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Abstract Malfunction of the CFTR protein results in cystic fibrosis, one of the most common 
hereditary diseases. CFTR functions as an anion channel, the gating of which is controlled by long-
range allosteric communications. Allostery also has direct bearings on CF treatment: the most effec-
tive CFTR drugs modulate its activity allosterically. Herein, we integrated Gaussian network model, 
transfer entropy, and anisotropic normal mode-Langevin dynamics and investigated the allosteric 
communications network of CFTR. The results are in remarkable agreement with experimental 
observations and mutational analysis and provide extensive novel insight. We identified residues 
that serve as pivotal allosteric sources and transducers, many of which correspond to disease-
causing mutations. We find that in the ATP-free form, dynamic fluctuations of the residues that 
comprise the ATP-binding sites facilitate the initial binding of the nucleotide. Subsequent binding 
of ATP then brings to the fore and focuses on dynamic fluctuations that were present in a latent 
and diffuse form in the absence of ATP. We demonstrate that drugs that potentiate CFTR’s conduc-
tance do so not by directly acting on the gating residues, but rather by mimicking the allosteric 
signal sent by the ATP-binding sites. We have also uncovered a previously undiscovered allosteric 
‘hotspot’ located proximal to the docking site of the phosphorylated regulatory (R) domain, thereby 
establishing a molecular foundation for its phosphorylation-dependent excitatory role. This study 
unveils the molecular underpinnings of allosteric connectivity within CFTR and highlights a novel 
allosteric ‘hotspot’ that could serve as a promising target for the development of novel therapeutic 
interventions.

eLife assessment
This manuscript presents a useful analysis of allosteric communication in the CFTR protein using a 
coarse-grained dynamic model and characterized the role of disease-causing mutations. The results 
and analyses are generally solid and validated with available experimental observations. The find-
ings provide comprehensive insights into the allosteric mechanism of this protein.

Introduction
Cystic fibrosis (CF) is a multifaceted disorder impacting the epithelial tissues of various organs, 
including the lungs, intestinal tract, and pancreas. It stands as one of the prevailing hereditary afflic-
tions, affecting approximately 1 in every 3000 newborns (Farrell, 2008). Notwithstanding the signifi-
cant advancements in therapeutic interventions, individuals with CF continue to endure pronounced 
morbidity and a reduced life expectancy (McBennett et al., 2022). The disease is caused by mutations 
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in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Most 
CF patients carry a deletion of Phe 508 in nucleotide binding domain (NBD)1 which leads to protein 
instability and premature degradation. More than 2000 other disease-associated mutations have been 
documented (​Cftr2.​org, 2011), many of which remain uncharacterized. CFTR functions as a chloride 
channel, the excretion of which is important for mucus hydration. Malfunction of CFTR leads to mucus 
dehydration and a subsequent decrease in mucus clearance. The over-accumulation of mucus leads to 
persistent bacterial infections, chronic inflammations, and to organ failure (Fahy and Dickey, 2010). 
CFTR is a member of the ABC transporter protein family, considered to be one of the largest protein 
families of any proteome (Dean et al., 2001). CFTR is a unique family member, as all other ABC trans-
porters function as active pumps, moving biomolecules against their concentration gradients (Rees 
et al., 2009; Gadsby et al., 2006). The domain organization of CFTR is similar to that of canonical 
ABC transporters, comprising two transmembrane domains (TMDs) and two cytosolic NBDs. The 
TMDs form the translocation channel and the NBDs control channel opening and closing through 
processive cycles of ATP binding, hydrolysis, and release. A unique feature of CFTR is the regulatory 
domain (R) which contains multiple phosphorylation sites and connects the two NBDs giving rise to a 
TMD1-NBD1-R-TMD2-NBD2 topology. Decades of structure-function studies enabled the formaliza-
tion of a mechanistic model for the function of CFTR: In the resting (non-conducting) state, the funnel-
shaped pore is inward-facing and is solvent accessible only to the cytoplasm. The NBDs are separated, 
and the R domain is wedged between them, preventing their dimerization (Liu et al., 2017b; Zhang 
and Chen, 2016). Upon phosphorylation of the R domain by PKA, it disengages from its inhibitory 
position and shifts aside (Picciotto et al., 1992; Tabcharani et al., 1991). The NBDs are now free to 
bind ATP and form a ‘‘head-to-tail’’ dimer (Rees et al., 2009; Zhang et al., 2018; Mense et al., 2006), 
with the two ATP molecules sandwiched at composite binding sites formed at the dimer interface. In 
CFTR, like in some other ABC transporters, only one of the ATP sites is hydrolysis-competent while the 
other (termed the degenerate site) can only bind ATP but not hydrolyze it (Hohl et al., 2012; Csanády 
et al., 2019; Stockner et al., 2020). Formation of the NBDs dimer leads to rearrangements of trans-
membrane gating residues and subsequent channel opening. Hydrolysis of ATP at the catalytic site 
and release of hydrolysis products leads to opening of the NBDs, channel closure, and resetting of the 
system. This mechanism bears resemblance to that of bona fide ABC transporters, where ATP binding 
and hydrolysis at the NBDs drive the conversion of the TMDs between inward- and outward-facing 
conformations (Johnson and Chen, 2018; Kim and Chen, 2018; Nguyen et al., 2018).

It is now broadly recognized that most proteins and enzymes are allosteric, where ligand binding 
at one site affects the functional properties of another (often distant) site (Kessel and Ben-Tal, 2018; 
Liu and Nussinov, 2016; Gerek and Ozkan, 2011; Campitelli et al., 2020). Two conceptual models 
dominated the field of allostery for the past 50 years. According to Koshland, Némethy, and Filmer 
(KNF model, Koshland et al., 1966), the protein exists in a single conformation (an inactive one) to 
which the allosteric ligand binds, inducing a conformational change that leads to the active confor-
mation. In contrast, Monod, Wyman, and Changeux (MWC model, Monod et al., 1965) introduced 
the concept of ‘conformational selection’, according to which proteins pre-exist in multiple conforma-
tion, and the allosteric ligand preferentially binds to the active conformer, leading to a redistribution 
of the conformational distributions toward the active one (Ma et al., 1999). The simplicity of these 
models is appealing, yet we now begin to understand that they alone cannot explain the complexity 
of allosteric signal generation and transduction. More recently, an alternative allosteric mechanism 
was demonstrated, termed ‘dynamic mechanism’ (Motlagh et al., 2014; Nussinov and Tsai, 2015), 
where allostery is mediated by changes in dynamic fluctuations around a mean conformation in the 
absence of a noticeable conformational change (Popovych et al., 2006; Tsai et al., 2008). In some 
proteins, as we believe is the case of CFTR, multiple allosteric mechanisms combine to generate the 
observed allosteric phenomenon.

There are abundant examples that long-range allosteric communications are essential to the func-
tion of CFTR. One such example is the control of channel opening and closing, where the binding 
site of the effector molecule (ATP) and the affected gating residues are separated by 60–70 Å (Liu 
et al., 2017b; Zhang et al., 2018). Very recently, Levring et al. demonstrated that ATP-dependent 
dimerization of the NBDs is insufficient for channel opening which additionally depends on an 
allosteric pathway that connects the NBDs and the channel pore (Levring et al., 2023). Based on rate-
equilibrium free-energy relationship analysis, Sorum et al. reached similar conclusions, and suggested 

https://doi.org/10.7554/eLife.88659
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that this allosteric signal originates at the NBDs and gradually propagates toward the gating residues 
along a clear longitudinal protein axis (Sorum et al., 2015). Another example of long-range allostery 
in CFTR is the finding that point mutations at the cytosolic loops increase channel open probability 
(even in the absence of ATP) by shifting a pre-existing conformational equilibrium toward the ligand 
bound conducting conformation (Wang et al., 2010). Notably, allostery in CFTR has direct therapeutic 
relevance: The potentiator drug ivacaftor and the dual-function modulator elexacaftor do not bind 
in the proximity of the gating residues (Liu et al., 2019; Fiedorczuk and Chen, 2022a) yet increase 
the open probability (Po) of the channel (Eckford et al., 2012; Shaughnessy et al., 2021). These and 
other studies (Sorum et al., 2017; Scholl et al., 2021; Wei et al., 2014) significantly advanced our 
understanding of the function of CFTR and its allosteric control.

