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Abstract Oscillations arise in many real-world systems and are associated with both functional 
and dysfunctional states. Whether a network can oscillate can be estimated if we know the strength 
of interaction between nodes. But in real-world networks (in particular in biological networks) it is 
usually not possible to know the exact connection weights. Therefore, it is important to determine 
the structural properties of a network necessary to generate oscillations. Here, we provide a proof 
that uses dynamical system theory to prove that an odd number of inhibitory nodes and strong 
enough connections are necessary to generate oscillations in a single cycle threshold-linear network. 
We illustrate these analytical results in a biologically plausible network with either firing-rate based 
or spiking neurons. Our work provides structural properties necessary to generate oscillations in a 
network. We use this knowledge to reconcile recent experimental findings about oscillations in basal 
ganglia with classical findings.

eLife assessment
The present study offers valuable insights into the emergence of oscillations in neural networks. 
It underscores the importance of achieving a delicate balance between excitatory and inhibitory 
links, and deals with the topological conditions for oscillations. The study provides solid evidence 
in simple networks based on formal mathematical theory and advanced simulations, but the wider 
implications to biological networks would require a more detailed investigation into delays and 
nonlinearities.

Introduction
Oscillations are ubiquitous in dynamical systems Strogatz, 2018; Pikovsky et al., 2002. They have 
important functional consequences but can also cause system malfunction. In the brain for instance, 
oscillations take part in information transfer Fries, 2015; Hahn et al., 2019. However, persistent beta 
band (13-30 Hz) oscillations are associated with the pathological symptoms of Parkinson’s disease 
(PD) Brown et al., 2001. Therefore, it is important to determine when and how a system of many 
interacting nodes (network) oscillates.

This question is usually very difficult to answer analytically. The main tool that can be used is the 
Poincaré–Bendixson theorem Poincaré, 1880; Bendixson, 1901 which is only valid in two dimensions, 
which drastically reduces its applicability. In some cases, when we know the model parameters, it is 
possible to calculate whether the system will oscillate or not. However, often such parameters cannot 
be measured experimentally. For example, in most physical, chemical, and biological networks, it is 
usually not possible to get the correct value of connectivity strength. By contrast, it is much easier to 
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know whether two nodes in a system are physically connected and what is the sign (positive or nega-
tive) of their interactions. Therefore, it is much more useful to identify necessary structural conditions 
for the emergence of oscillations in a system without delays. A good example is the conjecture postu-
lated by Thomas, 1980 which relies on the sign of the loops present in the network. A loop (or a cycle) 
is said to be negative (resp. positive) when it has an odd (resp. even) number of inhibitory connec-
tions. According to Thomas’ conjecture, when considering a coupled dynamical system (‍̇x = f(x)‍ and 

‍x(0) ∈ Rn
‍) with a Jacobian matrix that has elements of fixed sign, the system can exhibit oscillations 

only if the directed graph obtained from the nodes’ connectivity (Jacobian matrix) admits a negative 
loop of two or more nodes. This conjecture has been proven using graph theory for smooth functions 

‍f ‍ Snoussi, 1998; Gouzé, 1998.
Thomas also conjectured that the assumption on the constant sign of the Jacobian matrix may 

not be necessary Thomas, 2006, that is having a negative loop in some domain of the phase space 
should be sufficient to generate oscillations. This condition is more realistic due to the ubiquity of 
the non-linearity in biological systems. For example, in the brain, even though neurons are (usually) 
either excitatory or inhibitory, the transfer function linking neurons is non-linear and can thus lead to 
elements of the Jacobian matrix having a non-constant sign. To the best of our knowledge, this last 
conjecture has not been proved yet but there are many examples of it. For instance, oscillations can 
emerge from a simple two populations, excitatory and inhibitory (EI), network Wilson-Cowan model 
(Ledoux and Brunel, 2011).

Here, we study the long-term behavior of the TLN model in the case of a single cycle interaction 
(without transmission delays). We show analytically that regardless of the sign of this loop, the system 
cannot oscillate when connections are too weak as the system possesses a unique globally asymptot-
ically stable fixed point. However, when connections are strong enough (see Theorem 2), the system 
either possesses two asymptotically stable fixed points (positive loop) or a unique unstable fixed 
point (negative loop). In addition, the system can be shown to be bounded and thus, it has one of 
the following long term behavior: limit cycle, quasi-periodic or chaotic behavior. Interestingly, we can 
show that such dynamics can be shut down by introducing a positive external input to excited nodes.

We prove this conjecture for the threshold-linear network (TLN) model Hartline and Ratliff, 1958 
without delays which can closely capture the dynamics of neural populations. Therefore, it is implicit 
that our results do not hold at the neuronal level but rather at the level of neuron populations/brain 
regions for example the basal ganglia (BG) network which can be described a network of different 
nuclei.

In fact, we use our analytical results to explain recent experimental findings about the emergence 
of oscillations in the BG during PD. To this end, we used simulations of BG network models with either 
firing rate-based or spiking neurons. Within the framework of the odd-cycle theory, distinct nuclei are 
associated with either excitatory or inhibitory nodes. Traditionally, the subthalamic nucleus and globus 
pallidus (STN-GPe) subnetwork is considered to be the key network underlying the emergence of 
oscillations in PD (Plenz and Kitai, 1996; Terman et al., 2002; Kumar et al., 2011). However, recent 
experiments have shown that near complete inhibition of GPe but not of STN is sufficient to quench 
oscillations (Crompe et al., 2020). This observation contradicts several previous models and even 
clinical observations in which surgical removal of STN is used to alleviate PD symptoms. Our theory 
suggests that there are at least six possible cycles in the Cortex-BG network that have the potential 
to drive oscillations based on the connectivity structure. We show that even if STN is inhibited, other 
cycles can sustain pathological oscillations. Interestingly, we found that GPe is involved in five out 
of six oscillatory cycles and therefore GPe inhibition is likely to affect PD-related oscillations in most 
cases.

Results
We study how the emergence of oscillations in a network of excitatory and inhibitory populations 
depends on the connectivity structure. We first consider a network of nodes with dynamics repre-
senting the average firing rate of a population. We derive structural conditions for the emergence of 
oscillations when the dynamics of individual nodes are described according to the threshold-linear 
network (TLN) model. Next, we use numerical simulations to test whether such results might still hold 
on two other models: the Wilson-Cowan population rate-based model (Wilson and Cowan, 1972) 
and a network model of the BG with spiking neurons (see Methods).

https://doi.org/10.7554/eLife.88777
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Structural conditions to generate oscillations
Intuition behind the analytical results
There exist many ways to generate oscillations in a network. Oscillation can arise from individual 
nodes due to their intrinsic dynamics (e.g. a spiking neuron can exhibit a periodic behavior given 
its ionic channel composition Lee et  al., 2018) or from the weights’ dynamics when considering 
synaptic plasticity Izhikevich and Edelman, 2008 or from transmission delays. Here, we assume that 
the system’s ability to oscillate only depends on the connectivity structure: the presence of positive or 
negative loops and the connections strength (Jacobian matrix) within them. That is, we ignore node 
properties, weight dynamics and transmission delays. The main reason we ignore these important 
properties is that we want to know the structural properties that can induce oscillations – this question 
can only be asked when all other potential sources of oscillation are removed. Given the importance 
of delays in biological network such as BG, we will consider them in the simulations.

Figure 1. Structural condition for oscillations: odd inhibitory cycle rule and its illustrations. (a) Examples of oscillating motifs and non-oscillating motifs in 
Wilson-Cowan model. Motifs that cannot oscillate show features of Winner-take-all: the winner will inhibit other nodes with a high activity level. Inversely, 
the oscillatory ones all show features of winner-less competition, which may contribute to oscillation. (b) The odd inhibitory cycle rule for oscillation 
prediction with the sign condition of a network. (c) Illustrations of oscillation in complex networks. Based on the odd inhibitory cycle rule, Network I can’t 
oscillate, while Network II could oscillate by calculating the sums of their motifs. The red or black arrows indicate inhibition or excitation, respectively. 
Hollow nodes and solid nodes represent excitatory and inhibitory nodes, respectively.

https://doi.org/10.7554/eLife.88777
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In this following, we give simple examples of the possibility of oscillation (or not) based on the 
connectivity characteristics of small networks without delays. Let us start with a network of two nodes. 
If we connect them mutually with excitatory synapses, intuitively we can say that the two-population 
network will not oscillate. Instead, the two populations will synchronize. The degree of synchrony will, 
of course, depend on the external input and the strength of mutual connections. If both these nodes 
are inhibitory, one of the nodes will emerge as a winner and the other will be suppressed Ermentrout, 
1992. Hence, a network of two mutually connected inhibitory populations cannot oscillate either. We 
can extend this argument to three population networks with three connections that form a closed 
loop (or cycle; see top of Figure 1a). When all three connections in the cycle are excitatory, the three 
populations will synchronize. Essentially, we will have a single population. Thus, these two and three 
population motifs are not capable of oscillations.

The simplest network motif which is capable of oscillating thus consists of two mutually connected 
nodes: one excitatory and one inhibitory (EI motif: Figure 1a, bottom; Ledoux and Brunel, 2011). 
When there are three populations connected with three connections to form a cycle, the potential 
to oscillate depends on the number of inhibitory connections. A cycle with one inhibitory connection 
(EEI motif) can be effectively reduced to an EI motif and can therefore oscillate. However, when there 
are two inhibitory connections (EII motif, Figure 1a, top), the two inhibitory neurons engage in a 
winner-take-all type dynamics and the network is not capable of oscillations. Finally, if there are three 
inhibitory connections (i.e. all three nodes are inhibitory, III motif) the network enters in a winner-less-
competition Rabinovich et al., 2001 and can exhibit oscillations (Figure 1a, bottom).

