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Abstract Photosynthetic eukaryotes, such as microalgae and plants, foster fundamentally 
important relationships with their microbiome based on the reciprocal exchange of chemical curren-
cies. Among these, the dicarboxylate metabolite azelaic acid (Aze) appears to play an important, 
but heterogeneous, role in modulating these microbiomes, as it is used as a carbon source for some 
heterotrophs but is toxic to others. However, the ability of Aze to promote or inhibit growth, as well 
as its uptake and assimilation mechanisms into bacterial cells are mostly unknown. Here, we use 
transcriptomics, transcriptional factor coexpression networks, uptake experiments, and metabolo-
mics to unravel the uptake, catabolism, and toxicity of Aze on two microalgal-associated bacteria, 
Phycobacter and Alteromonas, whose growth is promoted or inhibited by Aze, respectively. We 
identify the first putative Aze transporter in bacteria, a ‘C4-TRAP transporter’, and show that Aze 
is assimilated through fatty acid degradation, with further catabolism occurring through the glyox-
ylate and butanoate metabolism pathways when used as a carbon source. Phycobacter took up 
Aze at an initial uptake rate of 3.8×10–9 nmol/cell/hr and utilized it as a carbon source in concen-
trations ranging from 10 μM to 1 mM, suggesting a broad range of acclimation to Aze availability. 
For growth-impeded bacteria, we infer that Aze inhibits the ribosome and/or protein synthesis 
and that a suite of efflux pumps is utilized to shuttle Aze outside the cytoplasm. We demonstrate 
that seawater amended with Aze becomes enriched in bacterial families that can catabolize Aze, 
which appears to be a different mechanism from that in soil, where modulation by the host plant 
is required. This study enhances our understanding of carbon cycling in the oceans and how 
microscale chemical interactions can structure marine microbial populations. In addition, our findings 
unravel the role of a key chemical currency in the modulation of eukaryote-microbiome interactions 
across diverse ecosystems.

eLife assessment
This study presents valuable findings on the contrasting responses of two bacteria to the 
phytoplankton-derived compound azelaic acid. Metabolomics and transcriptomics evidence 
convincingly shows the assimilation pathway in one marine bacterium and a stress response in a 
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second bacterium. The study provides evidence that azelaic acid can alter marine microbial commu-
nity structure in mesocosm experiments, though the mechanisms underlying this shift in community 
structure remain to be explored in future studies.

Introduction
Eukaryote-microbiome interactions are among the most diverse associations in marine and terrestrial 
ecosystems. Chemical exchanges between diverse eukaryotes and their microbiomes are hallmarks 
of these relations, particularly involving secondary metabolites (Helliwell et al., 2022; Shaffer et al., 
2022). Despite the importance of secondary metabolites as signaling molecules that play critical 
roles in structuring microbial populations and regulating global biogeochemical cycles, the molecular 
mechanisms by which identified chemicals regulate microbial relationships in the ocean are largely 
elusive. The C9 dicarboxylic acid, azelaic acid (or azelate, hereafter Aze), is a ubiquitous, yet enigmatic 
metabolite produced by photosynthetic organisms, such as plants (Amin et  al., 2016; Khakimov 
et al., 2014) and phytoplankton (Shibl et al., 2020). It is postulated to be a product of the peroxida-
tion of galactolipids (Zoeller et al., 2012), yet its exact biosynthetic pathway is unknown. Aze plays 
a crucial role as an infochemical that primes systemic acquired resistance against phytopathogens 
(Jung et al., 2009; Spoel and Dong, 2012; Wittek et al., 2014) and influences microbial diversity 
in soil (Korenblum et al., 2020). In marine environments, diatoms secrete Aze to modulate bacterial 
populations by promoting the growth of symbionts while simultaneously inhibiting opportunists (Shibl 
et al., 2020). Despite this undeniable importance, no Aze uptake proteins are known in bacteria and 
its assimilation into bacterial cells to promote or inhibit growth is poorly understood. A single gene 
has recently been identified in Pseudomonas nitroreducens that acts as a transcriptional regulator of 
Aze, azeR (Bez et al., 2020), yet its regulatory targets are unknown. Understanding the molecular 
mechanisms that enable the transport and assimilation of Aze into bacterial cells to induce positive or 
negative phenotypes will help to reveal how eukaryotic hosts influence and control their microbiome.

To examine how bacteria transport and catabolize Aze, we used Phycobacter azelaicus (Coe 
et al., 2023) (formerly Phaeobacter sp. F10, and hereafter Phycobacter) as a model to study how 
Aze promotes bacterial growth and Alteromonas macleodii F12 (hereafter A. macleodii) as a model 
to study the inhibitory effects of Aze (Shibl et al., 2020). Both bacteria were isolated from the diatom 
Asterionellopsis glacialis, which was shown to produce Aze to modulate its microbiome (Shibl et al., 
2020). In previous experiments, Aze caused an increase in cell density of Phycobacter relative to 
controls, while temporarily inhibiting the growth of A. macleodii (Shibl et al., 2020). A combination 
of transcriptomics, transcriptional coexpression networks (TCNs) of master transcriptional regulators, 
metabolomics, and uptake experiments were used to elucidate how these bacteria process Aze. Addi-
tionally, in situ mesocosm experiments with seawater microbial communities and Arabidopsis thaliana 
were conducted to examine whether Aze influences microbial diversity in natural environments and 
enriches microbial taxa that carry genes involved in Aze uptake and response. We discovered the 
first putative Aze transport system in bacteria and map out how each bacterium responds to and 
processes Aze through complex regulatory networks.

Results
Growth and transcriptional response to Aze
Phycobacter incubated with 1 mM Aze as the sole carbon source showed a significant increase in 
growth relative to no-carbon controls or growth with glutamate as the sole carbon source (Figure 1—
figure supplement 1A). To elucidate the transcriptional responses of Phycobacter to growth on Aze, 
RNA samples were collected at 0.5 and 8 hr after Aze addition to Phycobacter to capture the short-
term uptake and longer-term catabolism of Aze (Figure 1—figure supplement 1B). To infer possible 
mechanisms of short-term toxicity by A. macleodii, samples were collected at 0.5 hr. After 0.5 hr, 
Phycobacter differentially expressed (DE) 273 genes in response to Aze; this number increased to 558 
genes after 8 hr, corresponding to ~20% of all CDS in its genome (Supplementary file 1). Approx-
imately 78% of DE genes were upregulated in response to Aze (n=652) and most occurred at 8 hr 
(n=494). Only 70 genes displayed consistent expression profiles at both 0.5 and 8  hr, suggesting 
the immediate, short-term response to Aze is different from long-term growth on the substrate. In 
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contrast, A. macleodii DE 274 genes at 0.5 hr, corresponding to ~7% of all CDS in its genome, half of 
which were upregulated (Supplementary file 1).