However, some important features of the underlying allosteric network remain unknown. For 
example, the complete allosteric map of CFTR remains to be determined, as are the causal relations 
(driving vs. driven) between residues and domains. Similarly, the allosteric mechanism for modulation 
of CFTR by commercial drugs is only partially understood. Herein, we sought to further our under-
standing of the allosteric network of CFTR. For this, we combined two complementary computational 
approaches: Gaussian network model-transfer entropy (GNM-TE; Hacisuleyman and Erman, 2017a; 
Altintel et  al., 2022) and ANM-LD simulations which combine anisotropic network model (ANM) 
(Atilgan et al., 2001; Wang et al., 2004; Keskin et al., 2002; Keskin, 2007) and Langevin dynamics 
(LD) (Brünger et al., 1984).

GNM reduces the complexity of a protein polymer to a network of nodes (representing the main 
chain α-carbons) connected by springs with a spring constant of unity. Further simplifications are the 
assumptions of force linearity and isotropy of all fluctuations. These simplifications are the source of 
both its advantages and limitations. On the one hand, GNM is computationally economical, allowing 
for rapid analytical derivation of conformational dynamics even of large proteins. This computational 
economy, while offering valuable insights, does entail a limitation. GNM proves highly effective in 
predicting fluctuations around a predefined native state and offers valuable information regarding 
allosteric communication and causality. Nevertheless, due to its reliance on topology, GNM is unsuit-
able to monitor the conformational transitions from one native state to another. However, it does have 
the capacity to suggest potential modes of motion accessible within a given protein topology that 
may contribute to such conformational changes. In addition, GNM cannot provide any information on 
side chains dynamics as these are omitted from the model. The robustness of the model makes GNM 
a highly effective tool in studying global dynamics. Despite, or because of, its simplicity, GNM-based 
approaches have been very successful in describing global conformational dynamics of proteins (Yang 
and Bahar, 2005; Li et al., 2014; Acar et al., 2020). More details on the fundamentals of GNM, its 
advantages and limitations can be found here (Cui and Ivet, 2006). To supplement GNM we inte-
grated it with TE calculations. The concept of TE is derived from information theory and is used to 
measure the amount of information transferred between two processes (Hacisuleyman and Erman, 
2017a). In the context of proteins’ conformational changes, TE can be used to determine whether 
two residues are allosterically connected (Altintel et al., 2022). TE for each pair of i and j residues 
can be viewed as the degree to which the present movement of residue i decreases the uncertainty 
regarding the future movement of residue j within a specified time delay τ. If TEij (τ)>TEji (τ), then 
the dynamics of residue i affects the dynamics of residue j, representing a causal relationship between 
residues i and j. If a residue transfers information to many other residues in the protein, it is consid-
ered as an information source; if it accepts information from much of the protein, it is considered as 
an information receiver or a ‘sink’ (for more details about the correlation between TE and allostery, 
see Hacisuleyman and Erman, 2017b). In the present work, we performed TE calculations based 
on GNM, which considers harmonic interactions between residue pairs (Hacisuleyman and Erman, 
2017a; Acar et al., 2020). Unlike simulation trajectory approaches that infer cause-and-effect rela-
tions from the observed sequence of events (which may be circumstantial), GNM-based TE provides 
a direct measure, at the linear approximation, of causality relations between residues and domains. 
Quantitative inference of cause-and-effect relations from simulation trajectory approaches is in prin-
ciple possible using enhanced kinetic sampling techniques but is highly computationally demanding 
for a large transmembrane transporter such as CFTR. Here, we opted to use a complimentary GNM-
based TE approach that readily provides a quantitative measure of sources and receivers of allosteric 
signals. The code for GNM-TE is freely available on GitHub, (copy archived at PRC-comp, 2023).

https://doi.org/10.7554/eLife.88659
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To complement GNM, we used a hybrid molecular simulations approach that integrates global 
elastic modes with atomic-scale information derived from all-atom simulations. Several such 
approaches have emerged in recent years (e.g. collective MD [CoMD], Perturb-Scan-Pull, eBDIMS, 
H-REMD) (Krieger et al., 2020; Gur et al., 2013; Jalalypour et al., 2020; Kandzia et al., 2019) with 
the aim of finding a ‘sweet spot’ between the precision of whole atom simulations and the computa-
tional efficacy of coarse-grained elastic networks. The novelty of our approach, ANM-LD, is that it inte-
grates a low-resolution α-carbon-based ANM with stochastic all-atom implicit solvent LD simulations 
(Brünger et al., 1984). ANM-LD reflects only internal dynamic modes, free of any external bias. More 
importantly, ANM-LD provides experimentally testable predictions, and has been successfully used to 
compute conformational trajectories of proteins (Acar et al., 2020; Yang et al., 2018). The code for 
ANM-LD is freely available on GitHub, (copy archived at PRC-comp, 2023).

By combining ANM-LD and GNM-TE, we present here the allosteric network of CFTR. The results 
align very well with experimental and clinical data, disclose the allosteric mechanism of CFTR, and 
identify a novel allosteric hotspot that may be used for therapeutic intervention.

Results
TE calculations identify allosteric hotspots in CFTR
First, we performed GNM-TE calculations on non-phosphorylated ATP-free human CFTR (PDB ID 
5UAK, Liu et  al., 2017b) using the 10 slowest GNM ‘modes’. As explained in the Materials and 
methods section and elsewhere (Acar et  al., 2020; Haliloglu et  al., 1997), GNM decomposes a 

Figure 1. Functional sites of cystic fibrosis transmembrane conductance regulator (CFTR) segregate to allosteric 
hotspots. Shown is the amount of information (transfer entropy [TE] score) transmitted by each residue of 
dephosphorylated ATP-free human CFTR (PDB ID 5UAK) calculated using the 10 most collective Gaussian network 
model (GNM) modes (solid black trace). The positions of the 14 functionally important residues (see text for details) 
and of 30 ATP-binding residues are shown as cyan and magenta spheres, respectively.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Eigenvalue decays as a function of mode number, shown for ATP-free (orange) and ATP-
bound (blue) human cystic fibrosis transmembrane conductance regulator (CFTR) (PDB ID 5UAK and 6MSM, 
respectively).

Figure supplement 2. Sensitivity of the results to Rcut.

Figure supplement 3. Co-localization of the Gaussian network model-transfer entropy (GNM-TE) peaks with the 
hinges identified by GNM.

Figure supplement 4. Correlation between allosteric peaks and positions of the functionally essential residues.

Figure supplement 5. Correlation between allosteric peaks and ATP-binding residues.

Figure supplement 6. Correlation between allosteric peaks and positions of disease-causing mutations.

https://doi.org/10.7554/eLife.88659
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complex motion (such as a conformational change, or a person walking) to discrete dynamic building 
blocks, historically termed GNM ‘modes’, the ensemble of which comprise the complex motion. 
These include modes of motion that involve large parts of the protein and lead to major confor-
mational changes (termed ‘slow modes’). The ‘slow modes’ often display the greatest degree of 
collective movements. Modes that involve local conformational adjustments and a smaller number 
of residues and display fewer collective movements are considered ‘fast modes’. We expected that 
the 10 slowest modes, those comprising the largest of motions, will be the main allosteric effectors, 
and their ensemble will suffice to capture the overall dynamics of CFTR. Indeed, Eigenvalue anal-
ysis demonstrated that the 10 slowest modes of CFTR encompass its complete dynamic spectrum 
(Figure 1—figure supplement 1).

Figure 1 shows the residues identified as the main allosteric sources in ATP-free human CFTR, 
obtained by using an interaction cutoff distance (Rcut) of 10 Å. Very similar results were obtained when 
Rcut of 7 Å was used instead (Figure 1—figure supplement 2), suggesting that the results are not 
very sensitive to this parameter. The residues that GNM-TE identified as main allosteric determinants 
showed partial overlap with the hinge residues identified by GNM: Of the 60 residues that serve as 
main allosteric sources, 22 were located within 4 Å of a hinge residue, and this co-localization was 
highly statistically significant (Figure 1—figure supplement 3). This is perhaps not unexpected, as 
hinge residues likely play an important role in transmitting the strain energy induced by binding of 
allosteric ligands.