These examples of two or three nodes suggest that a network can generate oscillations if there 
are one or three inhibitory connections in the network. We can generalize these results to cycles of 
any size, categorizing them into two types based on the count of their inhibitory connections in one 
direction (referred to as the odd cycle rule, as illustrated in Figure 1b). More complex networks can 
also be decomposed into cycles of size 2 N (where N is number of nodes), and predict the ability of 
the network to oscillate (as shown in Figure 1c).

These observations form the basis for the conjecture of Thomas, 1980 that gives a necessary 
condition for oscillations to emerge. This condition is of course not sufficient. In the following we find 
additional constraints (input and minimum connection strength) needed to determine the emergence 
of oscillations in a network. To this end, we use the TLN model which captures the neural population 
dynamics to a great extent. After proving the key theorems, we test with simulation whether similar 
results hold on a more realistic Wilson-Cowan model and a model of BG with spiking neurons.

Threshold linear network model
We consider the TLN(‍W, b‍) in which individual nodes follow the dynamics

	﻿‍

dxi
dt

= −xi +
[∑n

j=1
Wijxj + bi

]

+
, i = 1, . . . , n

‍�
(1)

where ‍n‍ is the number of nodes, ‍xi(t)‍ is the activity level of the ith node at time ‍t ≥ 0‍, ‍Wij‍ is the 
connection strength from node ‍j‍ to node ‍i‍ and ‍[ · ]+

def= max{ · , 0}‍ is the threshold non-linearity. For 
all ‍i ∈ [n] def= {1, . . . , n}‍, the external inputs ‍bi ∈ R‍ are assumed to be constant in time. We refer to a ‍n‍ 
neurons network with dynamics given by Equation 1 as TLN(‍W, b‍).

In order to help the definition of cycle connectivity matrices, we define

	﻿‍ Cn
def= {(i, j) ∈ [n]2 | i − j = 1} ∪ {(1, n)}.‍�

We denote by ‍δi,I ‍ the Kronecker delta which equals 1 when node ‍i‍ is inhibitory and 0 otherwise 
(node ‍i‍ is excitatory). In the following, we use the convention that node 0 is node ‍n‍ and node ‍n + 1‍ is 
node 1. For a given set of elements ‍{yk}k∈N‍ in ‍R‍, we will use the convention:

	﻿‍

j∏
k=i

yk = 1 when j < i.
‍�

(2)

https://doi.org/10.7554/eLife.88777
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We define ‍A = {a1, . . . , anI }‍ as the ensemble of inhibited nodes (‍{k ∈ [n] | δk−1,I = 1}‍) put in order 
such that ‍a1 < . . . < anI‍. Denoting by ‍card(·)‍ the cardinal function, we have that ‍card(a) = nI ‍. We also 
use the cycle convention for ‍A : anI+1 = a1‍.

Analytical results
Theorem 1
Let a network of inhibitory and excitatory nodes be connected through a graph ‍G‍ which does not 
contain any directed cycle. Assume that its nodes follow TLN(‍W, b‍) dynamics (Equation 1) with

	﻿‍

Wij =





wij(−1)δj,I when edge i ← j ∈ G

0 otherwise,
‍�

where ‍wij ∈ R+
‍‍wij ∈ R+

‍
Then, TLN(‍W, b‍) has a unique globally asymptotically stable fixed point.

Theorem 2
Let ‍G‍ be a cyclical graph with ‍nI ∈ N+‍ inhibitory nodes and ‍nE ∈ N‍ excitatory nodes such that 

‍nI + nE ≥ 2‍ (‍≥ 3‍ when ‍nI = 1‍). Assume that the nodes follow the TLN(‍W, b‍) dynamics (Equation 1) with 
for all ‍i, j ∈ [n]‍, ‍wj ∈ R+

‍,

	﻿‍

Wij =





wj(−1)δj,I when (i, j) ∈ Cn

0 otherwise,
‍�

and ‍bi = 0‍ when the node ‍i − 1‍ is excitatory and ‍bi > 0‍ otherwise. Moreover, using convention (Equa-
tion 2), assume that the initial state is bounded,

	﻿‍
∀j ∈ {ak, . . . , ak+1 − 1}, xj(0) ∈ [0, bak

j−1∏
i=ak

wi].
‍�

(3)

Then, the long-term behavior of the network depends on the following conditions,

	﻿‍
∀k ∈ [nI],

ak+1−1∏
i=ak

wi < bak+1

bak
,
‍�

(4)

	﻿‍

ak+1−1∏
i=ak

wi > bak+1

bak
,
‍�

(5)

	﻿‍

n

����
n∏

i=1
wi < 1

cos(π/n)
,
‍�

(6)

	﻿‍

n

����
n∏

i=1
wi > 1

cos(π/n)
,
‍�

(7)

If ‍nI ‍ is even and

•	 Equation 4 is satisfied, TLN(‍W, b‍) has a unique globally asymptotically stable fixed point with 
support ‍[n]‍,

•	 Equation 5 is satisfied, TLN(‍W, b‍) has two asymptotically stable fixed points with strict comple-
mentary subsets of ‍[n]‍ as supports.

If ‍nI ‍ is odd and

•	 Equation 4 is satisfied, TLN(‍W, b‍) has a unique fixed point which is globally asymptotically stable 
and its support is ‍[n]‍,

https://doi.org/10.7554/eLife.88777
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•	 Equation 5 and Equation 6 is satisfied, TLN(‍W, b‍) has a unique fixed point which is asymptoti-
cally stable (not globally) and its support is ‍[n]‍,

•	 Equation 5 and Equation 7 are satisfied, TLN(‍W, b‍) has a unique fixed point which is unstable 
and has ‍[n]‍ as support.

Remark 1
First, note that Equation 4 implies

	﻿‍

n

����
n∏

i=1
wi < 1,

‍�
(8)

and similarly, Equation 5 implies

	﻿‍

n

����
n∏

i=1
wi > 1.

‍�
(9)

In addition, the bound on the initial state Equation 3 can be easily removed. We use it because it 
eases the proof as we then don’t need to introduce technical details that are not interesting for this 
study.

Then, Theorem 2 says that a possible condition for the one cycle TLN to oscillate is that the number 
of inhibitory nodes is odd when the connection strength are strong enough (i.e. Equation 5 and Equa-
tion 7). In that case, the system has no stable fixed point and from Lemma 1 it is bounded so it has one 
of limit cycle, quasi-periodic or chaotic behaviors. In particular, Theorem 2 states that the odd number 
of inhibitory nodes is not sufficient. Indeed, when Equation 4 holds and ‍nI ‍ is odd, no oscillations are 
possible as the fixed point is globally stable. It is also the case when ‍nI ‍ is even which corresponds to 
Thomas’ conjecture.

Finally, there is a gap in between the conditions (between Equation 4 and Equation 5 for example) 
for which the long-term behavior is not determined.

Remark 2
In particular, if for all ‍i ∈ [n]‍, ‍wi = w ∈ R∗

+‍ and for all ‍k ∈ [nI]‍, ‍bak = b ∈ R∗
+‍, then the dynamics of the 

system only depends on ‍w‍. When ‍nI ‍ is even: ‍w < 1‍ implies that TLN(‍W, b‍) have a unique globally 
asymptotically stable fixed point; ‍w > 1‍ implies that the fixed point for ‍w < 1‍ becomes unstable and 
TLN(‍W, b‍) has two more asymptotically stable fixed point. If ‍nI ‍ is odd, TLN(‍W, b‍) only has a unique 
fixed point which is asymptotically stable when ‍w < 1

cos(π/n)‍ (globally when ‍w < 1‍) and unstable when 

‍w > 1
cos(π/n)‍.

Remark 3
In Theorem 2, we assume that the external inputs are absent for excited nodes. Assume that the 
external input to any excited node, say node ‍ak < i < ak+1‍, is strictly positive. Then, bounding its 
dynamics as in Lemma 1, we know that its activity will be more than bi. Hence, the next inhibited node 

‍ak+1‍ can be silenced forever if

	﻿‍ bi
∏ak+1−1

j=i wj > bak+1 ,‍�

thus destroying the cycle structure and thus preventing oscillation from emerging.
On the other hand, if the external inputs to excited nodes are strictly negative, Theorem 2 conclu-

sion will be similar but now with condition described in Equation 4 replaced by

	﻿‍
bak

ak+1−1∏
i=ak

wi −
ak+1−1∑
j=ak+1

bj

ak+1−1∏
i=j

wi < bak+1 .
‍�

https://doi.org/10.7554/eLife.88777
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This means that cycles with even (odd) inhibitory nodes need strong enough connections to 
generate multi-stability (limit cycle). We now clarify that the latter condition relates to weights’ 
strength. With ‍w = (w1, · · · , wn)‍ and using the set of functions increasing functions ‍(fi)1≤i≤n‍ such that

	﻿‍ fw,b
i (x) = wi−1xi−1 − bi‍�

one can write the last condition as

	﻿‍ fw,b
ak+1 ◦ · · · ◦ fw,b

ak (bak ) < 0.‍�

Hence, the left term is increasing with any weight strength.

One should also note that under this negative input assumption to excited nodes, when weights 
are weak, the support of the fixed point might be different from ‍[n]‍. In particular, some excited nodes 
might not belong to the support.

