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Delta-dependent Notch activation closes 
the early neuroblast temporal program 
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Abstract Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of 
intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal 
factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify 
early versus late temporal fates in neuroblast neuron progeny. After completing their temporal 
programs, neuroblasts differentiate or die, finalizing both neuron number and type within each 
neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divi-
sions, we identified Notch and Notch pathway components. When Notch is knocked down, neuro-
blasts maintain early temporal factor expression longer, delay late temporal factor expression, and 
continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after 
division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuro-
blasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early 
factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid 
hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuro-
blasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the 
early temporal program and early temporal factor expression to a close.

eLife assessment
This useful study reports on how Notch activity regulates the termination of neurogenesis in central 
brain during larval-pupal stages in Drosophila. The evidence supporting the claims is solid. The work 
will be of interest to developmental neurobiologists.

Introduction
In most metazoans, termination of neurogenesis is an essential part of organism development, 
ensuring the formation of functional neural circuits and an adult brain of proper size and structure. 
Prolonged or ectopic neurogenesis can lead to cortical malformations and has been linked to neuro-
developmental disorders, including autism (Hazlett et al., 2011; Marchetto et al., 2017; Patzlaff 
et al., 2018; Casingal et al., 2020; Ossola and Kalebic, 2022). While the vast majority of neurons 
are generated during development, it still remains unclear how neurogenesis becomes progressively 
restricted and, in most cases, ends altogether after development is completed.

We use the genetically tractable model organism, Drosophila melanogaster, to determine how 
extrinsic cues, local and systemic, integrate with neural stem cell intrinsic cues to control neurogenesis 
timing and termination during development. The Drosophila CNS consists of two bilaterally symmetric 
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brain hemispheres and a ventral nerve cord that is functionally equivalent to the mammalian spinal 
cord. Each brain hemisphere contains an optic lobe and an equally sized central brain (CB) region 
that harbors distinctive neuropils for information processing. Neurons in the CB region are generated 
during development from the asymmetric cell divisions of a defined number of neural stem cells 
known as neuroblasts (NBs) in Drosophila. NBs in the CB region (referred to as CB NBs) are specified 
during embryogenesis and undergo stereotypic patterns of cell division (Truman and Bate, 1988; Ito 
and Hotta, 1992; Doe, 2008; Siegrist et al., 2010; Homem and Knoblich, 2012). Except for the 
mushroom body (MB) NB subset, all CB NBs enter and exit quiescence during the embryonic to larval 
transition and terminally differentiate or die 4–5 days later during early pupal stages (Truman and 
Bate, 1988; Ito and Hotta, 1992; Doe, 2008; Maurange et al., 2008; Siegrist et al., 2010; Yang 
et al., 2017).

Once CB NBs reactivate from quiescence in response to dietary nutrients, they divide continu-
ously while changing gene expression over time (Britton and Edgar, 1998; Chell and Brand, 2010; 
Sousa-Nunes et al., 2011; Liu et al., 2015; Syed et al., 2017; Yuan et al., 2020). These controlled 
transitions of gene expression over time, referred to as temporal patterning, allow for a restricted set 
of neural stem cells to generate a pool of molecularly and functionally diverse neuron types (Isshiki 
et al., 2001; Maurange et al., 2008; Bayraktar and Doe, 2013; Liu et al., 2015; Bahrampour et al., 
2017; Ren et al., 2017; Syed et al., 2017; Miyares and Lee, 2019). Early larval temporal factors 
include the Zinc finger transcription factor, Castor (Cas), the orphan nuclear receptor, Seven-up (Svp), 
the RNA-binding protein, IGF-II mRNA-binding protein (Imp), as well as others (Maurange et  al., 
2008; Liu et al., 2015; Ren et al., 2017; Syed et al., 2017). Svp expression primes NBs to respond 
to a systemic pulse of steroid hormone (ecdysone) during larval stages and switch temporal factor 
expression from early to late (Ren et al., 2017; Syed et al., 2017). Late temporal factors include the 
RNA-binding protein, Syncrip (Syp), the steroid hormone-induced transcription factor, Eip93F (E93), 
as well as others (Liu et al., 2015; Syed et al., 2017; Pahl et al., 2019). Imp (early) and Syp (late) 
mutually inhibit each other and are expressed in opposing gradients in NBs (Liu et al., 2015; Yang 
et al., 2017). Imp keeps CB NBs ‘young’ by inhibiting Syp and Mediator complex activity, whereas 
Syp inhibits Imp and promotes nuclear accumulation of the pro-differentiation transcription factor 
Prospero (Pros) in most CB NBs (Homem et al., 2014; Liu et al., 2015; Yang et al., 2017). During 
early pupal stages, CB NBs undergo reductive divisions and terminally differentiate, except for the 
MB NB subset, which divides several days longer and undergo autophagy/apoptosis prior to adult 
eclosion (Maurange et al., 2008; Siegrist et  al., 2010; Homem et al., 2014; Pahl et  al., 2019). 
Independent of neurogenesis timing and the mechanism by which CB NB stop divisions, temporal 
patterning plays a key role in controlling numbers and types of neurons made within each of the NB 
lineages (Maurange et al., 2008; Tsuji et al., 2008; Bahrampour et al., 2017; Yang et al., 2017; Pahl 
et al., 2019).

From a targeted RNAi screen aimed at identifying genes required to terminate CB NB divisions 
and neurogenesis, we identified Notch and Notch pathway components. Notch is an evolutionarily 
conserved cell-cell signaling pathway classically known for regulating binary cell fate decisions, ‘A’ 
versus ‘B’ (Muskavitch, 1994; Cau and Blader, 2009). Here, we show that Notch signaling also regu-
lates binary temporal decisions, ‘early’ versus ‘late’. In Drosophila, there is one Notch receptor and 
two ligands, Delta (Dl) and Serrate (Ser). Notch receptor is proteolytically cleaved after ligand binding, 
first by Kuzbanian (Kuz), an ADAM metalloprotease, and then by γ-secretase. Cleaved Notch ICD 
(intracellular domain) relocates to the nucleus where it binds to Suppressor of Hairless [Su(H)] and 
Mastermind to regulate gene expression (Rebay et al., 1991; Fortini and Artavanis-Tsakonas, 1994; 
Pan and Rubin, 1997; De Strooper et al., 1999; Mumm et al., 2000; Kitagawa et al., 2001; Kopan 
and Ilagan, 2009). We recently reported that Notch signaling regulates CB NB quiescence during 
the embryonic to larval transition (Sood et al., 2022). When Notch is knocked down, some CB NBs 
continue dividing during this transition. We also reported that Notch activity becomes attenuated 
in quiescent CB NBs because CB NBs are no longer dividing and producing Delta-expressing GMC 
daughters for Notch pathway transactivation. Moreover, low Notch is necessary for CB NBs to reacti-
vate from quiescence in response to dietary nutrients (Sood et al., 2022).