As GNM-based TE has not been extensively used to study membrane proteins as large and complex 
as CFTR, we began by evaluating its utility in extracting meaningful functional information. Allosteric 
residues often coincide with functional epitopes, i.e., residues that are involved in ligand binding, 
catalysis, or serve as conformational hinges (Liu and Nussinov, 2016; Wodak et al., 2019). Therefore, 
we first evaluated the performance of GNM-based TE by examining its ability to identify such sites of 
functional importance. For this, we first compared the locations of the GNM-TE identified allosteric 
sources to the positions of 14 residues that have been experimentally demonstrated to be directly 
responsible for the function of CFTR. This subset of 14 residues includes the most common CFTR 
gating mutations (G178, S549, G551, G970, G1244, S1251, S1255, G1349), residues of the intracel-
lular loops that are essential for conformational changes (M265, N268, Y275, W1063, L1065), and the 
NBD2 Walker B aspartate D1370 which is essential for ATP hydrolysis (Liu et al., 2017b; Csanády 
et al., 2019; Sorum et al., 2015; Sorum et al., 2017). As shown in Figure 1 we observed that these 
14 residues tightly co-localize with the main allosteric peaks. To assess the statistical significance 
of this co-segregation, we compared it to a random identification of residues of functional impor-
tance, as follows: GNM-TE identified 60 residues (out of 1480) that are the main allosteric sources (i.e. 
allosteric peaks) in dephosphorylated ATP-free CFTR (Figure 1). Accordingly, we generated 100,000 
sets of 60 randomized positions and counted how many times the positions of the functionally essen-
tial residues were correctly predicted using this random allocation. As shown in Figure 1—figure 
supplement 4A, the random allocation has a mean value of 0.7 correct guesses while the GNM-TE-
based identification has a mean value of 8 (p=9×e–13). Next, we expanded this analysis to include not 
only exact matches (between the random or GNM-TE assignment of functional sites and their real 
location) but also first- or second-coordination sphere interactions (i.e. peaks that are located <4 Å 
or <7 Å from the functionally essential residues). Using these cutoffs, we also observed a highly signif-
icant correlation between the location of the GNM-TE peaks and that of the functionally essential 
residues (Figure 1—figure supplement 4B–C). We then compiled a second set of reference residues, 
one which includes all the residues that provide the first ATP coordination sphere in ATP-bound CFTR 
(Zhang et al., 2018). We reasoned that since CFTR gating is controlled by ATP binding and hydrolysis, 
these residues (that are allosteric by definition) should be readily identified by the GNM-TE analysis. 
Indeed, as shown in Figure 1 the ATP residues also closely segregated to the allosteric peaks iden-
tified by GNM-TE, and this co-segregation outperformed the one obtained via a random allocation 
of allosteric peaks (Figure 1—figure supplement 5). This co-segregation was observed whether we 
considered only exact matches (Figure 1—figure supplement 5A), or whether we included also first- 
or second-coordination sphere interactions (Figure 1—figure supplement 5B and C, respectively). 
Next, we considered a more challenging reference set of residues, one which includes the 93 CFTR 
missense point mutations that lead to CF (​Cftr2.​org, 2011). This reference set of residues holds some 
inherent limitations: many of the mutations that lead to CF have no direct functional role per se, rather, 

https://doi.org/10.7554/eLife.88659
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they cause CF due to compromised mRNA synthesis/stability, protein processing, or protein targeting 
(Chen et al., 2021). The inclusion of such residues in the benchmark dataset will lead to apparent 
false-negative identifications of the GNM-TE analysis. In addition, it is likely that not all the allosteric 
residues have been naturally mutated, leading to false-positive identifications. Nevertheless, despite 
these limitations, we expected to see some degree of co-localization between the identified allosteric 
hotspots and the disease-causing mutations. From the 93 mutations listed in the cfrt2 database (​
Cftr2.​org, 2011), we removed the cluster of seven N-terminal residues (S13, L15, W60, E56, E60, 
P67, G85) that are known to be involved in interactions with cellular filamins or ER retention (Thelin 
et al., 2007). As shown in Figure 1—figure supplement 6A we observed considerable association 
between the positions of 86 disease-causing mutations and the allosteric peaks identified by GNM-
TE. To test the statistical significance of this association, we generated 100,000 sets of randomly 
positioned ‘allosteric peaks’. As shown in Figure 1—figure supplement 6B, the random distribution 
is roughly normal with a mean of 4.5 incidents of exact matches. As shown in Figure 1—figure supple-
ment 6B, the GNM-TE analysis is significantly different from the random distribution, with a mean 
of 9 exact matches. As observed with the previous two reference set of residues (Figure 1—figure 
supplements 4 and 5), the co-segregation between the allosteric peaks identified by GNM-TE and 
the positions of the disease-causing mutations was also observed when we included also first- and 
second-coordination sphere interactions (Figure 1—figure supplement 6C and D, respectively). In 
further support of the biological relevance of the GNM-TE calculations, and despite the structural 
similarity between the two NBDs, a clear asymmetry can be observed between them, with NBD2 
which harbors the catalytic Walker B glutamate providing the higher allosteric signaling (Figures 1 
and 2A). This observed asymmetry is in line with a recent single molecule conformational study where 
the degenerate and catalytic ATP sites were shown to asymmetrically affect NBD dimerization and 
gating (Levring et  al., 2023). That GNM-TE identifies this asymmetry is quite remarkable, as it is 
based solely on the positions of the α-carbons and does not consider the side chains. Taken together, 
these results (Figures 1 and 2A, Figure 1—figure supplements 2 and 4, Figure 1—figure supple-
ments 5 and 6) suggest that GNM-based TE can provide meaningful functional information on CFTR.

As shown in Figures 1 and 2A, the entropy sources residues (i.e. residues that drive allostery) are 
found predominantly on the NBDs and are largely absent from the TMDs. The only TMD residues that 

Figure 2. Identification of allosteric hotspots in dephosphorylated ATP-free cystic fibrosis transmembrane conductance regulator (CFTR). A cartoon 
representation of dephosphorylated ATP-free human CFTR (PDB ID 5UAK), where each residue is colored according to the amount of information it 
transmits (transfer entropy [TE] score), expressed as transfer entropy × collectivity (TECol) calculated using the 10 most collective Gaussian network 
model (GNM) modes (A), or upon removal of the first (B) or first and second (C) most collective GNM modes. Red and blue colors represent high and 
low levels of information output, respectively.

https://doi.org/10.7554/eLife.88659
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serve as entropic sources are those found at or near intracellular loops 2 and 3 (Figure 2A). Notably, 
these observations were made for de-phosphorylated ATP-free CFTR. This demonstrates that even 
when the NBDs are completely separated and the composite ATP-binding sites are yet to form, the 
dynamic infrastructure for nucleotide binding is already present, poised for binding of the ligand. 
This pre-existing dynamic infrastructure likely facilitates ATP binding and will come into full play at a 
later stage of the conformational change, following phosphorylation and binding of ATP. Interestingly, 
some of the main entropy peaks (i.e. entropy sources) located in the NBDs are slightly shifted from the 
ATP-binding residues (Figure 1) and correspond to adjacent residues. This shift disappears once ATP 
is bound, and the entropy source role is transferred from the neighboring residues to the ATP-binding 
residues themselves (see next results section dealing with the effects of ATP binding).