Remark 4
When the decay rates are not the same (here all of them are −1), similar results hold but then the 
conditions for stability are more difficult to state precisely. Finally, when considering the EI network 
(two nodes), the system always admits to a unique globally asymptotically stable fixed point with 
support ‍{1, 2}‍. Indeed, it is easy to show that the system will always reach the domain where the 
inhibitory node is small enough so that one can remove the threshold function in Equation 1 and thus 
the eigenvalues of the Jacobian matrix are ‍±i√w1w2 − 1‍. No oscillations are then possible, which is 
an easy example to show that negative loops are not sufficient to generate oscillation in non smooth 
dynamical systems.

Similar results have been shown by Gouzé, 1998; Snoussi, 1998. Considering dynamical systems 
of the form ‍̇x = f(x)‍ where ‍f ‍ is a continuously differentiable function on a given open convex set 
and ‍f ‍ has a constant sign Jacobian matrix, they used graph theory methods to show that negative 
loop in this matrix is a necessary condition to generate oscillations. In our case, ‍f ‍ is not continuously 
differentiable, the Jacobian matrix elements can change sign within the state space and we show that 
there is a need of additional constraints for oscillations to arise. A formal proof of the aforementioned 
theorems is provided in Appendix A by using classical dynamical theory tools.

Intuition behind the proof of the theorems
The idea behind our proof can be explained graphically. We assume that nodes cannot oscillate due 
to their intrinsic activity and a fixed external input only drives them to a non-zero activity which does 
not change over time. Therefore, they need input from their pre-synaptic (upstream) nodes to change 
their state in a periodic manner to generate oscillations. In such a network, if we perturb the node i 
with a pulse-like input, it is necessary that the perturbation travels through the network and returns to 
the node i with a 180° phase shift (i.e. with an inverted sign). Otherwise, the perturbation dies out and 
each node returns to a state imposed by its external input.

In a network without directed cycles, it is possible to sort the nodes into smaller groups where 
nodes do not connect to each other (Figure 2a). That is, a network with no directed cycles, can be 
rendered as a feed-forward network in which the network response by definition does not return to 
the node (or group) that was perturbed. Such a network can only oscillate when the intrinsic dynamics 
of individual nodes allow for oscillatory dynamics.

However, having a directed cycle is no guarantee of oscillations because network activity must 
return to the starting node with a 180° phase shift. This requirement puts a constraint on the number 
of inhibitory connections in the cycles. When we assume that there are no delays (or the delay is 
constant) in the connections, excitatory connections do not introduce any phase shift, however, inhib-
itory connections shift the phase by 180° (in the simplest case invert the sign of the perturbation). 
Given this, when a cycle has an even number of inhibitory connections the cycle cannot exhibit oscil-
lations (Figure 2b,top). However, replacing an inhibitory connection by an excitatory one can render 
this cycle with an ability to oscillate (Figure 2b, bottom). Therefore, odd number of inhibitory appears 
to be necessary for oscillation to emerge.

https://doi.org/10.7554/eLife.88777


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zang et al. eLife 2023;12:RP88777. DOI: https://doi.org/10.7554/eLife.88777 � 8 of 30

1

6

5 4

3

2

...

For any network without directed cycle 

Rearrange 
all nodes

Population k drives population k+1

Nodes in the same black box do not
affect each other   

Role of excitationRole of inhibition

1

6

5 4

3

2

A perturbation

node 1

node 2

node 3

node 4

node 5

node 6

First iteration

node 6

node 1

node 2

node 3

node 4

node 5

Second iteration

node 1

node 2

node 3

node 4

node 5

node 6

Activity after a perturbation

node 5

node 6

node 1

node 2

node 3

node 4

Third iteration

A perturbation

node 1

node 2

node 3

node 4

node 5

node 6

node 6

node 1

node 2

node 3

node 4

node 5

node 1

node 2

node 3

node 4

node 5

node 6

Activity after a perturbation

node 5

node 6

node 1

node 2

node 3

node 4

Intuitive explanation of odd cycle rule

b

a
A visual representation of the role 
of the directed cycle in oscillation

First iteration Second iteration Third iteration

First iteration

Second iteration

Third iteration

Fourth iteration

First iteration

Second iteration

Third iteration

Fourth iteration

A perturbation A perturbation

...

...

...

...

...

Population 1

Population 2

Population 3

Population 4

... ...

Figure 2. The intuitive explanations of Theorem 1 and 2. (a) A visual representation of why directed cycles are important in network oscillation. By 
rearranging all nodes, any network without directed cycles can be seen as a feed-forward network which will make the system reach a stable fixed point. 
(b) An intuitive explanation of the odd inhibitory cycle rule by showing the activities of two 6-node-loops. Odd inhibitory connections (bottom) can help 
the system oscillate, while even inhibitory connections has the opposite effect.

https://doi.org/10.7554/eLife.88777
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Figure 3. Influence of network properties on the oscillation frequency in motifs III and EII with Wilson-Cowan model. (a) The changed network 
parameters are shown in the table. Red (green) connections are inhibitory (excitatory) and black arrows are the external inputs. (b-e) We systematically 
varied the synaptic delay time b, synaptic weights c, external input d, and self-connection e. These parameters were varied simultaneously for all the 
synapses i.e. in each simulation all synapses were homogeneous. Green, orange, red and turquoise respectively show the effect of synaptic delay, 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.88777
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The effect of network parameters on oscillations
To test the validity of our theorems in more realistic biological neuronal networks, we numerically 
simulated the dynamics of the Wilson-Cowan model. Specifically, we investigated the role of synaptic 
transmission delays, synaptic weights, external inputs and self-connection in shaping the oscillations 
when the network has directed cycles. In particular, we focused on two networks: the III motif with 
three inhibitory nodes (odd inhibitory links) and the EII motif with one excitatory and two inhibitory 
nodes (even inhibitory links).

Our numerical simulation showed that for a wide range of parameters (synaptic delays, synaptic 
weights, external input and self-inhibition), while III network showed oscillations, EII network only 
resulted in transient oscillations (Figure 3, Figure 3—figure supplements 1 and 2). The oscillation 
frequency however depended on the exact value of the synaptic delays, synaptic weights and external 
inputs. For instance, increasing the synaptic delay reduced the oscillation frequency (Figure  3b). 
Synaptic delays play a more important role in shaping the oscillations in an EI type network (see 
Figure 3—figure supplement 3, Appendix 2—table 1). In networks with even number of inhibi-
tory connections (e.g. EII, EEE, II), synaptic delays are the sole mechanism for initiating oscillations, 
however, unless delays are precisely tuned such oscillations will remain be transient (see Figure 3—
figure supplement 2). The effect of increasing the synaptic strength was contingent on the external 
inputs. In general, increasing the synaptic strength resulted in a reduction in the oscillation frequency 
(Figure 3c). Next, oscillation frequency changed in a non-monotonic fashion as a function of external 
input irrespective of the choice of other parameters (Figure 3d). Typically, a mid-range input strength 
resulted in maximum oscillation frequency. Finally, increasing the self-connection of nodes increased 
the oscillation frequency but beyond a certain self-connection the node was completely silenced and 
it changed the network topology and oscillations disappeared (Figure 3e).

Overall, these results are consistent with our rule that odd number of inhibitory nodes and strong 
enough connections are necessary to induce oscillations in a directed cycle. The actual frequency of 
oscillations depends on specific network parameters.

Oscillators in the cortex-basal ganglia network
Next, we use our theorem to explain recent experimental observations about the mechanisms under-
lying the emergence of oscillations in the BG. Emergence of 15–30  Hz (beta band) oscillations in the 
cortico-basal ganglia (CBG) network is an ubiquitous feature of PD Raz et al., 2000; Bergman et al., 
1998; Sharott et al., 2014; Neumann et al., 2016. Based on their connectivity and activity subtha-
lamic nucleus (STN) and the globus pallidus externa (GPe) subnetwork has emerged as the most likely 
generator of beta oscillations Plenz and Kital, 1999; Bevan et al., 2002. The STN-GPe subnetwork 
becomes oscillatory when their mutual connectivity is altered Terman et al., 2002; Holgado et al., 
2010 or neurons become bursty Tachibana et al., 2011; Bahuguna et al., 2020 or striatal inputs to 
GPe increase Kumar et al., 2011; Mirzaei et al., 2017; Sharott et al., 2017; Chakravarty et al., 
2022. However, oscillations might also be generated by the striatum McCarthy et al., 2011, by the 
interaction between the direct and hyperdirect pathways Leblois et al., 2006 and even by cortical 
networks that project to the BG (Brittain and Brown, 2014). Recently, Crompe et al., 2020 used 
optogenetic manipulations to shed light on the mechanisms underlying oscillation generation in PD. 
They showed that GPe is essential to generate beta band oscillations while motor cortex and STN 
are not. These experiments force us to rethink the mechanisms by which beta band oscillations are 
generated in the CBG network.

To better understand when GPe and/or STN are essential for beta band oscillations, we identified 
the network motifs which fulfill the odd inhibitory cycle rule. For this analysis, we excluded D1 SPNs 
because they have a very low firing rate in the PD condition Sharott et al., 2017. In addition, cortex 
is assumed as a single node in the CBG network.

