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Abstract Wrapping of DNA into nucleosomes restricts accessibility to DNA and may affect the 
recognition of binding motifs by transcription factors. A certain class of transcription factors, the 
pioneer transcription factors, can specifically recognize their DNA binding sites on nucleosomes, 
initiate local chromatin opening, and facilitate the binding of co-factors in a cell-type-specific 
manner. For the majority of human pioneer transcription factors, the locations of their binding sites, 
mechanisms of binding, and regulation remain unknown. We have developed a computational 
method to predict the cell-type-specific ability of transcription factors to bind nucleosomes by inte-
grating ChIP-seq, MNase-seq, and DNase-seq data with details of nucleosome structure. We have 
demonstrated the ability of our approach in discriminating pioneer from canonical transcription 
factors and predicted new potential pioneer transcription factors in H1, K562, HepG2, and HeLa-S3 
cell lines. Last, we systematically analyzed the interaction modes between various pioneer transcrip-
tion factors and detected several clusters of distinctive binding sites on nucleosomal DNA.

eLife assessment
This valuable study aims to identify pioneer transcription factors - which are defined as transcription 
factors that compete with nucleosomes for DNA binding. The authors provide methods for identi-
fying pioneer transcription factors on a cell type basis, using nucleosome positioning and motif infor-
mation across different cell lines. The evidence to support the claims is largely solid. This work will 
be of interest to computational and molecular biologists working on transcription factors.

Introduction
In eukaryotic cell, DNA is packaged in the form of chromatin, yet, it should be dynamically accessed 
during transcription and replication processes at high spatiotemporal precision (Isbel et al., 2022). 
Open chromatin is thought to comprise actively transcribed genes, while compact chromatin contains 
repressed genes. However, many recent observations point to a limited association between DNA 
accessibility, chromatin compaction, and gene transcription at the global genomic scale. Indeed, 
rapid transcription activation may occur by relatively small changes of DNA solvent exposure, and 
localized nucleosomal array structures can be dynamically exposed without the large-scale chromatin 
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rearrangements (Zaret, 2020; Iwafuchi-Doi, 2019; Kono and Ishida, 2020; Chereji et al., 2019). 
Nucleosomes represent the basic subunits of chromatin structure and function. They comprise a 
histone octamer of four types of core histones of two copies each, and ~147 bp of DNA wrapped 
around them (Luger et al., 1997). Wrapping of DNA into nucleosomes inherently restricts DNA acces-
sibility and the recognition of binding motifs by transcription factors (TFs). Intrinsically disordered 
histone tails flank histone core domains and may also modulate DNA accessibility by forming tran-
sient interactions with the nucleosomal and linker DNA (Peng et al., 2021a). The control of the DNA 
accessibility at nucleosomal and subnucleosomal scales is of major importance in understanding of 
how certain TFs can target compact chromatin to induce transcription activation or repression (Klemm 
et al., 2019; Kornberg and Lorch, 2020; Peng et al., 2021b).

The differentiation of cells into different lineages occurs through chromatin reprogramming, 
involving the cooperative behavior of various TFs (Peñalosa-Ruiz et al., 2019; Balsalobre and Drouin, 
2022). Although nucleosomes generally hinder the binding of TFs, a certain class, so-called pioneer 
transcription factors (PTFs), can specifically recognize their binding sites on nucleosomal DNA, in some 
cases initiating local chromatin opening and facilitating subsequent binding of other co-factors in a 
cell-type-specific manner (Zaret, 2020; Balsalobre and Drouin, 2022). Several studies have revealed 
the critical roles of PTFs in mediating the cell-type-specific gene expression and establishment of cell 
lineage reprogramming (Peñalosa-Ruiz et  al., 2019; Balsalobre and Drouin, 2022; Jaenisch and 
Young, 2008).

Significant efforts have been made to characterize the interaction landscape between various TFs 
and nucleosomes (Zhu et al., 2018; Meers et al., 2019; Soufi et al., 2015; Luzete-Monteiro and 
Zaret, 2022; Tan and Takada, 2020). Using the NCAP-SELEX approach, a recent study has charac-
terized the interaction modes between nucleosomes and 220 TFs (Zhu et al., 2018). Another high-
throughput protein microarray study of 593 human TFs systematically identified the structural features 
of TFs binding with nucleosomes (Fernandez Garcia et al., 2019.) It has been revealed that the vast 
majority of TFs preferably bind naked DNA instead of nucleosomal DNA at physiological concen-
trations, whereas certain TFs specifically target nucleosomes at different locations and orientations 
(Zhu et al., 2018; Meers et al., 2019; Soufi et al., 2015). Moreover, several structures of PTFs in 
complex with nucleosomes have recently been resolved (Min and Liu, 2021; Michael et al., 2020; 
Dodonova et al., 2020; Tanaka et al., 2020). Despite significant advances in recent experimental 
approaches, the interaction modes of most TFs with nucleosomes remain obscure and their cell-type-
specific pioneer activities are largely unknown. Development of new computational approaches can 
improve our understanding of binding properties of various TFs with nucleosomes, thereby helping 
to identify novel PTFs.