Global analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed signif-
icant differences between the transcriptional profiles of Phycobacter and A. macleodii (Figure  1). 
While fatty acid degradation, amino acid metabolism and degradation, ABC transporters, oxidative 
phosphorylation, propanoate metabolism, glyoxylate, and dicarboxylate metabolism pathways exhib-
ited similar expression ratios across both bacteria in response to Aze, upregulated genes in these 
pathways were mostly dominated by Phycobacter transcripts. In contrast, downregulated genes were 
mostly enriched in A. macleodii transcripts. Interestingly, fatty acid degradation genes were among 
the most upregulated genes in Phycobacter (Figure 1).

Aze catabolism by Phycobacter
No uptake genes are known for Aze. Among 26 enriched transporter genes in our dataset, a C4-
dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter substrate-binding protein 
(INS80_RS11065) was the most and the third most upregulated gene in Phycobacter grown on Aze at 
0.5 and 8 hr, respectively. The small and large permease genes (INS80_RS11060 and INS80_RS11055) 
neighboring this gene, which form a functional TRAP transporter, were among the top 20 most upreg-
ulated genes in the transcriptome at 0.5  hr and continued to be upregulated at 8  hr, implicating 
these genes in transporting Aze (Figure 2, Supplementary files 2 and 3). All three genes are co-lo-
calized with the putative Aze transcriptional regulator, azeR (INS80_RS11050, belonging to the lclR 
family transcriptional factor [TF]) (Bez et al., 2020), which was also upregulated at 0.5 hr. In silico 
predictions revealed that azeR, the small and large permeases, all fall within a single operon while 
the substrate-binding gene is transcribed independently (Figure 3). We assign this cluster of genes 
the designation azeTSLR (T=substrate-binding protein, S=small permease, L=large permease, R=reg-
ulator). Once inside the cell, Aze appeared to be fed into the fatty acid degradation pathway via a 
PaaI family thioesterase and acyl-coA ligase (fadD) that are present directly downstream of azeTSLR 
and upregulated at 0.5 hr (Figures 2 and 3, Supplementary file 2). Aze-coA was then putatively 
degraded through a series of steps catalyzed by genes in the fatty acid degradation pathway (acd, 
paaF, and fadN) that were among the most highly upregulated genes at 0.5 hr and continued to be 
upregulated at 8 hr (Figure 2, Supplementary files 2 and 3). These successive reactions presumably 
liberated two acetyl-coA molecules to generate glutaryl-coA. This molecule can either be converted 
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Figure 1. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in Phycobacter and A. macleodii. Left: Scatter plot of the log2 fold-
change of differentially expressed (DE) genes present in KEGG pathways listed on the y-axis. Each circle represents the differential expression of a gene 
in the presence of azelaic acid (Aze) relative to controls. Genes were considered DE if they had a p-adjusted value of <0.05 and log2 fold-change of 
≥±0.5. Right: Expression ratios for KEGG pathways of interest were calculated as the total number of DE genes: total number of genes present in the 
genome in the given pathway. Bar sizes are proportional to the contribution of DE genes in relation to all genes present in a pathway. Circle and bar 
colors indicate the strain and time point (red = Phycobacter at 0.5 hr; green = Phycobacter at 8 hr; blue = A. macleodii at 0.5 hr).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Effect of azelaic acid (Aze) on growth of Phycobacter.
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Figure 2. Proposed azelaic acid (Aze) catabolism in Phycobacter based on transcriptomics and isotope labeling. Left: Log2 fold-change of differentially 
expressed (DE) genes is shown as circles at 0.5 (left circle) and 8 hr (right circle) after the addition of Aze to Phycobacter cells relative to controls. The 
Aze transport system (azeTSL) consists of three genes, the DE values of which are shown next to the transporter. Intermediate reactions and substrates 
for the successive liberation of acetyl-coA from azeloyl-coA and pimeloyl-coA are not shown; DE values of the genes involved are shown next to each 

Figure 2 continued on next page
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to glutaconyl-coA, or further degraded into acetyl-coA via gcdH, paaF, fadN, and atoB, all of which 
were upregulated at both time points (Figure 2).

To confirm the patterns observed in the Phycobacter transcriptome and resolve the fate of 
glutaryl-coA, Phycobacter was supplemented with 13C9-Aze, and intracellular metabolites were 
extracted and analyzed using an elemental analyzer-isotope ratio mass spectrometer (IRMS) and a 
Fourier-transform ion cyclotron resonance mass spectrometer (FT-MS). Within 15  min of 13C9-Aze 
addition, Phycobacter cells were significantly enriched in 13C and continued to exhibit an increase in 
δ(13C) up to 120 min as shown using IRMS (repeated-measure ANOVA, p<0.001) (Figure 2—figure 
supplement 1). Within 15 min, 0.18% of the carbon content of Phycobacter cells was derived from 
Aze, corresponding to an uptake rate of 3.8×10–9 nmol/cell/hr. After 120 min, the fraction of carbon 

overall reaction. 13C-labeled metabolites detected in the intracellular metabolome of Phycobacter cells are marked with cyan circles at each labeled 
carbon atom site. Right: Relative abundance of each detected labeled metabolite after addition of 100 μM 13C-Aze to Phycobacter cells, shown as total 
ion current (TIC). Box plot values are based on triplicates. NS indicates no significant relative abundance, * denotes p<0.05 and ** denotes p<0.005 
based on a Student’s t-test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. 13C-Aze assimilation by Phycobacter and A. macleodii (reported as δ(13C) [‰, VPDB]) during a 2 hr incubation.

