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Abstract We herein introduce voyAGEr, an online graphical interface to explore age-related 
gene expression alterations in 49 human tissues. voyAGEr offers a visualisation and statistical toolkit 
for the finding and functional exploration of sex- and tissue-specific transcriptomic changes with 
age. In its conception, we developed a novel bioinformatics pipeline leveraging RNA sequencing 
data, from the GTEx project, encompassing more than 900 individuals. voyAGEr reveals transcrip-
tomic signatures of the known asynchronous ageing between tissues, allowing the observation of 
tissue-specific age periods of major transcriptional changes, associated with alterations in different 
biological pathways, cellular composition, and disease conditions. Notably, voyAGEr was created to 
assist researchers with no expertise in bioinformatics, providing a supportive framework for elabo-
rating, testing and refining their hypotheses on the molecular nature of human ageing and its associ-
ation with pathologies, thereby also aiding in the discovery of novel therapeutic targets. voyAGEr is 
freely available at https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr.

eLife assessment
This work presents an important online platform designed to facilitate the exploration of genes and 
genetic pathways implicated in human aging. Leveraging a new inference methodology, the tool 
enables the identification and visualization of key genes and tissues impacted by aging, facilitating 
scientific discovery. The methods and analyses are convincing and will be broadly used by scientists 
aiming to mine human aging RNA-seq data.

Introduction
The ageing-associated progressive loss of proper tissue homeostasis maintenance makes age a preva-
lent risk factor for many human pathologies, including cancer, neurodegenerative, and cardiovascular 
diseases (Campisi, 2013; Niccoli and Partridge, 2012; Wyss-Coray, 2016). A better comprehension 
of the molecular mechanisms of human ageing is thus required for the development and effective 
application of therapies targeting its associated morbidities.

Dynamic transcriptional alterations accompany most physiological processes occurring in human 
tissues (López-Otín et al., 2013). Transcriptomic analyses of tissue samples can thus provide snapshots 
of cellular states therein and insights into how their modifications over time impact tissue physiology. 
A small proportion of transcripts has indeed been shown to vary with age in tissue (Stegeman and 
Weake, 2017) and sex-specific (Tower, 2017; Austad and Fischer, 2016; Melé et al., 2015; Gershoni 
and Pietrokovski, 2017; Kassam et al., 2019; Mayne et al., 2016) manners. Such variations reflect 
dysregulations of gene expression that underlie cellular dysfunctions (Stegeman and Weake, 2017).

Tools and Resources

*For correspondence: 
nmorais@fm.ul.pt
†These authors contributed 
equally to this work

Present address: ‡Sia Partners, 
4 Rue Voltaire, 44000 Nantes, 
Nantes, France; §European 
Molecular Biology Laboratory, 
European Bioinformatics 
Institute, Wellcome Genome 
Campus, Cambridge, United 
Kingdom

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 14

Preprint posted
23 December 2022
Sent for Review
18 April 2023
Reviewed preprint posted
31 May 2023
Reviewed preprint revised
05 March 2024
Version of Record published
28 March 2024

Reviewing Editor: Bérénice A 
Benayoun, University of Southern 
California, United States

‍ ‍ Copyright Schneider, Martins-
Silva, Kaizeler et al. This article 
is distributed under the terms 
of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.88623
https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr
mailto:nmorais@fm.ul.pt
https://doi.org/10.1101/2022.12.22.521681
https://doi.org/10.7554/eLife.88623.1
https://doi.org/10.7554/eLife.88623.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Tools and resources﻿﻿﻿﻿﻿﻿ Chromosomes and Gene Expression | Computational and Systems Biology

Schneider, Martins-Silva, Kaizeler et al. eLife 2023;12:RP88623. DOI: https://doi.org/10.7554/eLife.88623 � 2 of 19

Many studies analysed the age-related changes in gene expression in rodent tissues (Zahn et al., 
2007; Kimmel et  al., 2019; Benayoun et  al., 2019; Lui et  al., 2010; Shavlakadze et  al., 2019; 
Almanzar et al., 2020; Schaum et al., 2020), emphasising the role in ageing of genes related to 
inflammatory responses, cell cycle, or the electron transport chain. However, while it is possible to 
monitor the modifications in gene expression over time in those species by sequencing transcrip-
tomes of organs of littermates at different ages, as a close surrogate of longitudinality, such studies 
cannot be conducted in humans for ethical reasons. Indeed, most studies aimed at profiling ageing-
related gene expression changes in human tissues focused on a single tissue (e.g. muscle Zahn et al., 
2005; Welle et al., 2003; Jozsi et al., 2000, kidney Rodwell et al., 2004, brain Galatro et al., 2017; 
Olah et al., 2018; Berchtold et al., 2008; Lu et al., 2004; Işıldak et al., 2020, skin Haustead et al., 
2016; Holzscheck et al., 2020, blood Nakamura et al., 2012; Harries et al., 2011, liver Thomas 
et al., 2002, retina Yoshida et al., 2002) and/or are limited to a comparison between young and 
old individuals (Welle et al., 2003; Jozsi et al., 2000; Haustead et al., 2016; Thomas et al., 2002; 
Yoshida et al., 2002), failing to fully capture the changes of the tissue-specific gene expression land-
scape throughout ageing (Stegeman and Weake, 2017). A few studies were nonetheless led on more 
than one tissue in humans, from post-mortem samples (Gheorghe et al., 2014; Yang et al., 2015) and 
biopsies (Aramillo Irizar et al., 2018; Glass et al., 2013), and in mice (Schaum et al., 2020; Aramillo 
Irizar et al., 2018) and rats (Yu et al., 2014). The age-related transcriptional profiles derived therein, 
either from regression (Schaum et al., 2020; Gheorghe et al., 2014; Yang et al., 2015; Glass et al., 
2013) or comparison between age groups (Aramillo Irizar et al., 2018; Yu et al., 2014), highlight an 
asynchronous ageing of tissues (discussed in Rando and Wyss-Coray, 2021), with some of them more 
affected by age-related gene expression changes associated with biological mechanisms known to 
be impacted by ageing such as mitochondrial activity or metabolic homeostasis. In particular, tissue-
specific periods of major transcriptional changes in the fifth and eighth decades of the human lifespan 
have been revealed (Gheorghe et al., 2014), reflecting the so-called digital ageing (Rando and Wyss-
Coray, 2021), consistent with what is observed in mice (Almanzar et al., 2020; Schaum et al., 2020). 
Furthermore, despite outlining the tissue specificity of the transcriptomic signatures of human ageing, 
some synchronisation was found between tissues like the lung, heart, and whole blood, which exhibit 
a co-ageing pattern (Yang et al., 2015). Nevertheless, as each study followed its own specific proce-
dures, from sample collection to data processing, results from these analyses are hard to compare 
with one another.