The results shown in Figure 2A were obtained using the 10 slowest GNM modes. However, during 
the calculations the entropic contribution of the slowest modes may overshadow that of the faster 
(less collective) ones, which may nevertheless have important functional roles (for more details, see 
Altintel et al., 2022). To circumvent this problem, one may repeat the calculations while omitting the 
slowest GNM modes, enabling the detection of latent allosteric interactions that may otherwise be 
hidden in the global fluctuations. For ATP-free human CFTR, the greatest effect was observed upon 
removal of the first and second slowest modes: Upon removal of the slowest GNM mode, a new 
cluster of residues that serve as allosteric sources was revealed (Figure 2B). These residues, which are 
distributed roughly symmetrically in the TMDs, include the putative gating residues (e.g. P99, T338, 
S341, Liu et al., 2017b) and additional residues that line the ion permeation pathway. The residues 
that form the ivacaftor binding site (Liu et al., 2019) were also revealed as entropy sources by removal 
of the slowest GNM mode (Figure 2B), demonstrating the utility of this approach. Removal of the next 
slowest GNM mode reveals another cluster of TMD residues that serve as entropy/allostery sources. 
Unlike the above-described symmetric cluster, this cluster is highly asymmetric, and is comprised 
solely of residues in TMD1 (Figure 2C). Interestingly, this cluster of residues is located at and just 
above the future site for docking of the regulatory domain (Bozoky et al., 2013; Chappe et al., 2005 
and see also later in Figure 3C–D).

The above analysis revealed two latent entropy hotspots: one surrounding the ion permeation 
pathway (Figure 2B) and the other adjacent to the docking site of the regulatory domain (Figure 2C). 
Both sites were hidden by the more dominant global fluctuations of the protein (Figure 2A). Their 
identification in this conformation, which is non-conducting and where the R domain is still wedged 
between the NBDs (Liu et al., 2017b), highlights once again the pre-existence of a dynamic infrastruc-
ture which will assume a central role following phosphorylation and repositioning of the R domain.

ATP binding and phosphorylation rewires and focuses the allosteric 
connectivity of CFTR
To study the effects of ATP binding and phosphorylation, we conducted TE analysis of phosphorylated 
ATP-bound CFTR (PDB ID 6MSM, Zhang et al., 2018). We observed that phosphorylation and binding 
of ATP greatly rewires the overall allosteric connectivity in CFTR (Figure 3—figure supplement 1, 
and compare Figures 1 and 3A): residues that serve as entropy sources are now found in all the 
domains (TMD1, NBD1, TMD2, NBD2) and the entropy peaks are sharp, sharper than those observed 
for the unphosphorylated ATP-free form (compare Figures 1 and 3A), indicating that information is 
originating from distinct residues/cluster of residues. This suggests that phosphorylation and binding 
of ATP focuses the dynamics of CFTR, which pre-existed in a more diffuse manner in the unphosphor-
ylated ATP-free state. This observation suggests that this conformation is the preferred template/
target for structure-guided development of allosteric modulators.

As discussed above and shown in Figure 1, in the ATP-free state the entropy peaks at the NBDs are 
slightly shifted from the ATP-binding residues. This offset largely disappears upon binding of ATP, and 
the entropy peaks in the NBDs now closely match the location of the ATP-binding residues (compare 
Figures 1 and 3A). In the TMDs, the residues that serve as main entropy sources are those that surround 
the ion permeation channel (Figure 3B). This means that upon phosphorylation and binding of ATP 
the gating and pore lining residues assume a more dominant role in allosteric signaling. Notably, these 
transmitting TMD residues were identified as latent entropy sources in the unphosphorylated ATP-free 
state (Figure 2B). This result again highlights that the underlying dynamics in CFTR pre-exist, prior to 
phosphorylation and ATP binding. To test if the effect of ATP binging is specific to human CFTR and/or 

https://doi.org/10.7554/eLife.88659
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is a result of the specific experimental conditions in which its ATP-free and ATP-bound structures were 
determined (Liu et al., 2017b; Zhang et al., 2018), we conducted similar calculations with the corre-
sponding conformations of zebrafish CFTR (Zhang and Chen, 2016; Zhang et al., 2017). As shown in 
Figure 3—figure supplement 2, binding of ATP had a very similar effect in both CFTR homologues, 
suggesting that the allosteric effects of ATP binding are robust and conserved.

As explained above (see analysis of the ATP-free conformation), to identify latent entropy sources 
we repeated the TE calculations for the phosphorylated ATP-bound state after removing the two 
slowest modes. Several striking features were revealed by these calculations (Figure 3C). First, the 
entropy sources in the NBDs have now migrated from the ATP-binding sites at the dimer interface 

Figure 3. ATP binding and phosphorylation rewires and focuses the allosteric connectivity of cystic fibrosis transmembrane conductance regulator 
(CFTR). (A) Shown is the amount of information transmitted (transfer entropy [TE] score) by each residue of phosphorylated ATP-bound human CFTR 
(PDB ID 6MSM) calculated using the 10 most collective Gaussian network model (GNM) modes (solid black trace). The positions of the ATP-binding 
residues are shown as magenta spheres. (B, C) A cartoon representation of phosphorylated ATP-bound human CFTR (PDB ID 6MSM), where each 
residue is colored according to the amount of information it transmits (TE score), calculated using the 10 most collective GNM modes (B), or upon 
removal of the first most collective GNM mode (C). Red and blue colors represent high and low levels of information output, respectively, and the ATP 
molecules are shown as black/gray spheres. (D) A magnified view of the allosteric cluster that is adjacent to the docking site of the R domain.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Phosphorylation and ATP binding rewires the allosteric connectivity in cystic fibrosis transmembrane conductance regulator 
(CFTR).

Figure supplement 2. Conservation of the effect of ATP.

https://doi.org/10.7554/eLife.88659
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toward the intracellular loops, perfectly positioned to transmit the signal to the TMDs. Second, the 
TMD allosteric peaks surrounding the gating residues and the ion permeation pathway have migrated 
toward the extracellular exit, as if to prepare for ion exit. Lastly, a cluster of residues that serve as 
strong entropy sources appeared in the TMDs in an asymmetric manner (Figure 3C–D). These resi-
dues are found exclusively in TMD1 and comprise or are adjacent to the site of interaction of the regu-
latory (R) domain (Bozoky et al., 2013; Chappe et al., 2005). This observation suggests that the role 
of the R domain may not be limited to steric obstruction of NBD dimer formation in the unphosphor-
ylated ATP-free state. The presence of this cluster of information-transmitting residues in the vicinity 
of the docking site of the R domain may explain previous observations that deletion of the R domain 
leads to fewer channel opening events, and that exogenous addition of the phosphorylated R domain 
peptide increases channel open probability of CFTR construct deleted of the R domain (Winter and 
Welsh, 1997; Ma et al., 1997).

Concerted movements in CFTR
The TE analysis presented above provides a measure of information transfer between residues and 
domains. However, it gives no information of the physical nature of the conformational changes that 
are involved. To complement the GNM-TE calculations, we used ANM-LD, a molecular simulations 
approach which computes the trajectory of a conformational change between two known states of 
a protein (Atilgan et al., 2001; Brünger et al., 1984). We simulated the transition between non-
phosphorylated ATP-free and phosphorylated ATP-bound human CFTR (Liu et  al., 2017b; Zhang 
et al., 2018). To understand the allosteric connectivity that underlies this conformational change, we 
analyzed the degree of correlated movements between all CFTR residues. At the basis of this analysis 
is the assumption that residues that are allosterically connected will move in synchrony in both space 
and time. An extreme example of such synchronization is the perfect correlation of each residue with 
itself (diagonal in Figure 4A). Similarly, two residues that are sequential in the amino acid sequence 
will also display high correlation. However, when highly synchronized movements are observed for 
residues or domains that are distant in sequence and in 3D space, this likely represents allosteric 
connectivity.

