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Abstract Inter-organ communication is a vital process to maintain physiologic homeostasis, 
and its dysregulation contributes to many human diseases. Given that circulating bioactive factors 
are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal 
molecules for therapeutic intervention and biomarker development. Recently, studies have shown 
that secreted proteins mediating inter-tissue signaling could be identified by ‘brute force’ surveys 
of all genes within RNA-sequencing measures across tissues within a population. Expanding on this 
intuition, we reasoned that parallel strategies could be used to understand how individual genes 
mediate signaling across metabolic tissues through correlative analyses of gene variation between 
individuals. Thus, comparison of quantitative levels of gene expression relationships between 
organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-
gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 
103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of 
genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental 
observations. Further, similar analyses were applied to explore both within-tissue signaling mecha-
nisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where 
inter-individual correlation structure aligned with known roles for these critical metabolic pathways. 
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Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-
specific variation in relationships with metabolic traits. We refer to this resource as gene-derived 
correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling 
users to perform these analyses without a single line of code (gdcat.org). This resource enables 
querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and 
network architectures across metabolic organs.

eLife assessment
This important paper provides web based interface for cross-tissue analysis of omics datasets from 
– so far – two different human populations, with compelling evidence that the tool can be used to 
make meaningful scientific discoveries. Conceptually, these analyses are relevant for any systems 
biologist or bioinformatician who is interested in integrating large population datasets. Currently, 
the resource is already of use for scientists studying the HMDP or using GTEx data, and we hope 
to see updates in the coming years that incorporate more populations and more datatypes, which 
could make it a general tool for a wide community.

Introduction
Interaction and/or coordination between organs is central to maintaining physiologic homeostasis 
among multicellular organisms. Beginning with the discovery of insulin over a century ago, char-
acterization of molecules responsible for signal between tissues has required careful and elegant 
experimentation where these observations have been integral to deciphering physiology and disease. 
Further, actions of these molecules have been the key focus for development of potent therapeutics. 
For example, physiologic dissection of the actions of soluble proteins such as proprotein convertase 
subtilisin/kexin type 9 (PCSK9) and glucagon-like peptide 1 (GLP1) have yielded among the most 
promising therapeutics to treat cardiovascular disease and obesity, respectively (Drucker, 2022; Trapp 
and Stanford, 2022; Dadu and Ballantyne, 2014; Lambert et al., 2012). A majority of our under-
standing in how organs and cells utilize these mechanisms of tissue communication has arisen from 
elegant biochemical and physiologic experimentation. While these targeted investigations exist as 
the most definitive way to demonstrate causality for mechanisms, scaling such approaches to decon-
volute the actions of tens of thousands of unique molecules which circulate in the blood becomes an 
impossible task. A major obstacle in the characterization of such soluble factors is that defining their 
tissues and pathways of action requires extensive experimental testing in cells and animal models.

Recent technological advances have enabled more unbiased views of molecules in circulation. Next-
generation technologies have quantified thousands of factors in the blood across large populations. 
For example, large-scale proteomic measures have prioritized disease biomarkers and suggested 
involvements in genome-wide association mechanisms (Anderson and Anderson, 2002; Ferkingstad 
et al., 2021; Sun et al., 2018). Similar studies focused on integrating genetic variation with metab-
olomics quantification have yielded similar insights (Nicholson et al., 2011; Kettunen et al., 2016; 
Harshfield et al., 2021). However, the challenge is understanding which organs are secreting these 
molecules, how fast they are produced/degraded, and also what are the recipient tissues processing 
and/or responding to these factors. Furthermore, it is important to also identify the receptors that 
sense the secreted factor and enable the target organ to respond. This is challenging because the 
abundance of secreted factors and target receptors are dynamic, and rapidly change throughout the 
day or in response to a variety of environmental changes (e.g. diet or time of day). In addition, it is 
well known that genetic- or sex-driven variation can also modulate endocrine signaling. Hence, the 
foundations of therapeutic discovery require a comprehensive understanding of the mechanisms of 
endocrine signaling and here lies massive potential and an unmet need.