Processed data from those studies have not been made easily accessible and interpretable to 
researchers lacking computational proficiency but aiming to use them to test their novel hypoth-
eses. To fill this void, we have developed voyAGEr, a web application providing flexible visualisation 
of comprehensive functional analyses of gene expression alterations occurring in 49 human tissues 
with age in each biological sex. We leverage the large RNA-seq dataset from the Genotype-Tissue 
Expression (GTEx) project (Lonsdale et al., 2013), encompassing tissue samples from hundreds of 
donors aged from 20 to 70 years, with a pipeline for gene expression profiling with an optimised 
temporal resolution. voyAGEr allows us to investigate ageing from two perspectives: (i) gene-centric 
– how each gene’s tissue-specific expression progresses with age; and (ii) tissue-centric – how tissue-
specific transcriptomes change with age. Additionally, voyAGEr enables the examination of modules 
of co-expressed genes altered with age in four tissues (brain cortex, skeletal muscle, left ventricle 
of the heart, whole blood), namely their enrichment in specific cell types, biological pathways, and 
association with diseases. We, therefore, expect voyAGEr to become a valuable support tool for 
researchers aiming to uncover the molecular mechanisms underlying human ageing. Moreover, being 
open-source, voyAGEr can be adapted by fellow developers to be used with alternative datasets (e.g. 
from other species) or to incorporate other specific functionalities.

voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr.

Results
voyAGEr’s interactive exploration of tissue-specific gene expression landscapes in ageing is based on 
sequential fitting of linear models (v. Methods) to estimate, for each gene in each tissue:

i.	 the Age effect, i.e., how the age-associated changes in gene expression evolve with age itself;
ii.	 the Sex effect, i.e., how the differences in gene expression between sexes evolve with age;

https://doi.org/10.7554/eLife.88623
https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr
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iii.	 the Age&Sex interaction effect, i.e., how the differences between sexes of age-associated 
changes in gene expression evolve with age.

We named our approach Shifting Age Range Pipeline for Linear Modelling (ShARP-LM). Briefly, 
this method consists of performing differential gene expression (with gene expression as a function 
of the donors’ Age, Sex, and Age&Sex interaction) in moving age windows spanning 16 years. By 
considering the percentage of genes altered in each age range, we can highlight age periods of major 
tissue-specific transcriptomic alterations (Figure 1).

Gene-centric analyses of human tissue-specific expression changes 
across age
The progression of tissue-specific expression of a particular gene across age can be examined in 
voyAGEr’s Gene tab. By entering its HGNC symbol in the Gene selector, the user has access to 
graphical summaries of the gene’s tissue-specific expression (sub-tab Profile) (Figure  2A) and the 
significance of age-related changes in its expression due to the Age, Sex, and Age&Sex effects (sub-
tab Alteration) (Figure 2B) across age. Results can be displayed in a heatmap for all tissues or in a 
scatter plot for a chosen individual tissue (Figure 2C). When the gene is studied in a single tissue, the 
user can graphically and statistically profile the association of the donors’ sex and reported conditions 
(e.g. history of heart attack or pneumonia) with the gene’s expression profile. A table summarizing the 

Figure 1. voyAGEr profiles tissue-specific age-associated changes in gene expression and their differences between sexes. For each of the 49 human 
tissues in genotype-tissue expression (GTEx), gene expression was linearly modelled in windows spanning 16 years centered in consecutive years of 
age, to estimate the effects thereon of Age, Sex, and the interaction between them, i.e., how the Sex effect changes with age, equivalent to how the 
Age effect differs between sexes (v. Methods). In each age window, the percentage of genes with expression significantly altered by each of those 
effects gives their respective transcriptomic impact (upper panels). voyAGEr thereby identifies the age periods at which major gene expression changes 
occur in each tissue. For example, in coronary artery: major age-related transcriptional alterations are found at around 60 years of age (upper left panel), 
illustrated by the behaviour of COX11 (bottom left panel); major gene expression differences between males and females happen across the considered 
age range (upper centre panel), as illustrated by CD99 (bottom centre panel); major differences between sexes in age-related gene expression 
alterations happen across the considered age range (upper right panel), as illustrated by AKT2 (bottom right panel). Solid loess lines in the bottom 
panels (green for all donors, pink for females, blue for males). Gene expression (GE) in log2 of counts per million (logCPM).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Impact of donor overlap between tissues in age-associated trends.

Figure supplement 2. Batch effect correction applied to lung samples.

Figure supplement 3. Principle of the Shifting Age Range Pipeline for Linear Modelling (ShARP-LM) method.

https://doi.org/10.7554/eLife.88623
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Figure 2. Gene-centric analyses of expression alterations across age. (A) Heatmap of MKI67 expression across tissues over age. (B) Heatmap of the 
significance of Age-associated MKI67 expression alterations over age. p-values are for the moderated t-statistics of differential gene expression 
associated with the Age effect (v. the ShARP-LM approach in Methods). Notably, transcriptional changes are observed in the lung (mid 20’s, early 30’s, 
and after 55). (C) - voyAGEr’s Gene tab interface. MKI67 expression in the lung is inspected. Donors’ information is shown in a table and the scatter plot 
can be interactively adjusted according to the donors’ condition of interest (Figure 2—figure supplement 1B ).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. voyAGEr’s Gene tab interface.