Here, we report that Notch signaling also regulates neurogenesis termination during pupal stages. 
When Notch is knocked down, CB NBs maintain early temporal factor expression longer resulting in 
a delay of late temporal factor expression with prolonged neurogenesis into late pupal stages and 
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early adulthood. This defect in temporal patterning (switching from early to late) occurs well after CB 
NB exit from quiescence suggesting that Notch is required at multiple times throughout develop-
ment in controlling CB NB proliferation decisions. Furthermore, we determine that Delta is the Notch 
ligand that activates Notch in CB NBs and reductions in Delta also lead to defects in CB NB temporal 
patterning. Moreover, we find that Delta in CB NBs, which is segregated to GMCs after cell division 
to transactivate Notch, is regulated by CB NB temporal factors. Early factor Imp promotes Delta, 
whereas late factors Syp and E93 reduce Delta. Together, we report that Notch signaling positively 
regulates forward lineage progression by closing off the early temporal window and control of Notch 
pathway activity is regulated by CB NB intrinsic temporal factors.

Results
Notch signaling is required for CB NB elimination and termination of 
neurogenesis
All CB NBs, except the MB NB subset (four per brain hemisphere) terminally differentiate or die during 
early pupal stages (Figure  1A; Truman and Bate, 1988; Ito and Hotta, 1992; Maurange et  al., 
2008; Siegrist et al., 2010; Homem et al., 2014; Yang et al., 2017). MB NBs divide several days 
longer and undergo apoptotic/autophagic cell death shortly before adult eclosion (Figure 1A and B; 
Siegrist et al., 2010; Pahl et al., 2019). No CB NBs remain in adult animals and no new neurons are 
produced (Figure 1A and B; Truman and Bate, 1988; Siegrist et al., 2010; Yang et al., 2017). From 
a targeted RNAi screen aimed at identifying genes required to terminate NB divisions and neurogen-
esis, we identified Notch (N) and Notch pathway components. At 48 hr APF (after pupal formation), 
midway through pupal stages, control animals have only the four MB NBs remaining in each brain 
hemisphere (Figure 1A and B). In contrast when Notch was knocked down in NBs (worGAL4,UAS-N 
RNAi #HMS00001), on average five additional CB NBs remained (Figure 1C and D). In 1-day old N 
RNAi adults, CB NBs were also present, but not the MB NBs (Figure 1C and D). Ectopically persisting 
N RNAi CB NBs (CB NBs at 48 hr APF and beyond) expressed the NB transcription factor Deadpan 
(Dpn), the S-phase indicator pcnaGFP, and were small on average compared to control CB NBs 
during earlier developmental stages (L3 control, average diameter 10–15 μm) (Figure 1B, C, and E). 
However, at 30 hr APF when control CB NBs are still present, N RNAi CB NBs were larger on average 
(Figure 1B, C, and E). To confirm the N RNAi phenotype, we used MARCM to generate CB NB clones 
mutant for the Notch loss-of-function allele, Notch55e11 (Lee and Luo, 1999; Lehmann et al., 1983). 
Animals were heat shocked at freshly hatched larval stages and brains assayed at 48 hr APF. More 
than 50% of the GFP positive clones had a single Dpn positive NB (Figure 1F). In contrast, control 
clones had no Dpn positive NBs. We conclude that Notch functions in a lineage-dependent manner to 
eliminate CB NBs and terminate neurogenesis.

Next, we assayed other Notch pathway components. Following knockdown of kuz (worGAL4,UAS-
kuzRNAi #HMS05424), CB NBs, other than the MB NBs, remained at 48  hr APF and in adults 
(Figure 1G, I, and J). Following Su(H) knockdown (worGAL4,UAS-Su(H)RNAi #HMS05748), CB NBs, 
other than the MB NBs, also remained (Figure 1H and J). Similar to the N RNAi phenotype, ecto-
pically persisting CB NBs expressed Dpn and pcnaGFP, and were small (Figure 1K). We conclude 
that the evolutionarily conserved Notch cell signaling pathway is required for CB NB elimination and 
neurogenesis termination.

Delta expressed in neighboring GMCs and cortex glia regulates Notch 
activity in CB NBs
Next, we assayed the expression of Delta (Dl) and Serrate (Ser), two Notch ligands that activate 
Notch signaling when expressed on neighboring cells. Using a Delta-GFP protein trap line, we found 
that Delta was expressed in CB NBs and their recently born Prospero (Pros) positive GMC progeny 
during larval stages, consistent with previous reports (Figure 2A and B; Kooh et al., 1993; Sood 
et al., 2022). Delta was also expressed in cortex glia, a glial subset that ensheathe CB NBs and their 
GMC progeny, but levels were relatively low (Figure 2C; Hayashi et al., 2002; Yuan et al., 2020). 
Using a Serrate-GFP protein trap line, we found that Serrate was expressed in cortex glia, but not in 
CB NBs nor their GMC progeny (Figure 2D–F). Next, we knocked down each of the Notch ligands 
to determine which Notch ligand from what cell type regulates Notch activity in CB NBs. We used 
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Figure 1. Notch signaling regulates timing of central brain neuroblast (CB NB) elimination and neurogenesis termination. (A) Schematic showing 
developmental timeframe of CB NB elimination with timeline below used for developmental staging. (B–C, G–I) Maximum intensity projections of 
single brain hemispheres from indicated genotypes, times, with markers listed in bottom left. Asterisks indicate the four mushroom body (MB) NBs 
and arrowheads indicate some of the ectopically proliferating CB NBs (non-MB NBs). One ectopic CB NB (white box) shown at higher magnification 
in bottom right. (D, J) Quantification of CB NB number (excluding MB NBs) per brain hemisphere at indicated times and genotypes. Each data point 