The CBG network can be partitioned into 246 subnetworks with 2, 3, 4, 5, 6, or 7 nodes (see 
Figure 4—figure supplements 1–6). Among these partitions, there are five loops (or cycles) in the 
CBG network with one or three inhibitory projections: Proto-STN, STN-GPi-Th-cortex, STN-Arky-D2-
Proto, Proto-Arky-D2, Proto-FSN-D2, and Proto-GPi-Th-Cortex-D2 (Figure 4a). One or more of these 
6 loops appeared in 96 (out of 246) subnetworks of CBG (see Figure 4b, colors indicate different 
loops). Larger subnetworks consisting of 5 and 6 nodes have multiple smaller subnetworks (with 2 or 
3 nodes) that can generate oscillations (boxes with multiple colors in Figure 4b).

https://doi.org/10.7554/eLife.88777
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Figure 4. Schematic of CBG network model with potential oscillators and the interaction between two oscillators in Wilson-Cowan model. (a) CBG 
structure with red lines denoting inhibition and green lines denoting excitation, along with five potential oscillators based on the odd inhibitory cycle 
rule. (b) Oscillation in all BG motifs from 2 nodes to 6 nodes based on the odd inhibitory cycle rule. Each grid represents a separate motif. We use 
different colors to mark potential oscillators in each motif in BG, and each color means an oscillator from panel a. For more details, see Figure 4—

Figure 4 continued on next page
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Figure 5. Oscillations in a leaky integrate-and-fire (LIF) spiking neuronal network model of specific BG motifs. (a-b) Average peristimulus time 
histograms (PSTH) of all neurons in a Proto-FSN-D2 and (b) Proto-Arky-D2 motifs under Parkinson condition with power spectral density (PSD) at the top 
right. (c) PSTH of Proto and STN in a BG subnetwork with motif Proto-Arky-D2 as the oscillator during different STN inhibition. (d) Same thing as (c) but 
changing the oscillator from Proto-Arky-D2 to Proto-STN.

figure supplements 1–6. (c) The reaction of oscillation frequency to different external inputs to D2 and STN in a BG subnetwork. External inputs 
to Proto and Arky are 1 and 3, respectively. (d) Same thing as c but ruining the connection from D2 to Proto. (e) Same thing as c but destroying the 
connections from STN and increasing the input to Proto from 1 to 4.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. All 2-node-motifs in CBG network.

Figure supplement 2. All 3-node-motifs in CBG network.

Figure supplement 3. All 4-node-motifs in CBG network.

Figure supplement 4. All 5-node-motifs in CBG network.

Figure supplement 5. All 6-node-motifs in CBG network.

Figure supplement 6. All 7-node-motifs in CBG network.

Figure 4 continued

https://doi.org/10.7554/eLife.88777
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Based on our odd inhibitory cycles in BG, we found three oscillatory subnetworks which do not 
involve the STN (Figure 4a, cyan, green and purple subnetworks). However, each of these oscillatory 
subnetworks involves Prototypical neurons (from the GPe) which receive excitatory input from STN. 
Therefore, it is not clear whether inhibition of STN can affect oscillations or not. To address this ques-
tion, we first simulated the dynamics of a four-node motif (Figure 4c top) using the Wilson-Cowan 
type model (see Methods). In this subnetwork, we have three cycles: Proto-STN loop with one inhib-
itory connection, Proto-STN-Arky-D2 loop with three inhibitory connections and Proto-Arky-D2 with 
three inhibitory connections.

We systematically varied external inputs to the STN and D2-SPNs and measured the frequency of 
oscillations (see Methods). We found that for weak inputs to the D2-SPNs, the Proto-STN subnetwork 
generated oscillations for weak positive input (Figure 4c bottom). However, as the input to D2-SPNs 
increased, the oscillation frequency decreased and oscillations were observed even for very strong 
drive to STN (Figure 4c bottom). That is, in this model, both Proto-STN and Proto-D2-Arky subnet-
works compete for oscillations, which subnetwork wins depending on their inputs. To disentangle the 
oscillations of each of these two subnetworks, we performed ‘lesion’ experiments in our model (see 
Methods). These experiments also mimicked lesions performed in non-human primates Tachibana 
et al., 2011.

When we removed the D2-SPN to Proto projections, the network could oscillate but only because 
of the Proto-STN subnetwork (Figure 4d). In this setting, we get relatively high-frequency beta band 
oscillations but only for a small range of excitatory inputs to the STN (Figure 4d, bottom). In this 
setting, inhibition of STN would certainly abolish any oscillation. Next, we removed the STN output 
(equivalent to inhibition of STN), the Proto-D2-Arky subnetwork generated oscillations for weak posi-
tive inputs to the D2-SPNs (Figure  4e, bottom). Note that unlike in Figure  4c, here we injected 
additional input to Proto to compensate for the loss of excitatory input from STN and to ensure that 
it had sufficient baseline activity. The frequency of Proto-D2-Arky oscillations was smaller than that 
observed for the Proto-STN subnetwork because the former involves a three synapses loop. However, 
as we have shown earlier, frequency of oscillation can be changed by scaling the connection weights 
or external inputs (Figure 3). Overall, these results suggest that, in principle, it is possible for CBG 
network to oscillate even when STN is removed from the network.

Oscillations in model of basal ganglia with spiking neurons
Thus far we have only illustrated the validity of our theorems in a firing rate-based model. To be of 
any practical value to brain science, it is important to check whether our theorems can also help in 
a network with spiking neurons. To this end, we simulated the two subnetworks with 3 inhibitory 
connections: Proto-D2-FSN and Proto-D2-Arky (see Methods). These subnetworks were simulated 
using a previous model of BG with spiking neurons Chakravarty et al., 2022.

The subnetworks Proto, Arky, D2-SPN, FSN have very little recurrent connectivity to oscillate on 
their own. We provided Poisson type external input. All neurons in a subnetwork received the same 
input rate but a different realization of the Poisson process. Both Proto-D2-FSN (Figure 5a) and Proto-
D2-Arky (Figure 5b) subnetworks showed ‍β‍-band oscillations. In the loop Proto-D2-FSN, D2-SPN 
neurons have a relatively high firing rate. This could be a criterion to exclude this loop as a potential 
contributor to the beta oscillations.

Next, we mimicked the STN inhibition experiments performed by Crompe et  al., 2020 in our 
model. To this end, we simulated the dynamics of BG network excluding D1-SPNs (because of their 
low firing rate in PD condition) and FSN (because with FSNs in the oscillation loop, D2-SPNs may have 
non-physiological firing rates). In this reduced model of BG, we changed inputs to operate in a mode 

synaptic strength, external input and self-inhibition. See the Figure 3—figure supplement 1 and Figure 3—figure supplement 3 for more detailed 
results about III and EI network motifs.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Influence of III network properties on the oscillation frequency in Wilson-Cowan model.

Figure supplement 2. Effect of synaptic delays on motifs with even inhibition in the Wilson-Cowan model.

Figure supplement 3. Influence of EI network properties on the oscillation frequency in Wilson-Cowan model.

Figure 3 continued

https://doi.org/10.7554/eLife.88777
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where either Proto-D2-Arky (Figure 5c) or Proto-STN (Figure 5d) loop was generating the oscillations. 
In both cases, we systematically increased the inhibition of STN neurons.

In the Proto-D2-Arky mode, as we inhibited STN neurons, firing rate of the Proto neurons decreased 
and oscillations in STN population diminished but Proto neurons showed clear beta band oscilla-
tions (Figure 5c). By contrast, and as expected when STN-Proto loop was generating the oscillations, 
increasing the STN inhibition abolished the oscillations in both STN and Proto neurons (Figure 5d). In 
STN-Proto loop, when STN is inhibited, there is no cycle left in the network and therefore oscillations 
diminished, whereas the Proto-D2-Arky loop remains unaffected by the STN inhibition (except for a 
change in the firing rate of the Proto neurons). As shown in Figure 4c, whether oscillations are gener-
ated by the Proto-D2-Arky or STN-Proto loop depends on the relative input to the D2 or STN neurons. 
So it is possible that in rodents, D2-SPN have stronger input from the cortex than STN and therefore, 
oscillations survive despite near complete inhibition of STN.

Discussion
Here, we prove in a single cycle TLN model and illustrate with numerical simulations of biological 
networks that when the number of inhibitory nodes in a directed cycle is odd and connections are 
strong enough, then the system has the potential to oscillate. In 1981, Thomas, 1980 conjectured that 
at least one negative feedback loop (i.e. a loop with an odd number of repressors) is needed for gene 
regulatory networks to have periodic oscillating behavior. This conjecture was proven for Boolean 
dynamical systems by Snoussi, 1998 and Gouzé, 1998. But their proof required that node transfer-
function is differentiable everywhere. We here prove a more complete theorem for a case where node 
transfer-function is threshold-linear as is the case for many network in the brain. Thus, together with 
previous results of Snoussi, 1998 and Gouzé, 1998 we further expand the scope within which we 
can comment on the potential of a network to generate oscillation based only on the connectivity 
structure alone. In addition, we complete this condition by one on weights’ strength stating that the 
latter needs to be strong enough for the system to possibly oscillate. Eventually, oscillations can be 
quenched by adding positive external input to excited nodes.

A key assumption of our analysis is that there are no delays in the network. Indeed, delays within 
and between subnetwork connections can have a big effect on the oscillations Kim et al., 2020. In the 
numerical simulations of BG network, we included biologically realistic synaptic delays (i.e. connection 
delays were shorter than the time constants of the neurons). Our results suggest that such delays do 
not influence our results and they only determine the oscillation frequency. But it is not possible to 
comment on how the results may change when delays become longer than the time constant of the 
node.