Figure supplement 2. Sex-specific SALL1 and DDX43 expression alterations over age.

Figure supplement 3. Impact of sex-specific genes in the interpretation of voyAGEr results.

Figure supplement 4. Effects of batch effect correction on gene-centric (SFTPA2) analysis.

https://doi.org/10.7554/eLife.88623
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donors’ metadata is also shown (Figure 2C). The user can interactively select donors of interest on the 
scatter plot and further examine their information in the automatically subsetted table.

An example of a process whose molecular mechanisms are of particular interest to researchers in 
the ageing field is cellular senescence. Senescence is a stress-induced cell cycle arrest limiting the 
proliferation of potentially oncogenic cells but progressively creating an inflammatory environment 
in tissues as they age (van Deursen, 2014; Gorgoulis et al., 2019. CDKN2A, that encodes cell cycle 
regulatory protein p16INK4A known to accumulate in senescent cells Gil and Peters, 2006; Erickson 
et al., 1998), has its expression increased with age in the vast majority of tissues profiled (Figure 2—
figure supplement 1A ). Similarly, reduced levels of proliferation markers, such as PCNA (Narita 
et al., 2003) and MKI67 (Sun and Kaufman, 2018), can be studied as putative markers of ageing of 
certain tissues. These genes have their expression altered with age in the lung and display a similar 
expression profile (decreasing from 25 to 30 years old, constant between 35 and 50 years old and 
decreasing in older ages) (Figure 2C). However, these trends appear to vary according to the donor’s 
history of non-metastatic cancer (Figure  2—figure supplement 1B), illustrating voyAGEr’s use in 
helping to find associations between gene expression and age-related diseases.

On a different note, sex biases have been reported in the expression of SALL1 and DDX43 in 
adipose tissue and lung, respectively (Kassam et al., 2019). voyAGEr allows us to not only recapitu-
late those observations but also assess the temporal window where these changes occur (Figure 2—
figure supplement 2).

Figure 3. Tissue-specific assessment of gene expression changes across age. (A) Heatmap of significance (false discovery rate, FDR, based on random 
permutations of age, v. Methods) over the age of the proportion of genes with expression significantly altered with Age in the 49 analysed tissues. 
(B) Exploration of gene expression changes across age in Subcutaneous Adipose tissue: (a) Percentage of genes with significantly altered expression 
with Age over age. Two main peaks of transcriptional changes are noteworthy, a major one in the late 20s and a minor one after 45; (b) Clicking on 
the dot of a specific age (29.57 years old in plot a) gives access to the list of the most altered genes at that age, ordered by statistical significance of 
expression changes (p-value of moderated t-statistic). (c) Plot of expression of the chosen top gene in the table in b across age (bottom) in parallel with 
the significance of its expression alterations with Age. The expression of LMO3 significantly increases at around 30 years old, concomitantly with the first 
peak of transcriptomic changes with Age.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Transcriptomic alterations in the uterus coincident with the onset of menopause.

Figure supplement 2. Tissue-specific sex-differentiated expression.

Figure supplement 3. Distributions of genotype-tissue expression (GTEx) donors’ ages and its impact on the statistical power of detection of 
differential gene expression.

Figure supplement 4. Effect of downsampling in Shifting Age Range Pipeline for Linear Modelling (ShARP-LM) results.

https://doi.org/10.7554/eLife.88623
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Tissue-specific assessment of gene expression changes across age
Peaks of gene expression alterations
The landscape of global tissue-specific gene expression alteration across age can be examined in 
voyAGEr’s Tissue main tab. A heatmap displaying, for all tissues, the statistical significance over age 
(v. Methods) of the proportion of genes altered with Age, Sex, or Age&Sex (depending on the user’s 
interest) is initially shown (Figure 3A), illustrating the aforementioned asynchronous ageing of tissues 
observed for humans and rodents (Schaum et al., 2020; Thomas et al., 2002; Yoshida et al., 2002; 
Gheorghe et al., 2014; Yang et al., 2015; Aramillo Irizar et al., 2018; Rando and Wyss-Coray, 
2021).

The user can then spot the age periods with the most significant gene expression alterations in 
a selected tissue (Figure 3B, a), and identify the associated altered genes (Figure 3b). The user can 
also plot the expression of a given gene of interest across ages together with the significance of its 
expression modification with Age, Sex, or Age&Sex (Figure 3B, c).

An example of voyAGEr’s capabilities is illustrated in Figure 1—figure supplement 1, showing 
substantial transcriptomic alterations in the uterus from the late forties to the early fifties, overlapping 
with the age distribution of menopausal onset (Kaczmarek, 2014), which could explain the observed 
molecular modifications.

It is also possible to visualise tissues with more than one period of transcriptomic changes, and to 
individually inspect these periods. As an example, the subcutaneous adipose tissue appears to go 
through two main periods of transcriptional changes with age: a major one at the late 20s (~13% of 
altered genes), and a minor one after 45 years (~5% of altered genes) (Figure 3B, A). The most altered 
genes in this first peak appear to have their expression modified only at this precise age period (e.g. 
PRELID1, RUNX1T1, TUBB4B, FGFRL1, and MALSU1). Similarly, mitochondrial genes (e.g. MT-CYB, 
MT-ND4, MT-ATP6, MT-ND2) (Figure 3B) appear to be the most altered genes in the second peak 