Previous studies in mouse and human populations have demonstrated that, when sufficiently 
powered, several known and new mechanisms of organ communication can be identified through 
simple global analyses of gene-gene correlations (Seldin et al., 2018; Koplev et al., 2022; Seldin 
and Lusis, 2019; Cao et al., 2022; Velez et al., 2022). The intuition behind this approach is that 
correlations across tissues and individuals will show a relatively normal distribution and upper-limit 
skews reflecting highly significant relationships have the potential to capture direct signaling. In this 
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study, we expanded on this intuition and tested the paralleled hypothesis that potential functions of 
signaling between tissues could be prioritized by focusing correlation analyses across individuals on 
specific genes. We highlight several areas where this approach was sufficient, as well as lacking in 
ability to recapitulate known tissue communication mechanisms. These analyses are contextualized by 
additional explorations of pathway-specific relationships (e.g. between go terms) and an example for 
context-specific gene-trait relationships for hormone receptors. In addition, we provide a user-friendly 
web tool to query these analyses in mouse and human population datasets at gdcat.org.

Results
Construction of a web tool to survey transcript correlations across 
tissues and individuals (GD-CAT)
Previous studies have established that ‘brute force’ analyses of correlation structure across tissues 
from population expression data can identify several known and new mechanisms of organ cross-talk. 
These were accomplished by surveying the global co-expression structure of all genes, where high 
correlation outliers highlighted proteins which elicit signaling (Seldin et al., 2018; Koplev et al., 2022; 
Seldin and Lusis, 2019; Cao et al., 2022; Velez et al., 2022). Following this intuition, we hypoth-
esized that a paralleled but alternative approach to inter-individual correlation structure could be 
exploited to understand the functional consequences of specific genes. Our initial goal was to estab-
lish a user-friendly interface where all of these analyses and gene-centric queries could be performed 
without running any code. To accomplish this, we assembled a complete analysis pipeline (Figure 1A) 
as a shiny app and docker image hosted in a freely-available web address (gdcat.org). Here, users 
can readily-search gene correlation structure between individuals from filtered human (gene-by-tissue 
expression project [GTEx]) and mouse (hybrid mouse diversity panel [HMDP]) across tissues. GTEx 
is presently the most comprehensive pan-tissue dataset in humans (Battle et al., 2017), which was 
filtered for individuals where most metabolic tissues were sequenced (Velez et al., 2022). Collectively, 
this dataset contains 310 individuals, consisting of 210 male and 100 female (self-reported) subjects 
between the ages of 20–79. Data from the HMDP consisted of 96 diverse mouse strains fed a normal 
chow (5 tissues) or high-fat/high-sucrose (HFHS) diet (7 tissues) as well as carefully characterized clin-
ical traits (Parks et al., 2015; Hui et al., 2015; Norheim et al., 2021; Org et al., 2015; Lusis et al., 
2016; Bennett et  al., 2010). Users first select a given species, followed by reported sex or diet 
(mouse) which loads the specified environment. Subsequent downstream analyses are then imple-
mented accordingly from a specific gene in a given tissue. This selection prompts individual gene 
correlations across all other gene-tissue combinations using biweight midcorrelation (Langfelder and 
Horvath, 2008). From these charts, users are able to select a given tissue, where gene set enrichment 
analysis testing using clusterprofiler (Yu et al., 2012) and enrichR (Kuleshov et al., 2016) are applied 
to the correlated set of genes to determine the positively (activated) and negatively (suppressed) 
pathways which occur in each tissue. In addition to general queries of gene ~ gene correlation struc-
ture, comparison of expression changes is also visualized between age groups as well as reported 
sexes. In addition, we included the top cell-type abundance correlations with each gene. To compute 
cell abundance estimates from the same individuals, we used single-nucleus RNA-seq available from 
GTEx (Jones et al., 2022) and applied cellular deconvolution methods to the bulk RNA-seq (Danziger 
et al., 2019) (Materials and methods). Comparison of deconvolution methods (Danziger et al., 2019) 
showed that DeconRNA-Seq (Gong and Szustakowski, 2013) captured the most cell types within 
several tissues (Figure 1—figure supplements 1–3) and therefore was applied to all tissues where 
sn-RNA-seq was available. We note that visceral adipose, subcutaneous adipose, aortic artery, coro-
nary artery, transverse colon, sigmoid colon, the heart left ventricle, the kidney cortex, liver, lung, 
skeletal muscle, spleen, and small intestine are the only tissues where sn-seq is available and not other 
tissues, such as brain, stomach, and thyroid.