Figure 2 continued
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Figure 3. Genomic neighborhood structure of azeR and azeTSL in Phycobacter and P. nitroreducens DSM9128. Genes predicted in silico to belong to 
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derived from Aze contributed 0.67% of the total carbon in the cells (Supplementary file 4). Consistent 
with this observation, FT-MS analysis showed that 15–30 min after the addition of labeled Aze to cells, 
13C9-Aze, 13C9-Azeloyl-coA, 13C7-pimeloyl-coA, and 13C5-glutaryl-coA were detected and increased in 
relative abundance over the course of 120 min (Figure 2, Supplementary file 4). Furthermore, 13C5-
glutaconyl-coA was detected at 2 hr and 13C3-propionate-coA at 1–2 hr after addition of 13C9-Aze. 
Glutaconyl-coA is a side product of glutaryl-coA oxidation that is shuttled into butanoate metabo-
lism (Djurdjevic et  al., 2011), while propionyl-coA is an important intermediate in glyoxylate and 
propanoate metabolism, indicating these pathways maybe activated downstream of Aze catabolism. 
Indeed, while greater upregulation of fatty acid degradation occurred at 0.5 hr than at 8 hr, greater 
upregulation of glyoxylate and dicarboxylate metabolism, butanoate metabolism, and other down-
stream pathways occurred at 8 hr (Figure 4a, Supplementary file 2).

Toxicity of Aze in A. macleodii
The genome of A. macleodii completely lacks any TRAP transport systems, suggesting Aze crosses 
the cell membrane non-specifically. In fact, A. macleodii assimilated negligible amounts of 13C9-Aze, 
with a relative uptake ~160 times lower than that of Phycobacter at 120 min (Figure 2—figure supple-
ment 1). In contrast to the Phycobacter transcriptome, the highest upregulated gene 0.5 hr after Aze 
addition to A. macleodii was an efflux RND transporter periplasmic subunit (GKZ85_RS10170). The 
permease and outer membrane subunits of this efflux pump (GKZ85_RS10160, GKZ85_RS10165) that 
belong to the same operon were among the top 10 most upregulated genes in the A. macleodii tran-
scriptome (Figure 4b, Supplementary files 2 and 3). This efflux system presumably removes Aze from 
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the cytoplasm. Several other efflux transporters and ABC multidrug transporters were among the most 
upregulated genes in the presence of Aze relative to the controls. Among upregulated genes in the 
presence of Aze were secretion systems, protein export, spore formation, stress-response proteins, 
heat shock proteins, proteases, and ribosome protection genes (Supplementary files 2 and 3). Fatty 
acid degradation was not DE in the presence of Aze, while most ribosomal genes were either down-
regulated or not DE. In addition, nucleotide metabolism, pyruvate metabolism, oxidative phosphor-
ylation, electron transfer, amino acid metabolism and biosynthesis, and fatty acid biosynthesis were 
downregulated (Figures 1 and 4b, Supplementary file 2). Collectively, these transcriptomic patterns 
confirm previous work (Shibl et al., 2020) that indicate A. macleodii mitigates the toxic effects of Aze 
over time and that this mitigation relies on removing Aze from the cell via efflux systems and simul-
taneously arresting cellular metabolism. Interestingly, several genes involved in ribosome protection 
and response to protein degradation (rmf, hpf, hslR, hslU, hslV) were upregulated, suggesting Aze 
may disrupt protein synthesis (Supplementary file 2).

AzeR and xre transcriptional networks
Due to the stark transcriptional response to Aze in each bacterium, we hypothesized that transcrip-
tional regulation plays a major role in activating essential pathways that catabolize or mitigate the 
toxicity of Aze, particularly since both bacteria have complete fatty acid degradation pathways. To 
identify transcriptional master regulators for Phycobacter and A. macleodii, we performed regulatory 
impact factor (RIF) analyses (Reverter et al., 2010). TFs in each species were compared to the unique 
corresponding DE gene lists, which led to the identification of 29 regulators with significant scores for 
Phycobacter and 12 for A. macleodii (deviating ±1.96 SD from the mean; p<0.05) (Supplementary file 
5). Interestingly, azeR was the top DE TF identified in Phycobacter. In contrast, only two TFs, namely 
(1) XRE family transcriptional regulator (xre), a bacterial TF associated with stress tolerance (Hu et al., 
2018), and (2) helix-turn-helix transcriptional regulators (GKZ85_RS06065 and GKZ85_RS16495), were 
DE in A. macleodii. To gain insights into the regulatory mechanisms at play during exposure to Aze, 

Figure 5. Transcriptional coexpression networks of hub transcriptional factors (TFs) azeR and xre, and their putative target genes in Phycobacter and A. 
macleodii. Nodes represent genes (circles) and TFs (triangles) connected by edges based on significant coexpression correlation (PCIT; r≥0.95) for (a) 
Phycobacter and (b) A. macleodii. Nodes are grouped based on functions and represented by different colors. The size of the node corresponds to the 
normalized mean expression values in azelaic acid (Aze)-treated samples, whereas the color of the node border corresponds to differential expression. 
Edge colors indicate the direction of the correlation between each gene pair. DEG = differentially expressed gene, TF = transcriptional factor.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Transcriptional coexpression networks constructed using the partial correlation coefficient with information theory algorithm in 
Phycobacter and A. macleodii.

https://doi.org/10.7554/eLife.88525
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we used TCNs, which enabled characterization of transcriptional patterns during response to disease, 
stress, and development (Hartl et al., 2021; Rose et al., 2016; Yao et al., 2015).

Significant connections (r ≥±0.95) within the initial network identified 286 genes with 7208 connec-
tions in Phycobacter and 274 genes with 7102 connections in A. macleodii (Figure 5—figure supple-
ment 1). Subnetworks that contain AzeR and XRE show that they act as hub genes in putatively 
regulating specific gene categories in Phycobacter and A. macleodii, respectively. The subnetwork 
of azeR shows that it putatively regulates transcription of most of the pathways that are involved in 
assimilating Aze in Phycobacter, including azeTSL, fatty acid degradation, butanoate metabolism, 
glyoxylate and dicarboxylate metabolism, and oxidative phosphorylation, in addition to other genes 
that may be indirectly affected by Aze catabolism (Figures 4a and 5a). In contrast, the subnetwork of 
xre shows that it putatively regulates transcription of the efflux system implicated in removal of Aze 
from the cytoplasm of A. macleodii, stress proteins and proteases, protein export, nucleotide metabo-
lism, and amino acid metabolism and biosynthesis (Missiakas et al., 1996; Figures 4b and 5b). These 
findings highlight the critical role of AzeR in mediating the response to Aze and may explain the large 
differences in response between both bacteria.