Figure 4. Tissue-specific assessment of pathway expression changes across age in the human Subcutaneous Adipose tissue. (A) Heatmap depicting the 
normalised enrichment scores (NES) of Reactome pathways associated with specific tissues and effects. Pathways are classified into 10 families (a), which 
can be characterised by their frequently occurring terms (b), providing insights into their biological functions. Only pathways significantly linked to gene 
expression changes in at least one age window (FDR ≤ 0.01) are displayed. Black squares indicate the two age periods with prominent transcriptional 
changes, while yellow squares denote pathways common to both peaks, primarily belonging to family 2. Word cloud analysis (b) reveals that family 2 
pathways are mainly related to metabolism. (B) Enrichment of a user-provided gene set, given by the significance of Fisher’s tests, in genes altered with 
Age throughout ageing (based on a user-defined p-value threshold). Here, the given gene set is composed of genes from Senequest Gorgoulis et al., 
2019 whose link with senescence is supported by at least four sources. In this case, there are no significant peaks.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Clustering of pathways from Reactome and Kyoto Encyclopedia of Genes and Genomes (KEGG), and level 3 Gene Ontology 
Biological Processes.

https://doi.org/10.7554/eLife.88623
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(Figure 3B, C). This particularity suggests that different sets of genes drive the periods of major tran-
scriptional changes, which begs to assess if they reflect the activation of distinct biological processes.

Gene set enrichment
The user can explore the biological functions of the set of genes underlying each peak of transcrip-
tomic changes by assessing their enrichment in curated pathways from the Reactome database (Croft 
et al., 2014). voyAGEr performs Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) 
and the user can visualise heatmaps displaying the evolution over the age of the resulting normalised 
enrichment score (NES Subramanian et al., 2005, reflecting the degree to which a pathway is over- 
or under-represented in a subset of genes) for a given tissue, effect (Age, Sex, or Age&Sex) and 
Reactome pathway (all, or user-selected) (Figure 4A). To reduce redundancy and facilitate the under-
standing of their biological relevance, we clustered those pathways into families that also include 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (Kanehisa and Goto, 2000) and Gene 
Ontology (GO) Biological Processes of level 3 (Gene Ontology Consortium, 2004). Briefly, we clus-
tered gene sets from the three sources based on the overlap of their genes (v. Methods), thereby 
creating families of highly functionally related pathways. Taking advantage of the complementary 
and distinct terminology in Reactome, KEGG, and GO, the user can interpret each family’s broad 
biological function by looking at the word cloud of its most prevalent terms, and browsing the list of 
its associated pathways (Figure 4A). For example, although most pathways enriched in the two afore-
mentioned peaks of altered genes in subcutaneous adipose tissue were different, there is an overlap 
of pathways related to metabolism, including various mitochondrial processes (Figure 4A). This high-
lights the importance of integrating individual gene data with pathway enrichment analysis to garner 
more comprehensive insights into the biological relevance of those changes.

The peaks of transcriptomic changes can also be examined for enrichment in a user-provided 
gene set (Figure  4B). As expression of senescence-related CDKN2A is increased in the subcu-
taneous adipose tissue with age (Figure  2—figure supplement 1A), we hypothesised that other 

Figure 5. Tissue-specific assessment of age-associated progression of modules of co-expressed genes. (A) Heatmap of eigengene expression for all the 
modules of co-expressed genes in the brain cortex over age. (B) Heatmap of association of the modules with four selected diseases, computed with the 
disgenet2r package (Piñero et al., 2019). (C) Scatter plot (above) of eigengene expression over age, in all brain cortex samples, for a selected module 
of 241 genes (MEblue). The eigengene expression is derived from the first component of the single value decomposition of its genes’ expression. 
This module was analysed, with Fisher’s tests, for enrichment in cell types, based on markers from the literature (Fan et al., 2018 and Descartes Cao 
et al., 2020) and found to be associated with astrocytes, as can be observed by the TreeMap below (where each rectangle’s area and darkness are 
proportional to the significance of its association with a cell type and its colour linked to the markers’ source study).

https://doi.org/10.7554/eLife.88623
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senescence-associated genes may be augmented too. Thus we used that voyAGEr functionality, 
using the Senequest (Gorgoulis et al., 2019) geneset (supported by at least four sources) to test it, 
observing no significant alterations (Figure 4B).

Modules of co-expressed genes
voyAGEr also allows functional analyses of modules of co-expressed genes i.e. genes with highly 
correlated expression across samples, defined by weighted correlation network analysis (Langfelder 
and Horvath, 2008). Genes in the same module are likely to be co-regulated and share biolog-
ical functions or associations with phenotypical or pathological traits (van Dam et al., 2017). Those 
modules may also act as markers of core transcriptional features of cellular activity and identity (Kelley 
et al., 2018).

Concretely, voyAGEr enables the user to visualise how the expression of modules of genes that are 
associated with a specific cell type, biological pathway, or disease progresses over age in a specific 
tissue. After selecting one tissue of interest, the user has, for each module, access to four levels of 
information:

1.	 Expression: its eigengene expression progression over age (Figure 5C);
2.	 Cell types: its enrichment in specific cell types, based on cell type signatures found in the liter-

ature (Figure 5C);
3.	 Pathways: its enrichment in Reactome pathways;
4.	 Diseases: its enrichment in disease markers, based on gene-disease associations from DisGeNET 

(Piñero et al., 2019; Piñero et al., 2017), calculated with both the disgenet2r package (Piñero 
et al., 2019) and with Fisher’s tests (Figure 5B).

By default, for each tissue, results are displayed in the form of heatmaps of expression (centered 
and scaled) illustrating how all modules evolve with age (Figure 5A). The user also has the possibility 
to select a module of interest and see its eigengene progression over age in a scatter plot (Figure 5C), 
lists of its association with diseases and pathways ordered by significance, and a TreeMap for its 
cell type enrichments (Figure 5C). In the example of Figure 5C, the ‘MEblue’ module, comprising 
241 genes co-expressed in the brain cortex, shows significant enrichment in astrocyte markers. The 
apparent increase of this module’s expression with age may reflect the known age-related changes 
in astrocyte activation (Palmer and Ousman, 2018) and the relative weakening of neuronal activity 
(‘MEyellow’ and ‘MEpink’ modules).