Interactions between input and network structure
Previous models suggest that when we excite the excitatory node or inhibit the inhibitory node oscil-
lations can emerge and strengthen Kumar et al., 2011; Ledoux and Brunel, 2011. By contrast, when 
we inhibit the excitatory node or excite the inhibitory node, oscillations are quenched. This can be 
summarised as the ’Oscillations Sign Rule’. Let us label the excitatory population as positive and 
inhibitory as negative. Let us also label excitatory inputs as positive and inhibitory inputs as negative. 
Now if we multiple the sign of the node and sign of the stimulation, we can comment on the fate of 
oscillations in a qualitative manner. For example, inhibition of inhibitory nodes would be − × − = + 
that is oscillations should be increased and when we inhibit excitatory nodes, it would be − × + = − 
that is oscillations should be decreased. The ’Oscillation sign rule’ scales to larger network with more 
nodes. With the ’Odd Cycle Rule’ as we have shown we can comment on whether a directed cycle will 
oscillate or not from the count of inhibitory links. When we combine the ’Oscillations Sign Rule’ with 
the ’Odd Cycle Rule’ we can get a more complete qualitative picture of whether a stimulating a node 
in a network will generate oscillations or not.

Interaction between node properties and network structure
In our proof we have assumed that nodes follow rather simple dynamics and have a threshold-linear 
transfer-function. In reality nodes in physical, chemical and biological systems can have more complex 
dynamics. For instance, biological neurons have the property of spike frequency adaptation or 

https://doi.org/10.7554/eLife.88777
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rebound spiking. Similarly, synapses in the brain can increase or decrease their weights based on the 
recent history of inputs which is referred to as the short-term-facilitation or short-term-depression of 
synapses Stevens and Wang, 1995. Such biological properties can be absorbed in the network struc-
ture in the form of an extra inhibitory or excitatory connection. When nodes can oscillate given their 
intrinsic dynamics then the question becomes more about whether a network structure can propagate 
oscillations to other nodes.

Oscillations in the basal ganglia
We applied our results to understand the mechanisms underlying the emergence of PD-related patho-
logical oscillations in the BG. Given that there are 8 key neuron populations in the BG, we enumerated 
238 possible directed cycles. From 2-node-motifs to 6-node-motifs, our odd cycle rule identified 88 
potential directed cycles that can generate oscillations. Among these, 81 cycles feature GPe (either 
Proto or Arky type or both) and 66 feature STN. Which specific cycle underlies oscillations depends on 
the exact input structure. For instance, when input to STN is higher than the D2 neurons, the STN-GPe 
network generates oscillations. But when inputs to D2 neurons are stronger, the D2-Proto-Arky cycle 
can become the oscillator. That is, STN is not necessary to generate oscillations in the BG. Our results 
also suggest that besides focusing on the network connectivity, we should also estimate the inputs to 
different nodes in order to pinpoint the key nodes underlying the PD-related pathological oscillations 
- that would be the way to reconcile the recent findings of Crompe et al., 2020 with previous results.

We would like to note that recently, Ortone et al., 2023 and Azizpour Lindi et al., 2023 have 
provided a more quantitative explanation of the experimental observation by Crompe et al., 2020. 
They also eventually resort to the D2-Proto-Arky cycle to explain BG oscillations in the absence of 
STN. Our work provides the necessary theory to explain their results.

Beyond neural networks
In this work, we have used the odd cycle rule to study oscillations in BG. However, oscillatory dynamics 
and the odd cycle rule show up in many chemical, biological and even social systems such as neuronal 
networks Bel et  al., 2021, psychological networks Greenwald et  al., 2002, social and political 
networks Leskovec et al., 2010; Milo et al., 2004; Heider, 1946; Cartwright and Harary, 1956, 
resting-state networks in autism Moradimanesh et al., 2021 and gene networks Farcot and Gouzé, 
2010; Allahyari et al., 2022. In fact, originally Thomas’ conjecture Thomas, 1980 about the structural 
conditions for oscillations was made for gene regulatory networks. Therefore, we think that insights 
obtained from our analytical work can be extended to many other chemical, biological and social 
networks. It would be interesting to check to what extent our prediction of quenching oscillation by 
exciting the excitatory nodes holds in other systems besides biological neuronal networks.

Methods
To study the emergence of oscillations in the BG, we used three models: Threshold-Linear Network 
(TLN), Wilson-Cowan model and network with spiking neurons. TLN model (Equation 1) was used 
here to rigorously prove that simple conditions, such as the odd inhibitory cycle rule, can lead to oscil-
lations (Theorems 1 and 2). Wilson-Cowan type firing rate-based model was used to find the structural 
constraints on oscillations and to determine the effect of network properties (such as delays, synaptic 
weights, external inputs, and self-inhibition) on the emergence of oscillations. Finally, to demonstrate 
the validity of the odd inhibitory cycle rule in a more realistic model, we use a network with spiking 
neurons.

Wilson-Cowan dynamics
In the firing rate-based models, we reduced each CBG subnetwork to a single node. To describe firing 
rate dynamics of such a node, we used the classic Wilson-Cowan model Wilson and Cowan, 1972

	﻿‍

τ
dri(t)

dt
= −ri(t) + F




n∑
j=1

wijrj + Iext
i



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where ‍ri(t)‍ is the firing rate of the ith node, ‍τ ‍ is the time constant of the population activity, ‍n‍ is the 
number of nodes (or subnetworks), ‍wij‍ is the strength of connection from node ‍j‍ to ‍i‍, and ‍I

ext
i ‍ is the 

external input to the population. ‍F‍ is a nonlinear activation function relating output firing rate to 
input, given by

	﻿‍
F(x) = 1

1 + e−a(x−θ) − 1
1 + eaθ ‍�

(11)

where the parameter θ is the position of the inflection point of the sigmoid, and a/4 is the slope at θ. 
Here, τ, θ, and a are set as 20, 1.5, and 3. Other parameters of the model varied with each simulation. 
The simulation specific parameters for Figure 3 are shown in Tables 1 and 2 and for Figure 4 are 
shown in Table 3, respectively.

Network model with spiking neurons
The BG network with spiking neurons was taken from a previous model by Chakravarty et al., 2022. 
Here, we describe the model briefly and for details we refer the reader to the paper by Chakravarty 
et al., 2022.

Spiking neuron model
Here, we excluded D1-SPNs because they have a rather small firing rate in PD conditions. The striatal 
D2-type spiny neurons (D2-SPN), fast-spiking neurons (FSNs) and STN neurons were modelled as stan-
dard LIF neurons with conductance-based synapses. The membrane potential ‍Vx(t)‍ of these neurons 
was given by:

	﻿‍
Cx

m
dVx(t)

dt
= Ie(t) + Isyn(t) − gx

L
[
Vx(t) − Vx

reset
]
‍�

(12)

where ‍x ∈
{

D2 − SPN, FSN, and STN
}
‍, ‍Ie(t)‍ is the external current induced by Poisson type spiking 

inputs (see below), ‍Isyn(t)‍ is the total synaptic input (including both excitatory and inhibitory inputs). 
When ‍Vx‍ reached the threshold potential ‍V

x
th‍, the neuron was clamped to ‍Vx

reset‍ for a refractory dura-
tion  ‍tref ‍ = 2ms. All the parameter values and their meaning for D2-SPN, FSN, and STN are summa-
rized in Appendix 2—tables 2–4, respectively.

We used the LIF model with exponential adaptation (AdEx) to simulate Proto and Arky neurons of 
the globus pallidus externa (GPe), with their dynamics defined as

Table 1. Parameters of III network for Figure 3, Figure 3—figure supplement 1.

Populations

Synaptic weights

External input DelayI1 I2 I3

I1 0(−20−0) 0 −15(−20−0) 6(0−20) 0(0−10)

I2 −15(−20−0) 0(−20−0) 0 6(0−20) 0(0−10)

I3 0 −15(−20−0) 0(−20−0) 6(0−20) 0(0−10)

Note: The range in parentheses indicates the variety of parameters when controlled.

Table 2. Parameters of EII network for Figure 3.

Populations

Synaptic weights

External input DelayE1 I1 I2

E1 0 0 −15(−20−0) 6 0(0−10)

I1 −15(−20−0) 0(−20−0) 0 6(0−20) 0(0−10)

I2 0 −15(−20−0) 0(−20−0) 6(0−20) 0(0−10)

Note: The range in parentheses indicates the variety of parameters when controlled.

https://doi.org/10.7554/eLife.88777
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where ‍x ∈
{

Proto, Arky
}
‍. Here when ‍Vx(t)‍ reaches the threshold potential (‍V

x
th‍), a spike is gener-

ated and ‍Vx(t)‍ as well as ‍wx‍ will be reset as ‍Vx
reset‍, ‍wx + b‍, respectively, where b denotes the spike-

triggered adaptation. The parameter values and their meaning for Proto and Arky are specified in 
Appendix 2—table 5. Neurons were connected by static conductance-based synapses. The transient 
of each incoming synaptic current is given by:

	﻿‍ Ix
syn (t) = gx

syn (t)
[
Vx(t) − Ex

rev
]
‍�

where ‍x ∈
{

D2 − SPN, FSN, STN, Arky, and Proto
}
‍ is the synaptic reversal potential and ‍g

x
syn(t)‍ is the 

time course of the conductance transient, given as follows:
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where ‍syn ∈ {exc, inh}‍, ‍J
x
syn‍ is the peak of the conductance transient and ‍τsyn‍ is synaptic time constant. 

The synaptic parameters are shown in Appendix 2—table 6.
Some of model parameters were changed to operate the BG model in specific modes dominated 

by a 2 or 3 nodes cycle. The Appendix 2—table 7 and Appendix 2—table 8 show the parameters of 
Figure 5c and Figure 5d, respectively.

External input
Each neuron in each sub-network of the BG received external input in the form of excitatory Poisson-
type spike trains. This input was provided to achieve a physiological level of spiking activity in the 
network. For more details please see Chakravarty et  al., 2022. Briefly, the external input was 
modelled as injection of Poisson spike-train for a brief period of time by using the inhomogeneous_
poisson_generator device in NEST. The strength of input stimulation can be controlled by varying the 
amplitude of the EPSP from the injected spike train.