We initially examined pan-tissue transcript correlation structures for several well-established mech-
anisms of tissue cross-talk via secreted proteins which contribute to metabolic homeostasis. Here, 
binning of the significant tissues and pathways related to each of these established secreted proteins 
resembled their known mechanisms of action (Figure 1B–E). For example, variation with subcuta-
neous adipose expression of ADIPOQ was enriched with genes in several metabolic tissues where 
it has been known to act (Figure 1B, left). In particular, subcutaneous adipose ADIPOQ expression 
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Figure 1. Web tool overview and inter-individual correlation structure of established endocrine proteins. (A) Web server structure for user-defined 
interactions, as well as server and shiny app implementation scheme for gene-derived correlations across tissues (GD-CAT). (B) All genes across the 
18 metabolic tissues in 310 individuals were correlated with expression of ADIPOQ in subcutaneous adipose tissue, where a q-value cutoff of q<0.1 
showed the strongest enrichments with subcutaneous and muscle gene expression (pie chart, left). Gene set enrichment analysis (GSEA) was performed 

Figure 1 continued on next page
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correlated with fatty acid oxidative process within adipose (Figure 1B, middle) and was enriched with 
ECM, chemotaxis, and ribosomal biogenesis in skeletal muscle (Figure 1B, right). These correlated 
pathways align with the established physiologic roles of the protein in that fat-secreted adiponectin 
when oxidation is stimulated (da Silva Rosa et al., 2021; Straub and Scherer, 2019) and muscle is a 
major site of action (Ruan and Dong, 2016). Beyond adiponectin, inter-individual correlation struc-
ture additionally recapitulated broad signaling mechanisms for other relevant endocrine proteins. For 
example, intestinal GCG (encoding GLP1, Figure 1C), liver FGF21 (Figure 1D), and skeletal muscle 
IL6 (Figure 1E) showed binning patterns and pathway enrichments related to their known functions 
in pancreas (Drucker, 2022; McLean et al., 2021), adipose tissue (Fisher and Maratos-Flier, 2016; 
Flippo and Potthoff, 2021), and other metabolic organs (Pedersen and Febbraio, 2008), respec-
tively. These analyses and web tool show some examples of exploring transcriptional correlation struc-
ture to confirm and identify mechanisms of signaling, where we note that additional limitations should 
be considered.

Pathway-based examination of gene correlation structure and 
significance thresholds across tissues
While the select observations shown in Figure 1 provide examples of support in exploring correlation 
structure of genes across inter-individual differences to investigate endocrinology, several limitations 
in these analyses should be considered. First, an additional explanation for a given gene showing 
strong correlation between the tissues could arise from a general pattern of correlation between 
the two tissues and not necessarily due to the discrete signaling mechanisms. In previous studies 
surveying correlation structure and network model architectures in the HMDP and STARNET popula-
tions, genes appeared generally stronger correlated between liver and adipose tissue compared to 
all other organ combinations explored (Seldin et al., 2018; Koplev et al., 2022; Seldin and Lusis, 
2019). To investigate this global pattern of gene correlation structure between metabolic organs, we 
selected key gene ontology (GO) terms, KEGG pathways, and randomly sampled equal numbers of 
genes and evaluated relative significance of inter-tissue correlations across multiple statistical thresh-
olds. These analyses suggested that usage of empirical Student’s correlation p-values recapitulated 
a clear pattern of inter-tissue correlations between pathways (Figure 2). For example, comparison of 
the number of genes achieving significance of correlation between tissues among select GO terms 
revealed that tissues such as adipose and muscle appeared more correlated than spleen and other 
tissues at p-values less than 1e-3 (Figure 2A, left column). These global patterns of gene correlation 
between tissues among select pathways were reduced when the p-value threshold was lowered to 
1e-6 (Figure 2A, middle column) or q-value adjustments (Materials and methods) were performed 
(Figure 2A, right two columns). For these reasons, only q-value adjusted value was used and imple-
mented into pie charts providing the tissue-specific occurrences of correlated genes at three thresh-
olds (q<0.1, q<0.01, q<0.001) within the web tool. Next, in order to further evaluate these global 
patterns of innate transcript correlation structure and determine whether they reflected concordance 