Figure 4. Synchronized movements of residues and domains of cystic fibrosis transmembrane conductance regulator (CFTR). (A) Shown is a 2D map 
of the dynamic cross-correlations between all residues of CFTR during the conformational transiting from the dephosphorylated ATP-free state to the 
phosphorylated ATP-bound state (PDB ID 5UAK and 6MSM, respectively). Red colors indicate strong positive correlation, meaning that the residues 
move in parallel vectors in space and time, blue colors indicate negative correlations. Domain boundaries are indicated by white lines. (B, C) Cartoon 
representation of CFTR where each residue is colored according to its dynamic cross-correlations with the ATP-binding residues (black spheres) of 
nucleotide binding domain (NBD)1 (B) or NBD2 (C).

https://doi.org/10.7554/eLife.88659
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The 2D cross-correlation map obtained for the transition between non-phosphorylated ATP-free 
and phosphorylated ATP-bound human CFTR is shown in Figure 4A. In this map red colors indicate 
high positive correlations and blue colors high negative correlations. Red colors thus indicate resi-
dues that move in parallel vectors in space and time, and blue colors indicate residues that move 
in anti-parallel vectors in space and time. The map is dominated by large and continuous patches 
of red (positive correlation) and blue (negative correlation) areas and is very similar to the 2D cross-
correlation map calculated for PglK (Acar et al., 2020), a lipid-linked oligosaccharide flippase that 
adopts the canonical ABC exporter 3D fold (Perez et al., 2015). These observations suggest that, 
as inferred from the cryo-EM structures of CFTR (Liu et al., 2017b; Zhang et al., 2018), global rigid 
body motions with a relatively small number of hinges underlie this conformational change, and that 
the conformational changes of CFTR are similar to those of canonical ABC exporters. The two NBDs 
display asymmetric allosteric connectivity: NBD1 shows a tighter correlation with the residues that 
surround the permeation pathway (Figure 4B), while NBD2 (harboring the catalytic Walker B gluta-
mate) is more strongly correlated with ECL1 (extracellular loop 1) (Figure 4C) which is known to stabi-
lize the conducting state of the channel (Infield et al., 2016).

Sequence of allosteric transduction in CFTR
The ANM-LD simulations offer an opportunity to examine mechanistic features that are difficult to 
determine experimentally. One such feature is the pre-equilibrium kinetics of allosteric interactions: 
if residues A and B are allosterically connected, does the conformational change of A follow that of 
B, or vice versa? To investigate the sequence of allosteric transduction in CFTR we re-analyzed the 
simulations while imposing a time delay between the conformational changes of allosterically coupled 
residues (or domains) of interest. For any two allosterically coupled residues, if we define that the 
conformational change in A occurs before that of B, and still observe a positive correlation in the 2D 
correlations map, this means that the conformational change of A precedes that of B. If the correlation 
is lost, this means that B likely precedes A, which can be confirmed by imposing the opposite time 
delay (i.e. imposing that the change in B precedes) and verifying that the positive correlation is again 
observed (see Materials and methods for a mathematical expression of these relations). This approach 
can be used to track the entire route of allosteric signal transduction as detailed below.

Rate-equilibrium free-energy relationship analysis and single molecule FRET studies both suggest 
that the allosteric signal originates at the NBDs and propagates to the TMDs (Sorum et al., 2015; 
Levring et al., 2023). Our results agree with these observations: in parallel simulations we repeatedly 
observed that the conformational change from the dephosphorylated ATP-free state to the phos-
phorylated ATP-bound one begins with the movement of the NBDs. In addition, the TE analysis of the 
inward-facing ATP-free state demonstrated that in this conformation the allosteric peaks are located 
almost exclusively at the NBDs (Figure 1). Of the two NBDs, the catalytic NBD2 seems to provide the 
greater allosteric input (Figure 1 and Figure 2A ) and therefore as detailed below we began tracing 
the allosteric signal at NBD2. As shown above (Figure 4C), in the absence of a time delay the move-
ments of NBD2, ICL2/3, TMD2 (including TM8 up to its hinge), and ECL1 are highly synchronized. 
However, this correlation persists only if NBD2 leads this motion and ICL2/3, TMD2/TM8, and ECL1 
follow (Figure 5—figure supplement 1 green rectangles, Figure 5 step I). This observation strongly 
suggests that the movement of NBD2 is the leading event and those of ICL2/3, TMD2/TM8, and 
ECL1 follow, and that the allosteric signal propagates from NBD2 to ICL2/3, TMD2/TM8, and ECL1 
(Figure 5 center, green arrows). Notably, based on their recent single molecule studies, Levring et al. 
proposed similar cause-and-effect relations between the catalytic ATP site and TM8 (Levring et al., 
2023).

From ECL1 the allosteric signal propagates to NBD1: The movements of these two domains are 
highly correlated, but only if ECL1 leads and NBD1 follows (Figure 5—figure supplement 1 magenta 
rectangles, Figure 5 step II, and Figure 5 center, magenta arrow). Similar considerations suggest 
that from NBD1 the allosteric signal propagates to the gating residues and to the TM helices that 
surround the permeation pathway: The movements of these domains are only synchronized if the 
former leads and the latter follows (Figure 5—figure supplement 1 blue rectangles, Figure 5 step III, 
and Figure 5 center, blue arrow). In turn, the movements of the gating residues and the permeation 
pathway TM helices are correlated with those of NBD2, but only if the TM helices lead and NBD2 
follows (Figure 5—figure supplement 1 orange rectangles, Figure 5 Step IV). We therefore conclude 

https://doi.org/10.7554/eLife.88659
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that the allosteric signal propagates from the permeation pathway to NBD2, thus completing the 
cycle of allosteric transduction (Figure 5 center, orange arrow).

Modulation of CFTR by drugs
In the past decade, the development of small-molecule CFTR modulators revolutionized CF treat-
ment and led to a dramatic reduction in patient morbidity and increased life expectancy (Clancy, 
2018). There are currently four FDA-approved drugs that are used to treat CF: The type I correctors 
lumacaftor (VX-809) and tezacaftor (VX-661) stabilize mutant CFTR variants (predominantly the most 
common ΔF508 mutation) reducing premature protein degradation and improving surface presenta-
tion of the mature channel (Van Goor et al., 2011; Fiedorczuk and Chen, 2022b). The potentiator 
ivacaftor (VX-770) enhances the activity of conductance-defective mutants by increasing the open 
probability (Po) of the channel (Levring et al., 2023; Liu et al., 2019; Eckford et al., 2012), and the 
dual-function type III corrector elexacaftor (VX-445) stabilizes unstable variants and increases channel 
open probability (Shaughnessy et al., 2021; Veit et al., 2021). The recently published structures of 
WT and ΔF508CFTR bound to various drugs (Fiedorczuk and Chen, 2022a) enabled us to investi-
gate the allosteric effects of the drugs. First, we conducted GNM-TE analysis on ΔF508CFTR bound 
to Trikafta (PDB ID 8EIQ, Fiedorczuk and Chen, 2022a), a trivalent drug which combines ivacaftor, 
tezacaftor, and elexacaftor and is currently the most advanced CF treatment. As shown in Figure 6A, 
the type I correctors lumacaftor and tezacaftor bind at ‘valleys’, i.e., to residues that are not allosteric 
sources. These results are consistent with the mechanism of these drugs which improve the function 

Figure 5. Trajectory and sequence of allosteric transduction in cystic fibrosis transmembrane conductance regulator (CFTR). Dynamic cross-correlations 
were calculated using a time delay (τ) of 16 cycles out of 50 required to complete the conformational transition between the dephosphorylated ATP-
free and phosphorylated ATP-bound states. Red and blue colors indicate high and low correlations, respectively. Steps I–IV: Each residue is colored 
according to the degree of the correlation of its movement at time (t + τ) relative to the movement at time (t) of S1251 of nucleotide binding domain 
(NBD)2 (step I), D110 of ECL1 (step II), T460 of NBD1 (step III), and the gating residue T338 (step IV). Center (large) panel: Shown is a summary of the 
allosteric trajectory, originating from NBD2 (green) to ICL2/3 and ECL1 (magenta), from ECL1 to NBD1 (blue), from NBD1 to the permeation pathway 
helices (orange), and finally back to NBD2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Directionality of allosteric transduction in cystic fibrosis transmembrane conductance regulator (CFTR).

https://doi.org/10.7554/eLife.88659
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of CFTR by lowering its ∆G(folding) rather than by modulating its activity (Fiedorczuk and Chen, 2022b). 
In contrast, the residues that comprise the binding sites for ivacaftor and elexacaftor also include ones 
that serve as main allosteric sources (Figure 6A), alluding to their role as allosteric modulators.