STN inhibition experiment
We set a subnetwork of BG to study how STN inhibition affects oscillation when different motifs domi-
nate the system. The connections and external inputs to each neuron in Figure 5c and 5d are shown in 
Appendix 2—tables 7 and 8. To simulate the increasing inhibition to STN, the external input to STN 
was reduced from 1 pA to –99 pA in Figure 5c and from 30 pA to –50 pA in Figure 5d.

Data analysis
The estimate of oscillation frequency of the firing rate-based model was done using the power spec-
tral density calculated by pwelch function of MATLAB. The spiking activity of all the neurons in a 

Table 3. Parameters for Figure 4 (Wilson-Cowan model).

Populations

Synaptic weights

External input Delay(D2) (Arky) (Proto) (STN)

(D2) 0 −15 0 0 4(0−20) 2

(Arky) 0 0 −15 15 3 2

(Proto) −15 0 −8 15 1/4 2

(STN) 0 0 −15 5 4(0−20) 2

The external input to Proto is 1 in Figure 4c and 4d while it was changed into 4 in Figure 4e to help motif Proto-
Arky-D2 oscillate.

https://doi.org/10.7554/eLife.88777
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sub-population were pooled and binned (rectangular bins, bin width = 0.1ms). The spectrum of 
spiking activity was then calculated for the binned activity using pwelch function of MATLAB.

Simulation tools
Wilson-Cowan type firing rate-based model was simulated using Matlab. All the relevant differential 
equations were integrated using Euler method with a time step of 0.01ms. The network of spiking 
neurons was simulated in Python 3.0 with the simulator NEST 2.20 Fardet et al., 2020. During the 
simulation, differential equations of BG neurons were integrated using Runga–Kutta method with a 
time step of 0.1ms.

Code availability
The code to simulate key results is available at https://github.com/jiezang97/Code-for-Structural-​
constraints-on-the-emergence-of-oscillations, copy archived at Zang, 2024.
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Appendix 1
Proof of theorems 1 and 2
In this section, we prove theorems 1 and 2 using similar notations as Curto et al., 2012.

Background of fixed point and support
Let ‍x0 ∈ Rn

‍ and denote by

	﻿‍

xx0 : R+ → Rn

t �→ xx0 (t)‍�

a solution of the threshold-linear network dynamical system TLN(‍W, b‍) (Equation 1) with ‍xx0 (0) = x0‍. 
A fixed point ‍x∗ ∈ Rn‍ of TLN(‍W, b‍) is defined as a point such that for all ‍t ≥ 0‍,

	﻿‍
dxx∗ (t)

dt
= 0.

‍�

Formally, such a point satisfies for all ‍i ∈ [n]‍,

	﻿‍

x∗i =




n∑
j=1

Wijx∗j + bi




+

.
‍�

(13)

The support of a fixed point ‍x∗‍,

	﻿‍ supp(x∗) def= {i ∈ [n], x∗i > 0},‍�

is the subset of active nodes of ‍x∗‍.
In what follows, we consider a subset ‍σ ⊂ [n]‍ and denote by ‍̄σ = [n] \ σ‍. For a given ‍n‍ by ‍n‍ matrix 

‍W ‍ and ‍σ, σ̃ ⊂ [n]‍, we note

	﻿‍

W =


Wσ̄Wσ̄σ

Wσσ̄Wσ


 , x =


xσ̄

xσ


 , b =


bσ̄

bσ


 .

‍�

Moreover, we denote by ‍
(
Iσ − Wσ; bσ , i

)
‍ the matrix ‍Iσ − Wσ‍ with the ‍ith‍ column replaced by ‍bσ‍.

Proof of Theorem 1
Theorem 1 says that directed cycles are necessary to help a network to oscillate based on structural 
conditions.

Proof of Theorem 1. If ‍G‍ does not contain any directed cycle, it is called an acyclic digraph. From 
Proposition 2.1.3 in Bang-Jensen and Gutin, 2009, we can always group the nodes into an acycling 
(or topological) ordering as follows (see Figure  2a for an illustration). There exists ‍k ∈ [n]‍ and a 
partition ‍σ1,σ2, · · · ,σk‍ of ‍[n]‍ satisfying, for all ‍i ∈ [k]‍,

1.	 ‍σi‍ has at least one node, and nodes in ‍σi‍ have no connection between each other,
2.	 for any node in ‍σi‍, it can be inhibited and excited only by nodes in ‍∪

i−1
j=1 σj‍.

Thus, the nodes of ‍σ1‍ get neither inhibition nor excitation from other nodes, which means their 
dynamics is independent from the rest of the network. Hence, they all converge exponentially to 
their unique fixed point, ‍x

∗
i = bi‍ for all ‍i ∈ σ1‍. Then, once nodes of ‍σ1‍ reached their equilibrium, nodes 

of ‍σ2‍ will received constant inputs. Hence, nodes of ‍σ2‍ will be stabilized by ‍σ1‍, which means ‍σ1 ∪ σ2‍ 
has a unique globally asymptotically stable fixed point. So on and so forth and thus ‍∪

k
i=1σi = [n]‍ has 

a globally asymptotically stable fixed point.

Proof of Theorem 2
The proof of Theorem 2 follows these lines. We study the fixed point and their stability first when their 
support is ‍σ = [n]‍ and then when ‍σ ⊊ [n]‍ before concluding. However, we first need the following 
Lemma

https://doi.org/10.7554/eLife.88777
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Lemma 1
We consider ‍x‍ a solution of TLN(‍W, b‍) under the conditions of Theorem 2 for ‍W ‍, ‍b‍ and ‍x(0)‍. Then, for 
all ‍t ≥ 0‍, ‍x(t)‍ admits the same bound as ‍x(0)‍ which is given by Equation 3.

Proof. Since we have at least one inhibitory node in the network, then ‍A ̸= ∅‍. First, for all ‍k ∈ [nI]‍, 
every dynamics of inhibited nodes ak satisfies

	﻿‍
−xak ≤

dxak

dt
= −xak + [−wak−1xak−1 + bak ]+ ≤ −xak + bak .

‍�

Thus defining ‍̄yak‍ and 
‍yak‍

 as the solutions of

	﻿‍
yak

(0) = ȳak (0) = xak (0) and dȳak

dt
= −ȳak + bak ,

dyak

dt
= −yak

,
‍�

we have that for all ‍t ≥ 0‍ and ‍0 ≤ xak (0) ≤ bak‍,

	﻿‍
0 ←

t→∞
yak

(t) ≤ xak (t) ≤ ȳak (t) →
t→∞

bak .
‍�

Thus, condition from Equation 3 implies that for all ‍t ≥ 0‍, ‍0 ≤ xak (t) ≤ bak‍.
Then, for nodes in between two inhibited nodes, say ‍j ∈ {ak + 1, . . . , ak−1 − 1}‍, we have by 

recurrence, for all ‍t ≥ 0‍,

	﻿‍
−xj ≤

dxj
dt

= −xj + wj−1xj−1 ≤ −xj + bak

∏j−1
i=ak

wi.‍�

Bounding xj similarly as before we obtain that ‍0 ≤ xj(0) ≤ bak

∏j−1
i=ak‍ implies that ‍0 ≤ xj(t) ≤ bak

∏j−1
i=ak

wi‍ 
for all positive time, which ends the proof.

Proof of Theorem 2.
1. When ‍σ = [n]‍
First, we consider the fixed point ‍x∗‍ supported by all nodes, ‍σ = [n]‍. From Cramer’s rule Cramer, 

1750, we know that if it exists, ‍x∗‍ satisfies

	﻿‍
x∗i =

det
(
Iσ − Wσ ; bσ , i

)

det
(
Iσ − Wσ

) for i ∈ σ.
‍�

(14)

We first compute

	﻿‍

det(I − W) =

���������������

1 −W1n

−W21 1

−W32 1
. . .

. . .

−Wnn−1 1

���������������

=

������������

1

−W32 1
. . .

. . .

−Wnn−1 1

������������

+ (−1)nW1n

������������

−W21 1

−W32 1
. . . 1

−Wnn−1

������������

= 1 + (−1)2n−1
n∏

i=1
Wii−1 = 1 − (−1)

∑n
i=1 δi,I

n∏
i=1

wi = 1 − (−1)nI
n∏

i=1
wi.

‍�

For the numerator, we note that a circular permutation leads to similar results for all the nodes, so 
we only compute it for the node ‍i = n‍:

https://doi.org/10.7554/eLife.88777
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	﻿‍

det
(
I − W; b, 1

)
=

���������������

1 b1

−W21 1 b2

−W32 1 b3
. . .

. . .
...

−Wnn−1 bn

���������������

= (−1)n
n∑

k=1
(−1)kbkW̃k,

‍�

where  

‍

W̃k =

∣∣∣∣∣∣
Ak

Bk

∣∣∣∣∣∣
=
∣∣Ak

∣∣ ∣∣Bk
∣∣
‍

 with ‍A1 = ∅‍, ‍A2 = 1‍ and for ‍k ≥ 3‍,

	﻿‍

Ak =

∣∣∣∣∣∣∣∣∣∣∣∣

1

−W21 1
. . .

. . .

−Wk−1k−2 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 1

‍�

and ‍Bn = ∅‍, ‍Bn−1 = −Wnn−1‍ and for ‍k ≤ n − 2‍,

	﻿‍

Bk =

���������

−Wk+1k 1
. . . 1

−Wnn−1

���������
= (−1)n−k ∏n

i=k+1 Wii−1.