Aze addition to seawater mesocosms
To examine the influence of Aze as a potential carbon source or antimicrobial compound on 
marine microbial populations, surface seawater was collected and enriched for prokaryotes by size-
fractionated filtration. Seawater mesocosms were supplemented with 100 μM Aze or an equivalent 
volume of Milli-Q water (see Materials and methods) and incubated in the dark for 16 hr, after which 
DNA was extracted and 16S ribosomal RNA (rRNA) gene amplicon sequencing was used to assess 
prokaryotic diversity. The total number of species (richness) was higher in Aze-treated samples rela-
tive to T=16 hr control samples (Wilcox, p<0.05), while the diversity of the microbial community was 
significantly lower (Wilcox, p<0.05) in Aze-treated samples relative to controls (Figure 6a). Principal 
coordinate analysis (PCoA) showed that the microbial community was significantly different between 
each sample group (permutational analysis of variance [PERMANOVA], p<0.001, Figure 6b). Taxo-
nomic classification at the family level showed that Rhodobacteraceae, SAR11 clade I, Cyanobiaceae, 
and Flavobacteriaceae constituted >60% of prokaryotic diversity across all samples. Notably, the rela-
tive abundance of Rhodobacteraceae increased in the Aze-treated samples (mean ~47 %) relative to 
the T=16 hr control samples (mean ~37 %) (Figure 6c). Differential abundance analysis with DESeq2 
(p-adj <0.05) identified 44 amplicon sequence variants (ASVs) enriched after Aze addition relative 
to T=16 hr controls. At the genus level, these ASVs belonged to Rhodobacteraceae (n=17), Marine 
Group II Euryarchaea (MG II) (n=19), Pseudoalteromonas (n=6), Vibrio (n=1), and Psychrosphaera 
(n=1). Rhodobacteraceae had the highest mean taxonomic proportion of ASVs ranging from ~1.5 to 
~95, suggesting a significant reliance on Aze, while MG II had the lowest mean ratios of ASVs ranging 
from ~0.02 to ~0.04 (Figure 6d).

Aze addition to soil and infiltration into Arabidopsis
We hypothesized that Aze may have similar influences in rhizobial ecosystems as it did in marine 
ecosystems, specifically it may influence soil microbial community composition. Potting soil was 
amended with 100 μM Aze, suberic acid, or an equivalent volume of Milli-Q water and incubated in 
the dark for 16 hr at 24°C. The C8-dicarboxylic acid suberic acid was used to ensure potential changes 
in the microbial community structure were specific to Aze. DNA was extracted and 16S rRNA gene 
amplicon sequencing was used to assess prokaryotic diversity. Unlike seawater, Aze-treated soil did 
not significantly alter the soil microbial community (Figure 6—figure supplement 1), which suggests 
a different mechanism of action. Because Aze is known to prime the immune system in plants, a 
fundamentally different function from its role in diatoms where it modulates phycosphere microbial 
communities, we hypothesized that Aze may act indirectly on soil communities through the plant host.

Four-week-old A. thaliana leaves were infiltrated with 500 µL of 1 mM Aze, suberic acid, or an equiv-
alent volume of MES buffer as a control and incubated for 5 days. Rhizosphere microbial communities 
were collected, DNA was extracted, and 16S rRNA gene amplicon sequencing was used to assess 
prokaryotic diversity. Aze-treated plants displayed lower diversity and richness indices compared 
to controls (MES buffer and suberic acid) (Figure 6—figure supplement 2), although these trends 
were not statistically significant. Taxonomic classification at the family level revealed a highly diverse 
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microbial community across all samples (Figure  6—figure supplement 3), but Aze-treated plants 
showed a distinct root microbiome compared to controls (PERMANOVA, p<0.05; Figure 6—figure 
supplement 2). Differential abundance analysis with DESeq2 (p-adj <0.05) identified 75 and 78 ASVs 
enriched between Aze vs MES controls and Aze vs suberic acid controls, respectively (Figure 6—figure 
supplement 3). Interestingly, many of the enriched ASVs belonged to typical rhizobial symbionts, such 
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Figure 6. Bacterial and archaeal diversity in seawater treated with azelaic acid (Aze). (a) Alpha-diversity indices of observed OTUs, Chao1, Shannon 
and Simpson across the Aze-treated and control samples. (b) Principal coordinate analysis (PCoA) of Bray-Curtis distances (permutational analysis of 
variance [PERMANOVA]: R2=0.73; p<0.001) between samples. The two principal components (PCoA1 and PCoA2) explained 72.5% and 15.1% variance, 
respectively. (c) Relative abundance of the top 25 microbial families based on 16S rRNA gene amplicon sequencing of Aze-treated samples at T=16 hr 
and control samples at T=0 and T=16 hr. (d) Distribution of the amplicon sequence variants (ASVs) belonging to significantly differentially abundant taxa 
between the Aze-treated and control samples at T=16 hr, according to their log2 fold-change and p-adjusted values. The bubble size indicates the mean 
taxonomic proportion of each ASV, calculated as the mean number of reads in an ASV: mean number of reads present in all ASVs of the same taxonomic 
classification. The bubble color indicates the taxonomic classification of each ASV according to (c).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Effect of azelaic acid (Aze) treatment on the alpha- and beta-diversity of soil.

Figure supplement 2. Effect of azelaic acid (Aze) treatment on the alpha- and beta-diversity of A. thaliana root microbiome.

Figure supplement 3. Bacterial diversity in the roots of A. thaliana treated with azelaic acid (Aze).
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as Azospirillaceae and Rhizobiaceae. These findings suggest that Aze does not directly influence the 
soil microbiome but acts indirectly by priming the immune system of A. thaliana, which ultimately 
modifies rhizosphere composition.