Figure 1 continued on next page
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the NB-specific E(spl)mγ-GFP reporter to assay Notch activity (Furriols and Bray, 2001; Almeida and 
Bray, 2005; Zacharioudaki et al., 2012). In controls, CB NBs express E(spl)mγ-GFP and following 
knockdown of Notch, E(spl)mγ-GFP was not expressed (Figure 2G and H). Next, we used worGAL4 
to knock down Delta in CB NBs and because GAL4 is inherited after CB NBs divide, neighboring GMC 
progeny as well. Following knockdown of Delta (worGAL4,UAS-Dl RNAi #HMS01309), E(spl)mγ-GFP 

represents one brain hemisphere, mean ± SEM, ***p-value ≤0.001 (unpaired two-tailed Student’s t-test). (E, K) Quantification of average CB NB 
diameter, used as a proxy for NB size, at indicated times and genotypes. Each data point equals one CB NB (n≥4 animals per genotype), mean ± SEM. 
(F) Single optical section of a brain hemisphere from indicated genotype at 48 hr APF (after pupal formation) with markers listed in panels with high 
magnification panel to right of ectopic CB NB in white box. Distribution of Notch55e11 MARCM CB NB clones containing Dpn positive NBs. Scale bar 
equals 20 μm (panels) or 10 μm (insets) in this and all subsequent figures. Panel genotypes listed in Supplementary file 1.

Figure 1 continued

Figure 2. Delta expressed in CB neuroblasts (NBs), GMCs, and cortex glia regulates CB NB Notch activity. (A–F) Single optical section of a brain 
hemisphere from the indicated genotypes at wandering L3 stages. Higher magnification image of the CB NB highlighted by the white box is shown 
to the right of the colored overlays. Top panels are higher magnification colored overlay with single channel grayscale images below. White brackets 
indicate the CB NB and yellow brackets indicate newborn GMC progeny. (G–L) Single optical section of a brain hemisphere from the indicated 
genotypes at 72 hr ALH. Higher magnification image of the CB NB highlighted by the white box is shown to the right of the colored overlays. Scale bar 
equals 20 μm (panels) and 10 μm (insets). CB: central brain; OL: optic lobe. Panel genotypes listed in Supplementary file 1.
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was not detected in CB NBs (Figure 2I). Next, we used a pan-glial GAL4 line to knock down either 
Delta or Serrate in cortex glia. Following knockdown of Delta (repoGAL4,UAS-Dl RNAi #HMS01309), 
E(spl)mγ-GFP was reduced compared to controls (Figure 2J and K). In contrast, following Serrate 
knockdown (repoGAL4,UAS-SerRNAi #HMS01179), E(spl)mγ-GFP was not affected (Figure 2L). We 
conclude that Delta is the primary Notch ligand expressed in CB NBs and their GMC progeny, while 
both Delta and Serrate are expressed in neighboring cortex glia. Moreover, Delta regulates CB NB 
Notch activity.

Delta-dependent Notch activation is required for CB NB elimination 
and termination of neurogenesis
Next, we knocked down each of the Notch ligands in neighboring cell types and assayed CB NB number 
during pupal stages. When Delta was knocked down in NBs and GMC progeny (worGAL4,UAS-Dl 
RNAi #HMS01309), ectopically persisting CB NBs were found in brains at all stages examined and in 
young adults (Figure 3A–C). When Delta was knocked down in cortex glia (NP0577GAL4,UAS-Dl RNAi 
#HMS01309), one, occasionally two ectopically persisting CB NBs were found at mid pupal stages 
(Figure 3E and F). Moreover, CB NBs that ectopically persisted tended to be larger than control 
CB NBs at early stages, consistent with the notion that cell size correlates with timing of termination 
(Figure 3D and G; Maurange et al., 2008; Siegrist et al., 2010; Homem et al., 2014; Yang et al., 
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Figure 3. Delta is required to eliminate central brain neuroblasts (CB NBs) and terminate neurogenesis. (A, B, E) Maximum intensity projections of 
single brain hemispheres from indicated genotypes. Asterisks indicate the mushroom body (MB) NBs and the white arrowheads indicate some of 
the ectopically proliferating CB NBs. Inset shows a higher magnification of the ectopically proliferating CB NB highlighted by the white box. (C, F, 
H, J) Quantification of CB NB number (excluding the MB NBs). Each data point represents one brain hemisphere. Control data in (C) is the same 
as Figure 1D. Mean ± SEM. ***p≤0.001 (unpaired two-tailed Student’s t-test). (D, G, I) Quantification of CB NB size (excluding the MB NBs) in the 
indicated genotypes and developmental times. Each data point represents one NB (n≥4 animals per genotype). Control data in (D) is the same as 
Figure 1E. Mean ± SEM. ***p≤0.001, *p≤0.033 (Kruskal-Wallis test). Scale bar equals 20 μm (panels) and 10 μm (insets). Panel genotypes listed in 
Supplementary file 1.
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2017). Next, although Serrate was not detected in CB NBs nor their GMC progeny, we still assayed CB 
NB number and size after Serrate knock down in both NBs and their GMC progeny (worGAL4,UAS-
SerRNAi #HMS01179). No differences were observed compared to controls (Figure 3H, I). Next, we 
knocked down Serrate in glia (repoGAL4,UAS-SerRNAi #HMS01179) and again no differences were 
found compared to controls (Figure 3J). We conclude that Delta, but not Serrate, is required for CB 
NB elimination and termination of neurogenesis.

