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Abstract In recent years, there has been debate about the effectiveness of treatments from 
different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This 
debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effective-
ness of a given treatment is commonly evaluated by comparing the effect of the active treatment 
versus the placebo on human health and/or behaviour. However, this approach neglects the indi-
vidual’s subjective experience of the type of treatment she or he received in establishing treatment 
efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving 
the active or placebo condition during an experiment - can explain variability in outcomes better 
than the actual treatment. We analysed four independent datasets (N = 387 participants), including 
clinical patients and healthy adults from different age groups who were exposed to different 
neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct 
current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment 
can provide a better model fit either alone or in interaction with objective treatment (defined as 
the condition to which participants are assigned in the experiment). These results demonstrate the 
significant contribution of subjective experience in explaining the variability of clinical, cognitive, 
and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical 
research to start accounting for participants’ subjective beliefs and their interplay with objective 
treatment when assessing the efficacy of treatments. This approach will be crucial in providing a 
more accurate estimation of the treatment effect and its source, allowing the development of effec-
tive and reproducible interventions.

eLife assessment
This is an important report that has implications for both the brain stimulation field and beyond. The 
strength of evidence provided is quite convincing. The major strength of this work is the recognise 
the importance of participant expectation in brain stimulation studies.
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Introduction
A substantial amount of research from medicine, neuroscience, psychology, and education aims to 
establish the effectiveness of different treatments, such as drugs, cognitive training, biofeedback, 
and neurostimulation, in both clinical and non-clinical populations. However, the research findings 
from these fields tend to be heterogeneous. As a result, there has been increased scepticism among 
researchers about the efficacy of these treatments (Lampit et al., 2014; López-Alonso et al., 2014; 
Sitaram et al., 2017).

In recent years, neuromodulation has been studied as one of the most promising treatment methods 
(De Ridder et  al., 2021). Further, one particular form of neuromodulation, transcranial magnetic 
stimulation (TMS), has been approved by regulatory bodies in multiple countries, including the US 
Food and Drug Administration (FDA), and is used as an evidence-based treatment for patients with 
migraine, major depression, obsessive-compulsive disorder, and smoking addiction (Hallett, 2007; 
Walsh and Cowey, 2000). Moreover, TMS and other neuromodulatory devices, such as transcranial-
focused ultrasound and electrical stimulation (tES), have been highlighted as a potential treatment 
for psychiatric, neurological, and neurodevelopmental disorders (Grover et al., 2021; Khedr et al., 
2005; McGough et al., 2019), and they have also been used to enhance various mental processes, 
including attention, memory, language, mathematics, and intelligence in healthy populations (Santar-
necchi et al., 2015). These encouraging findings have raised hope for the potential application of 
these techniques within and outside the clinic (Dubljević et al., 2014).

Despite some encouraging results on the beneficial effects of both TMS and tES, contradictory 
findings have emerged across different studies (Horvath et  al., 2015; Medina and Cason, 2017; 
Parkin et al., 2015; Wang et al., 2018; Westwood et al., 2017). Several factors have been pointed 
at as plausible reasons for the heterogeneity in research results (Filmer et al., 2020; Guerra et al., 
2020; van Bueren et al., 2021). However, a crucial factor that researchers have largely overlooked is 
the extent to which subjective beliefs can explain variability in treatment efficacy. Here, we address 
this gap by examining whether modelling participants’ beliefs about receiving the placebo or active 
treatment can account for changes in clinical, cognitive and behavioural outcomes.

Participants who take part in TMS and tES studies consistently report various perceptual sensa-
tions, such as audible clicks, visual disturbances, and cutaneous sensations (Davis et  al., 2013). 

eLife digest Neuromodulation is a type of intervention that relies on various non-invasive tech-
niques to temporarily stimulate the brain and nervous system. It can be used for the treatment of 
depression or other medical conditions, as well as the improvement of cognitive abilities such as 
attention. However, there is conflicting evidence regarding whether this approach has beneficial 
effects.

Most studies aiming to assess the efficiency of a treatment rely on examining the outcomes of 
people who received the intervention in comparison to participants who undergo a similar proce-
dure with no therapeutic effect (or placebo). However, the influence of other, ‘subjective’ factors on 
these results – such as the type of intervention participants think they have received – remains poorly 
investigated.

To bridge this gap, Fassi and Hochman et al. used statistical modeling to assess how patients’ 
beliefs about their treatment affected the results of four neuromodulation studies on mind wandering, 
depression and attention deficit hyperactivity disorder symptoms. In two studies, participants' percep-
tions of their treatment status were more strongly linked to changes in depression scores and mind-
wandering than the actual treatment. Results were more nuanced in the other two studies. In one of 
them, participants who received the real neuromodulation but believed they received the placebo 
showed the most improvement in depressive symptoms; in the other study, subjective beliefs and 
objective treatment both explained changes in inattention symptoms.

Taken together, the results by Fassi and Hochman et al. suggest that factoring in patients’ subjec-
tive beliefs about their treatment may be necessary in studies of neuromodulation and other interven-
tions like virtual reality or neurofeedback, where participants are immersed in cutting-edge research 
settings and might therefore be more susceptible to develop beliefs about treatment efficacy.

https://doi.org/10.7554/eLife.88889
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Consequently, they can discern when they have received the active treatment, making subjective 
beliefs and demand characteristics potentially influencing performance (Polanía et  al., 2018). To 
account for such non-specific effects, sham (placebo) protocols have been employed. For transcra-
nial direct current stimulation (tDCS), the most common form of tES, various sham protocols exist. A 
review by Fonteneau et al., 2019 shows that 84% of 173 studies used similar sham approaches to an 
early method by Gandiga et al., 2006. This initial protocol had a 10 s ramp-up followed by 30 s of 
active stimulation at 1 mA before cessation, differently from active stimulation that typically lasts up 
to 20 min. However, this has been adapted in terms of intensity and duration of current, ramp-in/-out 
phases, and the number of ramps during stimulation. Similarly, in sham TMS, the TMS coil may be 
tilted or replaced with purpose-built sham coils equipped with magnetic shields, which produce audi-
tory effects but ensure no brain stimulation (Duecker and Sack, 2015). By using surface electrodes, 
the somatosensory effects of actual TMS can also be mimicked. Overall, these types of sham stimula-
tion aim to simulate the perceptual sensations associated with active stimulation without substantially 
affecting cortical excitability (Fritsch et al., 2010; Nitsche and Paulus, 2000). As a result, sham treat-
ments should allow controlling for participants’ specific beliefs about the type of stimulation received.

Previous studies have addressed whether manipulating participants’ expectations about the effects 
of either active or sham stimulation can moderate treatment efficacy (Haikalis et  al., 2023; Rabi-
pour et al., 2018). However, to our knowledge, these studies have not examined whether individual 
differences in participants’ subjective experience of receiving the active or sham treatment provide a 
better model fit than the condition to which participants are assigned in the study. We term the former 
subjective treatment and the latter objective treatment.