Discussion
Aze is a ubiquitous metabolite produced endogenously by photosynthetic organisms. It was recently 
revealed that Aze production by a ubiquitous diatom enables it to selectively promote growth of its 
bacterial symbionts while simultaneously inhibiting growth of opportunists (Shibl et  al., 2020). In 
addition, plants use Aze to prime their immune systems in response to phytopathogens (Jung et al., 
2009). Its toxic effects against the acne-causing bacterium, Propionibacterium acnes, popularized its 
use in skin care products (Leeming et al., 1986). Aze has also been shown to have antitumor effects 
on cancerous cells, and functions as a competitive inhibitor of mitochondrial oxidoreductases and 
steroid biosynthesis (Sieber and Hegel, 2014). The ability of a single metabolite to selectively inhibit 
or promote different populations of bacteria simultaneously poses important questions about how 
this metabolite evolved in the eukaryotic chemical repertoire to influence their microbiome and its 
role in unicellular versus multicellular phototrophs.

Identifying Aze as a putative substrate of a TRAP transporter system is a novel and exciting result. 
Despite numerous attempts, our efforts to knock out azeTSL in Phycobacter failed. Information about 
bacterial transporters and their substrates remain speculative, and much less is known about substrate 
specificity for bacterial TRAP transporters than others, such as ABC transporters (Maqbool et al., 
2015). TRAP transporters consist of a substrate-binding domain and two transmembrane segments 
(large and small permeases), while lacking the canonical nucleotide-binding domain found in ABC 
transporters (Rosa et al., 2018). Recognized substrates for TRAP transporters vary from sugars, mono- 
and dicarboxylates, organosulfur molecules, heterocyclic carboxylates, and amino acids. Among 
dicarboxylates, only C4-compounds, such as succinate, fumarate, and malate, have been identified 
as substrates for TRAP transporters, which explains the prevalent annotation of ‘C4-dicarboxylate 
transporter’ for proteins in bacterial genomes, including Phycobacter. Other than C6-adipate that 
binds with high affinity to a tripartite tricarboxylate transporter (Rosa et al., 2017), it is not known 
how dicarboxylates with >4 carbons are taken up (Mulligan et al., 2007). This makes AzeTSL a puta-
tive transporter of the longest chain dicarboxylate molecule known to date. The sheer abundance of 
dicarboxylate transporters in bacterial genomes begs the question of whether they transport a variety 
of Cn-dicarboxylates, such as C5-glutarate, C6-adipate, C7-pimelate, C8-suberate, C9-azelate, and C10-
sebacate. Some of these metabolites are produced by primary producers and thus potentially serve 
as growth factors or signals for heterotrophic bacteria (Moran et al., 2022). Therefore, further work is 
needed to expand on the nature of substrates specific to dicarboxylate TRAP transporters.

We have shown that while Phycobacter uses fatty acid degradation and subsequently glyoxylate, 
dicarboxylate, and butanoate metabolism pathways to catabolize Aze, A. macleodii attempts to miti-
gate the toxicity of Aze by cytoplasm efflux and by downregulating its ribosome and protein synthesis 
pathways (Figure 4). However, the fact that A. macleodii possesses a complete fatty acid degradation 
pathway similar to bacteria that display inhibition by Aze is intriguing, as it is unclear why such bacteria 
cannot catabolize this metabolite. The answer may lie in the fact that Phycobacter, and bacteria that 
catabolize Aze such as P. nitroreducens, possess the TF AzeR. Using RIF analysis, we have shown that 
azeR in Phycobacter putatively regulates its fatty acid degradation pathway and azeTSL, along with 
other pathways essential for the catabolism of Aze (Figure 5a). By activating uptake, fatty acid degra-
dation and other essential genes, AzeR enables bacteria to efficiently metabolize Aze. In contrast, 
bacteria deficient in AzeR, such as A. macleodii, are presumably unable to activate these pathways 
rapidly and thus fall susceptible to the toxic effects of Aze. Nevertheless, A. macleodii likely uses efflux 
pumps and the activation of a variety of stress-related pathways mediated by the TF XRE (Figure 5b) 
to recover from Aze-dependent toxicity in a relatively short period of time. While Aze exhibits a wide 
range of inhibitory activity, in A. macleodii, ribosome and/or protein synthesis inhibition seem to 
contribute to the toxicity associated with Aze, evidenced by the strong downregulation of most ribo-
somal protein coding genes, protein synthesis genes, and proteases. This finding agrees with previous 
studies that demonstrated the bacteriostatic effects of Aze on protein, DNA and RNA synthesis in P. 
acnes and Staphylococcus epidermidis (Bojar et al., 1988; Bojar et al., 1991).

https://doi.org/10.7554/eLife.88525
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Aze addition to seawater mesocosms induced a statistically significant increase in the relative abun-
dance of taxa that are capable of assimilating Aze compared to controls. Although the observed 
patterns may be driven by Aze activity, other mechanisms may be at play that led to changes in the 
microbial community, such as interspecies competition. Rhodobacteraceae ASVs comprised the most 
abundant group to be influenced by Aze additions, highlighting their adaptation to phytoplankton 
exudates (Landa et al., 2017; Teeling et al., 2012), while MG II archaea ASVs exhibited the largest 
enrichment relative to controls (Figure 6d). While we cannot discount competitive interactions from 
inducing the significant enrichment of MG II archaea ASVs, the possibility that Aze may be a growth 
substrate for this important group is intriguing. The MG II archaea (Candidatus Poseidoniales) (Rinke 
et al., 2019) remain uncultivated (Tully, 2019), hindering our understanding of their metabolic capacity, 
though isotope probing and metagenomic analysis showed its assimilation of phytoplankton-derived 
substrates (Orsi et  al., 2016). Several MG II genera exhibited chemotaxis toward phytoplankton 
exudates (Raina et al., 2022) and displayed significant correlations to chlorophyll a in an oceano-
graphic time-series (Rinke et al., 2019). Further work is needed to confirm the link, if any, between 
Euryarchaeota and Aze. In soil, Aze primes the plant immune response (Jung et al., 2009), which likely 
drives the production of a myriad of metabolites that modulate the rhizosphere microbiome. Indeed, 
introducing Aze directly to soil had negligible effect on the soil microbiome, while Aze introduction 
to A. thaliana appears to cause significant changes to the rhizosphere composition that may reflect 
complex interactions between the host and rhizosphere microbes. Further work is needed to clarify 
the mechanisms enabling plants to modulate rhizosphere microbiomes through Aze.