Through the advances in high-throughput sequencing techniques, a large volume of data has been 
generated (e.g. ChIP-seq, ATAC-seq, DNase-seq, and MNase-seq data; Davis et al., 2018), which 
allows us to gain insights into the chromatin structure and details of epigenetic binding events. The 
rapid growth of such datasets has further stimulated the development of computational methods to 
characterize cell-type-specific TFs (Sherwood et al., 2014; Jankowski et al., 2016; Zheng et al., 
2021; Avsec et  al., 2021). Several machine learning models have been proposed to predict TF 
binding sites and identify sequence context features critical for TF binding (Sherwood et al., 2014; 
Zheng et al., 2021; Avsec et al., 2021; Kishan et al., 2021). In addition, gene regulatory network-
based approaches have helped to identify the key TFs in cell fate determination (Xu et al., 2021; 
Heuts et al., 2022). Despite the success of computational methods in genome-wide prediction of 
binding sites of canonical TFs, the locations of PTFs’ binding sites, mechanisms of binding, and regu-
lation have not been systematically explored.

Integrating data on nucleosome positioning and DNA accessibility (MNase-seq, ATAC-seq, and 
DNase-seq) with the data on DNA binding events, available through ChIP-seq and other methods, 
can reveal the interplay between TF binding and nucleosome positioning, providing insights into the 
mechanisms of PTF interactions with nucleosomes and their ability to modulate chromatin accessibility 
(Teif et al., 2014; Chen et al., 2021; Yu et al., 2021; Gong et al., 2022).Here we have developed a 
computational method to study the ability of TFs to bind nucleosomes by using ChIP-seq, MNase-seq, 
and DNase-seq datasets from five different cell lines. Our results point to the capability of our method 
to discriminate between pioneer and canonical TFs using experimental benchmarks. Additionally, 
we have predicted several TFs as potentially new cell-type-specific PTFs in H1, K562, HepG2, and 
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HeLa cell lines and performed multiple validations. Last, we have systemically analyzed the interaction 
modes between various PTFs and nucleosomes and detected six clusters of distinctive binding sites 
on nucleosomal DNA.

Results
TF binding motif enrichment analysis can identify PTFs
Nucleosomes are generally considered as an impediment to the binding of TFs to DNA and thus 
binding sites of TFs are typically depleted in DNA regions with high nucleosome occupancy. 
However, PTFs can recognize their binding motifs on nucleosomal DNA and trigger the opening 
of chromatin to recruit other TFs in a cell-type-specific fashion (Zaret, 2020; Zaret and Mango, 
2016). Therefore, we hypothesized that DNA binding sites of PTFs should not be depleted and, in 
some cases, should be enriched on nucleosome regions (NRs). At the same time, those canonical 
TFs that can preferentially bind to the naked DNA should exhibit the depletion of binding sites on 
NRs and enrichment in nucleosome-free regions. To quantitatively assess these trends, we have 
performed binding motif enrichment analysis for each of the 225 TFs and calculated the motif 
enrichment scores (Supplementary file 1—tables 1–4). We have further analyzed the enrichment 

Figure 1. The computational framework to analyze the ability of transcription factors to bind to nucleosomes by 
integrating ChIP-seq, MNase-seq, and DNase-seq data for motif enrichment and binding motif analysis.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Identification of differentially open and conserved open chromatin regions between H1 
embryonic cell line and any other differentiated cell lines.

Figure supplement 2. Identification of dinucleotide patterns of nucleosomal DNA (MCF7 cell line is shown as a 
representative case).

Figure supplement 2—source data 1. Source data for dinucleotide patterns of nucleosomal DNA.

https://doi.org/10.7554/eLife.88936
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of TF binding sites on NRs compared to the nucleosome-depleted regions (NDRs) (see Materials 
and methods for definition). The overall workflow of our computational framework is shown in 
Figure 1.