‍�

Excited nodes have null external input, ‍∀i ∈ [n] \ A, bi = 0‍, so the only terms that will be non-null 
in ‍det

(
I − W; b, 1

)
‍ are the one associated to inhibited nodes i.e. nodes in ‍A‍. With the convention that 

node ‍n + 1‍ is node 1, we obtain

	﻿‍

det(I − W; b, 1) =
n∑

k=1
bk

n∏
i=k+1

Wii−1 =
nI∑

k=1
bak

n∏
i=ak+1

wi−1(−1)δi−1,I =
nI∑

k=1
(−1)nI−kbak

n−1∏
i=ak

wi.

� �� �
ck ‍�

We can now conclude on the existence of such a fixed point depending on conditions from 
Equation 4 and its inverse Equation 5.

If ‍nI ‍ is odd, ‍det(I − W) > 0‍ and, under both conditions from Equation 4 and Equation 5, 

‍det
(
I − W; b, i

)
> 0‍ for all ‍i ∈ [n]‍ as ‍(ck)1≤k≤nI‍ is an alternating sequence either increasing under 

Equation 4 or decreasing under Equation 5 with both first and last term strictly positive. Thus, ‍x∗‍ 
defined by Equation 14 is a fixed point of TLN(‍W, b‍) under Equation 4 and Equation 5.

If ‍nI ‍ is even, as Equation 4 implies Equation 8 and Equation 5 implies Equation 9,
•	 Equation 4 ‍⇒ det(I − W) > 0‍ and Equation 5 ‍⇒ det(I − W) < 0‍,
•	 under Equation 4, ‍(ck)1≤k≤nI‍ is an alternating sequence increasing with last term strictly posi-

tive so ‍det
(
I − W; b, i

)
> 0‍,

•	 under Equation 5, ‍(ck)1≤k≤nI‍ is an alternating sequence decreasing with first term strictly 
negative so ‍det

(
I − W; b, i

)
< 0‍.

Thus, ‍x∗‍ is a fixed point of TLN(‍W, b‍) under Equation 4 or Equation 5.
Next we check the stability of this fixed point. To do so, we can use linear theory if there exists 

a neighborhood of the fixed point in which the system is linear. The dynamics of nodes that are 
excited are linear so we only have to check that there exists a neighborhood ‍V ‍ of ‍x∗‍ such that for 
any inhibited node ‍a ∈ A‍, the dynamics of node ‍a‍ is linear with respect to other nodes (in our case 
linear in ‍a − 1‍). We can find such a neighborhood as long as, for any ‍k ∈ [nI]‍,

	﻿‍ either bak < wak−1x∗ak−1 or bak < wak−1x∗ak−1.‍� (15)

This is the case since we just showed that the fixed point ‍x∗‍ satisfies ‍x
∗
ak = [bak − wak−1x∗ak−1]+ > 0‍ 

for all ‍k ∈ [nI]‍.

https://doi.org/10.7554/eLife.88777
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We now compute the eigenvalues of ‍−I + W ‍, which are the ‍λ‍ such that

	﻿‍

���(−I + W) − λI
��� =(-1-λ)n + (−1)n−1 ∏n

i=1 wi(−1)δi,I = (−1)n [(1 + λ)n − (−1)nI
∏n

i=1 wi
]
‍�

is null. Then we have ‍n‍ different solutions that we denote by ‍λ1, · · · ,λn‍ and such that for all ‍p ∈ [n]‍,

	﻿‍

λp =





n
√∏n

j=1 wj e
(
2p
n

)
πi − 1 if nI is even,

n
√∏n

j=1 wj e
(
2p+1

n

)
πi − 1 if nI is odd. ‍�

Based on this, all eigenvalues have negative real parts when ‍nI ‍ is even and 
‍
n
√∏n

i=1 wi < 1
‍
 (Equation 

8) or when ‍nI ‍ is odd and 
‍
n
√∏n

i=1 wi < 1
cos(π/n)‍

 (Equation 6).
In addition, under condition from Equation 4, the system has the same linear dynamics for all 

‍t ≥ 0‍. Indeed, from the bound Equation 3 on ‍x(t)‍, we have for all ‍k ∈ [nI]‍ and ‍t ≥ 0‍,

	﻿‍ wak−1xak−1(t)‍�

Therefore, we obtain that under condition from Equation 4, ‍wak−1xak−1(t) ≤ bak‍, so all inhibited 
nodes dynamics have the same linear dynamics for all ‍t ≥ 0‍. Moreover, the dynamics of all excited 
nodes do not change over time and are linear too. Therefore, when Equation 4 is satisfied, the 
TLN(‍W, b‍) system is linear and thus, the unique fixed point we found is globally stable (in addition to 
asymptotically) for both even and odd number of inhibitory nodes.

Hence, under condition from Equation 4, the fixed point supported by all nodes is asymptotically 
stable in loops with both odd or even inhibitory nodes. When ‍nI ‍ is even and Equation 5 is satisfied, 
this fixed point is unstable. When ‍nI ‍ is odd and Equation 5 is satisfied, this fixed point is asymptotically 
stable under Equation 6 and unstable otherwise.

2. When ‍σ ⊊ [n]‍
Let us assume that there exists a fixed point ‍x∗‍ with support ‍σ ⊊ [n]‍. We split the following of the 

proof depending on whether condition given by Equation 4 or Equation 5 is satisfied.

Under condition from Equation 4
We can consider a node ‍p ∈ σ̄‍ such that ‍p − 1 ∈ σ‍. Thus ‍x

∗
p−1 > 0‍ and ‍x

∗
p = 0‍. If the node ‍p − 1‍ was 

excitatory, then, as ‍x∗‍ is solution of Equation 13, we would also have ‍x
∗
p > 0‍. Therefore, node ‍p − 1‍ 

has to be inhibitory and thus from Lemma 1, we have for all ‍t ≥ 0‍,

	﻿‍ x∗p (t) = [−wp−1xp−1(t) + bp]+ ≥ −wp−1bp−1 + bp.‍�

Hence, according to the condition stated in Equation 4, ‍x
∗
p (t) > 0‍ which contradicts the initial 

assumption ‍x
∗
p = 0‍. Thus, under condition from Equation 4, the fixed point with ‍[n]‍ is the only 

possible support.

Under condition from Equation 5
We can consider a node ‍p ∈ σ‍ such that ‍p − 1 ∈ σ̄‍. For the sake of clarity, as we consider cycles, 
we can say that ‍p = 1‍. Thus ‍x∗n = 0‍ and ‍x

∗
1 > 0‍. If the node ‍n‍ was excitatory, then, as ‍x∗‍ is solution of 

Equation 13, we would also have ‍x
∗
1 = 0‍. Therefore, node ‍n‍ has to be inhibitory and thus ‍x

∗
1 = b1‍.

Then we consider the path from node 1 to node ‍n‍. By definition, we know that

	﻿‍

x∗j =



wj−1x

∗
j−1 when node j-1 is excitatory

[bj − wj−1x
∗
j−1]+ when node j-1 is inhibitory

.

‍�
(16)

Thus, we now compute the possible fixed point such that ‍x
∗
1 = b1‍.

Let us first consider the case in which ‍n‍ is the only inhibitory node. Then, nodes ‍{1, . . . , n − 1}‍ are 
all excitatory. Hence, starting from ‍x

∗
1 = b1‍ and using the first line of Equation 16, we obtain that 

‍x
∗
n = b1

∏n−1
i=1 wi > 0‍, which contradicts ‍x∗n = 0‍. Therefore, there is no possible fixed point on ‍σ ⊊ [n]‍ 

when ‍nI = 1‍ under Equation 5.

https://doi.org/10.7554/eLife.88777
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Now, assume there are strictly more than one inhibitory node and an odd number. Therefore, 

‍a2 − 1‍ is the next inhibitory node after node ‍a1 − 1 = 0‍ which if node ‍n‍ when following the cycle. 
Then we have

	﻿‍
x∗a2 = [ba2 − ba1

a2−1∏
i=a1

wi]+
‍�

which is null under condition from Equation 5. From the first line of Equation 16, all the following excited 
nodes will have null activity until the next inhibited node. Hence, ‍x

∗
a2 = · · · = x∗a3−1 = 0‍ and ‍x

∗
a3 = ba3‍ 

which is then in the same case as node a1. We can thus compute by strong recurrence the possible 
fixed points. We check their existence by ensuring that the initial condition ‍x∗n = 0‍ is still satisfied. 
From the recursive computation, we clearly see that if ‍x

∗
ak−1 = 0‍, then ‍x

∗
ak+1−1 = bak

∏ak+1−1
i=ak

wi > 0‍ (we 
used the convention given by Equation 2) and ‍x

∗
ak+2−1 = 0‍. Therefore, the initial condition ‍x∗n = 0‍ is 

only satisfied when the number of inhibitory nodes is even. Hence, the system with odd inhibitory 
nodes has no fixed point supported by ‍σ ⊊ [n]‍ under condition given by Equation 5.

When the number of inhibitory nodes is even, as the recurrence is on two successive inhibited 
nodes, there are two fixed points depending on the two possible initial conditions: ‍x

∗
a1 > 0‍ or ‍x

∗
a2 > 0‍. 

We denote by ‍x∗,1‍ and ‍x∗,2‍ these two fixed point having respectively ‍σ1,σ2 ⊊ [n]‍ as support where

	﻿‍

σ1 =
∪

k∈[nI/2]
{a2k+1, a2k+1 + 1..., a2k+2 − 1},

σ2 =
∪

k∈[nI/2]
{a2k, a2k + 1..., a2k+1 − 1}.