Early Notch signaling is required to terminate neurogenesis during 
pupal stages
Next, we used a temperature-sensitive GAL80 to determine when during development Notch signaling 
is required to eliminate CB NBs and terminate neurogenesis. Animals were raised at 29°C (GAL80 
inactive, GAL4 active) until 72 hr ALH and then switched to 18°C (GAL80 active, GAL4 inactive) or the 
converse (Figure 4A and B). In control animals at 48 hr APF, after either temperature shift regime, 
only the four MB NBs were present in each brain hemisphere (Figure 4C and data not shown). When 
Notch or Delta knockdown animals were raised at 29°C (Notch pathway inactive) and then switched 
to 18°C late (Notch pathway active), a significant number of persisting CB NBs were found at 48 hr 
APF (Figure 4A and C). In contrast, when animals were raised at 18°C (Notch pathway active) and 
then switched to 29°C late (Notch pathway inactive), no or significantly fewer persisting CB NBs were 
found (Figure 4B and C). Absence or presence of Notch pathway activity under each temperature 
shift regime was verified using E(spl)mγ-GFP reporter expression (Figure 4—figure supplement 1A 
and B). We conclude that early Notch pathway activity is required to eliminate CB NBs and terminate 
neurogenesis.
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control knockdown of Notch signaling. Bottom, maximum intensity projections of single brain hemispheres from indicated genotypes at 48 hr APF 
(after pupal formation) relative to 25°C. Asterisks indicate the mushroom body (MB) NBs and the white arrowheads indicate some of the ectopically 
proliferating CB NBs. Inset shows a higher magnification of an ectopically proliferating CB NB highlighted by the white box. (C) Quantification of CB NB 
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Scale bar equals 20 μm (panels) and 10 μm (insets). Panel genotypes listed in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Temporal control of Notch activity in central brain neuroblasts (CB NBs).
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Delta-dependent Notch activation refines temporal boundaries by 
closing the early CB NB temporal window
During development, CB NBs sequentially express a series of intrinsic factors over time to generate a 
diversity of neuron types (Figure 5A). Defects in intrinsic temporal factor expression lead to changes 
in the molecular composition of neuron types produced and defects in timing of CB NB elimination 
and neurogenesis termination (Isshiki et al., 2001; Maurange et al., 2008; Liu et al., 2015; Ren 
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Figure 5. Notch signaling refines temporal factor expression boundaries. (A) Schematic of temporal factor expression in CB neuroblasts (NBs) during 
larval and pupal development. Top timeline (days) refers to developmental timing with two timelines below used for developmental staging. Larva 
hatch 22 hr after egg lay. (B, I) Quantification of the percentage of CB NBs (excluding the mushroom body [MB] NBs) in the indicated genotypes 
and developmental times expressing the indicated temporal factors. Mean ± SEM. n≥3 animals, ***p≤0.001, **p≤0.002, *p≤0.033 (two-way ANOVA). 
(C–H) Single optical section of a brain hemisphere from the indicated genotypes and developmental times. Higher magnification image of the CB NB 
highlighted by the white box is shown below the colored overlays. White brackets indicate the CB NB. (J) Single optical section of a CB NB, colored 
overlay with grayscale image below. White brackets indicate the CB NB with quantification of normalized nuclear E93 intensities. Column numbers 
indicate the number of CB NB clones (excluding the MB NBs) scored. Mean ± SEM. ***p≤0.001 (Mann-Whitney test). Scale bar equals 20 μm (panels) 
and 10 μm in single CB NB panels. CB: central brain; OL: optic lobe. Panel genotypes listed in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Imp expression is prolonged and Syp expression delayed in animals with reduced Notch pathway activity.

https://doi.org/10.7554/eLife.88565
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et al., 2017; Syed et al., 2017; Yang et al., 2017; Pahl et al., 2019). Because Notch signaling is 
required early to eliminate CB NBs, we assayed expression of early temporal factors, Cas and Svp. 
In freshy hatched control larvae (0 hr ALH), approximately 50% of CB NBs expressed Cas and 5% 
expressed Svp (Figure 5B). Over time, the percentage of Cas expressing CB NBs declined, while Svp 
expressing CB NBs modestly increased (Figure 5B). Less than 1% of CB NBs co-expressed Cas and 
Svp at any stage and expression of both factors was absent by 48 hr ALH (Figure 5B and C). This is 
consistent with work published previously (Isshiki et al., 2001; Tsuji et al., 2008; Chai et al., 2013; 
Maurange et al., 2008; Ren et al., 2017; Syed et al., 2017). When Notch or Delta were knocked 
down in CB NBs and their GMC progeny, approximately 50% of CB NBs expressed Cas at freshly 
hatched larval stages (0 hr ALH), same as controls, and slightly more expressed Svp (Figure 5B). Over 
time, the percentage of Cas expressing CB NBs declined, while Svp expressing CB NBs remained 
relatively unchanged or reduced (Figure 5B). At 48 hr ALH, in contrast to controls, Cas and Svp were 
still expressed in CB NBs in both Notch and Delta knockdown animals (Figure 5B, D, and E). This 
suggests that Notch signaling is required for the cessation of early temporal factor expression. More-
over, early temporal defects could lead to defects in later temporal factor expression.

Next, we looked at later developmental time points. In control animals at 72 hr ALH, some CB 
NBs still expressed Imp, but most had transitioned to expressing Syp in response to steroid hormone 
signaling, and by 96 hr ALH, all expressed Syp and E93 (except MB NBs) (Figure 5F, I, and J and 
Figure 5—figure supplement 1A and D). This is consistent with work published previously (Liu et al., 
2015; Ren et al., 2017; Syed et al., 2017; Yang et al., 2017). When Notch or Delta were knocked 
down in NBs and their GMC progeny, we found that CB NBs still expressed Imp at both 72 and 96 hr 
ALH (Figure 5G–I and Figure 5—figure supplement 1B–D). Coincident with prolonged Imp expres-
sion, we found a reduction in CB NBs expressing Syp and many co-expressed both Imp and Syp, a 
phenotype not seen in control animals (Figure 5G–I and Figure 5—figure supplement 1B–D). Next, 
we assayed E93, whose expression is dependent on ecdysone signaling and in the MB NB lineage, 
Syp (Syed et al., 2017; Pahl et al., 2019). We generated RFP expressing CB NB clones that co-ex-
press Dl RNAi and found that E93 protein levels were reduced more than 20% compared to controls 
(Figure 5J). We conclude that Delta-dependent Notch activation is required to sharpen the bound-
aries of temporal factor expression. Moreover, these defects in temporal factor boundaries could lead 
to defects in CB NB elimination.

Defects in timing of temporal transitions could be due to defects in cell cycle progression, although 
embryonic NBs still transition independent of cell division (Grosskortenhaus et al., 2005). We used 
PH3 to assay CB NB mitotic activity. In Delta knockdown animals, the percentage of PH3 positive CB 
NBs was reduced compared to control (Figure 5—figure supplement 1E). At 48 hr APF however, 
Delta knockdown CB NBs were still dividing based on PH3 expression (Figure 5—figure supplement 
1F). To determine whether CB NBs ectopically persist due to defects in cell cycle rate, we co-ex-
pressed dp110 to constitutively activate PI3-kinase in Delta knockdown animals. A significant number 
of pcnaGFP expressing, Dpn positive CB NBs were still observed, suggesting that defects in cell cycle 
timing and growth rates alone cannot account for ectopic persistence of CB NBs into later develop-
mental stages and adulthood (Figure 5—figure supplement 1G).