The above consideration becomes particularly crucial when considering that the experimental 
design of most randomised controlled trials (RCTs) involves recording whether participants believed 
they received the active or placebo treatment. While it is common practice to assess experimental 
blinding using this data, the explanatory power of individual differences in subjective treatment is 
rarely, if at all, considered. This is based on the assumption that if no differences emerged at the 
group level in participants’ guess for receiving the active vs the placebo treatment (i.e. if experimental 
blinding was successful), placebo effects could not explain the obtained results.

Here, we hypothesise that such an assumption can be erroneous and aim to explore how accounting 
for differences in subjective beliefs can shed light on the conclusions of previous treatment studies. 
Moreover, we introduce a simple and straightforward approach that could be used to analyse existing 
data and guide future clinical and fundamental research to examine whether subjective treatment 
explains variability in experimental outcomes over and beyond objective treatment. Below, we demon-
strate this approach by reanalysing four independently published neurostimulation studies (including 
TMS and tES) that test clinical and non-clinical samples from different age groups (Blumberger et al., 
2016; Filmer et al., 2019; Leffa et al., 2022; Kaster et al., 2018). The data and the codebook of the 
analyses are available on the OSF (https://osf.io/rztxu/).

Results
Study 1
Repetitive TMS (rTMS) is a method for treating depression that has been approved by the FDA 
(Connolly et al., 2012). In study 1 (Blumberger et al., 2016), patients aged 18–85 with treatment-
resistant depression (N = 121) were randomised to receive either bilateral rTMS, unilateral left-rTMS, 
or sham rTMS for 3 or 6 weeks (objective treatment). We examined whether participants’ beliefs about 
receiving active or sham stimulation (subjective treatment) explained changes in depression over time. 
In this study, subjective treatment was based on participants’ reports of whether they thought they 
received active or sham rTMS, inquired at the end of treatment (i.e., week 6). Further details on 
participant groupings based on the objective treatment and subjective treatment can be found in the 
codebook, separately for each study, and figure supplements (e.g. Figure 1—source data 1).

A linear mixed model with depression scores, measured by the Hamilton Depression Rating scale 
(HAMD-17), was fitted to the data for weeks 1–6. The baseline model included time (week 1/week 3/
week 6) as a main effect, as well as the interaction of time and objective treatment. We first added to 
this model subjective treatment as a main effect. Next, we extended the model to include the two-
way interaction of time and subjective treatment. Lastly, we considered a model with the three-way 

https://doi.org/10.7554/eLife.88889
https://osf.io/rztxu/
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interaction of time, subjective treatment, and objective treatment. Our results showed that the two-
way interaction between subjective treatment and time led to a significantly higher model fit (Bayesian 
Information Criterion (BIC) = 2027.48, Akaike Information Criterion (AIC) = 1985.62, p<0.001; see 
Figure 1—source data 2). Hence, our analysis suggests that participants’ subjective experience about 
the treatment accounted for variability in depression scores over time, while the actual treatment 
condition to which participants were assigned did not. As shown in Figure 1, participants who thought 
they received active stimulation showed a steeper decrease in depression over time than participants 
who thought they received sham. The interaction of subjective treatment and time was significant in 
weeks 3 and 6. We used contrasts to break down this interaction and compare depression scores at 
weeks 3 and 6 to depression at baseline (week 0) between participants who reported active vs sham 
as subjective treatment. Our results showed that depression scores were lower for participants who 
thought they were receiving active compared to sham stimulation at both weeks 3 (b = -3.15, t(321) = 
-3.43, p< 0.001) and 6 (b = -6.72, t(321) = -6.84, p< 0. 001).

We next examined whether variability in depression scores was explained by both objective and 
subjective treatment. To this aim, we run a model comparison adding objective treatment first and, 
secondly, the interaction of objective treatment with time to a baseline model already including the 
interaction of subjective treatment and time. Our results showed that the inclusion of neither objective 
treatment nor the objective treatment by time interaction led to a better model fit (Figure 1—source 

Figure 1. Depression scores as a function of subjective treatment over time. Each diamond represents the mean depression score (HAMD-17) for the 
time points (baseline, week 3, week 6), and each line in the background represents a patient. Error bars represent ±1 standard error of the mean.

The online version of this article includes the following source data for figure 1:

Source data 1. Table with sample size (n) for objective and subjective treatment.

Source data 2. Table with summary statistics for the model comparison with HAMD-17 depressive symptoms as outcome.

Source data 3. Table with summary statistics for the model comparison with HAMD-17 depressive symptoms as outcome.

https://doi.org/10.7554/eLife.88889
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data 3). Therefore, a statistical model that includes the participants’ subjective experience of receiving 
the real or sham treatment at baseline fits the observed data better than a statistical model that only 
includes the actual treatment allocation.

We also investigated whether subjective treatment could explain variability in participants’ response 
and remission rates. In the study, the response rate was defined as a >50% reduction in depressive 
symptomatology and was binary coded. A mixed binomial model with HAMD-17 response rate as the 
outcome was fitted to the data. The baseline model included only objective treatment as a predictor 
and was compared to an updated model, including subjective treatment as a main effect. Given 
that response rates were measured only once, time did not vary and was therefore omitted from the 
model. We compared the model with subjective treatment as a main effect to the model including 
the subjective treatment by objective treatment interaction. Our results showed that the model with 
subjective treatment as a main effect led to a significantly better fit (deviance = 15.08, p = 0.0001; 
see Figure 2—source data 1). As shown in Figure 2, response rates were higher for participants who 
reported thinking they received the active compared to the sham treatment (log(OR) = 2.61, z = 3.21, 

Figure 2. Depression response rates as a function of subjective treatment. The left plot presents the contribution of subjective treatment on the 
response rate of the Hamilton Depression Rating Scale (HAMD-17), and the right plot presents the contribution of subjective treatment on the Beck 
Depression Inventory II (BDI-II). Each dot represents an individual patient, stacked towards 100% representing a response or 0% representing no 
response. Error bars represent ±1 standard error of the mean.

The online version of this article includes the following source data for figure 2:

Source data 1. Table with summary statistics for the model comparison with HAMD response rates as outcome.

Source data 2. Table with summary statistics for the model comparison with HAMD response rates as outcome.

Source data 3. Table with summary statistics for the model comparison with BDI-II response rates as outcome.

Source data 4. Table with summary statistics for the model comparison with BDI-II response rates as outcome.

https://doi.org/10.7554/eLife.88889
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SE = 0.81, p = 0.001). On the contrary, when we examined whether the addition of objective treat-
ment to a model already including subjective treatment led to a better fit, this was not the case (devi-
ance = 1.40, p = 0.496; see Figure 2—source data 2). Therefore, treatment allocation did not explain 
changes in patients’ depression when subjective beliefs were already accounted for in the model.