To validate our results, we have compiled three sets of known PTFs (Zaret, 2020; Balsalobre and 
Drouin, 2022; Zhu et al., 2018; Soufi et al., 2015) (which could also be found in our list of 225 TFs) 
as positives (Supplementary file 1—tables 5 and 6), whereas other TFs were considered as negatives 
for this test. Test set 1 includes 32 known PTFs. Some known PTFs were not included as they were not 
present in our original datasets. Test set 1 comprises Test set 2 and 3 and other known PTFs. Test set 
2 includes 11 known PTFs with specific roles in cell differentiation. Test set 3 includes seven known 
PTFs critical for the maintenance of embryonic stem cells or the reprogramming of somatic cells into 
induced pluripotent stem cells (Supplementary file 1—table 6). As we show in the next section, the 
negative set may also contain PTFs, therefore the classification accuracy values provided below can 
be considered as a lower bound estimates. Then, we performed the enrichment analysis by calculating 
the binding motif enrichment of different TFs on nucleosomal regions compared to NDRs.

The enrichment score of the 32 known PTFs from Test set 1 was found to be significantly higher 
than for other factors (p-value = 2.12*10–7 for all TFs and p-value = 4.33*10–5 for highly expressed 
TFs, Mann-Whitney U test, Figure 2—figure supplement 1 and Supplementary file 1—table 7). The 
results also show the efficiency of enrichment scores for the classification of PTFs (Supplementary file 
1—table 7, receiver operating curve [ROC] AUC = 0.69, precision-recall [PR] AUC = 0.33 and maximal 
Matthews correlation coefficient [MCC] = 0.31 for all TFs and ROC AUC = 0.71, PR AUC = 0.37 and 
maximal MCC = 0.31 for significantly expressed TFs).

Next, the validation pertaining to the ability of PTFs to open the closed chromatin was performed. 
We hypothesized that the enrichment score calculated based on NRs located in differentially open 
chromatin regions and NDRs located in conserved open chromatin regions would perform best in 
the classification of PTFs essential for cell differentiation (Test set 2). As can be seen in Figure 2 and 
Supplementary file 1—table 7, it is indeed the case and the classification accuracy increases from 
ROC AUC = 0.69 to 0.89 (from 0.71 to 0.92 for expressed TFs) upon the inclusion of differentially 
open regions compared to open regions (maximal MCC increased from 0.31 to 0.42). We found that 
known PTFs that acted as key regulators of cell differentiation had the highest enrichment scores in 
our ranking (Figure 2c). These cases (Test set 2) mainly included PTFs from the FOXA, GATA, and 
CEBP families (Costa et al., 2003; Smale, 2010; Lee et al., 2005) with GATA1 and GATA2 showing 
the highest enrichment scores.

Interestingly, PTFs in Test set 3 (responsible for the maintenance of embryonic stem cell or repro-
gramming of somatic cells) showed significantly lower enrichment scores compared to other TFs 
(Figure 2c and Figure 2—figure supplement 2). Yamanaka PTFs (POU5F1/OCT4 and KLF4) (Taka-
hashi and Yamanaka, 2006) were strongly depleted at nucleosomes (Figure 2c). It has been previ-
ously shown that Yamanaka PTFs might recognize partial sequence motifs on nucleosomal DNA and 
require other factors for their binding to nucleosomes (Soufi et al., 2015) and therefore their enrich-
ment score might not be expected to be high. We also found known PTFs with relatively low enrich-
ment scores including NFYA, NFYB, NFYC, and ESRRB. These TFs regulate stem cell proliferation 
and maintenance of stem cell identity (Bungartz et al., 2012; Gao et al., 2019; Iyer et al., 2016; 
Figure 2—figure supplement 2).

However, when we repeated our analysis by redefining differentially open regions as those closed 
in differentiated cell lines and open in H1 embryonic cell line, then ESSRB and Yamanaka PTF POU5F1 
(OCT4) showed significantly higher enrichment scores (Figure 2—figure supplement 3). This could 
be explained by the roles of Yamanaka factors in cellular reprogramming – they reprogram somatic 
differentiated cells into induced pluripotent stem cells.