As in the Gene tab, the user can separate donors based on their sex and associated medical condi-
tions in the scatter plot of the eigengene expression progression. On the Pathways and Diseases-
Manual tabs below the main plot, the user can also visualise the contingency table from that specific 
disease/pathway, on the corresponding column.

Discussion
voyAGEr provides a framework to examine the progression of gene expression over age in several 
human tissues, serving as a valuable resource for the ageing research community. In particular, it helps 
to identify tissue-specific age periods of major transcriptomic alterations. The results of our analyses 
show the complexity of human biological ageing by stressing its tissue specificity (Gheorghe et al., 
2014) and non-linear transcriptional progression throughout the lifetime, consistent with previous 
results from both proteomic (Lehallier et al., 2019) and transcriptomic (Haustead et al., 2016; Gheo-
rghe et  al., 2014) analyses. By revealing and annotating the age-specific transcriptional trends in 
each tissue, voyAGEr aims to assist researchers in deciphering the cellular and molecular mechanisms 
associated with the age-related physiological decline across the human body.

Due to the tissue-specific nature of the pre-processing steps (v. Read count data pre-processing in 
the Methods section), and given that most of the plotted gene expression distributions are centered 
and scaled by tissue, it is important to note that voyAGEr may not be always suited for direct compari-
sons between different tissues. For instance, it does not allow us to directly ascertain if a gene exhibits 
different expression levels in different tissues or if the expression of a particular gene in one tissue 
changes more drastically with age than in another tissue. Furthermore, we must emphasise that the 
majority of GTEx donors contributed samples to multiple tissues (Figure 1—figure supplement 1 ), 
potentially introducing biases and confounders when comparing gene expression patterns between 

https://doi.org/10.7554/eLife.88623
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tissues. Our analyses of variance (Figure 1—figure supplement 1B ) and downsampling to control 
for common donors (Figure 1—figure supplement 1C-E) suggest very limited global confounding 
between the impacts of donor and age on gene expression and that any potential cross-tissue bias not 
to depend much on the proportion of common donors (Figure 1—figure supplement 1E). However, 
this effect must be taken into account when comparing specific pairs of tissues (e.g. Colon – Trans-
verse and Whole Blood, Figure 1—figure supplement 1D).

Additionally, voyAGEr allows us to scrutinise and visually display the tissue-specific differences in 
gene expression between biological sexes across ages. Biological sex is an important factor in the 
prevalence of ageing-associated diseases, as well as their age of onset, progression (Tower, 2017; 
Austad and Fischer, 2016; Khramtsova et al., 2019), and sex-related differences in gene expression 
(Melé et al., 2015; Gershoni and Pietrokovski, 2017; Kassam et al., 2019; Mayne et al., 2016). 
By profiling the age distribution of such differences, voyAGEr can lead to a better understanding 
of their influence in the aetiology of the sex specificities of human ageing. For instance, we were 
able to corroborate findings on the sex-differential transcriptome of adult humans by Gershoni and 
Pietrokovski, 2017, with voyAGEr emphasising its tissue-specificity and allowing to discriminate the 
ages at which sex-related biases appear to be more prevalent (Figure 3—figure supplement 2).

Nonetheless, it is essential to interpret sex chromosome-specific gene results in voyAGEr with 
caution. For instance, we observed elevated expression of Y-chromosome-specific DDX3Y in males, 
whilst its female expression (expected to be zero) is very low, in the range of what can be considered 
background noise (Figure 2—figure supplement 3). Its age-related alterations exhibit a distinctive 
peak around the age of 40 apparently driven by subtle changes in gene expression in female samples, 
illustrating the need for the abovementioned caution.

One of the limitations of voyAGEr is that most GTEx tissue donors had health conditions and their 
frequency increased with age, preventing us from defining a class of healthy individuals and iden-
tifying age-associated transcriptomic changes that could be more confidently proposed to happen 
independently of any disease progression. Whilst the large sample sizes and inherent biological vari-
ability among individuals, reflected in the diversity of condition combinations, are expected to miti-
gate significant confounding effects, voyAGEr also allows users to evaluate how tissue-specific gene 
expression trends vary according to the donors’ diverse conditions (see Figure 2—figure supplement 
1B).

The development of voyAGEr was accompanied by that of a pipeline, ShARP-LM, that facilitates 
the holistic depiction of the transcriptional landscapes of adult human tissues throughout ageing 
with a yearly age resolution. We take advantage of the comprehensiveness of the transcriptome 
collection from human tissues from the GTEx project to make our analyses a valid surrogate of a 
currently undoable longitudinal study. It confers our method enough statistical robustness to miti-
gate the inter-individual differences and deal with the non-uniform distribution of the donors’ ages. 
Nevertheless, it is worth highlighting that the age distribution of donors does impact the statistical 
power for detecting transcriptional changes. Consequently, we are more likely to identify significant 
alterations (with p-value <0.05 in our gene-centric analyses) within age ranges that are more prev-
alent in our sample population, often characterised by older individuals (Figure 3—figure supple-
ment 3). When downsampling to ensure a balanced age distribution, a loss of statistical power is 
apparent but a considerable positive correlation with the original results is maintained and a substan-
tial number of significant alterations remain so (Figure  3—figure supplement 4). This limitation 
is likely to be overcome by the accumulation of transcriptomes of human tissues in public data-
bases, promising a gradual increase in accuracy and age resolution with which human transcrip-
tomic ageing can be profiled. Similarly, the expanding collection of single-cell transcriptomes in 
public databases is yielding improved gene markers for an increasing diversity of human cell types, 
enhancing the usefulness of leveraging bulk transcriptomes to study the impact of ageing on the 
cellular composition of human tissues, for which the co-expression module approach in voyAGEr 
provides a proof-of-concept.