The same pattern of results was replicated for response rates calculated based on another depres-
sion scale, the Beck Depression Inventory II (BDI-II), where subjective treatment as a main effect led 
to a significantly better model fit (deviance = 10.81, p = 0.001; see Figure 2—source data 3), and 
participants who reported the active subjective treatment showed higher response rates (log(OR) = 
1.85, z = 3.06, SE = 0.60, p = 0.002). In contrast, objective treatment did not provide a better model 
fit than subjective treatment (deviance = 0.27, p = 0.873; see Figure 2—source data 4).

Additionally, in the study, participants were classified as either remitters or non-remitters based on 
blinded clinical ratings at the end of weeks 3 and 6, defined by a HAMD-17 score ≤7. We conducted 
a survival analysis to examine whether subjective treatment explained variability in remission rates. 
The results supported the idea that patients who reported they subjectively believed receiving active 
stimulation showed higher remission rates than patients who believed they received sham. We found 
that, for objective treatment, the survival curves did not significantly differ between the active and 
sham condition (Gehan–Breslow–Wilcoxon test(1) = 3.72, p = 0.053), indicating that remission rates 
did not differ for patients who received active rTMS compared to patients who received sham. On the 
contrary, for subjective treatment, a significant difference emerged (Gehan–Breslow–Wilcoxon test(1) 
= 18.16, p< 0.001). Specifically, patients who reported they believed receiving active stimulation 
showed higher remission rates than patients who believed they received sham (Gehan–Breslow–Wil-
coxon test(1) = 5.12, p = 0.020).

Study 2
In study 2 (Kaster et al., 2018), 52 participants aged 60-85 diagnosed with late-life depression were 
randomised to active or sham high-dose deep rTMS. Compared to standard rTMS, deep rTMS with 
the H1 coil has been designed to stimulate deeper and larger areas of the cortex (primarily the left 
dorsolateral prefrontal cortex - DLPFC - and portions of the right DLPFC). We examined whether, also 
in this case, subjective treatment accounted for changes in participants’ depression scores, despite 
the use of a different sample and TMS technique. Notably, in contrast to the other studies, partici-
pants were asked to report whether they thought they received the active or sham treatment after the 
first week of treatment rather than at the end (i.e., fourth week). This avoids that subjective treatment 
- as inquired at the end of the study - would inherently be biased due to the clinical change the patient 
experienced as a result of the intervention. The breakdown of participants in respect to objective 
treatment and subjective treatment is reported in Figure 3—source data 1.

A linear mixed model with Hamilton Depression Rating Scale (HDRS-24) score as the outcome 
was fitted to the data for weeks 1–4. As in study 1, we first compared the baseline model, including 
time and its interaction with the objective treatment, to a model including the interaction of subjec-
tive treatment by time. The latter model was then compared to a three-way interaction model with 
subjective treatment by objective treatment by time. Our results showed that the three-way inter-
action model led to a significantly better fit (AIC = 1601.91, BIC = 1668.75, p = 0.011; see Figure 
3—source data 2 and 3). Hence, participants’ beliefs explained variability in depression scores 
over time in relation to the experimental allocation. To examine contrasts of the three-way inter-
action, we analysed the differences between the objective and subjective treatment each week 
compared to the baseline (Figure 3). We found a steeper decrease in depression from baseline to 
week 3 (b = 8.79, t(102.57) = 2.01, SE = 4.37, p = 0.047) and from baseline to week 4 (b = 9.19, 
t(103.80) = 2.10, SE = 4.39, p = 0.039). In both cases, the scores for active objective treatment 
and active subjective treatment were higher than the sham treatment. Another way to explore the 
three-way interaction is by investigating the polynomial contrasts of the time variable between the 
objective and subjective treatment conditions. The analysis showed that the objective and subjec-
tive treatment differed in the linear contrast of time (b = 28.03, t(182.30) = 3.13, p = 0.002). The 
contrast showed a negative slope throughout the weeks that were significantly different between 
the objective treatment levels in the subjective sham treatment (b = -19.63, t(181.05) = -2.77, p 
= 0.001), but not for the subjective active treatment (b = 8.40, t(184.33) = 1.52, p = 0.128). Thus, 
the results show that the steepest change in depression occurred among those who received the 

https://doi.org/10.7554/eLife.88889
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active treatment but believed they received the sham treatment (compared to those who believed 
they received the active treatment).

We further investigated whether subjective treatment could provide a better model fit for the 
patients’ remission and response rates than objective treatment. To this aim, we fitted two mixed 
binomial models with remission and response rates as the outcomes. Time was not considered in this 
case because both remission and response rates were collected only once at the end of the fourth 
week. In line with our previous results, we found that the interaction of subjective treatment by objec-
tive treatment was significantly better at predicting remission rates (deviance = 4.47, p = 0.035; see 
Figure 4—source data 1 and 2) and response rates (deviance = 8.17, p=0.004; see Figure 4—source 
data 3 and 4). For remission rates, we found a significant two-way interaction between objective 
treatment and subjective treatment (log(OR) = 0.81, z = 1.99, SE = 0.41, p = 0.047, Figure 4). While 
the effect did not differ significantly between active and sham rTMS as the objective treatment when 
participants thought they received the active stimulation (b = -1.01, z = -0.82, SE = 1.23, p = 0.410), 
higher remission rates were found when patients thought they received sham (b = 2.69, SE = 1.29, z 
= 2.08, p = 0.038). These results were replicated when we considered response rates as the outcome 
(Figures 4) for which we found a significant two-way interaction (log(OR) = 1.02, z = 2.58, SE = 0.4, p 
= 0.010). Again, for participants who thought they received the active stimulation, remission did not 
differ significantly between active and sham rTMS as the objective treatment (b = -1.7, z = -1.44, SE 
= 1.18, p = 0.150). On the contrary, when participants thought they received sham stimulation, they 
showed higher response rates in the active compared to sham rTMS as the objective treatment (b = 
2.38, SE = 1.05, z = 2.26, p = 0.020).

Figure 3. Depression scores as a function of the three-way interaction between subjective treatment, objective treatment, and time. Subjective sham 
treatment drives the difference between objective treatments in depression scores.The left plot shows subjective sham treatment, and the right plot 
shows subjective active treatment. Each line in the background represents a patient. Error bars represent ±1 standard error of the mean.

The online version of this article includes the following source data for figure 3:

Source data 1. Table with sample size (n) for objective and subjective treatment.

Source data 2. Table with summary statistics for the model comparison with HDRS-24depressive symptoms as outcome.