using the bicor coefficient of all genes to ADIPOQ using gene ontology biological process annotations and network construction of top pathways 
using clusterprofiler, where pathways related to fatty acid oxidation were observed in adipose (left) and chemotaxis/ECM remodeling in skeletal muscle 
(right). (B–D) The same q-value binning, top within-tissue and top peripheral enrichments were applied to intestinal GCG (C), liver FGF21 (D), and 
muscle IL6 (E). For these analyses all 310 individuals (across both sexes) were used and q-value adjustments calculated using a Benjamini-Hochberg FDR 
adjustment.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Performance across four methods of cell-type deconvolution where relative proportions of cells (y-axis) are shown for all cell 
types annotated in single-cell reference (x-axis) in liver.

Figure supplement 2. Performance across four methods of cell-type deconvolution where relative proportions of cells (y-axis) are shown for all cell 
types annotated in single-cell reference (x-axis) in heart.

Figure supplement 3. Performance across four methods of cell-type deconvolution where relative proportions of cells (y-axis) are shown for all cell 
types annotated in single-cell reference (x-axis) in skeletal muscle.

Figure supplement 4. Pancreatic INS expression correlations across tissues in gene-by-tissue expression project (GTEx) were binned according to 
q<0.1 (top) and corresponding pancreatic gene set enrichment analysis (GSEA) network graph is shown (bottom).

Figure 1 continued
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between known metabolic pathways or innate to the dataset used, tissues were rank-ordered by 
the number of genes which meet p-value thresholds and compared to randomly sampled genes of 
similar pathway sized (Figure 2B). Among KEGG pathways selects (hsa04062 − chemokine signaling 
pathway, hsa04640 − hematopoietic cell lineage, and hsa00190 − oxidative phosphorylation), the top-
ranked organs by correlated gene numbers differed (skeletal muscle, colon, and thyroid, respectively); 
however, a general trend of specific tissues ranking higher than others were observed (Figure 2B). 
For example, skeletal muscle and heart appeared among the strongest correlated across pathways 
and organs, compared to kidney cortex and spleen which were observed to rank among the lowest 
(Figure 2B, pathways). We note that when the same analysis was performed on randomly sampled 
genes from each organ consisting of the same number as genes within each KEGG pathway, these 
rankings and number of significant correlating genes were no longer observed (Figure 2B, random 
genes), suggesting that in certain instances differences between organs in general connectivity to 
others might reflect concordance between known pathways. It is important to consider here that for 
the organs ranking lower, the lack of relative correlating numbers is likely due to sparsity of available 
data and not necessarily general patterns of gene correlation. This point is supported by the fact 
that among the lowest-ranked 33% of tissues across pathways, we observed a significant negative 

GO Term P < 1e-3 P < 1e-6 q< 0.1 q< 0.01
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overall correlation (bicor=–0.45, p-value=2.3e-5) between number of NA values per individual and the 
gene count for significance shown in Figure 2B. This negative correlation between missing data and 
number of significant correlations for pathways across tissues was not observed when binning the top 
33% (bicor=0.09, p-value=0.42) or middle 33% (bicor=–0.12, p-value=0.27) of organs. Collectively, 
these analyses show that innate correlation structures exist between organs which differ depending 
on pathways investigated and that tissues which don’t show broad correlation structure could poten-
tially be attributed to areas of missing data among GTEx.