Nonetheless, it is imperative to approach the module-based analysis with caution, as direct and 
literal interpretations may be misleading. For instance, it is not uncommon to observe an enrichment 
of ‘Rheumatoid Arthritis’ in modules associated with various immune cell types in anatomical loca-
tions, such as the brain cortex, where the disease does not directly manifest. If a specific module 
associated with a condition like ‘Liver Cirrhosis’ exhibits an age-related increase in the brain cortex, 

https://doi.org/10.7554/eLife.88623
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of course, this does not mean such disease ever occurs within older brains. Nevertheless, we consider 
that the module-based approach can serve as a valuable resource for generating hypotheses.

Given its open-source nature, voyAGEr is envisaged to be a continually evolving resource, able to 
accommodate new data and expand its functionalities, namely by incorporating additional tissues into 
the modules section and integrating perturbagen data for inference of molecular causes underlying 
observed gene expression alterations and small molecules to target them for therapeutic purposes 
(Subramanian et al., 2017; Saraiva-Agostinho and de Almeida, 2020).

As an in silico approach with no experimental validation for its results, voyAGEr is meant to be 
a discovery tool, supporting biologists in the exploration of a large transcriptomic dataset, thereby 
generating, refining, or preliminary testing hypotheses, laying the groundwork for subsequent exper-
imental research. It can be an entry point for projects aiming at better understanding the tissue- and 
sex-specific transcriptional alterations underlying human ageing, to be followed by targeted studies 
focusing on the functional roles of the most promising markers identified therein in the physiology of 
ageing. Those marker genes can contribute to the development of more robust and cross-tissue gene 
signatures of ageing (de Magalhães et al., 2009) and the expansion of age-related gene databases 
(Tacutu et al., 2018; Craig et al., 2015).

Moreover, the observed diverse and asynchronous changes in gene expression between tissues 
over the human adult life provide potentially relevant information for the design of accurate diag-
nostic tools and personalised therapies. On one hand, identifying those changes’ association with 
specific disorders could have a prognostic value by enabling the identification of their onset before 
clinical symptoms manifest (Aramillo Irizar et al., 2018). On the other hand, computational screening 
of databases of genetic and pharmacologically induced human transcriptomic changes could help to 
infer their molecular causes and uncover candidate drugs to delay these effects (Subramanian et al., 
2017; Saraiva-Agostinho and de Almeida, 2020; Dönertaş et al., 2018; Janssens et al., 2019).

Methods
Development platforms
Data analysis was performed in R (version 4.1.2) and the application developed with R package Shiny 
(Chang et al., 2024). voyAGEr’s outputs are plots and tables, generated with R packages highcharter 
(Kunst, 2022) and DT (Yihui et al., 2024), respectively, that can easily be downloaded in standard 
formats (png, jpeg, and pdf for the plots; xls and csv for the tables).

voyAGEr was deployed using Docker Compose and ShinyProxy 2.6.1 in a Linux virtual machine 
(64 GB RAM, 16 CPU threads, and 200 GB SSD) running in our institutional computing cluster.

Read count data pre-processing
The matrix with the RNA-seq read counts for each gene in each GTEx v8 sample was downloaded 
from the project’s data portal (https://www.gtexportal.org/) (Lonsdale et  al., 2013). From the 54 
tissues available from GTEx v8, five were discarded (kidney medulla, fallopian tube, bladder, ecto-
cervix, endocervix) due to low (<50) numbers of samples.

Read count data for each tissue were then pre-processed separately. We started by filtering out 
genes deemed uninformative due to their very low expression across samples: only genes with at 
least one CPM in at least 40% of the samples were kept for analysis (the number of genes analysed 
for each tissue can be found in Supplementary file 1; Robinson et al., 2010). Read counts for those 
kept genes were used to calculate normalisation factors to scale the raw library sizes, using function 
calcNormFactors from edgeR (Robinson et al., 2010) that implements the trimmed mean of M-values 
(Robinson and Oshlack, 2010). Read counts were subsequently normalised and log-transformed with 
the voom function (Law et al., 2014) from package limma (Ritchie et al., 2015).

However, it is well-established that batch effects, which may stem from variations in sample treat-
ment prior to RNA-seq library preparation, can introduce spurious gene expression differences 
between samples and result in confounding factors (García-Pérez et  al., 2023). We, therefore, 
conducted an impartial and systematic search for potential batch effects. Firstly, we performed a prin-
cipal component analysis of gene expression for each tissue, using the prcomp package. We quanti-
fied the relation between each condition associated with every sample [According to the annotated 
variables for the dbGaP Study Accession phs000424.v8.p2] and the first two principal components, 

https://doi.org/10.7554/eLife.88623
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by computing Spearman correlations (for numerical conditions), t-tests (for binary categorical condi-
tions), or analysis of variance (ANOVA) tests (for variables with more than two possible values, and, 
in the case of numerical variables, fewer than 15 unique values). Conditions that surpassed defined 
empirical thresholds (p-value <0.05, Spearman correlation >0.3, t-test >10, and ANOVA >20) were 
flagged as potential batch effects. Except in brain tissues, the COHORT variable (i.e. whether the 
samples were collected from organ donors or post-mortem) appeared to be the main batch effect, 
with ripple effects on numerous other related conditions (Figure 1—figure supplement 2). Moreover, 
SMRIN (sample’s RNA integrity number), DTHHRDY (death classification based on the 4-point Hardy 
Scale), and MHSMKYRS (smoke years) consistently emerged as conditions associated with the primary 
axes of variance. The number of genes detected in each sample, determined by the filtration step 
described above, was also identified as a significant contributor to the primary data variance. We, 
therefore, corrected for these five conditions, on a tissue-by-tissue basis, by adapting the remove-
BatchEffect function from the limma package (Ritchie et al., 2015). Specifically, we employed linear 
models to estimate the contributions to gene expression of each of those factors and subtracted such 
contributions from the original logCPM matrix. To ensure the biological interpretability of the results, 
we offset the resulting values to the minimum value in the non-corrected matrix. To prevent sample 
loss due to missing values for the aforementioned five conditions and since the number of missing 
values was relatively low compared to the total number of samples, imputation was carried out using 
the mice package (Buuren and Groothuis-Oudshoorn, 2011).