Since PTFs often target enhancers, we have repeated the enrichment analysis using NRs located 
in differentially active enhancer regions and NDRs located in the conserved active enhancer regions 
but it led to the worse performance of the PTF classification (Figure 2—figure supplement 4). Here, 
differential enhancer regions refer to the active enhancer regions in an differentiated cell line that 
have less than 20% overlap with any active enhancer regions in embryonic (H1) cell line. Conserved 
active enhancer regions represent active enhancer regions that are more than 80% shared between 
embryonic H1 and at least one other differentiated cell line used in this study. We also explored 
different thresholds in defining differentially open and conserved open chromatin regions but the 

https://doi.org/10.7554/eLife.88936
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Figure 2. Identify pioneer transcription factors (PTFs) using motif enrichment analysis. (a) Transcription factor (TF) motif enrichment score is used to 
distinguish 32 known PTFs (Test set 1) from other TFs. Receiver operating curve (ROC) and precision-recall (PR) curve analysis of motif enrichment scores 
are performed. Here, nucleosome regions (NRs) were determined as genomic regions (147bp long) centered at the representative dyad positions and 
the nucleosome-depleted regions (NDRs) represent genomic regions free of nucleosomes and are located in open chromatin regions. The random 
retrieval classifier would predict with AUC = 0.5and PR = the fraction of true positives = 0.17. (b) TF motif enrichment score is used to distinguish 11 
known PTFs with essential roles in cell differentiation (Test set 2) from other TFs. Here, NRs in differentially open and NDRs in conserved open chromatin 
regions are used in enrichment analysis. The random retrieval classifier would predict with AUC = 0.5and PR = 0.04. (c) Classification of PTFs by binding 
motif enrichment scores. Known PTFs from Test set 2 and Test set 3 are indicated by squares and triangles, while other TFs are shown as circles. Colors 
corresponds to false discovery rate (FDR) q-values. Mann-Whitney U tests are performed under the null hypothesis that PTF’s mean values of enrichment 
scores are equal to canonical TFs. * – p-value <0.05; ** – p-value <0.005. (d) Binding motif profile of TFs with the highest and lowest motif enrichment 
scores (ranked at the top or bottom 10% among all TFs). The number of motifs for each TF is normalized within the range between 0 and 1 as follows: 
X(i)normalized = (X(i) – Xmin)/(Xmax – Xmin), X(i) is the number of sequences which have TF binding sites at the ith base pair from the nucleosomal dyad position; 
Xmax and Xmin represent the maximal and minimal counts of sequence fragments respectively. (e) Comparison of the enrichment score of TFs in different 
clusters identified from recent electromobility shift assay (EMSA) experiments (Fernandez Garcia et al., 2019). Only 13 TFs could be found in EMSA 
and our dataset. Clusters 1 and 2 include strong binders to both naked DNA and nucleosomal DNA and weak binders to both naked DNA and 
nucleosomal DNA (only one TF). Cluster 3: strong binders to naked DNA but weak binders to nucleosomal DNA.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for all TF enrichment scores calculated from motif enrichment analysis.

Figure supplement 1. Motif enrichment analysis of different transcription factors (TFs) using nucleosome-depleted regions (NDRs) located in open 
chromatin regions and all identified nucleosome regions (NRs).

Figure supplement 1—source data 1. Source data for the enrichment scores of TFs.

Figure supplement 2. Comparison of the enrichment scores of pioneer factors for the maintenance of embryonic stem cell or reprogramming of 
somatic cells into induced pluripotent stem cells (Test set 3, highlighted as red) with other transcription factors (TFs).

Figure supplement 3. Enrichment analysis of transcription factors (TFs) by redefining differentially open regions as those closed in differentiated cell 
lines and open in H1 embryonic cell line.

Figure supplement 3—source data 1. Source data of TF enrichment scores calculated from the enrichment analysis by redefining differentially open 
regions as those closed in differentiated cell lines and open in H1 embryonic cell line.

Figure supplement 4. Transcription factor (TF) motif enrichment score is used to distinguish 11 known pioneer transcription factors (PTFs) with essential 
roles in cell differentiation (Test set 2) from other TFs.

Figure supplement 4—source data 1. Source data of TF enrichment scores used for ROC analysis.

Figure supplement 5. Transcription factor (TF) motif enrichment score is used to distinguish 11 known pioneer transcription factors (PTFs) with essential 
roles in cell differentiation (Test set 2) from other TFs.

Figure supplement 5—source data 1. Source data for TF enrichment scores calculated with different thresholds.

https://doi.org/10.7554/eLife.88936
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performance in classifications of PTF was not significantly affected by the threshold choice (Figure 2—
figure supplement 5).