In CFTR, channel opening depends on phosphorylation of the regulatory domain and subsequent 
binding of ATP by the NBDs. Accordingly, mutations that interfere with binding of ATP reduce channel 
opening probability and result in CF. The potentiator drug ivacaftor is used to treat CF patients who 
carry mutations in the NBDs (most commonly the G551D mutation at the highly conserved LSGGQ 
ATP binding/signature motif) (Liu et al., 2019; Eckford et al., 2012; Hadida et al., 2014; Yu et al., 

Figure 6. Allosteric modulation of cystic fibrosis transmembrane conductance regulator (CFTR) by drugs. (A) Shown is the amount of information 
TRANSMITTED (transfer entropy [TE] score) by each residue of CFTR ΔF508 bound to Trikafta (PDB ID 8EIQ) calculated using the 10 most collective 
Gaussian network model (GNM) modes (solid black trace). The binding sites of ivacaftor, elexacaftor, and lumacaftor/tezacaftor are shown as magenta, 
green, or cyan spheres, respectively. (B) Cartoon representations of ivacaftor bound CFTR (PDB ID 6O2P), with ivacaftor and ATP shown as magenta and 
black/gray spheres, respectively. Residues are colored according to the amount of entropy RECEIVED from the ivacaftor binding residue F312 (C) Shown 
is the amount of entropy RECEIVED by each residue of CFTR from the ATP-binding residue G551 (blue trace) or the ivacaftor binding residue F312 
(orange trace). (D–F) Same as B, only the residues are colored according to the amount of entropy RECEIVED from the gating residue F337 (D), the ATP-
binding residue G551 (E), and the sum of the entropy received from both G551 and F337 (F).

https://doi.org/10.7554/eLife.88659


 Research article﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Ersoy, Altintel, Livnat Levanon et al. eLife 2023;12:RP88659. DOI: https://doi.org/10.7554/eLife.88659 � 13 of 23

2012). Ivacaftor increases channel opening probability despite impaired ATP binding and hydrolysis. 
The molecular basis for the beneficial effects of ivacaftor is not fully understood, especially since it 
does not bind in the vicinity of either the ATP- or ion-coordinating residues but rather peripherally at 
the protein-lipid interface (Liu et al., 2019). In addition, unlike the folding correcting drugs, ivacaftor 
does not induce a significant conformational change in ΔF508 CFTR (Fiedorczuk and Chen, 2022a). 
To better understand the mechanism underlying the CFTR’s modulation by ivacaftor, we mapped the 
residues that receive information from the ivacaftor binding site. Surprisingly, the gating residues and 
those that line the permeation pathway were not among the residues that receive information from 
the drug binding site (Figure 6B), leaving the molecular basis of the drug’s action unclear. Thus, in 
attempt to resolve this issue, we compared the profile of the residues that receive information from 
the ivacaftor binding site to those that receive information from the ATP-binding sites. As shown 
in Figure 6C, the two profiles showed remarkable overlap: The ivacaftor docking site and the ATP-
binding site send information to a very similar set of residues (Pearson’s correlation coefficient of 0.83). 
These observations suggest that ivacaftor increases the opening probability not by directly affecting 
the gating residues but rather indirectly by mimicking the allosteric signaling evoked by ATP binding. 
Further insight for the mechanism of action of ivacaftor can be obtained from the structural represen-
tation of the allosteric signaling shown in Figure 6D–F. The gating region (e.g. gating residue F337) 
(Zhang et al., 2018) sends information mostly to the extracellular side of TM helices 2 and 11 and 
to the cytoplasmic side of helices 3, 4, 7 including intracellular loops 2 and 3 (Figure 6D). In compar-
ison, G551 of the ATP-binding signature motif (mutations in which are treated with ivacaftor) sends 
information predominantly to the intracellular side of TM helices 3, 4, 7, 8 and to the C-terminal intra-
cellular helix of NBD2 (Figure 6E). Superimposition of these effects, which represents the combined 
allosteric signaling of the ion-coordinating and ATP-binding residues (shown in Figure 6F), is very 
similar to the allosteric signaling sent by the ivacaftor binding residue F312 (Figure 6B). This result 
suggests that ivacaftor exerts its potentiating effect by mimicking the combined allosteric output of 
the ATP-binding and gating residues, compensating for any potential allosteric transduction short 
circuit caused by mutations.

Discussion – the allosteric mechanism of CFTR
Allostery in proteins is most often studied through the lenses of the classical KNF or MWC models, 
and more recently the dynamic mechanism (see Introduction and Monod et al., 1965; Motlagh et al., 
2014; Nussinov and Tsai, 2015; Ribeiro and Ortiz, 2016). The results presented herein suggest that 
none of these models can singly explain the allosteric mechanism of CFTR.

Figure 7. Model of cystic fibrosis transmembrane conductance regulator (CFTR’s) conformational changes and their allosteric control. CFTR is shown in 
a gray space-filling model, the regulatory (R) domain as a red ribbon, and ATP in shades of green. Following its phosphorylation, the R domain dislodges 
from the nucleotide binding domains (NBDs) dimer interface (step I of the conformational change). This allows the ATP-binding residues to fluctuate 
and sample conformers near the NBDs-open state (step II), some of which provide an initial ATP-binding site. In step III, this subset of conformers is 
selected by ATP to initiate binding (i.e. ensemble selection), which then proceeds to complete closure of the NBDs by an induced fit mechanism. In step 
IV, the channel bursts to the conducting state by a dynamic mechanism, without a major conformational change.

https://doi.org/10.7554/eLife.88659
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In the absence of phosphorylation and ATP, CFTR adopts solely the NBDs-open conformation and 
spontaneous conversions to the NBDs-closed conformation are not seen (Levring et al., 2023). In 
addition, multiple phosphorylation events are required to dislodge the R domain from its obstructing 
position, presenting a very large energetic barrier (Liu et  al., 2017b; Gadsby and Nairn, 1999). 
This conformational homogeneity of dephosphorylated ATP-free CFTR suggests that the first step 
of the conformational change, that of movement of the R domain, cannot efficiently proceed via an 
ensemble selection mechanism. In the absence of definitive experimental/computational evidence, 
we currently propose that this step occurs by an induced fit mechanism, where the reversible covalent 
phosphorylation is the allosteric ligand (Figure 7, step I). The next step of the conformational change, 
binding of ATP and closure of the NBDs, is more complex. On the one hand, single molecule studies 
showed that even after phosphorylation the NBDs solely adopt the open conformation and do not 
spontaneously close unless ATP is added. Once ATP was added, all the molecules converted to the 
closed-NBD conformation and were never seen to spontaneously open their NBDs (Levring et al., 
2023). We observed very similar conformational homogeneity and stability with another member of 
the ABC transporter family (Yang et al., 2018). Along the same lines, MD simulations showed that 
the closed state with dimerized NBDs is stable over hundreds of nanoseconds (Zeng et al., 2023). 
Taken together, these results strongly argue in favor of an induced fit mechanism, and against MWC/
ensemble selection/population shift models which assume pre-existence of multiple conformations 
and a spontaneous dynamic equilibrium between them. Direct experimental evidence supporting an 
induced fit mechanism was also provided by macroscopic current recordings combined with double 
mutant cycles (Szollosi et al., 2010). On the other hand, when the NBDs are separated, the ATP-
binding sites are yet to form, it is hard to envision how the nucleotide binds to its non-existing binding 
site. Such large conformational changes are considered to occur only via an ensemble selection mech-
anism (Nussinov et al., 2014). We suggest that our results provide the solution: In the ATP-free form, 
despite the separation of the NBDs, the main allosteric sites are located near the ATP-binding sites 
(Figures 1 and 2A). Moreover, many of the dynamic features that manifest following ATP binding exist 
in a latent form in the ATP-free conformation (Figure 2B and C). This means that the ATP-binding 
residues fluctuate considerably in the absence of nucleotide, sampling conformations in the vicinity 
of the NBDs-separated native state. Some of these conformations likely provide an initial state for 
the interaction with the nucleotide (Figure 7, step II). ATP will selectively bind to these conformers, 
as in ensemble selection allosteric mechanism. Once the docking of the nucleotide is initiated by 
this combination of dynamic fluctuations, ensemble selection closure of the NBDs can proceed by 
an induced fit mechanism (Figure 7, step III) as suggested by experimental evidence (Szollosi et al., 
2010). The resulting conformational changes do not yet lead to channel opening and conductance: 
The phosphorylated ATP bound structure observed in the cryo-EM studies is non-conducting: the 
pore is fully dehydrated, and an ion translocation pathway is missing. Therefore, phosphorylation, 
ATP binding, and closure of the NBDs are essential yet insufficient for channel opening. Several lines 
of evidence suggest that the final missing component that enables conductance are the dynamic 
fluctuations of the NBDs-closed state: MD simulations of chloride conductance showed that a major 
conformational change is not required for channel opening. Instead, slight side chain re-orientations 
of pore residues enable sporadic pulses of chloride conductance (Zeng et al., 2023). Single molecule 
measurements also failed to identify any conformational changes between the conducting and non-
conducting states (Levring et al., 2023). Along the same lines, allosteric potentiators that increase 
CFTR’s channel-open probabilities do so without noticeable effects on its conformation (Liu et al., 
2019). These studies suggest that the conformations of the conducting and non-conducting states 
are very similar and that a major conformational change is not required to open the channel. Rather, 
transition to the conducting state occurs by a dynamic allosteric mechanism with rapid conformational 
sampling around the phosphorylated ATP-bound NBDs-closed state (Figure 7, step IV).