CB NBs with reduced Notch pathway activity persist into adulthood 
due to temporal patterning defects
Next, we assayed temporal factor expression in CB NBs that ectopically persisted into late pupal 
stages. We generated Notch55e11 MARCM CB NB clones as described previously and found that ecto-
pically persisting CB NBs expressed either Imp alone, co-expressed both Imp and Syp, or expressed 
Syp alone similar to CB NBs at earlier larval stages (Figure  6A, n=14 clones). Similar expression 
profiles were observed in ectopically persisting CB NBs in Delta knockdown animals (worGAL4, 
UAS-Dl RNAi #HMS01309) (Figure 6B). Next, we tested whether temporal patterning defects account 
for the ectopic persistence of CB NBs with reduced Notch pathway activity. First, we knocked down 
Imp. Knocking down Imp alone leads to premature CB NB loss due to premature expression of late 
temporal factors (Figure 6—figure supplement 1A and B; Yang et al., 2017). When Imp was knocked 
down together with Delta (worGAL4, UAS-Dl RNAi #HMS01309, UAS-Imp RNAi#HMS01168), CB NB 
number was significantly reduced compared to Delta knockdown alone (Figure 6C, D, and G). CB 
NB size was also reduced, consistent with previous work demonstrating the importance of the early 

https://doi.org/10.7554/eLife.88565
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factor Imp in promoting growth (Figure 6H; Yang et al., 2017). Next, we constitutively expressed 
the late temporal factor E93, since E93 levels were reduced in Dl RNAi CB NB clones. When E93 was 
constitutively expressed in Delta knockdown animals, a significant reduction in CB NB number was 
observed (Figure 6E–H). We conclude that ectopically persisting CB NBs in animals with reduced 
Notch pathway activity is due to defects in CB NB temporal patterning: Imp expression is prolonged 
and E93 levels are reduced.

The early temporal factor Imp positively regulates Delta expression
To better understand how Notch signaling controls CB NB temporal factor expression, we mined 
publicly available datasets. The datasets that we mined include (1) results from Notch genetic, molec-
ular, and biochemical interaction studies (https://flybase.org/reports/FBgn0004647), (2) results from 
RIP-seq (RNA immunoprecipitation) experiments using Imp or Syp as bait (McDermott et al., 2014; 
Samuels et al., 2020), and (3) RNA-sequence data from isolated, pooled AL (antennal lobe) NBs at 
early and late timepoints (Liu et al., 2015). First, we identified genes that were differentially expressed 
(DEGs) in AL NBs early (24 hr ALH) versus late (84 hr ALH). We identified 1861 genes (adj. p-value 
<0.1 and log fold change >1), including known temporal factors (Figure 7A). Next, we asked which if 

48 h APF

Imp+
Imp+ Syp+
Syp+

B

] ]] ]

] ]] ]

] ] ] ]
Imp Syp Dpn

0

20

40

60

80

100

%
 C

B 
N

Bs
 p

er
 h

em
isp

he
re

 
(e

xc
lu

di
ng

  M
B 

N
Bs

) Imp+

Imp+Syp+

Syp+

A

] ] ] ]

] ] ] ]

] ] ] ]

0

20

40

60

80

100
Imp Syp Dpn

%
 C

B 
N

Bs
 p

er
 h

em
isp

he
re

 
(e

xc
lu

di
ng

  M
B 

N
Bs

) Imp+

Imp+Syp+

Syp+

N55e11 MARCM

adult
control DlRNAi

Dpn
pcna:GFP

C D F
control DlRNAi

EImpRNAi ImpRNAi E93O/E E93O/E

C
B

N
B 

di
am

et
er

 (µ
m

)
(e

xc
lu

di
ng

M
B 

N
Bs

)

0
10
20
30
40
50
60
70
80

C
B 

N
B 

# 
pe

r h
em

isp
he

re
(e

xc
lu

di
ng

  M
B 

N
Bs

)

0

2

4

6

8

10

12

DlR
NAi +E

93
O/E

DlR
NAi

DlR
NAi +Im

pR
NAi

G H

DlRNAi
48 h APF

E93
O/E

DlR
NAi +E

93
O/E

DlR
NAi

Im
pR

NAi

DlR
NAi +Im

pR
NAi

14

Imp
clone

Syp
Imp

Figure 6. Central brain neuroblasts (CB NBs) ectopically persist due to prolonged early factor Imp expression and reduced late factor E93 expression. 
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to the right. White brackets indicate CB NBs. Right, percentage of CB NBs (excluding the mushroom body [MB] NBs) in the indicated genotypes and 
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(B). (C–F) Maximum intensity projections of single brain hemispheres from indicated genotypes in 1-day old adults. White arrowheads indicate some 
ectopically proliferating CB NBs (MB NBs are absent). Inset shows a higher magnification of an ectopically proliferating CB NB highlighted by the white 
box. (G) Quantification of CB NB number (excluding MB NBs) in the indicated genotypes. Each data point represents one brain hemisphere. Mean ± 
SEM. ***p≤0.001, *p≤0.033 (Kruskal-Wallis ANOVA). (H) Quantification of CB NB size (excluding the MB NBs) in the indicated genotypes. Each data 
point represents one CB NB (n≥4 animals per genotype). Mean ± SEM. ***p≤0.001, *p≤0.033 (Kruskal-Wallis ANOVA). Scale bar equals 20 μm (panels) 
and 10 μm (insets). Panel genotypes listed in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Defects in temporal patterning account for defects in timing of central brain neuroblast (CB NB) elimination and neurogenesis 
termination when Notch activity is reduced.

https://doi.org/10.7554/eLife.88565
https://flybase.org/reports/FBgn0004647
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Figure 7. Delta is expressed at higher levels early and is positively regulated by the early temporal factor Imp. (A–B) Heatmap showing the list of 
genes that are differentially expressed in the AL neuroblasts (NBs) from 24 to 84 hr ALH. In (B) genes are color coded to show if they are also targets of 
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(C) Venn diagram showing the number of target genes analyzed that are common between Notch, Imp, and Syp. (D–G) Single optical section of a brain 

Figure 7 continued on next page
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any were present in datasets from Notch genetic, molecular, and biochemical interaction studies. We 
identified 59 genes (Figure 7B and C). Next, we determined that 23 of these 59 genes were found 
in the Imp-RIP dataset (Figure 7B, orange highlight) and 6 in the Syp-RIP dataset (Figure 7B, purple 
highlight). To our surprise, Delta was one of the genes on this gene list. Delta transcript levels were 
expressed high early, and Delta mRNA co-immunoprecipitated with Imp in RIP-seq experiments. This 
raised the possibility that Delta, a known Notch target gene, is regulated by NB temporal factors 
(Zhang et al., 2021). To test this possibility, we knocked down Imp in CB NBs (worGAL4,UAS-Imp-
RNAi #HMS01168) and assayed expression of the protein trap, Delta-GFP. At 24 hr ALH, Delta-GFP 
levels were reduced compared to controls (Figure 7D and E). This suggests that Imp positively regu-
lates Delta.