PCSK9 signaling and lipid exchange between adipose and muscle 
apparent in simple network models of correlation structure
Next, we wanted to ask whether our approach of analyzing inter-individual correlation structure 
across tissue for endocrine proteins was also sufficient to define within-tissue signaling mechanisms 
or actions of enzymes producing metabolites that signal across organs. Dissimilar to the cross-tissue 
distributions of significance in Figure 1, the same analysis of liver PCSK9 highlighted exclusively liver 
genes which were varied together (Figure 3A), in particular those involved in cholesterol metabolism/
homeostasis (Figure 3B). Consistent with the established role for PCSK9 as a primary degradation 
mechanism of LDLR (Lambert et al., 2012; Peterson et al., 2008), network model construction of 
correlated genes highlighted the gene as a central node linking cholesterol biosynthetic pathways with 
those involved in other metabolic pathways such as insulin signaling (Figure 3C). Given that organ 
signaling via metabolites comprises many critical processes among multicellular organisms, our next 
goal was to apply this gene-centric analyses to established mechanisms of metabolite signaling. The 
gene PNPLA2 encodes adipose triglyceride lipase which localizes to lipid droplets and breaks down 
triglycerides for oxidation or mobilization as free fatty acids for peripheral tissues (Zechner et al., 
2009). Variation in expression of PNPLA2 showed highly significant enrichments with beta oxidation 
pathways in adipose tissue (Figure 3D). Muscle pathways enriched for the gene were represented by 
sarcomere organization and muscle contraction (Figure 3F). Construction of an undirected network 
from these expression data placed the gene as a central node between the two tissues, linking regu-
lators of adipose oxidation (Figure 3F, red) to muscle contractile process (Figure 3F, purple) where 
additional strongly co-correlated genes were implicated as additional candidates (Figure 3F). In sum, 
these analyses provide two examples of within-liver signaling via PCSK9 and adipose-muscle commu-
nication through PNPLA2 where the top-correlated genes and network models recapitulate known 
mechanisms. Given the utility of these undirected network models, a function in gene-derived correla-
tions across tissues (GD-CAT) was added to enable users to generate network models for any gene-
tissue combination and select parameters such as number of within-tissue and peripheral correlated 
genes to include.

Inter-individual correlation analysis of HMDP highlights tissue- and diet-
specific phenotype relationships with sex hormones
Genetic reference panels in model organisms, such as mice, present appeal in studying complex traits 
in that environmental conditions can be tightly controlled, tissues and invasive traits readily accessible, 
and the same, often renewable, genetic background can be studied and compared among multiple 
exposures such as diets or drug treatments (Lusis et al., 2016; Li and Auwerx, 2020; Andreux et al., 
2012; Seldin et al., 2019). For this resource, we utilized data from the HMDP fed a normal chow 
(Lusis et al., 2016; Bennett et al., 2010) or HFHS diet for 8 weeks (Parks et al., 2015; Hui et al., 
2015; Norheim et al., 2021; Org et al., 2015). While the number of tissues available was less than in 
GTEx, these panels allow for comparison of how gene correlations shift depending on diet. Therefore, 
queries of gene correlation in mice were segregated into either chow or HFHS diet and an additional 
panel to download a table or visualize the relationship between genes and clinical measures was 
added. The inferred abundances of cell types from each individual are correlated across user-defined 
genes, with the bicor coefficient plotted for each cell type.

One advantage of HMDP data compared to GTEx is the abundance of phenotypic measures avail-
able within each cohort. To show the utility of examining correlations within this reference panel, we 
selected sex hormone receptors androgen receptor (Ar), estrogen receptor alpha (Esr1), or estrogen 
receptor beta (Esr2) and binned the top 10 phenotypes which were correlated. These analyses were 
stratified based on where sex hormones were expressed (either liver or adipose tissue) or dietary 

https://doi.org/10.7554/eLife.88863
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Figure 3. Inter-individual transcript correlation structure and network architecture of liver PCSK9 and adipose PNPLA2. (A) Distribution of pan-tissue 
genes correlated with liver PCSK9 expression (q<0.1), where 93% of genes were within liver (purple). (B) Gene ontology (GO) (BP) overrepresentation 
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with PCSK9, where those annotated for ‘cholesterol biosynthetic process’ are colored in red. (D–E) Overrepresentation tests corresponding to the 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.88863