Source data 3. Table with summary statistics for the model comparison with HDRS-24depressive symptoms as outcome.

https://doi.org/10.7554/eLife.88889
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Study 3
In study 3, the researchers examined the effect of home-based tDCS treatment used for 4 weeks on 
a clinical group of adults diagnosed with ADHD (Leffa et al., 2022; N = 64). The primary outcome 
measure was symptoms of inattention taken from a clinician-administered questionnaire (Adult ADHD 
Self-report Scale; CASRS-I). Data on participants’ beliefs reflecting subjective treatment was collected 
at the end of the experiment. The breakdown of participants by objective treatment and subjective 
treatment in the sample can be found in Figure 5—source data 1.

In line with the studies above, we first investigated the addition of subjective treatment to a model 
accounting for objective treatment between the baseline and the last assessments. Including subjec-
tive treatment led to a better model fit (AIC = 593.81, BIC = 609.79, p< 0.001; see Figure 5—source 
data 2). Subsequent contrast analysis revealed that inattention scores for participants who believed 
they were getting the active treatment were significantly lower compared to those who believed they 
belonged to the sham group (b = −3.33, t(100) = -3.35, SE = 0.99, p = 0.001, see Figure 5). This 
finding provides further evidence supporting the contribution of subjective treatment over objective 
treatment, extending our previous results to another mental health condition, population, and tES 
method.

Figure 4. Remission and response rates as a function of subjective and objective treatment. The plots present the contribution of subjective and 
objective treatment on the HDRS-24 remission and response rates. Within each plot, the left columns present the contribution of objective active 
treatment and the right columns the contribution of objective sham treatment, separately for the two levels of subjective treatment. Each dot represents 
an individual patient and is stacked towards 100% representing a response or 0% representing no response. Error bars represent ±1 standard error of 
the mean.

The online version of this article includes the following source data for figure 4:

Source data 1. Table with summary statistics for the model comparison with HDRS-24 remission rates as outcome.

Source data 2. Table with summary statistics for the model comparison with HDRS-24 remission rates as outcome.

Source data 3. Table with summary statistics for the model comparison with HDRS-24response rates as outcome.

Source data 4. Table with summary statistics for the model comparison with HDRS-24response rates as outcome.

https://doi.org/10.7554/eLife.88889
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Next, we investigated whether a model including objective treatment could explain variability in 
a model already including subjective treatment. Differently from studies 1 and 2, where this addition 
was not found significant, here, the addition of the objective treatment was significant (AIC = 593.81, 
BIC = 609.79, p< 0.001; see Figure 5—source data 3). As expected, the contrast showed lower 
inattention symptoms in the objective active treatment group (b = -4.17, t(100) = −4.21, SE = 0.99, 
p< 0.001). Thus, subjective treatment did not fully overrule the contribution of objective treatment 
to research outcomes. As later expanded on, this finding demonstrates the varied explanatory power 
that subjective treatment can have in relation to various types of tES treatments.

Study 4
In study 4, we extended our results beyond clinical populations by examining the effects of different 
doses (current intensity) of tDCS on mind-wandering in healthy participants (N = 150; Filmer et al., 
2019). Similar to studies 1 and 3, participants were asked about subjective beliefs at the end of 
the experiment. For this study, we tested whether not only subjective treatment but also subjective 
dosage (participants’ beliefs of the strength of the stimulation they received) could explain variability 

Figure 5. Inattention symptoms as a function of subjective and objective treatment. The left plot shows the contribution of subjective treatment, and 
the right plot shows the contribution of objective treatment. Each dot represents an individual patient. Error bars represent ±1 standard error of the 
mean.

The online version of this article includes the following source data for figure 5:

Source data 1. Table with sample size (n) for objective and subjective treatment.

Source data 2. Table with summary statistics for the model comparison with CASRSinattention symptoms as outcome.

Source data 3. Table with summary statistics for the model comparison with CASRSinattention symptoms as outcome.

https://doi.org/10.7554/eLife.88889
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in the results attributed originally to objective treatment. The breakdown of participants to objective 
treatment and subjective treatment in the sample can be found in Figure 6—source data 1.

A linear regression model with average mind wandering scores calculated over the whole exper-
imental session was fitted to the data. In line with studies 1 and 3, subjective treatment contrib-
uted to a significantly better model fit. Specifically, participants’ beliefs explained variability in mind 
wandering when subjective treatment was included as a main effect on top of objective treatment 
(AIC = 284.72, BIC = 305.80, p = 0.045; see Figure 6—source data 2). Furthermore, as shown in 
Figure 6, participants who believed they received active treatment showed higher mind-wandering 
levels than those who reported they believed to receive sham treatment (b = −0.11, SE = 0.05, t(144) 
= -2.01, p = 0.046).

The experimental design in this study allowed us also to expand our previous findings by exam-
ining the contribution of subjective dosage to a model including objective treatment (AIC = 282.90, 
BIC = 310, p = 0.025; Figure 6—source data 4). In this regard, we found that mind wandering 
increased for people reporting weak (b = −0.31, SE = 0.14, t(142) = -2.23, p = 0.03), moderate (b = 
−0.27, SE = 0.12, t(142) = -2.24, p = 0.027) and strong (b = 0.47, SE = 0.19, t(142) = 2.41, p = 0.017) 

Figure 6. Mind wandering scores, based on the task-unrelated thought (TUT) average across experimental trials, as a function of subjective treatment 
and subjective dosage. Each dot represents a participant. Error bars represent ±1 standard error of the mean.

The online version of this article includes the following source data for figure 6:

Source data 1. Table with sample size (n) for objective and subjective treatment.

Source data 2. Table with summary statistics for the model comparison with mind wandering scores as outcome.

Source data 3. Table with summary statistics for the model comparison with mind wandering scores as outcome.

Source data 4. Table with summary statistics for the model comparison with mind wandering scores as outcome.

Source data 5. Table with summary statistics for the model comparison with mind wandering scores as outcome.
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subjective dosage compared to none. These results indicate that mind wandering increased propor-
tionally as the subjective dosage increased (from none to strong). Conversely, our results showed that 
participants’ objective treatment did not lead to a better model fit neither when added to a model 
including subjective treatment (AIC = 284.72, BIC = 305.8, p = 0.093; see Figure 6—source data 3) 
nor when added to a model including subjective dosage (AIC = 282.9, BIC = 310.0, p = 0.106; see 
Figure 6—source data 5). These findings highlight that participants’ beliefs regarding the type of 
treatment received and their subjective experience of the treatment dosage can explain variability in 
cognitive performance.

Discussion
In this work, we used a novel approach to examine whether and to what extent participants’ subjective 
beliefs may account for variability in research outcomes. To this aim, we analysed four independent 
datasets from the field of neurostimulation; specifically, two rTMS RCTs in patients with depression 
(Blumberger et al., 2016; Kaster et al., 2018), one tDCS study in adults with ADHD (Leffa et al., 
2022), and another tDCS study in a healthy adult sample (Filmer et al., 2019).