With this combination of allosteric models in mind, we adopted a structural/dynamic view to study 
the molecular basis of allosteric connectivity in CFTR. The premise of the structural/dynamic perspec-
tive is that strain energy generated by binding of the allosteric ligand (phosphorylation and ATP 
in CFTR) is mechanically transmitted through a network of interacting residues to be relieved by a 
conformational switch. To identify this network of interacting residues, we used two elastic network 
approaches: ANM-LD is a trajectory molecular simulation approach which identifies residues that 
interact during a conformational change (Acar et  al., 2020). It is therefore particularly useful for 
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 Research article﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Ersoy, Altintel, Livnat Levanon et al. eLife 2023;12:RP88659. DOI: https://doi.org/10.7554/eLife.88659 � 15 of 23

studying induced fit mechanisms that assume the existence of such networks of interacting residues. 
GNM-TE on the other hand models the intrinsic dynamics of a protein around its mean native confor-
mations and provides a useful tool to study the dynamic/ensemble selection components of CFTR’s 
allostery. Both approaches are computationally economical, and for a protein as large and complex as 
CFTR provide an attractive alternative to atomistic MD simulations.

Despite their simplifications, and without any input of functional information, the ANM-LD/GNM-TE 
combination clearly distinguishes the three main functional domains of the protein (i.e. NBDs, gating 
residues, docking site of the R domain) from the rest of the protein (Figures 2 and 3). In further 
support of the utility of the calculations we observe a remarkable correlation between the residues 
identified as main allosteric sources and the positions of functionally essential residues (Figure 1—
figure supplement 4), ATP-binding residues (Figure 1—figure supplement 5), and disease-causing 
mutations (Figure 1—figure supplement 6). In addition, despite the high structural similarity between 
the NBDs, the calculations identify the functional singularity of the catalytic NBD2 and identifies it as 
the dominant allosteric source (Figure 2A). Taken together, these results show that the computations 
can capture the structural dynamics of CFTR.

The allosteric effects of ATP binding and hydrolysis are not always easily distinguishable. For 
example, Liu et al. investigated the effects of the force originating from ATP hydrolysis on the chap-
eronin GroEL. They applied elastic network models and principal component analysis on a series of 
GroEL structures and found that in this processive enzyme ATP binding is insufficient to induce the 
conformational changes, which require nucleotide hydrolysis (Liu et al., 2017a). In CFTR, a large body 
of evidence suggests that the allosteric driver is binding per se and not hydrolysis: binding of ATP 
under non-hydrolyzing conditions is sufficient to dimerize the NBDs and to open the channel (Zhang 
et al., 2018; Levring et al., 2023). In addition, mutations and experimental conditions that stabi-
lize the ATP-bound state by reducing hydrolysis rates stabilize the NBDs-closed conformation and 
conducting state of the channel. At first glance, the allosteric connectivity networks of the ATP-free 
and -bound conformations seem very different (Figure 3—figure supplement 1). However, a closer 
examination reveals that binding of ATP fine-tunes and brings to the fore dynamics that pre-existed in 
the ATP-free conformation. For example, in the dephosphorylated ATP-free state conformation, the 
allosteric signaling originates from many residues in the NBDs, mostly from those that surround the 
future ATP-binding sites (Figures 1 and 2). Binding of ATP focuses these relatively diffuse dynamics to 
the exact location of the ATP-binding residues (Figure 3A). Similarly, in the ATP-free conformation the 
residues that line the permeation pathway and the gating residues have a minor allosteric role and are 
detected only once the more dominant fluctuations of the NBDs were omitted from the calculations 
(Figure 2B). Following ATP binding the allosteric role of these residues becomes much more dominant 
(Figure 3B). We propose that in CFTR the role of ATP binding is: (1) to induce the conversion to the 
NBDs-closed conformation via a combination of ensemble selection and induced fit mechanisms and 
(2) to modulate conformational dynamics that are present to different degrees in other conformations 
via a dynamic allosteric mechanism. In CFTR, ATP binding, rather than hydrolysis, is sufficient to exert 
these effects: binding of ATP is sufficient to induce the closure of the NBDs and to open the channel 
(Levring et al., 2023). ATP hydrolysis and product release are not required for channel opening, but 
rather lead to separation of the NBDs and termination of conductance. This differs from the role of 
ATP in processive enzymes such as the chaperonin GroEL, where the exothermic energy released by 
ATP hydrolysis is required to drive the conformational changes (Liu et al., 2017a).

A new allosteric hotspot was identified in TMD1, in a cleft formed by TM helices 2, 3, and 6 
(Figure 3C–D). Its proximity to the interaction site of the phosphorylated R domain may provide the 
molecular basis for the dual role of the R domain: an inhibitory role while dephosphorylated, and a 
conductance-stimulatory role once phosphorylated (Winter and Welsh, 1997; Ostedgaard et al., 
2001; Csanády et al., 2000). Perhaps more importantly, this allosteric cleft is highly druggable and 
provides a new target for structure-guided screening of small molecules.

https://doi.org/10.7554/eLife.88659
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Materials and methods
GNM-based TE (code is freely available at https://github.com/PRC-​
comp/ANMLD_TE)
GNM is a minimalist 1D elastic network model that assumes a Gaussian distribution of fluctuations 
that is isotropic in nature, operating within the confines of a given protein’s topology. The GNM model 
relies on a pair of parameters: force constant governing harmonic interactions and the cutoff distance 
within which these interactions occur. In this model, the force constant is uniform for all interactions 
and is conventionally set to unity. The range of interaction is defined by a cutoff distance, typically 
ranging between 7 Å and 10 Å, with a value of 10 Å being employed in this study. TE formulation 
(Hacisuleyman and Erman, 2017b) which is based on GNM (Haliloglu et al., 1997; Bahar et al., 
1997) reveals the direction of information flow between two residues i and j. Given a certain move-
ment in residue i, TE is a measure of the reduction of the uncertainty in the movements of residue j 
with a time delay τ between the movements of both residues.

TEi,j (τ) between residues i and j at time τ is formulated as (Hacisuleyman and Erman, 2017a)

	﻿‍ Ti→j(τ ) = S
(
∆Rj(t + τ )|∆Ri(t)

)
− S

(
∆Rj(t + τ )|∆Ri(t),∆Rj(t)

)
‍� (1)

where the s are conditional entropies, given by,

	﻿‍ S
(
∆Rj(t + τ )|∆Ri(t)

)
= −

⟨
ln p

(
∆Ri(0),∆Rj(τ )

)⟩
+
⟨
ln p

(
∆Ri(0)

)⟩
‍� (2)

	﻿‍ S
(
∆Rj(t + τ )|∆Ri(t),∆Rj(t)

)
= −

⟨
ln p

(
∆Rj(0),∆Rj(τ )

)⟩
+
⟨
ln p

(
∆Ri(0),∆Rj(0),∆Rj(τ )

)⟩
‍� (3)

For more details of the definitions of GNM time correlation of the residue fluctuations in Equations 
4 and 5, see Hacisuleyman and Erman, 2017a; Haliloglu et al., 1997.