Next, we asked whether late temporal factors would also regulate Delta, since Delta transcript 
levels decrease over time. We assayed Delta-GFP in CB NBs following constitutive Syp or E93 expres-
sion. We examined brains at 24 hr ALH, a time when Syp and E93 are normally not expressed and 
found reduced Delta-GFP expression in NBs and their GMC progeny compared to controls under 
both conditions (Figure 7F and G). Together with the reduction in Delta transcript levels during late 
larval stages (Figure 7B), these results suggest that Delta and Delta-dependent Notch transactivation 
are regulated by CB NB intrinsic temporal factors.

Discussion
Here, we report that CB NBs utilize Notch signaling to progress forward through their stem cell 
lineages, ultimately terminating their divisions through differentiation or death (see Model Figure 7H). 
Somewhat paradoxically, we find that early Notch activity is required early to terminate CB NB divi-
sions late. This is because Notch regulates early temporal patterning and defects in early temporal 
patterning transmit to late temporal defects including the time at which CB NBs stop divisions. Notch 
curtails expression of at least three early temporal factors (Cas, Svp, and Imp), suggesting that Notch 
may function broadly to close the early temporal window. It is known that the early to late temporal 
transition is dependent on both early intrinsic temporal factors, Cas and Svp, and on extrinsic steroid 
hormone signaling (ecdysone) (Ren et al., 2017; Syed et al., 2017). Cas overexpression is sufficient 
to prolong Svp expression, but Cas is not required for Svp expression, and Svp primes CB NBs to 
respond to ecdysone (Ren et al., 2017). Whether Notch pathway activity curtails both Cas and Svp 
or just Cas remains an open question, however it has been reported that both Cas and Svp are asso-
ciated with at least one enhancer that is responsive to Notch activity (Zacharioudaki et al., 2016). 
Also, it remains unknown whether Notch directly inhibits Imp or whether Notch indirectly inhibits 
Imp through Syp expression in response to ecdysone or a yet unidentified factor. Notch was recently 
shown to regulate timing of Sloppy-paired expression in the optic lobe (Ray and Li, 2022).

While some CB NBs maintained early Imp expression, others co-expressed both Imp and Syp, or 
expressed Syp alone. This suggests that Notch function is lineage-dependent and/or suggests that 
more than one pathway regulates lineage progression. While Cas is likely expressed in all CB NBs, 
Svp appears to be more restricted. Whether Notch inhibits early temporal progression only in Svp 
expressing CB NBs is not yet known. Somewhat unexpectedly, we also found a significant percentage 
of ectopically persisting CB NBs expressing the late temporal factor Syp. Syp promotes accumulation 
of nuclear Pros in CB NBs during pupal stages to induce terminal differentiation (Maurange et al., 
2008; Yang et al., 2017). This suggests that either a Pros-independent mechanism exists to eliminate 
CB NBs and/or that Syp regulates expression of additional unknown temporal factors required for 
Pros nuclear accumulation. As we report here, Syp and E93 inhibit expression and localization of Delta 
and decreased Delta leads to ectopic persistence of CB NBs. This is consistent with the notion that 
once CB NBs transition from early to late temporal factor expression in response to ecdysone, late 
temporal factors (Syp/E93) inhibit Delta. Whether this changes Notch activity and/or transcription of 

hemisphere from the indicated genotypes at 24 hr ALH expressing Delta-GFP. Higher magnification image of the central brain (CB) NB highlighted 
by the white box is shown to the right of the single channel grayscale images. Top panels are higher magnification colored overlay with single channel 
grayscale images below. White brackets indicate the NB. Scale bar equals 10 μm. Panel genotypes listed in Supplementary file 1. (H) Model of Delta-
dependent Notch activation in regulation of CB NB temporal patterning.
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Notch target genes is not yet known. Nevertheless, it will be important to identify the Notch transcrip-
tional target genes that regulate lineage progression. One good place to start will be to follow up on 
the eight transcription factors we identified from data mining.

During early larval stages, CB NBs reactivate from quiescence and produce GMCs that express 
Delta (Zacharioudaki et al., 2012; Sood et al., 2022). This leads to the transactivation of Notch in 
CB NBs (Sood et al., 2022). The early temporal factor Imp positively regulates Delta in CB NBs and 
their GMC progeny. In developing egg chambers, Imp positively regulates Notch pathway activity by 
controlling Kuz localization (Fic et al., 2019). Whether Imp in CB NBs also regulates Kuz localization 
remains an open question. Delta is also expressed in cortex glia and regulates CB NB Notch activity. 
Whether Delta expression in cortex glia changes over time as is the case for CB NBs remains an 
open question. Hedgehog signaling in CB NBs promotes lineage progression downstream of Cas and 
Hedgehog ligands are produced in cortex glia and GMCs (Chai et al., 2013). Thus, CB NBs integrate 
cues from their GMC progeny and neighboring cortex glial cells to control temporal progression and 
lineage termination.

Although the exact course of temporal progression is yet to be defined in the mammalian nervous 
system, mammalian NSCs temporally express several factors including microRNAs, mRNA-binding 
proteins, and transcription factors, allowing them to produce deep layer neurons (early-born neural 
progeny), superficial layer neurons (late-born neural progeny), and glial cells sequentially throughout 
development (Okano and Temple, 2009; MuhChyi et al., 2013; Oberst et al., 2019; Telley et al., 
2019). COUP-TFI and COUP-TFII, orthologs of Drosophila Svp, function as late temporal factors 
allowing NSCs to switch from producing early-born neural fates to late-born neural fates (Naka et al., 
2008). This is similar to the function of Svp in the Drosophila brain where Svp mutants failed to 
switch from early Chinmo positive daughters to late Broad-complex positive daughters (Maurange 
et al., 2008). Similarly, mammalian NSCs temporally express RNA-binding protein Imp-1, ortholog 
of Drosophila Imp, and in Imp-1 deficient animals, NSCs are lost prematurely similar to premature 
loss of CB NBs seen in Drosophila (Nishino et al., 2013; Yang et al., 2017; Pahl et al., 2019). As 
in Drosophila NBs, temporal progression of mammalian NSCs is not completely dependent on cell-
intrinsic cues but also requires cell-extrinsic cues like feedback signals from the lineage and environ-
mental cues (Okamoto et al., 2016; Oberst et al., 2019; Zhang et al., 2020), however, very little is 
known about the signaling pathways regulating the transitions from early to late temporal fates. Even 
though Notch activity is required for the temporal switch from neurogenesis to gliogenesis in mamma-
lian NSCs, it remains unclear whether Notch function extends to regulation of temporal progression 
required for the switch from early-born to late-born neuron subtypes (Morrison et al., 2000; Grand-
barbe et al., 2003; Ohtsuka and Kageyama, 2019).