We demonstrate that participants’ subjective beliefs about receiving the active vs control (sham) 
treatment are an important factor that can explain variability in the primary outcome and, in some 
cases, fit the observed data better than the actual treatment participants received during the exper-
iment. Specifically, in studies 1 and 4, the fact that participants thought to be in the active or control 
condition explained variability in clinical and cognitive scores to a more considerable extent than the 
objective treatment alone. Notably, the same pattern of results emerged when we replaced subjec-
tive treatment with subjective dosage in the fourth experiment, showing that subjective beliefs about 
treatment intensity also explained variability in research results better than objective treatment. In 
contrast to studies 1 and 4, studies 2 and 3 showed a more complex pattern of results. Specifically, in 
study 2 we observed an interaction effect, whereby the greatest improvement in depressive symptoms 
was observed in the group that received the active objective treatment but believed they received 
sham. Differently, in study 3, the inclusion of both subjective and objective treatment as main effects 
explained variability in symptoms of inattention. Overall, these findings suggest the complex interplay 
of objective and subjective treatment. The variability in the observed results could be explained by 
factors such as participants’ personality, disorder type and severity, prior treatments, knowledge base, 
experimental procedures, and beliefs of the research team, all of which could be interesting avenues 
for future studies to explore.

An important question arising from our findings relates to the causal role of subjective beliefs. 
This question is a complex one to answer and falls outside the scope of this study. Based on the goal 
of testing blinding efficacy, it is a standard practice for current treatment studies to record data on 
subjective beliefs only at the end of the experiment rather than before and throughout. This was the 
case in studies 1, 3, and 4. While in study 3, both objective and subjective treatment explained unique 
variance in the clinical outcomes, in studies 1 and 4 it was impossible to conclude whether partici-
pants’ beliefs, which were captured by the subjective treatment, affected experimental outcomes or, 
on the contrary, whether participants’ changes in performance or symptoms throughout the studies 
influenced beliefs regarding treatment allocation. Therefore, it is important to consider that subjective 
treatment could also capture the changes faced by participants in placebo-controlled trials, whereby, 
if they feel better, it would be hard psychologically to report that they believe it was due to the 
placebo. Notably, study 2 used a less common approach, in which subjective beliefs about treatment 
allocation were queried after the first week of the study. In this case, significant results emerged only 
2 weeks after this inquiry (i.e., weeks 3 and 4). Given that subjective beliefs about treatment allocation 
were documented before the emergence of changes in any clinical outcome, it is more plausible that 
participants’ beliefs would have affected experimental outcomes rather than vice versa.

Based on the above considerations, future studies should strive to record data on subjective 
beliefs at different time points: before, during, and after the experiment. This will allow mapping 
the way subjective beliefs might be differentially associated with experimental results depending on 
the considered study and treatment type. However, we acknowledge two caveats of this suggestion. 
Firstly, participants may be more prone to pay attention to their treatment allocation and, conse-
quently, figure out their assigned condition. Secondly, recording subjective beliefs at multiple time 
points might interfere with the effects of the treatment. For instance, patients might suppress their 
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response for the fear that the treatment received is a placebo (Sonawalla and Rosenbaum, 2002). 
An alternative approach could entail deception, whereby all participants are told they received the 
active treatment. While this raises an ethical concern, such an approach would: (1) allow minimising 
the effect of subjective beliefs on research outcomes, and (2) hold more ecological validity, as it would 
mimic the way approved treatments are delivered in the clinic, where all patients know to be receiving 
the active treatment (Fonteneau et al., 2019).

While this study focuses only on neuromodulation techniques, we want to highlight that the 
proposed approach can be applied to other forms of treatment (e.g. pharmacological studies, cogni-
tive training) tested as part of standard experiments or RCTs. It is worth noting that the contribution 
of subjective beliefs to experimental results might be even more enhanced when considering inter-
ventions carried out in seemly cutting-edge research settings, such as experiments involving virtual 
reality, neurofeedback paradigms, and other types of brain–computer interfaces. In such cases, partic-
ipants might be more susceptible to forming specific expectations about treatment effects (Fonte-
neau et al., 2019; Thibault et al., 2017; Mikellides et al., 2022). Therefore, the explanatory power 
of subjective beliefs could be intensified compared to more traditional forms of treatment, such as 
pharmacology.

One question emerging from this study is whether these results, observed with self-report measures, 
would apply to more objective behavioural outcomes (e.g. sensorimotor recovery in stroke patients, 
improvements in fluid intelligence in participants with learning difficulties) and neural functions (e.g. 
functional connectivity). We argue that the answer to this question is likely to be positive since placebo 
effects have been shown to impact not only behaviour but also brain activity (Fonteneau et al., 2019; 
Hashmi, 2018; Oken et al., 2008; Schmidt et al., 2014). However, independent of this possibility, the 
contribution of subjective treatment to explaining variability in self-reported outcomes should not be 
underestimated. Noteworthy, in most RCTs investigating the effect of different treatments on clinical 
and subclinical groups (e.g. depression, chronic pain, eating disorders, attention-deficit/hyperactivity 
disorder), some of which have also been approved by the FDA, the measurement of symptomatology 
is mostly based on self-reported outcomes, such as questionnaires. This consideration makes the case 
of subjective treatment even stronger, hinting at the potential role of this factor in explaining experi-
mental results across a variety of experimental outcomes and treatment types.

While our study examined the explanatory power of subjective beliefs about receiving treatment, 
neither of the four studies (similar to most studies in the field) collected data on participants’ expec-
tations. Indeed, as recently shown by Parong et al., 2022, expectations regarding the effectiveness 
of cognitive training (i.e. whether it will increase or decrease performance) can significantly modu-
late its effect. Thus, investigating the interplay between expectations and subjective treatment could 
allow examining the directionality and strength of the effect of subjective treatment on the outcome 
of interest. For instance, some participants may expect a treatment to improve their capabilities or 
symptoms. In contrast, others could expect even the opposite, and the level of these expectations 
can vary during the intervention. These factors could, in turn, impact individual variability in subjective 
treatment. Arguably, when questioned early, subjective treatment could be more related to expecta-
tions rather than an actual reflection of the treatment benefits. This variation may explain the findings 
in study 2 (decrements in depression for subjective sham treatment) compared to study 1 (decrements 
in depression for subjective active treatment), where only in the former were subjects questioned 
during the procedure (week 1) and not at its end. This possibility is a post hoc explanation, and future 
experiments collecting data on participants’ behavioural, cognitive and clinical outcomes should also 
record subjective expectations thoroughly (Boot et al., 2013Braga et al., 2021).