The resulting matrix of logCPM-corrected values was used for all downstream analyses. As an illus-
trative example of the importance of batch removal, the expression of surfactant factor SFTPA2 was 
found to be associated with donors on a ventilator (McCall et al., 2016). Without batch correction, 
SFTPA2 expression would have been associated with age due to the higher prevalence of such cases 
among older individuals (Figure 2—figure supplement 4).

ShARP-LM
To model the changes in gene expression with age, we developed the Shifting Age Range Pipeline 
for Linear Modelling (ShARP-LM). For each tissue, we fitted linear models to the gene expression of 
samples from donors with ages within windows with a range of 16 years shifted through consecutive 
years of age (i.e. in a sliding window with window size = 16 and step size = 1 years of age). This was the 
minimum age span needed to guarantee the presence of more than one sample per window, across 
all considered tissues. As samples at the ends of the dataset’s age range would be thereby involved 
in fewer linear models, we made the window size gradually increase from 11 to 16 years when starting 
from the ‘youngest’ samples and decrease from 16 to 11 years when reaching the ‘oldest’ (Figure 1—
figure supplement 3).

Function lm from limma was used to fit the following linear model for gene expression (GE):

	﻿‍ GE ∼ E0 + α.Age + β.Sex + χ.Age + Sex + ε‍�

For each gene, α, β, and γ are the coefficients to be estimated for their respective hypothesised 
effects. For each sample, Age in years and Sex in binary were centered and Age&Sex interaction was 
given by their product. The coefficients E0 and ε are thus the expression of the average sample (i.e. 
with average sex and average age) and the error term.

For each gene in each model (i.e. each age window in each tissue), we retrieved the t-statistics of 
differential expression associated with the three relevant variables and their respective p-values. We 
considered the average age of the samples’ donors within the age window as the representative age 
of the observed expression changes.

In summary, for a given tissue and variable (Age, Sex, and Age&Sex), ShARP-LM yields t-statistics 
and p-values over age for all genes, reflecting the magnitude and significance of the changes in their 
expression throughout adult life.

Gene-centric visualisation of tissue-specific expression changes across 
age
For visualisation purposes, the trend of each gene’s expression progression over age in each tissue 
was derived through Local Polynomial Regression Fitting, using R function loess on logCPM values 
(Figures 1–3B, C). For summarizing in a heatmap a given gene’s expression across age in multiple 

https://doi.org/10.7554/eLife.88623
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tissues (Figure 2A) or the expression of several genes across age in a specific tissue, each gene’s 
regression values are centered and scaled, using R function scale.

For summarizing in a heatmap the significance of a given gene’s expression changes over age in 
multiple tissues (Figure 2B), cubic smoothing splines are fitted to -log10(p), with p being the t-statistic’s 
p-value, with R function ​smooth.​spline.

Tissue-specific quantification of global transcriptomic alterations across 
age
To assess the global transcriptomic impact of each of the three modelled effects in each tissue across 
age, we analysed the progression over age (i.e. over consecutive linear models) of the percentage of 
genes whose expression is significantly altered (t-statistic’s p-value ≤0.01) by each effect (Figure 3B). 
To evaluate the significance of each percentage and assess if high percentages can be confidently 
associated with major transcriptomic alterations, we controlled for their false discovery rate (FDR) 
by randomly permuting the samples’ ages and sexes within each age window fifty thousand times 
and performing ShARP-LM on each randomised dataset. We were then able to associate an FDR to 
each percentage of altered genes by comparing it with the distribution of those randomly generated 
(Figure 3B, A).

We also applied a linear model across the entire age range, thereby providing users with more 
insight and supporting evidence into how a specific gene changes with age. For visualisation purposes, 
we incorporated a dashed orange line, with the logFC per year for the Age effect as slope, in the 
respective scatter plots (Figure 3B, C). We depict the Sex effect therein by prominent dots on the 
average samples, with pink and blue denoting females and males, respectively.

GSEA
For each Peak of significant gene expression modifications, we performed GSEA (Subramanian et al., 
2005) on the ordered (from the most positive to the most negative) t-statistics of differential expres-
sion for the respective tissue and age, using R package fgsea (Korotkevich et al., 2021) and the 
Reactome database (Croft et al., 2014). We extracted the GSEA normalised enrichment score (NES), 
which represents the degree to which a certain gene set is overrepresented at the extreme ends of 
the ranked list of genes. A positive NES corresponds to the gene set’s overrepresentation amongst 
up-regulated genes within the age window, whereas a negative NES signifies its overrepresentation 
amongst down-regulated genes. The NES for each pathway was used in subsequent analyses as a 
metric of its up- or down-regulation in the Peak. The resulting NES for each pathway was used in 
subsequent analyses as a metric of its over- or down-representation in the Peak.

To optimise computational efficiency and minimise redundancy in the analysed pathways, we only 
considered pathways containing a minimum of 15 genes and up to 500 genes, as suggested in the 
GSEA User Guide (GSEA-MSIGDB, 2023). For the sake of clarity in voyAGEr’s visual representations, 
we only included pathways with a p-adjusted value less than or equal to 0.05, further narrowing it 
down to pathways within the top 1% of p-adjusted values. Additionally, we exclusively featured path-
ways with at least one significant age Peak (FDR ≤ 0.05), as illustrated in Figure 4A.

Families of pathways
To reduce pathway redundancy and facilitate the assessment of their biological relevance in the 
results’ interpretation, we created an unifying representation of pathways from Reactome (Croft 
et al., 2014), KEGG (Kanehisa and Goto, 2000), and level 3 Biological Processes from GO (Gene 
Ontology Consortium, 2004), by adapting a published pathway clustering approach (Chen et al., 
2014) to integrate them into families.