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Dpn (rat monoclonal) Abcam ab195173 IF (1:1000)

Antibody Anti-GFP (chicken polyclonal) Abcam ab13970 IF (1:500)

Antibody Anti-dsRed (rabbit polyclonal) Clontech 632496 IF (1:1000)

Antibody Anti-PH3 (rabbit polyclonal) Millipore 06-570 IF (1:1000)

Antibody Anti-Repo (mouse monoclonal)
Developmental Studies 
Hybridoma Bank 8D12 IF (1:5)

Antibody
Anti-Prospero (mouse 
monoclonal)

Developmental Studies 
Hybridoma Bank MR1A IF (1:1000)

Antibody Anti-Svp (mouse monoclonal)
Developmental Studies 
Hybridoma Bank 5B11 IF (1:10)

Antibody Anti-Dlg (mouse monoclonal)
Developmental Studies 
Hybridoma Bank 4F3 IF (1:40)

Antibody Anti-Scribble (rabbit polyclonal) Gift from Chris Q Doe IF (1:500)

https://doi.org/10.7554/eLife.88565
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Cas (rabbit polyclonal) Gift from Chris Q Doe IF (1:500)

Antibody Anti-Syp (rabbit polyclonal) Gift from Chris Q Doe IF (1:250)

Antibody Anti-E93 (guinea pig polyclonal) Gift from Chris Q Doe IF (1:250)

Antibody Anti-Imp (rabbit polyclonal) Gift from Paul MacDonald IF (1:250)

Antibody Anti-Imp (rat polyclonal) Gift frorm Claude Desplan IF (1:250)

Antibody Anti-Dpn (guinea pig polyclonal) Gift from Claude Desplan IF (1:1000)

Antibody
Alexa 488 (goat anti-chicken 
polyclonal) Thermo Fisher Scientific A32931 IF (1:300)

Antibody
Alexa 555 (goat anti-rat 
polyclonal) Thermo Fisher Scientific A48263 IF (1:300)

Antibody
Alexa 647 (goat anti-rat 
polyclonal) Thermo Fisher Scientific A48265 IF (1:300)

Antibody
Alexa 405 (goat anti-rabbit 
polyclonal) Thermo Fisher Scientific A48254 IF (1:300)

Antibody
Alexa 555 (goat anti-rabbit 
polyclonal) Thermo Fisher Scientific A21428 IF (1:300)

Antibody
Alexa 633 (goat anti-rabbit 
polyclonal) Thermo Fisher Scientific A21071 IF (1:300)

Antibody
Alexa 405 (goat anti-mouse 
polyclonal) Thermo Fisher Scientific A48255 IF (1:300)

Antibody
Alexa 488 (goat anti-mouse 
polyclonal) Thermo Fisher Scientific A11001 IF (1:300)

Antibody
Alexa 555 (goat anti-mouse 
polyclonal) Thermo Fisher Scientific A32727 IF (1:300)

Antibody
Alexa 488 (goat anti-guinea pig 
polyclonal) Thermo Fisher Scientific A11073 IF (1:300)

Antibody
Alexa 555 (goat anti-guinea pig 
polyclonal) Thermo Fisher Scientific A21435 IF (1:300)

Chemical compound, drug SlowFade Diamond antifade 
reagent Invitrogen Catalog # S36963

Chemical compound, drug SlowFade Gold antifade reagent Invitrogen Catalog # S36937

Chemical compound, drug Normal Goat Serum Thermo Fisher Scientific Catalog # 31873

Chemical compound, drug Paraformaldehyde 16% solution 
EM grade

Electron Microscopy 
Sciences Catalog # 15710

Chemical compound, drug
Schneider's Drosophila media Gibco

Catalog # 21720-
024

Chemical compound, drug Triton X-100 Sigma Catalog # T9284

Software, algorithm ImageJ/Fiji Fiji http://fiji.sc/

Software, algorithm

LAS AF Leica Microsystems

https://www.leica-microsystems.com/​
products/microscope-software/details/​
product/leica-las-x-ls/

Software, algorithm
Prism 9 GraphPad

https://www.graphpad.com/scientific-​
software/prism/

Software, algorithm
Photoshop 2022 Adobe

https://www.adobe.com/products/​
photoshop.html
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm
Illustrator 2022 Adobe

https://www.adobe.com/products/​
illustrator.html

Software, algorithm R-studio R-studio https://www.rstudio.com/

Genetic reagent (D. 
melanogaster) Oregon R

Bloomington Drosophila 
Stock Center 5

Genetic reagent (D. 
melanogaster) wor-Gal4 Albertson and Doe, 2003

Genetic reagent (D. 
melanogaster) tubulin-Gal80(ts)

Bloomington Drosophila 
Stock Center 7108

Genetic reagent (D. 
melanogaster) repo-Gal4

Bloomington Drosophila 
Stock Center 7415

Genetic reagent (D. 
melanogaster) NP0577-Gal4 Kyoto Stock Center 112228

Genetic reagent (D. 
melanogaster) repo-Gal80 Awasaki et al., 2008

Genetic reagent (D. 
melanogaster) UAS-Notch RNAi (HMS00001)

Bloomington Drosophila 
Stock Center 33611

Genetic reagent (D. 
melanogaster)

UAS-Kuzbanian RNAi 
(HMS05424)

Bloomington Drosophila 
Stock Center 66958

Genetic reagent (D. 
melanogaster) UAS-Su(H)RNAi (HMS05748)

Bloomington Drosophila 
Stock Center 67928

Genetic reagent (D. 
melanogaster) UAS-Delta RNAi (HMS01309)

Bloomington Drosophila 
Stock Center 34322

Genetic reagent (D. 
melanogaster) UAS-Serrate RNAi (HMS01179)