We want to highlight that, while we present subjective treatment as an important variable with 
explanatory power in addition to objective treatment, these results do not imply that participants’ 
subjective beliefs can explain all of the variability in research outcomes (see also in Hochman et al., 
in preparation; commenting to Gordon et  al., 2022). This is demonstrated in study 3, where the 
objective treatment significantly explained inattention symptoms even when subjective treatment 
was accounted for. Additionally, we present in Appendix 1 an example of a neuromodulation study 
in which objective treatment explained variability in treatment effects that could not be attributed 
to subjective treatment (Murphy et al., 2020). Based on this consideration, where researchers have 
data, examining variability in participants’ subjective treatment may add further insight into prior 
results. However, unsurprisingly, when researchers were contacted about providing data on subjective 
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treatment, many reported that the assessment of subjective beliefs, aside from side effects, was not 
recorded. Indeed, even our group’s procedure in the past lacked the recording of subjective treat-
ment (e.g. Looi and Cohen Kadosh, 2016; Cohen Kadosh et al., 2007).

Overall, our findings hold twofold importance. Firstly, we introduce two new concepts in the 
academic literature: subjective treatment and subjective dosage. Secondly, we cast light on the role of 
participants’ subjective experience in explaining the variability of results from RCTs and experiments 
that test the effectiveness of neuromodulation on mental health and behaviour. Altogether, we call 
for future studies to systematically collect data on participants’ subjective beliefs and expectations. 
Studies that have collected data on subjective beliefs at the start and end of the intervention may 
consider examining the potential contribution of such beliefs to their results. Aside from estimating 
subjective beliefs about belonging to the active or control condition, we suggest that future research 
may consider collecting and analysing data on : (1) participants’ beliefs before and at some midpoint 
during the experiment rather than only at the end, and (2) participants’ expectations about the direc-
tionality and strength of the effect of subjective treatment on expected outcomes. This approach 
would be enhanced with designs that include deception, whereby all participants are told that they 
received the active treatment. However, such designs require careful ethical review, particularly in 
clinical populations. Overall, such data will allow a thorough examination of subjective beliefs, yielding 
more valid and replicable results to progress scientific and clinical studies to benefit human health and 
behaviour.

Methods
Participants and design
Study 1
One hundred and twenty-one patients (77 females, age range 18–85) with treatment-resistant depres-
sion took part in this study based on the data from Blumberger et al., 2016. Patients were randomised 
as part of a mixed design to receive sequential bilateral rTMS, unilateral high-frequency left (HFL)-
rTMS, or sham rTMS for 3 or 6 weeks, depending on treatment response. Patients were included in 
the study if (1) the Structured Clinical Interview for DSM-IV provided a DSM-IV diagnosis of MDD; (2) 
they were experiencing a current major depressive episode with a score of 20 or higher on the 17-item 
HAMD-17; (3) they had failed to achieve a clinical response to or did not tolerate at least two different 
antidepressants from distinct classes at sufficient doses for at least 6 weeks; and (4) they had been 
receiving psychotropic medications for at least 4 weeks before randomisation took place. Patients 
were excluded if (1) a history of DSM-IV substance dependence was present in the 6 months before 
the study or a history of DSM-IV substance abuse was present in the month preceding the study; (2) 
the Structured Clinical Interview provided a DSM-IV provided a diagnosis of borderline personality 
disorder or antisocial personality disorder; (3) an unstable medical or neurological illness or a history of 
seizures was present; (4) they were suicidal; (5) they were pregnant; (6) had metal implants in the skull; 
(7) had a cardiac pacemaker; (8) had an implanted defibrillator or a medication pump; (9) presented 
a diagnosis of dementia or a current Mini-Mental State Examination (MMSE) score less than 24; and 
(10) they were taking lorazepam or an equivalent medication during the 4 weeks before the study.

Study 2
Fifty-two outpatients (20 females, age range 65–80) with late-life depression took part in this study, 
which was based on the data from Kaster et al., 2018. Patients were randomised as part of a mixed 
design to receive active deep rTMS or sham rTMS for 4 weeks. The same inclusion criteria applied 
as in experiment 1 aside from the age restriction and the depression diagnosis (defined based on 
a score of  ≥22 on the HDRS-24). Similarly, in addition to the exclusion criteria outlined in experi-
ment 1, patients were excluded if (1) any of the following diagnoses were present: bipolar I or II 
disorder, primary psychotic disorder, psychotic symptoms in the current episode, primary diagnosis of 
obsessive-compulsive, post-traumatic stress, anxiety, or personality disorder; (2) a dementia diagnosis 
was presented based on an MMSE with a score of <26; (3) rTMS contraindications (such as a history of 
seizures; intracranial implant); (4) a previously failed ECT trial during the current episode; (5) previous 
rTMS treatment; and (6) received bupropion >300 mg/day due to the dose-dependent increased risk 
of seizures.

https://doi.org/10.7554/eLife.88889
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Study 3
Sixty-four patients (30 females, mean M = 38.6, SD = 9.6, age range 18-60) with ADHD (48% inatten-
tive presentation and 52% combined presentation) took part in this study, which was based on the 
data from Leffa et al., 2022. Patients were randomised to receive active tDCS or sham tDCS for 4 
weeks for a total of 28 sessions. Patients were included in the study if they (1) met DSM-5 criteria for 
ADHD based on a semistructured clinical interview conducted by trained psychiatrists; (2) were either 
not being treated with stimulants or agreed to perform a 30 day washout from stimulants before 
starting the tDCS; (3) estimated IQ score of 80 or above (based on Wechsler Adult Intelligence Scale, 
Third Edition); and (4) self-reported being of European descendant. Patients were excluded if they (1) 
showed moderate-to-severe symptoms of depression or depression based on BDI; (2) had a diagnosis 
of bipolar disorder with a manic or depressive episode or history of non-controlled epilepsy with 
seizures in the year prior to the study; (3) had a diagnosis of autism spectrum disorder or schizophrenia 
or psychotic disorder; (4) positive screened for substance use disorder, (5) showed unstable medical 
condition with reduction of functional capacity; (6) pregnancy or willingness to become pregnant in 
the 3 months subsequent to the beginning of the study; (7) inability to use the home-based tDCS 
device for any reason, and (8) previous history of neurosurgery or presence of any ferromagnetic 
metal in the head or implanted medical devices in the head or neck region. The outcome measure was 
based on the inattentive scores in the clinician-administered version of the Adult ADHD Self-report 
Scale version 1.1.

Study 4
One hundred and fifty healthy participants (96 females, age M = 23, SD = 5) took part in this study, 
based on the data from Filmer et  al., 2019. All subjects were right-handed, normal or corrected 
to normal vision, and passed a safety screening procedure. Participants were tested as part of a 
between-subject design. Subjects were randomly assigned to either one of the following five condi-
tions: anodal 1 mA, cathodal 1 mA, 1.5 mA, 2 mA, or sham tDCS.