‍�

In particular, ‍σ1 ∪ σ2 = [n]‍ and ‍σ1 ∩ σ2 = ∅‍. Using the convention that ‍
∏j

i · · · = 1‍ when ‍j < i‍ and 
defining the function ‍ϕ : [n] → A‍ such that ‍ϕ(k) ∈ A‍ is the last (following the cycle) inhibited node 
before ‍k‍ (possibly ‍k‍), we can give the exact formula of ‍x∗,i‍, ‍i ∈ {1, 2}‍,

	﻿‍




x∗,ik = bϕ(k)
∏k−1

j=ϕ(k) wj if k ∈ σi

x∗,ik = 0 if k ∈ [n] \ σi.‍�

To check the stability, we again use linear theory. To do so, we still have to check the condition 
given by Equation 15 (only on inhibited nodes). From the computation of the fixed points, we have 
shown that under condition from Equation 5, for all ‍a ∈ A‍, either ‍x∗a = 0‍ because ‍ba < wa−1x∗a−1‍ or 

‍x∗a > 0‍ because ‍ba > wa−1x∗a−1‍. Thus condition given by Equation 15 is satisfied. Hence, we now 
compute the eigenvalues of ‍−Iσi + Wσi‍ for ‍i ∈ {1, 2}‍, which are the solutions of

	﻿‍

∣∣∣(−Iσi +Wσi )− λIσi

∣∣∣ = 0.
‍�

To do so we write the weight matrix ‍Wσi‍.
Both ‍Wσ1‍ and ‍Wσ2‍ are similar so we only write

	﻿‍

Wσ1 =

∣∣∣∣∣∣∣∣∣

C1
. . .

CnI

∣∣∣∣∣∣∣∣∣
with Ck =

∣∣∣∣∣∣∣∣∣∣∣

0

Wa2k 0
. . .

Wa2k+1−1a2k+1−2 0

∣∣∣∣∣∣∣∣∣∣∣

.

‍�

We deduce that

	﻿‍ |(−Iσi + Wσi ) − λIσi | = (−1 − λ)card(σi),‍�

so ‍λ = −1‍ and both fixed points are asymptotically stable.
Eventually, when Equation 4 is satisfied, the system with even or odd inhibitory nodes has only 

one globally asymptotically stable fixed point on ‍[n]‍. When ‍nI ‍ is even and Equation 5 is satisfied, 
the system has only two asymptotically stable fixed points on ‍σ ⊊ [n]‍ and one unstable fixed point 
on ‍[n]‍. When ‍nI ‍ is odd, the system has an asymptotically stable fixed point on ‍[n]‍ under conditions 

https://doi.org/10.7554/eLife.88777
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Equations 5 and 6; otherwise, it has a unique unstable fixed point on ‍[n]‍ (thus no stable fixed point) 
under conditions Equations 5 and 7.

https://doi.org/10.7554/eLife.88777


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zang et al. eLife 2023;12:RP88777. DOI: https://doi.org/10.7554/eLife.88777 � 28 of 30

Appendix 2
Supplementary information

Appendix 2—table 1. Parameters for the EI network in Figure 3 (Wilson-Cowan model).

Populations Synaptic Weights (E) Synaptic Weights (I) External Input Delay

E 10 (0–20) –15 (−20–0) 6 (0–20) 2 (0–10)

I 15 (0–20) –10 (−20–0) 0 2 (0–10)

Appendix 2—table 2. Parameters of D2-SPN neurons (LIF model with conductance-based 
synapses).

Name Value Description

‍Vreset‍ –85.4 mV Reset value for ‍Vm‍ after a spike

‍Vth‍ –45 mV Spike threshold

‍τ
ex
syn‍ 0.3ms Rise time of excitatory synaptic conductance

‍τ
in
syn‍ 2ms Rise time of inhibitory synaptic conductance

‍EL‍ –85.4 mV Leak reversal potential

‍Eex‍ 0 mV Excitatory reversal potential

‍Ein‍ –64 mV Inhibitory reversal potential

‍Ie‍ 0 pA External input current

‍Cm‍ 157 pF Membrane capacitance

‍gL‍ 6.46 nS Leak conductance

‍tref ‍ 2ms Duration of the refractory period

Appendix 2—table 3. Parameters of FSN neurons (LIF model with conductance-based synapses).

Name Value Description

‍Vreset‍ –65 mV Reset value for ‍Vm‍ after a spike

‍Vth‍ –54 mV Spike threshold

‍τ
ex
syn‍ 0.3ms Rise time of excitatory synaptic conductance

‍τ
in
syn‍ 2ms Rise time of inhibitory synaptic conductance

‍EL‍ –65 mV Leak reversal potential

‍Eex‍ 0 mV Excitatory reversal potential

‍Ein‍ –76 mV Inhibitory reversal potential

‍Ie‍ 0 pA External input current

‍Cm‍ 700 pF Membrane capacitance

‍gL‍ 16.67 nS Leak conductance

‍tref ‍ 2ms Duration of the refractory period

Appendix 2—table 4. Parameters of STN neurons (LIF model with conductance-based synapses).

Name Value Description

‍Vreset‍ –70 mV Reset value for ‍Vm‍ after a spike

Appendix 2—table 4 Continued on next page

https://doi.org/10.7554/eLife.88777


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Zang et al. eLife 2023;12:RP88777. DOI: https://doi.org/10.7554/eLife.88777 � 29 of 30

Name Value Description

‍Vth‍ –64 mV Spike threshold

‍τ
ex
syn‍ 0.33ms Rise time of excitatory synaptic conductance

‍τ
in
syn‍ 1.5ms Rise time of inhibitory synaptic conductance

‍EL‍ –80.2 mV Leak reversal potential

‍Eex‍ –10 mV Excitatory reversal potential

‍Ein‍ –84 mV Inhibitory reversal potential

‍Ie‍ 1 pA External input current

‍Cm‍ 60 pF Membrane capacitance

‍gL‍ 10 nS Leak conductance

‍tref ‍ 2ms Duration of the refractory period

Appendix 2—table 5. Parameters of Proto and Arky neurons (LIF model with AdEx).

Name Proto Arky Description

a 2.5 nS 2.5 nS Subthresholded adaptation

b 105 pA 70 pA Spike-triggered adaptation

‍∆T ‍ 2.55ms 1.7ms Slope factor

‍τw‍ 20ms 20ms Adaptation time constant

‍Vreset‍ –60 mV –60 mV Reset value for ‍Vm‍ after a spike

‍Vth‍ –54.7 mV –54.7 mV Spike threshold

‍τ
ex
syn‍ 1 ms 4.8ms Rise time of excitatory synaptic conductance

‍τ
in
syn‍ 5.5ms 1 ms Rise time of inhibitory synaptic conductance

‍EL‍ –55.1 mV –55.1 mV Leak reversal potential

‍Eex‍ 0 mV 0 mV Excitatory reversal potential

‍Ein‍ –65 mV –65 mV Inhibitory reversal potential

‍Ie‍ 1 pA 12 pA Constant input current

‍Cm‍ 60 pF 40 pF Membrane capacitance

‍gL‍ 1 nS 1 nS Leak conductance

‍tref ‍ 2ms 2ms Duration of the refractory period

Appendix 2—table 6. Synaptic conductance weight and delay parameters in LIF model.

Synapse Value (nS) Delay Value (ms)

‍J
D2
D2‍ -0.35 ‍∆

D2
D2‍ 1.7

‍J
FSN

D2 ‍ -2.6 nS ‍∆
FSN

D2 ‍ 1.7

‍J
Arky
D2 ‍ -0.04 nS ‍∆

Arky
D2 ‍ 7

‍J
FSN

FSN ‍ -0.4 nS ‍∆
FSN

FSN ‍ 1.7

‍J
Arky
FSN ‍ -0.25 nS ‍∆

Arky
FSN ‍ 7

Appendix 2—table 4 Continued

Appendix 2—table 6 Continued on next page
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Synapse Value (nS) Delay Value (ms)

‍J
Proto
FSN ‍ -1 nS ‍∆

Proto
FSN ‍ 7

‍J
Proto
Proto‍ -1.3 nS ‍∆

Proto
Proto‍ 1

‍J
D2
Proto‍ -1.08 nS ‍∆

D2
Proto‍ 7

‍J
STN
Proto‍ 0.175 nS ‍∆

STN
Proto‍ 2

‍J
Arky
Arky‍ -0.11 nS ‍∆

Arky
Arky‍ 1

‍J
Proto
Arky ‍ -0.35 nS ‍∆

Proto
Arky ‍ 1

‍J
STN
Arky‍ 0.24 nS ‍∆

STN
Arky‍ 2

‍J
Proto
STN ‍ -0.3 nS ‍∆

Proto
STN ‍ 1

Appendix 2—table 7. Number of connections on each neuron and constant input current for 
Figure 5c (LIF model).

Populations D2 Arky Proto STN Constant input current (pA)

D2 504 100 0 0 0

Arky 0 5 50 30 50

Proto 500 0 25 30 50

STN 0 0 30 0 1/–49/–99

Note: To simulate the increasing inhibition to STN, the constant input current to STN was changed from 1 pA to 
–49 pA and then to –99 pA.

Appendix 2—table 8. Number of connections on each neuron and constant input current for 
Figure 5d (LIF model).

Populations D2 Arky Proto STN Constant input current (pA)

D2 504 10 0 0 0

Arky 0 5 25 30 1

Proto 500 0 25 150 –10

STN 0 0 150 0 30/–10/–80

Note: To simulate the increasing inhibition to STN, the constant input current to STN was changed from 30 pA to 
–10 pA and then to –50 pA.

Appendix 2—table 6 Continued
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