The approach relies on the definition of a hierarchy of pathways based on the number of genes 
they have in common. For each two pathways Pi and Pj, respectively containing sets of genes Gi and 
Gj, we computed their overlap index (OI) (Chen et al., 2014), defined as follows:

	﻿‍ OIi,j =
∣∣Gi ∩ Gj

∣∣ /min(
∣∣Gi

∣∣ ,
∣∣Gj

∣∣)‍�
Where |Gi| is the number of genes in set Gi and |Gi∩Gj| is the number of genes in common between 

Gi and Gj. OIij = 1 would, therefore, indicate that Pi and Pj are identical in gene composition or that one 
is a subset of the other. On the contrary, OIij = 0 would mean that Pi and Pj have no genes in common. 

https://doi.org/10.7554/eLife.88623
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To ease the computational work, we removed from the analysis pathways that are subsets of larger 
pathways (i.e. each pathway whose genes are all present in another pathway).

From the OIij matrix, from which each row is a vector with the gene overlaps of pathway i with each 
of the pathways, we computed the matrix of Pearson’s correlation between all pathways’ overlap 
indexes with R function cor. That matrix was finally transformed into Euclidean distances with R func-
tion dist, allowing for pathways to be subsequently clustered with the complete linkage method with 
R function hclust. The final dendrogram was empirically cut into 10 clusters (Figure 4—figure supple-
ment 1). Pathways that were initially excluded from the computation for being subsets of others were 
added to the clusters of their respective parent pathways. Each daughter pathway with more than one 
parent was assigned to the cluster of the parent with the smallest number of genes, thereby maxi-
mizing the daughter-parent similarity. The ​data.​table R package, for fast handling of large matrices, 
was used in this analysis (Robertson et al., 1992).

Gene co-expression modules
Gene co-expression modules were defined with R package WGCNA (Langfelder and Horvath, 
2008). For each considered tissue, the process began with the identification of a set of informa-
tive genes that exhibit high variability across samples (referred to as variable A), thus improving 
module definition. Next, we calculated the bicorrelation matrix for the expression of all selected 
genes with the bicor function. We then applied soft thresholding by raising all correlation values 
to the power of β, accentuating stronger correlations. The value of β=12 was chosen in accordance 
with the WGCNA FAQs (Langfelder and Horvath, 2024), and after confirmation of a free-scale 
topology using the pickSoftThreshold function. We generated the dissimilarity matrix by subtracting 
the output of the TOMsimilarity function from 1. Gene co-expression modules were then defined 
using a static tree-cutting algorithm, implemented via the cutreeStaticColor function, requiring as 
parameters a minimum number of genes per module (referred to as variable B) and the tree-cutting 
height (variable C).

The empirical determination of parameters A to C was guided by the following principles: (i) 
maximizing cell type signature enrichment, (ii) minimizing the number of genes per module, and (iii) 
ensuring that the modules' eigengenes exhibited age-related variability. Different combinations of 
these variables were exhaustively tested. To maintain biological relevance, modules consisting of 
non-assigned genes or genes lacking substantial supporting evidence, such as pseudogenes, were 
excluded.

Maximizing cell type enrichment in the modules, with a focus on known markers for specific cell 
types, has previously been proven successful in unveiling core transcriptional features of cell types 
in the human central nervous system (van Dam et al., 2017). Cell-type enrichment analysis relied 
on Fisher tests, providing odds enrichment scores and significance values (p-values). This involved 
comparing module genes with the signature, considering as background of genes those included in 
the module definition for each tissue. We prioritised modules of genes for which we obtained at least 
one significant result for each cell type (odds ratio (OR) >1 and p-value <0.05). The cell type signatures 
employed in this analysis were sourced from MSigDB’s C8 collection (Subramanian et al., 2005), and 
in the case of Whole Blood, additionally from LM22 (Chen et al., 2018).

Specific variance thresholds (variable A) were employed: 0.5, 0.4, 0.35, and 0.9 for Brain – Cortex, 
Muscle – Skeletal, Heart – Left Ventricle, and Whole Blood, respectively. The minimum number of 
genes per module (variable B) was set at 15, 20, 20, and 15, respectively. Tree-cutting heights (variable 
C) of 0.95, 0.98, 0.99, and 0.97 were respectively used.

Each module is characterised by a set of genes and an eigengene, represented by the first prin-
cipal component obtained through singular-value decomposition of the module’s gene expressions. 
Subsequently, voyAGEr facilitates an evaluation of cell type enrichment, as described earlier, and 
enrichment in biological pathways and diseases. The enrichment of modules in cell types, Reactome 
pathways, and diseases (extracted from DisGeNET database version 7.0; Piñero et al., 2019; Piñero 
et al., 2017) was quantified using Fisher’s tests. For disease enrichment, the function disease_enrich-
ment from the disgenet2r package (Piñero et al., 2019) was employed, utilising their curated set of 
diseases. The significance of these enrichments was determined through p-value/FDR adjustment 
using Benjamini-Hochberg correction. For visual clarity, only pathways and diseases displaying signifi-
cant enrichment (p≤0.05) in at least one module were considered.

https://doi.org/10.7554/eLife.88623
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The four tissues (Brain - Cortex, Muscle - Skeletal, Heart - Left Ventricle, and Whole Blood) covered 
by the Module section of voyAGEr were selected due to their relatively high sample sizes and avail-
ability of comprehensive cell type signatures. The increasing availability of human tissue scRNA-seq 
datasets (e.g., through the Human Cell Atlas; Regev et al., 2017) will allow future updates of voyAGEr 
to encompass a wider range of tissues.

Data and code availability
Processed GTEx v8 RNA-seq data (read count tables) were downloaded from the project’s data portal 
(https://www.gtexportal.org/). Donor metadata were obtained from dbGaP - database of Genotypes 
and Phenotypes (Accession phs000424.v9.p2 project ID 13661). voyAGEr’s output tables can be 
directly downloaded in standard xls and csv formats. The complete source code for voyAGEr (v2.0.0 
for the analyses reported herein), including pre-processing and Shiny app, can be accessed on GitHub 
at the following repository: https://github.com/DiseaseTranscriptomicsLab/voyAGEr.
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