Materials and procedure
Study 1
All participants received treatment five times per week over 3 weeks for 15 treatments, only delivered 
on weekdays. After the first 3 weeks, participants were classified as either remitters (HAMD-17 score < 
8) or non-remitters (HAMD-17 score ≥ 8) based on blinded clinical ratings. Those who achieved remis-
sion completed the study at week 3, while those classified as non-remitters entered a second phase, 
during which they received an additional 3 weeks of the same treatment under double-blind condi-
tions. During the study, rTMS was administered using a Magventure RX-100 repetitive magnetic stim-
ulator (Tonika/Magventure) and a cool B-65 figure-8 coil. To derive stimulation intensity, the motor 
threshold was obtained before treatment. In order to localise the stimulation site (left DLPFC), a 
structural MRI was coregistered to participants’ heads using a magnetic tracking device (miniBIRD, 
Ascension Technology Group) for coil-to-cortex coregistration. Sham stimulation was administered 
in randomised fashion either as sham HFL-rTMS or sham bilateral rTMS with the coil angled 90° 
away from the skull in a single-wing tilt position, leading to some scalp sensations and sound inten-
sity similar to that of active stimulation. Moreover, participants could not see the coil, reducing the 
likelihood of detecting the treatment allocation. Full details of the neuronavigation procedure and 
applied stimulation can be found in the supplementary material of Blumberger et al., 2016. After the 
final session, participants were asked whether they thought they received active or sham stimulation 
(presented as a binary choice).

Study 2
Participants were randomised to active rTMS or sham rTMS, administered 5 d per week for a total of 
20 treatments over 4 weeks, and only delivered during weekdays. Participants achieved remission by 
the end of week 4 (defined as both HDRS-24 ≤ 10 and ≥60% reduction from baseline on two consec-
utive weeks). Participants were withdrawn if HDRS-24 increased from baseline >25% on two consecu-
tive assessments if they developed significant suicidal ideation or attempted suicide.
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This study administered rTMS using a Brainsway deep rTMS system with the H1 coil device (Brain-
sway Ltd, Jerusalem, Israel). The intensity was derived using the resting motor threshold (RMT) 
obtained before treatment. All participants included in the analysis received rTMS with the H1 coil 
targeting the dorsolateral and ventrolateral prefrontal cortex bilaterally and performed at 120% of the 
RMT. The active rTMS group received the following standardised dose of rTMS: 18 Hz, at 120% RMT, 
2 s pulse train, 20 s inter-train interval, 167 trains, for a total of 6012 pulses per session over 61 min. 
The sham group received treatment with the same parameters, device, and helmet. However, the 
active H1 coil was disabled when initiating the sham mode. A second coil (sham H1 coil) was located 
within the treatment helmet but activated far above the participant’s scalp. This sham H1 coil deliv-
ered a tactile and auditory sensation similar to the active H1 coil, but the electric field was insufficient 
to induce neuronal activation. Full details regarding the applied stimulation can be found in Kaster 
et al., 2018. After the first session, participants were asked whether they thought they received active 
or sham stimulation (presented as a binary choice) via a short questionnaire.

Study 3
The authors used a home-based tDCS device developed at Hospital de Clínicas de Porto Alegre for 
this study. The at-home tDCS device has been used in previous studies and included a user-friendly 
interface sensitive to impedance, such that sessions with too high impedance were automatically 
blocked. Furthermore, the number of the sessions, the dosage of the sessions and the stimulations 
were pre-programmed with a minimum interval between two consecutive sessions of 16 hr along with 
an option to abort a session (if necessary). Additionally, the capacity to save the number of sessions 
and time of stimulation performed by each participant was also controlled and pre-programmed. The 
current was delivered using 35 cm2 electrodes (7 cm × 5 cm) coated with a vegetable sponge moist-
ened with saline solution before the stimulation by two silicone cannulas coupled to the electrode. 
The electrodes were fixed on one of three sizes of neoprene caps that were given to each patient 
based on their head circumference.

Instructions on using the device were given at the baseline assessment when they received the 
first stimulation session, assisted by trained staff. Participants were instructed to remain seated during 
sessions, but no other behavioural restriction was imposed. Participants underwent 30  min daily 
sessions of tDCS, 2-mA direct constant current, for 4 weeks for a total of 28 sessions (including week-
ends). The anodal and cathodal electrodes were positioned over F4 and F3, corresponding to the 
right and left DLPFC according to the international 10–20 electroencephalography system. Devices 
programmed for sham treatment delivered a 30 s ramp-up (0–2 mA) stimulation followed by a 30 s 
ramp-down (2–0 mA) at the application’s beginning, middle, and end. This procedure was performed 
to mimic the tactile sensations commonly reported with tDCS. Also, each participant received a daily 
reminder in the form of a text message on their cell phones to improve adherence. The participants 
were encouraged to perform the stimulation sessions at the same time of the day. At the end of the 
study, participants reported whether they thought they received active or sham stimulation (presented 
as a binary choice).

Study 4
The experiment was conducted on a single day and consisted of three parts. Firstly, participants were 
familiarised with the experimental paradigm. Secondly, participants were instructed to sit quietly with 
their eyes open and stimulation was applied offline to the left prefrontal cortex for 20 min. Lastly, 
participants performed a sustained attention task for 40 min, during which mind wandering, the main 
outcome of this study, was measured. Overall, each participant completed a single session, lasting 
approximately 1.5 hr.

Stimulation was delivered with a NeuroConn stimulator (neuroConn GmbH, Ilmenau, Germany). 
The target was placed over F3 (EEG 10–20 system), and the reference was over the right orbitof-
rontal region. For the four groups who received active stimulation, tDCS lasted 20 min (including 30 s 
ramping up and down). During stimulation, participants were asked to sit quietly and keep their eyes 
open. The group that received sham stimulation had the same instructions but only received 15 s 
of constant current. The current was ramped up for 30 s up to 1.5 mA, then ramped down for 30 s. 
Stimulation was single-blinded, meaning that while the participants were blind to the stimulation they 
received, the experimenters were aware of the participant’s stimulation group.
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During the experiment, participants completed a sustained attention task (SART) in which they 
were asked to respond via a keypress (space bar) to non-target stimuli (single digits excluding the 
number 3) and withholding responses to target stimuli (the number 3) (see Figure 3a). Half of the 
trials ended in a target stimulus; the other half ended in a task-unrelated thought (TUT) probe. The 
TUT probe asked: “To what extent have you experienced task-unrelated thoughts prior to the thought 
probe? 1 (minimal) – 4 (maximal)”. Participants’ average response to the probe across trials was taken 
as a measure of mind wandering performance, with higher scores indicating higher mind wandering. 
At the end of the experiment, participants were asked whether they thought they received active or 
sham stimulation (presented as a binary choice) via a short questionnaire. Moreover, at the end of 
the study, participants were also asked to guess which stimulation dosage they received, choosing 
between the following options: none, weak, moderate, or strong.