In summary, photosynthetically derived secondary metabolites play a significant role in structuring 
microalgal and plant microbiomes. In the oceans, they are hypothesized to influence algal blooms, 
succession of microbial populations, and global biogeochemical cycles. However, the perception and 
response of these metabolites in microbial heterotrophs remain largely unknown. This study set out to 
unravel the molecular mechanisms of Aze on bacteria that enables eukaryotic hosts to modulate their 
associated microbiome. More broadly, we demonstrate that bacterial lineages occupying different 
ecosystems, such as the phycosphere surrounding microalgal cells, may have gained an ecological 
advantage over others by evolving mechanisms that assimilate Aze. These findings expand the under-
standing of bacterial TRAP transporters and their potential substrates, while also highlighting the 
importance of linking ubiquitous transporter systems to chemical currencies identified in the ocean. 
While Aze assimilation represents an important mechanism to structure the microbiome of primary 
producers, it is likely one of many such metabolites that together work in concert to ensure the main-
tenance of healthy microbial communities, which ultimately influence higher trophic levels and control 
global biogeochemical cycling.

Materials and methods
Growth of bacterial isolates with Aze
To test if Phycobacter could use Aze as a sole carbon course, 2 mL of an overnight culture grown 
in Zobell marine broth (Raina et al., 2022) was centrifuged and washed three times with modified 
mineral media (K2HPO4 was used instead of KH2PO4) (Zech et al., 2009) lacking a carbon source. 
Cells were then used to inoculate 5 mL cultures of filter-sterilized mineral media supplemented with 
1 mM Aze, 1 mM L-glutamate, or lacking a carbon source. While 1 mM is typically high compared for 
environmental concentrations, it is on par with amounts of carbon sources added to bacterial culture. 
Cultures were incubated in the dark with shaking at 26°C. Growth was monitored in 96-well plates 
and measured using absorbance at 600 nm (OD600) with an Epoch 1 Microplate Spectrophotometer 
(Biotek).

To test the transcriptional response of Phycobacter and A. macleodii to Aze, cells were grown as 
previously described (Shibl et al., 2020) and inoculated into cultures at a starting density of ~7.5 
× 105 cells/mL and OD600 0.2, respectively, in 10% marine broth. This medium was used instead of 
a no-carbon-source medium to enable the cells to grow in controls and thus shed light on uptake 
and assimilation mechanisms of Aze while removing the transcriptional responses of cellular growth/
division from the transcriptomes. Cultures were supplemented with either 500  μM filter-sterilized 
Aze (Sigma-Aldrich) or an equal volume of filter-sterilized Milli-Q water. All cultures were shaken in a 
shaker-incubator at 26°C. Cells were either centrifuged at 13,000 × g or were filtered onto 0.22 μm 
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 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology | Ecology

Shibl et al. eLife 2023;12:RP88525. DOI: https://doi.org/10.7554/eLife.88525 � 12 of 19

Sterivex cartridges (Merck Millipore, Burlington, MA, USA) using a peristaltic pump at a flow rate of 
40 mL/min. All cells were flash-frozen in liquid nitrogen and stored at –80°C until RNA extraction.

RNA extraction and sequencing
Cartridges containing Phycobacter cells were thawed on ice before extraction, while cell pellets of A. 
macleodii were processed directly from the freezer. Filter membranes were removed with sterile twee-
zers from cartridges and placed directly in the RLT lysis buffer (QIAGEN). RNA was extracted from cell 
pellets and filter membranes using the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s 
protocol. RNA samples were treated with DNase I (Thermo Fisher Scientific) to eliminate genomic 
DNA contamination and sent to NovogeneAIT Genomics (Singapore) for library preparation using the 
NEBNext Ultra RNA Library Prep Kit and paired-end (2×150 bp) sequencing on the Illumina NovaSeq 
6000 (San Diego, CA, USA) platform. All time points were carried out in three biological replicates 
except for Phycobacter at 0.5 hr, which had six replicates. All samples passed RNA QC except for one 
control replicate from Phycobacter at 0.5 hr.

RNAseq analysis
Raw reads of Phycobacter and A. macleodii samples were processed using fastp v0.22 (Chen et al., 
2018) for quality filtering, adapter removal, and trimming. The resulting sequences were then aligned 
with their respective genomes (WKFH00000000.1 and CP046140.1) using Bowtie2 v2.3.5 (Langmead 
and Salzberg, 2012). Resulting BAM files were processed on SAMtools v1.12 (Li et al., 2009) and 
read counts were generated with featureCounts v2.0.3 (Liao et  al., 2014). Differential expression 
analysis between treatment and control samples was done using DESeq2 v3.14 (Love et al., 2014) 
on R v4.1 (R Core Team). Genes were considered DE if they had a p-adjusted value of <0.05 and log2 
fold-change of ≥±0.5. Pearson coefficient calculations and correlation plots were done using the R 
gplots package (Warnes et al., 2016). DE genes were fed into the KEGG (Kanehisa and Goto, 2000) 
database to infer pathways. Scatter plots of genes in enriched KEGG pathways and bar plots of their 
expression ratios were generated using the R ggplot2 package (Wickham, 2016).

Isotope labeling and metabolomics
Phycobacter cells were grown as described above. Filter-sterilized Aze-13C9 (Sigma-Aldrich) was added 
to triplicate cultures with an OD600 of 0.3 at a final concentration of 500 μM and cultures were shaken 
in a shaker-incubator at 26°C. Two mL samples were collected at 0, 15, 30, 60, and 120 min after 
addition of Aze and centrifuged at 13,000 × g for 5 min at 4°C, resuspended and washed with 35 g/L 
NaCl in PBS, then centrifuged and resuspended in ice-cold 100% methanol. Subsequently, samples 
were sonicated for 2 min on ice, then centrifuged at 4°C for 5 min. Supernatant was collected and 
dried under nitrogen flow, then the extract was stored at –20°C until analysis using mass spectroscopy.

