not interfere with detection of cells. 
To this end, we overlay the previously identified empty channels on the full channels to be subtracted. 
The two channels are aligned such that the cross-correlation of overlaid pixels is maximized. After the 
inversion of the image, this leaves the cells as the only bright objects on a dark background. Good 
alignment of the device features in the empty and full channel is essential here. Imperfect alignment 
will leave artifacts in the subtracted image, which interfere with later steps, and is a common failure 
point for this method. Note that the subtraction step necessitates the presence of some empty chan-
nels in each experiment. The U-Net segmentation does not require background subtraction.

Cell segmentation
Cell segmentation is the first of the two major tasks in the image analysis pipeline. Segmentation 
receives channel stacks and produces 8-bit segmented image stacks. Typically, segmentation is done 
using the phase contrast time-collated stack.

MM3 has two methods for segmentation: a ‘standard’ method and a supervised learning method. 
The standard method uses traditional image analysis techniques, specifically background subtraction, 
Otsu thresholding, morphological operations, and watershed algorithms. As the standard method 
may require fine-tuning of parameters, the napari plugin allows the user to quickly preview the effect 
of tuning morphological parameters and threshold value on the segmentation output, without having 
to process the entire dataset. The Otsu segmentation method first aligns the channel of interest with 
an empty background channel by computing the orientation, which maximizes the pixel-wise cross-
correlation. The empty channel is then subtracted from the full channel, and the image is inverted. 
Otsu’s method is then applied to find the binary threshold value which maximizes the inter-region 
variance (or equivalently, minimizes the intra-region variance). We then apply a Euclidean distance 
transform, in which each pixel is labeled with its distance to the dark region. The image is thresholded 
again, and a morphological opening is applied to erode links between regions. Small objects and 
objects touching the image border are removed. Each region is labeled, and the labels are used to 
seed a random walker algorithm (Grady, 2006) on the original image. As implemented in MM3, this 
‘standard’ method has three adjustable parameters: the first opening pixel size, second opening pixel 
size, distance threshold (i.e., threshold which is applied to the distance transformed image, in pixels), 
and a dimensionless parameter to rescale the Otsu-determined threshold, if needed.

The supervised learning method uses a standard U-Net architecture with five levels (Ronneberger 
et al., 2015). The model outputs a cell class probability between 0 and 1 for each pixel, which is thresh-
olded at 0.5 to obtain a binary segmentation. The napari viewer can be used to construct training 
data, with the option to import existing Otsu or U-Net segmentation output as a template. The neural 
net can then be trained using a separate widget, with the option to check the performance of the 
model in the napari viewer after successive rounds of training. We found that applying a weighted 
loss depending on pixel location – as suggested in the original U-Net paper (Ronneberger et al., 
2015) and implemented for instance in DeLTA (Lugagne et al., 2020) – sped up model training and 
improved segmentation and tracking. Since the accurate separation of adjacent cells is vital for cell 
tracking, the cost of misidentifying pixels between bordering cells is high. We initially implemented a 
simple binary weight map where pixels between cells were weighted highly and all other pixels rela-
tively lower. We later added a more complex mapping, drawing directly from the one implemented 
in DeLTA (O’Connor et al., 2022), where weights are maximized on the skeletons (Lee et al., 1994) 
of the cells and borders. Intuitively, this weighting tells the model that pixels in the center of the cell, 
in regions far from cells, and on the borders between cells are most important to predict accurately.

Illumination conditions can vary across laboratories, microbial species, and with device design. To 
aid the generalizability of the U-Net model, on specific conditions, we augmented the training data 
with various morphological techniques, including changing magnification, zooming, and rotating, and 
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Gaussian noise and blur. We also adapted several non-standard operations from DeLTA, one which 
performs elastic deformation and two others that distort image contrast to simulate changes in illumi-
nation within the FOV and between experiments.

Cell tracking
Tracking segmented cells is the second major task in the pipeline. Tracking involves linking cell 
segments in time to define a lineage of cell objects. The default tracking method is a simple deci-
sion tree based on a priori knowledge of binary fission and the mother machine. For example, cells 
normally grow by a small amount between time intervals, divide into two similarly sized daughter 
cells, and cannot pass each other in the channel. The tracking method accounts for the absolute 
positions and relative ordering of cells in each channel over time. Specifically, at each time point we 
iterate over all detected regions (potential cells). Based on their relative y positions in the channel and 
sizes, each is linked to a set of potential descendants/ancestors. When two cells are best matched to 
the same region, the event is classified as a division, subject to constraints on the size of the regions. 
This tracking implementation is like that employed by BACMMAN (Ollion et al., 2019) although it 
does not explicitly consider relative ordering of cells in the channel. It contrasts with more complex 
optimization-based methods used by other mother machine software (Sachs et al., 2016; Jug et al., 
2014).

The lineage tree obtained by tracking is displayed in the napari viewer in the form of a kymograph, 
in which the x-axis represents time, and cell linkages and divisions are indicated by forking lines.

Data output and analysis
Tracking produces a dictionary of cell objects which contains relevant information derived from the 
cell segments. This includes, but is not limited to, birth and division size, growth rate, and generation 
time. Each object is identified by a key that represents the FOV and channel of the cell, the time 
point of its birth, and its position in the channel. Since each cell object has the requisite information 
to find its corresponding position in the channel stacks, the objects can be modified and extended by 
additional analysis. For example, the corresponding location of a cell in a fluorescent image stack can 
be retrieved, focus detection performed, and that information can be added to the cell object. This 
minimizes the burden of rerunning previous sections of the pipeline for new subanalyses.

Plotting can be done from this cell object dictionary directly, or it can first be converted to a.csv, 
a pandas DataFrame, or a MATLAB structure. We provide a Jupyter notebook (Thiermann et  al., 
2024a) to illustrate how the data can be extracted and plotted.

Fluorescence analysis
Integrated fluorescence signal and fluorescence per cell area and volume for each time point can be 
extracted using the Colors module.

Focus tracking
The focus tracking module enables the identification and tracking of fluorescent spots or ‘foci’. This 
module has been used in our lab for tracking fluorescently labeled replisome machinery in bacteria to 
measure the timing and synchrony of DNA replication initiation. However, it may be applied to any use 
case requiring localization and tracking of intracellular spots. The module uses a Laplacian convolution 
to identify fluorescent spots. Foci are linked to the cell objects in which they appear.

U-Net training data annotation
Training data can be constructed by manual annotation of raw images in the napari viewer. MM3 offers 
the option to construct training data with existing (Otsu or U-Net) segmentation data as a template. 
This allows the user to iteratively train a model, correct mistakes in its output, and use the modified 
output as input for the next round of training.
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