Statistical analysis
Statistical analysis was run using R (version 4.2.0. for Windows). When considering a dependent vari-
able on a continuous scale (e.g. depression scores), the function lme4 (Bates et al., 2015) was chosen 
to fit a linear mixed-effects model in the formulation described by Laird and Ware, 1982. This analytic 
framework has two advantages over non-mixed linear models: (1) it allows the pooling of the same 
grand mean for both sham and the active groups at the baseline, and (2) the within-group errors are 
allowed to be correlated and/or have unequal variances. Hence, the assumption of homoscedasticity 
can be violated. When the dependent variables were coded as binary (e.g. remission and response 
rates), the function glm was chosen to run general mixed-effects models.

We here refer to the subject’s judgement of whether they received active or sham stimulation as 
subjective treatment, in opposition to objective treatment, which indicates the actual type of stimula-
tion that each subject received during the experiment. Similarly, we refer to participants’ judgement 
of stimulation dosage as subjective dosage. We performed a theoretically driven model compar-
ison to address the following two questions: (1) Does the inclusion of subjective treatment lead to a 
model with a significantly better fit than the baseline model including objective treatment (and time, 
when applicable) and do they interact? (2) Does the inclusion of objective treatment lead to a model 
with a significantly better fit than the baseline model including subjective treatment (and time, when 
applicable)?

In order to address the first question, we defined a baseline model including time, and time by 
objective treatment interaction as fixed effects. Time was defined as a categorical variable, with 
each level reflecting the weekly assessments from baseline to the end of the study. Participants were 
entered into the model as random effects. Notably, the reference levels for all of the models (the 
intercepts) were the baseline; therefore, each effect was imposed as a difference compared to the 
baseline performance. Thus, the effect of time grasps the overall time difference compared to the 
baseline. In the same vein, the interaction terms of time and treatments (either subjective or objec-
tive) could be conceptualised as a covariate capturing the effect of the treatment over time when 
compared to the baseline performance. Given our interest in the contribution of subjective treatment 
over time, we compared the baseline model to an updated model that also included subjective 
treatment in a two-way interaction with time. Model comparison was run using the anova function 
in R (R Development Core Team, 2022). Our focus was on whether the comparison was significant 
at α < 0.05, indicating that the inclusion of subjective treatment led to a considerably better model 
fit, explaining variability in the dependent variable in addition to the explanatory power of objective 
treatment over time.

Lastly, we compared the updated model to a more complex model, including the three-way inter-
action of time, subjective treatment, and objective treatment. In this case, our focus was whether 
the model comparison was significant, indicating that subjective treatment interacted with time and 
objective treatment to explain variability. As for the second question, we switched the order of the 
baseline models from the previous investigation. The baseline model included time and the interac-
tion of subjective treatment with time, and then the compared model included objective treatment. 
Henceforth, the additional comparison of the three-way interaction was identical to the one in the first 
question. That allows for establishing if the objective treatment explained variability over subjective 
treatment.
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Appendix 1
We here apply our approach to experimental study that examined the effect of non-invasive brain 
stimulation (NIBS) on participants’ working memory. In this case, we show that the inclusion of 
subjective treatment did not explained variability in experimental outcomes.

This study (Murphy et  al., 2020) compared the effects of different NIBS techniques, namely 
anodal tDCS, tRNS + DC-offset, or sham stimulation over the left DLPFC on working memory 
(WM) performance and task-related EEG oscillatory activity in 49 healthy adults. Participants were 
allocated to receive either anodal tDCS (N = 16), high-frequency tRNS + DC-offset (N = 16), or sham 
stimulation (N = 17) to the left DLPFC using a between-subjects design. The Sternberg WM task was 
used to measure changes in WM performance before, 5 min and 25 min post-stimulation. Moreover, 
event-related synchronisation/desynchronisation (ERS/ERD) of oscillatory activity was analysed from 
EEG recorded during WM encoding and maintenance. At the end of the experiment, participants 
were asked whether they thought they received active or sham stimulation (presented as a binary 
choice) via a short questionnaire.

We employed the same analytical approach as for experiments 1–4, looking at the contribution 
of subjective treatment to model fit over and beyond objective treatment and examining whether 
objective treatment explained variability in experimental outcomes (WM accuracy and reaction times) 
over and beyond subjective treatment. A linear mixed model with WM reaction time was fitted to the 
data for time 0–2 (before NIBS, 5 min after, and 25 min after). The baseline model included objective 
treatment (sham/tRNS/tDCS) as the main effect, as well as the interaction of time and objective 
treatment. We first added to this model subjective treatment (active or placebo) as a main effect. 
Next, we extended the model to include the two-way interaction of time and subjective treatment. 
Lastly, we considered a model with the three-way interaction of time, subjective treatment, and 
objective treatment. Our results showed that the inclusion of subjective treatment did not lead to a 
better model fit neither as a main effect (df = 13, BIC = 1824.16, AIC = 1785.28, p = 0.670) nor as 
a two-way interaction with time (df = 15, BIC = 1833.25, AIC = 1788.40, p = 0.642) and a three-way 
interaction with time and objective treatment (df = 21, BIC = 1856.48, AIC = 1793.70, p = 0.348). 
Hence, participants’ subjective experience about the treatment did not explain variability in reaction 
times beyond the actual treatment condition to which participants were assigned.

We next examined whether the changes in reaction time were explained by objective treatment. 
We, therefore, added objective treatment first and, following, objective treatment * time after 
subjective treatment * time was already included in the baseline model. Our results showed that 
the inclusion of neither objective treatment (df = 11, BIC = 1820.58, AIC = 1787.69, p = 0.139) 
nor objective treatment * time (df = 15, BIC = 1833.25, AIC = 1788.40, p = 0.121) led to a better 
model fit. Therefore, when accounting for participants’ subjective experience of receiving the real or 
placebo treatment, the actual treatment to which participants were assigned during the experiment 
did not contribute to explaining changes in WM reaction time.

Following, we run the same analysis with WM accuracy as the outcome of interest. Model 
comparison showed that subjective treatment did not lead to a better model fit neither as a main 
effect (df = 13, BIC = 1084.64, AIC = 1045.77, p = 0.069) nor as a two-way interaction with time 
(d f = 15, BIC = 1094.60, AIC = 1049.74, p = 0.990) and a three-way interaction with time and 
objective treatment (df = 21, BIC = 1122.48, AIC = 1059.68, p = 0.914). On the contrary, we next 
examined whether the changes in WM accuracy were explained by objective treatment. Our results 
showed that the inclusion of objective treatment (df = 11, BIC = 1089.73, AIC = 1056.84, p = 0.183) 
did not lead to a better model fit, but the interaction of objective treatment * time did (df = 15, 
BIC = 1094.60, AIC = 1049.74, p = 0.005). Therefore, when accounting for participants’ subjective 
experience of receiving the real or placebo treatment, the actual treatment to which participants 
were assigned during the experiment contributed to explaining changes in WM accuracy.

https://doi.org/10.7554/eLife.88889
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