Samples for direct infusion measurements are prone to salt interference and thus solid-phase 
extraction with PPL-bond elute columns (Agilent Technologies, USA) was applied. High-resolution 
mass spectra were acquired on a Bruker solariX XR FT-MS (Bruker Daltonics GmbH, Germany) 
equipped with a 7 T superconducting magnet and operated in ESI (+) ionization mode with 0.5 bar 
nebulizer pressure, 4.0 L dry gas and a 220°C capillary temperature. Source optics parameters were 
200 V at capillary exit, 220 V deflector plate, 150 V funnel 1, 15 V skimmer 1, 150 Vpp funnel RF ampli-
tude, octopole frequency of 5 MHz, and an RF amplitude of 450 Vpp. Para Cell parameters were set 
to –20 V transfer exit lens, –10 V analyzer entrance, 0 V side kick, 3 V front and back trap plates, –30 V 
back trap plate quench, and 24% sweep excitation power. For sample injection, a Triversera Nano-
mate (Advion BioSciences Inc, USA) with 1 psi gas pressure and ESI (+) voltage of 1.7 kV was used. 
Three-hundred and twenty scans were accumulated for each sample with an accumulation time of 200 
ms and acquired with a time domain of four mega words over a mass range of m/z 75–1200, at an 
optimal mass range from 200 to 600 m/z. Spectra were internally calibrated using primary metabolites 
(e.g. amino acids, organic acids) in Data Analysis 5.0 Software (Bruker Daltonics GmbH, Germany). The 
FT-MS mass spectra were exported to peak lists with a cutoff signal-to-noise ratio of 4. The masses 
for relevant 13C isotope-labeled metabolites were calculated using enviPat: isotope pattern calculator 
(Skrzypek and Dunn, 2020). MSMS was performed at 15 V, 25 V, and 35 V collision voltage and char-
acteristic fragments identified manually.

https://doi.org/10.7554/eLife.88525
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Aze uptake
Phycobacter and A. macleodii cells were grown as described above. Cells were centrifuged and resus-
pended in triplicate flasks with 10% Zobell marine broth at an OD600 of 0.3. Filter-sterilized Aze-13C9 
(Sigma-Aldrich) was added to each culture flask at a final concentration of 10 μM and cultures were 
incubated in a shaker-incubator at 26°C. A lower concentration of Aze-13C9 was used here to allow for 
an accurate quantification of its uptake. Triplicate samples (20 mL) were collected at 0, 15, 30, 60, and 
120 min after addition of Aze and centrifuged at 5,000 × g for 15 min. Samples were subsequently 
fixed with paraformaldehyde (1% final concentration) in artificial seawater for 1 hr at 4°C. Samples 
were then washed twice with artificial seawater to eliminate any residual paraformaldehyde and cell 
pellets were dried in an oven at 60°C for 48 hr. A total of 0.50 mg of each dried cell pellet was weighed 
in a tin capsule (IVA Analysentechnik, Meerbusch, Germany) and loaded onto the autosampler of an 
elemental analyzer (EA) connected to the Sercon Model 20-22 (Sercon, UK) IRMS. In EA, samples were 
combusted in the presence of oxygen added to the helium stream at a temperature of 1000°C in a 
reactor comprised of Cr2O3 (Sercon, UK) and silvered oxides of cobalt (Sercon, UK). The yield gases 
were carried through a reduction reactor (650°C, electrolytic copper, Sercon, UK), water traps (gran-
ular magnesium perchlorate, Sercon, UK), and a GC column in a stream of helium (grade 99.999% 
purity; BOC, Australia, 100 mL/min) (Skrzypek and Paul, 2006). All stable isotope results are reported 
as 1000 of δ(13C) value in permille (‰) after normalization to VPDB scale (Skrzypek, 2013) using 
international standards provided by the International Atomic Energy Agency (IAEA): δ13C-USGS40 
(–26.39 ‰), USGS41 (37.63 ‰), NBS22 (–30.03 ‰), USGS24 (–16.05 ‰), IAEA603 (2.46 ‰) (Skrzypek 
et al., 2010). The combined standard measurement uncertainty of the δ(13C) did not exceed 0.10 ‰ 
(1σ). To calculate the uptake rate of Aze, we quantified: the amount of carbon in bacterial cells at all 
time points and determined how much was derived from the medium (stable isotope composition of 
1.0852 atm%), and how much was derived from 13C-Aze (stable isotope composition of 99 atm%). The 
results were converted to 13C fractions prior to recalculation of the uptakes of Aze using EasyIsoCal-
culator spreadsheet (Skrzypek and Dunn, 2020).

Seawater mesocosms and 16S rRNA gene amplicon sequencing
Seawater samples were collected in July 2021 from surface waters off the coast of Saadiyat Island 
(24°38'28.6"N 54°27'09.4"E), United Arab Emirates, kept in the dark, and immediately brought back 
to the lab. The seawater was filtered through a 1.2 μm filter (Whatman, UK) to remove most phyto-
plankton and divided into 12 vessels each containing 30 mL to carry out a mesocosm experiment. 
Control replicates (n=4 at T=0 hr) were immediately filtered onto a 0.2 μm filter (Whatman, UK) to 
capture microbial cells. Treatment replicates (n=4) with 100 μM Aze and another set of control repli-
cates (n=4) with an equal volume of Milli-Q water added in lieu of Aze were incubated at 24°C for 
16 hr in the dark (T=16 hr). We used 100 μM Aze in this case to avoid potential uptake, degradation, 
and precipitation of this molecule over the long course of the experiment. After incubation, they were 
immediately filtered onto a 0.2 μm filter (Whatman, UK). Genomic DNA was extracted immediately 
after filtration from all filters using the DNeasy PowerWater Kit (QIAGEN) and sent to NovogeneAIT 
Genomics (Singapore) for 16S rRNA gene amplification using the 515F-Y (5′-GTGYCAGCMGCCGC-
GGTAA-3′) and 926R (5′-​CCGYCAATTYMTTTRAGTTT-3′) universal primers and paired-end (2×250 bp) 
sequencing on the Illumina NovaSeq 6000 (San Diego, CA, USA) platform.

Clean raw reads were processed with the rANOMALY R package (Theil and Rifa, 2021) using the 
DADA2 R package (Callahan et al., 2016) to generate ASVs. Taxonomic classification was based on 
the SILVA v138 database. Alpha-diversity was assessed using the richness indices; observed OTUs 
and Chao1, and diversity indices; Shannon and Simpson. Beta-diversity was assessed and visualized 
by PCoA based on pairwise Bray-Curtis distance and tested by the PERMANOVA. The differential 
abundance of taxa across the treatment and control samples was calculated with DESeq2 v3.14 with a 
p-adjusted value cutoff of <0.05. All plots were generated using the ggplot2 and phylosmith (Smith, 
2019) R packages and all statistical analyses were performed on R 4.1.2.