 Tools and resources﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Zhou, Tamburini, Van et al. eLife 2023;12:RP88863. DOI: https://​doi.​org/​10.​7554/​eLife.​88863 � 9 of 19

regiment of the ~100 strains (normal chow or HFHS diet). This analysis demonstrated the difference 
in relationships between tissue location of sex hormone receptor and dietary context with metabolic 
traits. For example, expression of Ar in adipose tissue among HMDP mice fed an HFHS diet was 
negatively correlated with fat mass and body weight traits, whereas expression in liver oppositely 
correlated with the same traits in a positive direction (Figure 4A). The top traits which correlated also 
differed by tissue or expression for Ar, such as plasma lipid parameters in adipose tissue compared 
to blood cell traits in chow-fed mice (Figure 4A). We note that among the three hormone receptors 
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for correlations with expression of androgen receptor (A), estrogen receptor 1 (B), or estrogen receptor 2 (C), colored by direction in the hybrid mouse 
diversity panel. Positive correlations are shown in light blue and negative correlations as sunset orange, where phenotypes (y-axis) are ordered by 
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top-correlated genes with adipose (subcutaneous) PNPLA2 expression residing in adipose (D) or peripherally in skeletal muscle (E). (F) Undirected 
network constructed from the strongest correlated subcutaneous adipose tissue (light aqua) and muscle genes (light brown) with PNPLA2 (black), where 
genes corresponding to GO terms annotated as ‘fatty acid beta oxidation’ or ‘muscle contraction’ are colored purple or red, respectively. For these 
analyses all 310 individuals (across both sexes) were used and q-value adjustments calculated using a Benjamini-Hochberg FDR adjustment. Network 
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investigated, Esr2 appeared the most consistently correlated between tissues and diets with meta-
bolic traits (Figure 4B). Expression of Esr1 also showed a clear tissue and diet difference in the traits 
which were the most strongly co-regulated. Under HFHS dietary conditions, a negative correlation 
with insulin and fat pad weights were observed exclusively with adipose expression, while positive 
correlations with liver lipids were observed with expression in liver (Figure 4C). These analyses high-
light how phenotype correlations in mouse populations can help to determine contexts relevant for 
gene regulation and point to the diversity of potential contexts relevant for sex hormone receptors in 
metabolic tissues.

Discussion
Limitations and conclusions
Here, we provide a new resource to explore correlations across organ gene expression in the context 
of inter-individual differences. We highlight areas where these align with established and relevant 
mechanisms of physiology and suggest that similar explorations could be used as a discovery tool. 
Several key limitations should be considered when exploring GD-CAT for mechanisms of inter-tissue 
signaling though. Primarily, the fact that correlation-based analyses could reflect both causal and 
reactive patterns of variation. While several statistical methods such as mediation (Richiardi et al., 
2013; Zeng et al., 2021) and Mendelian randomization (Emdin et al., 2017; Sanderson et al., 2022) 
exist to further refine causal inferences, likely the only definitive method to distinguish is in care-
fully designed experimentation. Further, analyses of genetic correlation (e.g. correlations considering 
genetic loci to infer causality) also present appeal in refining some causal mechanisms. Correlation 
between molecular and phenotypic variables can occur for a variety of reasons, not just between 
their individual relationships, but often more broadly, from a variety of complex genetic and envi-
ronmental factors. Further, many correlations tend to be dominated by genes expressed within the 
same organ. This could be due to the fact that, within-tissue correlations could capture both the path-
ways regulating expression of a gene and potential consequences of changes in expression/function, 
and distinguishing between the two presents a significant challenge. For example, a GD-CAT query 
of insulin (INS) expression in pancreas shows exclusive enrichments in pancreas and corresponding 
pathway terms reflect regulatory mechanisms such as secretion and ion transport (Figure 1—figure 
supplement 4). Representation of given genes may also differ significantly depending on the dataset 
used. For example, queries of other tissues correlated with the critical X inactive specific transcript 
(XIST), in liver show no significant correlations at qvalue cutoffs used. This is due to the fact that the 
gene operates in a sex-dependent manner, where females are significantly less represented in GTEx 
and liver exists as a sparser tissue compared to others (Figure 2). In addition, the analyses presented 
are derived from differences in gene expression across individuals which arise from complex interac-
tion of genetic and environmental variables. Expression of a gene and its corresponding protein can 
show substantial discordances depending on the dataset used. These have been discussed in detail 
(Liu et al., 2016; Maier et al., 2009; Buccitelli and Selbach, 2020), but ranges of co-correlation can 
vary widely depending on the datasets used and approaches taken. We note that for genes encoding 
proteins where actions from acute secretion grossly outweigh patterns of gene expression, such as 
insulin, caution should be taken when interpreting results. As the depth and availability of tissue-
specific proteomic levels across diverse individuals continues to increase, an exciting opportunity is 
presented to explore the applicability of these analyses and identify areas when gene expression is 
not a sufficient measure. For example, mass-spec proteomics was recently performed on GTEx (Jiang 
et al., 2020); however, given that these data represent 6 individuals, analyses utilizing well-powered 
inter-individual correlations such as ours which contain 310 individuals remain limited in applications.