The net TE from residue i to j at a given τ is described as

	﻿‍ ∆Ti→j(τ ) = Ti→j(τ ) − Tj→i(τ )‍� (4)

where ‍∆Ti→j(τ )‍ estimates the direction of TE between residues i and j in a certain time delay τ. Thus, 
the TE calculations reveal entropy/information sources and receivers: Entropy sources have positive 
net TE values and send information to many other residues, and entropy receivers have negative net 
TE values and receive information from the rest of the structure.

The choice of τ between the movement of residues is important to identify causal interrelations: 
when τ is too small, only local cause-and-effect relations (between adjacent amino acids) will be 
revealed. If τ is big enough, few (if any) long-range cause-and-effect relations will manifest. In a 
previous work (Acar et al., 2020), we studied in detail the effects of choosing different τ values and 
found that an optimal value of τ which maximizes the degree of collectivities of net TE values is in 
most cases 3× τopt(τopt is the time window in which the total TE of residues is maximized) (see also 
Figure S1 in Acar et al., 2020).

Degree of collectivity and TECol score
The degree of collectivity is a measure of the number of residues that are influenced by the movement 
of one residue, i.e., how collective is the information transfer? Utilizing Bruschweiler’s study (Brüsch-
weiler, 1995), collectivity values of residues in information transfer are calculated based on the posi-
tive net TE values (Altintel et al., 2022) as

	﻿‍

Ki,s = 1
N

exp


−

N∑
j=1

α
(
∆Tij,s

(
τ
))2 log

(
α
(
∆Tij,s

(
τ
))2

)



‍�
(5)

where s is a selected subset of slow GNM modes, N is the total number of residues, and α is the 
normalization factor which is determined as

	﻿‍

N∑
i=1

a
(
Tij,s(τ )

)2 = 1
‍�

(6)

https://doi.org/10.7554/eLife.88659
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Here, s covers 3 subsets of the 10 slowest modes: Modes 1–10 (i.e. all 10), modes 2–10, and modes 
3–10. τ is taken as three times the optimum tau value that maximizes the collective information 
transfer (Altintel et al., 2022). The 10 slowest modes are considered since the eigenvalue distribution 
of the dynamic modes shows they fully represent the slow end of the dynamic spectrum (Figure 1—
figure supplement 1).

TECol score of each residue i is calculated by the multiplication of its cumulative positive net TE 
value (the sum of positive net TE values that residue i sends to the other residues) with its collectivity 
Ki,s value in each subset s as

	﻿‍
TECol Scorei,s = Ki,s ·

N∑
j=1

∆Tij,s
‍�

(7)

The TECol score, combining TE and collectivity values, is used in the determination of the most 
functionally plausible global information source residues that are powerful effectors.

ANM-LD simulations (code is freely available at https://github.com/​
PRC-comp/ANMLD_TE)
The conformational change between dephosphorylated ATP-free (PDB ID: 5UAK) (Liu et al., 2017b) 
and ATP-bound (PDB ID: 6MSM) (Zhang et al., 2018) human CFTR was simulated using the ANM-LD 
approach (Acar et al., 2020; Yang et al., 2018). ANM-LD combines a low-resolution α-carbon-based 
ANM with stochastic all-atom implicit solvent LD simulations. Intrinsic dynamics characterized by ANM 
dynamic modes and followed short-time LD simulations guide the conformational transition from the 
initial to the target state. That is, the conformational transition pathway is successfully evolved from 
the dephosphorylated ATP-free to the phosphorylated ATP-bound CFTR, starting with 7.5  Å and 
converging to 2.3 Å of RMSD. Due to the lack of a characterized structure, the regulatory domain is 
not included in the ANM-LD simulations. The time window in ANM-LD simulations does not reflect 
real time of simulated transitions yet provides information on transition trajectory and sequence of 
events, using accessible internal dynamics as the only bias toward the target conformation.

ANM-LD simulation flow
The hessian matrix (H) with a distance threshold radius (Rcut = 13 Å) is constructed at each cycle of the 
ANM-LD simulation to calculate 3N-6 ANM dynamic modes, i.e., eigenvectors Uk and eigenvalue λk, 
k=1, 3N-6, where N is the number of residues (Atilgan et al., 2001). The ANM mode that best over-
laps with the difference vector of the aligned initial/intermediate and target conformations is selected 
(Ubest) and the initial conformation is deformed along this vector using a deformation factor (DF: 0.4 Å). 
Energy minimization is performed for 500 steps and 100 steps of LD simulations are performed with 
a time step of 0.2 fs at a temperature of 310 K using the Amber 11-Sander 4 biomolecular simulation 
program (Case and Aktulga, 2010).

The simplified position conformational sampling of ANM-LD cycles is given below as

	﻿‍ Rnew = Rold + ∆RANM + ∆REng.Min + ∆RLD‍� (8)

where ‍∆RANM = Ubest · DF‍.

‍∆REng.Min‍ and ‍∆RLD‍ are energy minimization and LD simulations contributions to the sampling, 
respectively. The ANM steps and LD steps are iteratively performed for a predetermined number of 
ANM-LD cycles or until the RMSD between intermediate and target states converges. In the present 
ANM-LD simulations of CFTR the RMSD converged to a value of 2.3Å.

Equal time and time delay cross-correlations
Each residue has a fluctuation vector ‍∆R‍ that corresponds to the difference between its current posi-
tion to the mean position of its α-carbons. The mean positions are calculated from the selected time 
window of the ANM-LD simulation cycles. The pseudo correlation between the fluctuations of resi-
dues i and j is calculated as

https://doi.org/10.7554/eLife.88659
https://github.com/PRC-comp/ANMLD_TE
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	﻿‍

Cij(τ ) =
< ∆Ri(t) ·∆Rj(t + τ ) >

√
< ∆Ri(t)2 >

√
< ∆Rj(t + τ )2 >

‍�
(9)

where t represents an instantaneous pseudo time and τ is an additive time delay in ANM-LD cycles. 
When τ equals to 0, Cij reduces to standard correlation between the movements of residues i and 
j, with values between –1 and 1, where 0 corresponding to no correlation, and positive and nega-
tive values corresponding to movement in the same or opposite directions, respectively. When τ is 
greater than 0, the correlation between the fluctuations of residues i at time t and j at t+τ indicates 
that the movement of residue i is leading and of residue j is following in the case of Cij(τ) > Cji (τ). The 
time window in the conformational transition (part of the ANM-LD simulation trajectory from which 
the conformations are extracted) and the time delay τ are the two main parameters in defining the 
correlation behavior.

The time delay, τ, an order parameter in a running time window, is a measure of changes in the 
dynamics that allows a temporal coarse graining in the transition pathway, i.e., quantifying direc-
tional correlations. Leading/following events, depending on the length of the time delay and the time 
window, reveal cues about the complex hierarchical reorganization of residues in their motion. Here, a 
time delay of 16 cycles is taken in a transition window of 48 cycles from the ATP-free to the ATP-bound 
states of CFTR. This time delay corresponds to a time window at which the autocorrelation average 
over all residues shifts from a positive value to a negative value with respect to the mean conformation 
within 48 cycles.

Statistical analysis
In dephosphorylated ATP-free human CFTR (PDB ID 5UAK), we identified a total of 60 allosteric peaks 
with (1) above average TECol score and (2) above average peak prominence. We then counted how 
many times the positions of the functionally essential residues or ATP-binding sites spatially correlate 
with these peaks using cutoff distances of 0 Å (i.e. exact match), 4 Å, or 7 Å. To evaluate the statistical 
significance of these predictions, we generated 100,000 sets of 60 randomly localized allosteric peaks 
and counted how many times the positions of the functionally essential residues or ATP sites were in 
the vicinity of these random allocations. Thus, Z scores of the predictions were determined using the 
definition of

	﻿‍
Z = X − µ

σ ‍�
(10)

where X is the count of correct guesses of our prediction while μ and σ are the mean and the stan-
dard deviation of the correct matches of random samples, respectively. From the obtained Z scores, 
p-values of the predictions were calculated by one-tailed hypothesis test using a significance level of 
0.05.

The same statistical analysis is performed for the spatial correlation of the hinge positions with the 
entropy source peaks using cutoff distances of 4 Å or 7 Å.

Visualization
The 3D structural figures presented in this work are created using PyMol 2.5.4 (The PyMOL Molecular 
Graphics System).
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