Soil supplementation, A. thaliana Aze infusion, incubations, and 16S 
rRNA gene amplicon sequencing
Two hundred and fifty milligrams of potting soil (Planting Mix No.1; ACE Hardware) was supple-
mented with 300 µL of 100 µM Aze, suberic acid, or Milli-Q water and incubated at 24°C, in the dark 
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for 16 hr. Following incubation, the soil samples were flash-frozen in liquid nitrogen and stored at 
–80°C until DNA extraction.

A. thaliana seeds (Col-0) were sowed into potting soil and allowed to germinate under short day 
conditions (8 hr light/24°C and 16 hr dark/22°C) in a plant growth chamber (Fitoclima 600, Aralab, 
Rio de Mouro, Portugal). One-week-old healthy seedlings (n=15) were transplanted into round pots 
containing ~90 g of fresh potting soil, with one seedling per pot. Three additional pots were desig-
nated as ‘plant-free’ that received no seedlings. Pots were covered with cling film for 48 hr to maintain 
humidity after transplantation. All pots (including plant-free controls) were spatially randomized in the 
growth chamber and allowed to grow for three additional weeks.

One millimole treatment stocks of Aze (Sigma-Aldrich) and suberic acid (Sigma-Aldrich) were 
prepared in 5 mM 2-(N-morpholino) ethanesulfonic acid (MES) buffer (Sigma-Aldrich) (pH 5.4) and 
filter-sterilized through 0.2  µm Sterivex filters. Each plant was syringe-infiltrated with 500  µL Aze, 
suberic acid (equivalent to 2 µmol), or MES buffer (n=5 for each treatment) through the abaxial surface 
of three leaves. Infiltrated leaves were gently dried with absorbent paper and marked with a felt-tipped 
pen. Plant-free pots (n=3) were left untreated, and all pots were incubated for 5 days, as described 
above. Plant roots and plant-free controls were harvested, and the rhizosphere microbial communities 
were collected as described in Lebeis et al., 2015, with modifications. Briefly, above ground plant 
organs were removed, and loose soil was physically removed until ~1 mm of soil remained on the 
root surface. Roots were placed in a 25 mL sterile MES buffer in 50 mL centrifuge tubes. Rhizosphere 
microbial communities were collected by first vortexing the roots in MES buffer for 15 s at maximum 
speed and subsequently sonicating for 5 min using an Ultrasonic Cleaner (VWR) at power level 3 to 
liberate tightly adherent and endophytic microbes. The root system was removed aseptically, and the 
turbid solution was filtered through a 100 µm nylon filter to remove large debris and plant material. 
The filtrate was centrifuged at 3200 × g for 30 min and most of the supernatant discarded. The pellet 
was resuspended in the remaining supernatant (~200–400 µL) and transferred to sterile 1.5 mL micro-
fuge tubes and centrifuged for 5 min at 10,000 × g. The supernatant was removed, and the remaining 
pellets were flash-frozen in liquid nitrogen and stored at –80°C until DNA extraction. For plant-free 
pots, approximately 250 mg of soil was collected 2 cm below the surface, transferred to MES buffer, 
and processed and stored as described above.

Microbial genomic DNA was isolated using the DNeasy PowerSoil Pro Kit (QIAGEN) according 
to the manufacturer’s instructions and samples were sequenced at NovogeneAIT Genomics (Singa-
pore) using 16S rRNA gene amplification using the primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) 
and 806R (5′-​GGACTACHVGGGTWTCTAAT-3′) and paired-end (2×250 bp) sequencing on the Illumina 
NovaSeq 6000 (San Diego, CA, USA) platform. Clean raw reads were processed with the same pipe-
line as the seawater samples described above.

Transcriptional master regulator analysis
We used the RIF algorithm (Reverter et  al., 2010) to detect TFs with high regulatory potential 
contributing to the observed transcriptional remodeling upon Aze uptake. RIF is designed to iden-
tify key regulatory loci contributing to transcriptome divergence between two biological conditions. 
Predicted TF lists were obtained from the genome annotation (GFF file) of both Phycobacter and A. 
macleodii and normalized data (variance stabilized, log2-transformed counts) of these genes were 
retrieved. The same normalization strategy was applied to the DE genes. An expression matrix 
containing normalized expression of the TF genes and DE genes was subjected to RIF analysis per 
species. RIF analysis identifies regulators that are consistently differentially coexpressed with highly 
abundant and highly DE genes (RIF1 metric) and regulators that have the most altered ability to act as 
predictors of the abundance of DE genes (RIF2 metric). TFs were considered significant when the RIF 
score deviates ±1.96 standard deviation from the mean (t-test, p<0.05).

Transcriptional coexpression networks
The partial correlation and information theory (PCIT) (Reverter and Chan, 2008) has been extensively 
used for gene network analysis (Alexandre et al., 2021; Botwright et al., 2021). We utilized PCIT to 
detect significant connections (edges) between pairs of genes (nodes) while considering the influence 
of a third player (gene). PCIT calculates pairwise correlations between given gene pairs after consid-
ering all possible three-way combinations of genes (triads) present within a gene expression matrix. 
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The algorithm calculates partial correlations after exploring all triads before determining the signif-
icance threshold that depends on the average ratio of partial and direct correlation. The set of key 
regulatory TFs (identified by RIF analysis) and DE genes per species were used for construction of the 
networks. Normalized data (variance stabilized, log2-transformed counts) of these genes were used 
for network construction. The PCIT-inferred networks were visualized using Cytoscape v3.9 (Shannon 
et  al., 2003). From these initial networks, we explored a series of subnetworks; first connections 
between nodes were considered when the partial correlation r was >±0.95. From these networks, 
hub genes (potential regulatory components within the network) and their connected genes (first 
neighbors) were extracted based on: (1) key regulatory factors (with highest RIF scores), (2) differential 
expression significance, and (3) degree centrality (the number of connections of a node with other 
nodes in the network).
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