The queries provided in GD-CAT use fairly simple linear models to infer organ-organ signaling; 
however, more sophisticated methods can also be applied in an informative fashion. For example, 
Koplev et al. generated co-expression modules from nine tissues in the STARNET dataset, where 
construction of a massive Bayesian network uncovered interactions between correlated modules 
(Koplev et al., 2022). These approaches expanded on analysis of STAGE data to construct network 
models using WGCNA across tissues and relating these resulting eigenvectors to outcomes (Talukdar 
et al., 2016). The generalized approach of constructing cross-tissue gene regulatory modules pres-
ents appeal in that genes are able to be viewed in the context of a network with respect to all 
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other gene-tissue combinations. In searching through these types of expanded networks, individ-
uals can identify where the most compelling global relationships occur. One challenge with this type 
of approach, however, is that co-regulated pathways and module members are highly subjective to 
parameters used to construct GRNs (e.g. reassignment threshold in WGCNA) and can be difficult in 
arriving at a ‘ground truth’ for parameter selection. We note that the WGCNA package is also imple-
mented in these analyses, but solely to perform gene-focused correlations using biweight midcor-
relation to limit outlier inflation. While the midweight bicorrelation approach to calculate correlations 
could also be replaced with more sophisticated models, one consideration would be a concern of 
overfitting models and thus, biasing outcomes.

In another notable example MultiCens was developed as a tool to uncover communication between 
genes and tissues and applied to suggest central processes which exist in multi-layered data relevant 
for Alzheimer’s disease (Kumar et al., 2022). In addition, Jadhav and colleagues adopted a machine 
learning approach to mine published literature for relationships between hormones and genes (Jadhav 
et al., 2022). Further, association mapping of plasma proteomics data has been extensively applied 
and intersection with genome-wide association disease loci has offered intriguing potential disease 
mechanisms (Ferkingstad et al., 2021; Suhre et al., 2021). Another common application to single-cell 
sequencing data is to search for overrepresentation of known ligand-receptor pairs between cell types 
(Armingol et al., 2021). These and additional applications to explore tissue communication/coordi-
nation present unique strengths and caveats, depending on the specific usage desired. Regardless 
of methods used to decipher, one important limitation to consider in all these analyses is the nature 
of underlying data. For example, our evaluation of GTEx data structure suggested that important 
organs such as spleen and kidney were insufficient due to availability in matching expression data 
between individuals. Further, GTEx sample varies as to the collection times, sample processing times, 
and other important parameters such as cause of death. Mouse population data such as the HMDP or 
BxD cohorts offer appeal in these regards, as environmental conditions and collection times are easily 
fixed. Regardless, careful consideration of how data was generated and normalized are fundamental 
to interpreting results.

In sum, we demonstrate that adopting a gene-centric approach to surveying correlation structure 
of transcripts across organs and individuals can inform mechanism of coordination between metabolic 
tissues. Initially, we queried several well-established and key mediators of physiologic homeostasis, 
such as FGF21, GCG, and PCSK9. These approaches are further suggested to be applicable to mech-
anisms of metabolite signaling, as evident by pan-tissue investigation of adipose PNPLA2. Exploration 
of HMDP data highlighted the diverse phenotype correlations depending on tissue and diet for sex 
hormone receptors. To facilitate widespread access and use of this transcript isoform-centric analysis 
of inter-individual correlations, a full suite of analyses such as those performed here can be performed 
from a lab-hosted server (gdcat.org) or in isolation from a shiny app or docker image.