Bloomington Drosophila 
Stock Center 34700

Genetic reagent (D. 
melanogaster) UAS-dp110

Bloomington Drosophila 
Stock Center 25914

Genetic reagent (D. 
melanogaster) Delta-GFP

Bloomington Drosophila 
Stock Center 59819

Genetic reagent (D. 
melanogaster) Serrate-GFP

Bloomington Drosophila 
Stock Center 59824

Genetic reagent (D. 
melanogaster) pcna-GFP Thacker et al., 2003

Genetic reagent (D. 
melanogaster) E(spl)mg-GFP Almeida and Bray, 2005

Genetic reagent (D. 
melanogaster) Imp-GFP

Bloomington Drosophila 
Stock Center 60237

Genetic reagent (D. 
melanogaster) UAS-Imp RNAi (HMS01168)

Bloomington Drosophila 
Stock Center 34977

Genetic reagent (D. 
melanogaster) UAS-Syp-RB-HA Gift from Tzumin Lee

Genetic reagent (D. 
melanogaster) UAS-Eip93F WT Zurich FlyORF F000587

Genetic reagent (D. 
melanogaster) hsFlp (on X) Gift from Iswar Hariharan

Genetic reagent (D. 
melanogaster)

Act5c-FRT-CD2-FRT-Gal4, UAS-
RFP

Bloomington Drosophila 
Stock Center 30558

 Continued

 Continued on next page

https://doi.org/10.7554/eLife.88565
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://www.rstudio.com/


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology

Sood et al. eLife 2023;12:RP88565. DOI: https://doi.org/10.7554/eLife.88565 � 16 of 21

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (D. 
melanogaster)

Act5c-FRT-CD2-FRT-Gal4, UAS-
GFP Gift from Iswar Hariharan

Genetic reagent (D. 
melanogaster) UAS-mCD8-mRFP

Bloomington Drosophila 
Stock Center 27399

Genetic reagent (D. 
melanogaster) UAS-mCD8-mGFP

Bloomington Drosophila 
Stock Center 5137

Genetic reagent (D. 
melanogaster) Notch55e11 FRT19A

Bloomington Drosophila 
Stock Center 28813

Genetic reagent (D. 
melanogaster)

hsflp, tubgal80, FRT19A; tubGal4, 
UASmCD8GFP Gift from Ben Ohlstein

 Continued

Fly stocks
Fly stocks used in this study and their source are listed in the Key resources table.

Animal husbandry
All animals were raised in uncrowded conditions at 25°C with the exception of animals with tub-
GAL80(ts). For experiments using tub-Gal80ts (temperature-sensitive), animals were kept in uncrowded 
conditions at 29°C and dissected at developmental timings to be equivalent to development at 25°C 
unless otherwise stated. Animals were staged from hatching for larval dissections and from white 
prepupae for pupal dissections.

Induction of clones
For induction of Flp-FRT and MARCM clones, animals were heat shocked at 37°C between 30 and 
60 min at L1 and dissected at the stated developmental timings.

Temperature shift experimental paradigm
For early knockdown experiments, animals were raised at 29°C until 72 hr ALH (equivalent to 25°C) 
and then moved to 18°C to develop until 48 hr APF (equivalent to 25°C). For late knockdown exper-
iments, animals were raised at 18°C until 72 hr ALH (equivalent to 25°C) and then moved to 29°C to 
develop until 48 hr APF (equivalent to 25°C).

Immunofluorescence and confocal imaging
Larval, pupal, and adult brains were dissected as previously described (Pahl et al., 2019). In brief, 
dissected tissues were fixed in 4% EM grade formaldehyde in PEM buffer for 20  min (larvae) 
or 30 min (pupae and adults) and rinsed in 1× PBS with 0.1% Triton X-100 (PBT). Tissues were 
blocked overnight at 4°C in 10% normal goat serum in PBT followed by antibody staining. Primary 
antibodies used are listed in the Key resources table. To detect primary antibodies, Alexa Fluor-
conjugated secondary antibodies (Thermo Fisher) listed in the Key resources table were used. 
Images encompassing the entire brain hemispheres were acquired using a Leica SP8 laser scanning 
confocal microscope equipped with a 63×/1.4 NA and 40×/1.3 NA oil immersion objectives and 
analyzed using Fiji software. All images were processed using Fiji and Adobe Photoshop software 
and figures assembled using Adobe Illustrator software. NBs were identified based on Dpn expres-
sion and superficial location. The Fiji ‘cell counter’ plugin was used to count and track number 
of Dpn positive NBs. NB size was calculated by averaging the lengths of two perpendicular lines 
through the center of the NB in Fiji. Quantification of fluorescence was performed in Fiji. Nuclear 
E93 levels were quantified as follows: CB NB nuclei labeled with Dpn were manually traced and the 
average E93 fluorescence intensity measured in the nucleus. Normalized E93 nuclear fluorescence 
intensity was determined as a ratio of nuclear E93 fluorescence intensity in a clone NB to nuclear 
E93 fluorescence intensity in a control NB in the same z-plane. All data is represented as mean ± 
standard error of the mean and statistical significance was determined using unpaired two-tailed 
Student’s t-tests or ANOVAs in Prism 9.

https://doi.org/10.7554/eLife.88565
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RNA-sequence data analysis
Differential gene expression (DGE) analysis was performed using the publicly available dataset 
published in Liu et  al., 2015 (GSE71103). We aligned FASTQ data to a reference Dm genome 
using STAR (version 2.7.2b) (Dobin et  al., 2013). Read count tables were generated using the 
htseq-count package from bioconda, and DGE was performed using DESeq2 (Love et al., 2014). 
We made contrasts between 24 hr ALH and 84 hr ALH antennal lobe NBs in order to identify DEGs 
of interest (adj. p-value <0.1 and log fold change >1). The list of 1861 DEGs was compared to 
the list of downstream genetic interactions of Notch pathway from FlyBase (https://flybase.org/​
reports/FBgn0004647) to obtain the list of 59 DEGs of interest. Finally, VST (variance-stabilizing 
transformation) normalized counts of the 59 genes were used to generate the heatmaps using 
heatmap.2 from the ggplot2 package (https://ggplot2.tidyverse.org). To obtain common target 
genes between Notch and Imp, we compared our list of 59 genes to the top 1000 Imp target genes 
obtained via RIP-seq by Samuels et al., 2020. We performed similar comparison on the 274 Syp 
target genes obtained via RIP-seq by McDermott et al., 2014, and our list of 59 genes to obtain 
common Notch and Syp target genes.
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Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Sugino K, Lee T, Liu Z, 
Yang C

2015 Opposite Imp/Syp 
temporal gradients govern 
birth time-dependent 
neuronal fates

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE71103

NCBI Gene Expression 
Omnibus, GSE71103
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