Materials and methods
Availability of web tool and analyses
All analyses, datasets, and scripts used to generate the associated web tool (GD-CAT) can be accessed 
via GitHub (copy archived at Zhou and Seldin, 2023) or within the associated docker image. In addi-
tion, access to the GD-CAT web tool is also available through the web portal gdcat.org. This portal 
was created to provide a user-friendly interface for accessing and using the GD-CAT tool without the 
need to download or install any software or packages. Users can simply visit the website, process 
data, and start using the tool. Corresponding tutorial and the other resources were made available 
to facilitate the utilization of the web tool on GitHub. The interface and server of the web were built 
and linked based on the shiny package using R (v. 4.2.0). Shiny package provides a powerful tool for 
building interactive web applications using R, allowing for fast and flexible development of custom 
applications with minimal coding required.

Pathway-specific gene correlations across tissues
Detailed scripts and analyses for pathway-specific investigations across tissues in Figure  2 are 
provided in GitHub (copy archived at Tamburini, 2023). Briefly, to interrogate broad tissue correlation 
structure, the number of genes which passed each biweight midcorrelation p-value cutoff is shown 
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normalized to the total number of genes corresponding to that pathway term. Pathways were selected 
by accessing all available GO annotations for all genes using the Universal Protein Resource (The 
UniProt Consortium, 2017) and subsetting genes where a given term is listed. To determine which 
tissues show the most co-correlation across genes and organs, KEGG terms shown were selected 
and each corresponding gene-tissue combinations were correlated. Tissues were then binned indi-
vidually by the number of significant correlations which were observed across organs among each 
selected KEGG pathway at indicated correlation p-values. Rank-ordering on the figure was shown by 
chemokine signaling at p<0.01 and each term was compared to a randomly sampled set of genes 
corresponding to the same number contained in each pathway.

Data sources and availability
All human data used in this study can be immediately accessed via web tool or docker to facilitate 
analysis. Metabolic tissue data was accessed through GTEx V8 downloads portal on August 18, 2021, 
and previously described (Velez et al., 2022; Battle et al., 2017). These raw data can also be readily 
accessed from the associated R-based walkthrough via GitHub (copy archived at Velez, 2022). Briefly, 
these data were filtered to retain genes which were detected across tissues where individuals were 
required to show counts >0 across all data. Given that our goal was to look across tissues at enrich-
ments, this was done to limit spurious influence of genes only expressed in specific tissues in specific 
individuals. HMDP data was collected from previously described studies (Parks et al., 2015; Lusis 
et al., 2016; Bennett et al., 2010; Seldin et al., 2019) and inter-individual differences were compared 
at the strain level to maximize possible comparisons between historical data.

Correlation analyses across tissues
Biweight midcorrelation coefficients and corresponding p-values within and across tissues were 
generated using WGCNA bicorandpvalue() function (Langfelder and Horvath, 2008). We note that 
while the WGCNA package was used to calculate coefficients and corresponding Student’s p-values, 
this generalized framework does not utilize any module generation. Associated q-value adjustments 
were applied using the Benjamini-Hochberg FDR from the R package ‘stats’. The BH procedure was 
selected instead of other FDR control methods because of its efficiency in CPU usage on the hosted 
server.

Pathway enrichment analyses
Pathway enrichments were generated using gene set enrichment analyses available from the R 
package clusterProfiler. Specifically, the bicor coefficients were used as the rank weight of each gene 
and enrichment tests performed by permuting against the human or mouse reference transcriptome. 
Terms used for the enrichment analyses were derived from GO (biological process, cellular compo-
nent, and molecular function) which were accessed using the R package enrichR. For this analysis and 
on the available app, input genes were determined at indicated q-value threshold.

Deconvolution of bulk tissue seq data on web tool
All scripts and deconvolution data produced are available at GitHub (copy archived at Van, 2022). 
Briefly, sn-RNA-seq data was accessed from the Human Cell Atlas (Jones et al., 2022) for matching 
organ datasets with metabolic tissues. From these data, four deconvolution methods were applied 
using ADAPTS (Danziger et al., 2019) where DeconRNA-Seq (Gong and Szustakowski, 2013) was 
selected for its ability to capture the abundances of the most cell types across tissues such as liver, 
heart, and skeletal muscle (Figure 1—figure supplements 1–3). The full combined matrix was assem-
bled for DeconRNA-Seq results across individuals in GTEx where correlations between cell types and 
genes were performed also using the bicorandpvalue() in WGCNA (Langfelder and Horvath, 2008).
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