Finally, we performed an additional validation using recent data from the high-throughput protein 
microarray and electromobility shift assay experiments on human TFs which systematically assessed 
TF binding preferences to nucleosomal DNA versus naked DNA (Fernandez Garcia et al., 2019). 
The authors of this study classified TFs with respect to their strengths of nucleosome binding into 
three clusters: strong binders, which bind strongly to both naked and nucleosomal DNA (cluster 1), 
weak binders, which bind weakly to both naked and nucleosomal DNA (cluster 2), whereas cluster 3 
consists of strong binders which bind strongly to naked DNA but weakly to nucleosomal DNA. We 
found that TFs from their cluster 3 had the lowest enrichment scores although this trend was not 
statistically significant because of a lack of the data in this cluster. As to TFs in clusters 1 and 2, half of 
them had binding sites enriched on NRs (including known PTFs FOXA1, GATA4, and CEBPA) which 
corresponded to strong nucleosome binders, and another half had binding sites enriched on NDRs 
(Figure 2e).

Using gene expression data from the Roadmap Epigenomics Program (Bernstein et al., 2010) and 
enrichment analysis on all open chromatin regions, we have identified 39 TFs in H1, K562, HepG2, 
and HeLa-S3 cell lines (no expression data was available for MCF-7) that ranked highly in the enrich-
ment analysis and were also significantly expressed in the corresponding cell lines (Supplementary 
file 1—table 2). Among these 39 TFs, 15 TFs were well-characterized PTFs such as GATA, FOXA, and 
CEBP factors, ESRRB, NEUROD1, SPI1, and subunits of the AP-1 complex. To validate the remaining 
20 PTF predictions, we performed literature searches and found that RFX5 had the ability to displace 
nucleosomes (Zhu et al., 2018). In addition, many of the predicted PTFs, such as ZKSCAN1, USF1, 
USF2, and SRF, were confirmed by a recent study (Pop et al., 2023).

Next, using the enrichment score calculated based on NRs located in differentially open chromatin 
regions and NDRs located in conserved open chromatin regions, we identified 40 TFs that could act 
as PTFs with essential roles in cell differentiation in K562, HepG2, and HeLa-S3 cell lines. These identi-
fied TFs had their DNA binding sites significantly enriched on nucleosomal DNA of differentially open 
chromatin regions and were significantly expressed in the corresponding cell lines (Supplementary 
file 1—table 4). Among these 40 TFs, 15 were well-characterized PTFs including GATA, FOXA, and 
CEBP factors and subunits of AP-1 complex. For the remaining 25 PTF predictions, 7 TFs were anno-
tated in the literature as potential PTFs and/or potential nucleosome binders (Supplementary file 
1—table 8). For instance, HNF4A was annotated as a potential PTF active in chromatin remodeling 
in the liver (Qu et al., 2021), LEF1 was identified as a regulatory high mobility group box protein that 
could bind to nucleosomes (Steger and Workman, 1997), and CUX1 could specifically interact with 
its recognition motif in a nucleosomal context (Last et al., 1999).

Association between binding motif profiles and nucleosome occupancy 
for PTFs
The enrichment analysis described above is the first step to estimate the propensity of TF binding sites 
to be located on nucleosomal footprints. However, the enrichment analysis might have high specificity 
but a compromised sensititivity, as it can misclassify those PTFs that can bind to both naked DNA 
and nucleosomes at similar concentrations. Therefore, the next step would be to evaluate the actual 
locations of TF binding sites with respect to the nucleosomal dyad. To this end, we tested if there is 
a significant association between the binding motif profiles (see Materials and methods) and nucleo-
some occupancy values ±400 bp around the dyad (Figure 3a). Our results showed that 87% of all 225 
TFs had negative PCC between binding motif profiles and nucleosome occupancy values (Figure 3b) 
which is consistent with the fact that nucleosomes generally restrict the access of TFs to their binding 
sites on DNA molecules.

We have also identified 37 TFs that had a statistically significant positive correlation coefficients 
between binding motif profile and nucleosome occupancy and could be classified as potential nucle-
osome binders and PTFs (Supplementary file 1—table 9 and Figure 3). Among these predictions 
there were six known PTFs, such as POU5F1 (OCT4), GATA3, CEBPB, ATF2, NFYA, and NFYB (Supple-
mentary file 1—table 9). As we mentioned previously, NFYB, NFYA, and POU5F1 had low enrichment 
scores, but were identified as nucleosome binders by this correlation analysis. It could be explained 
by their dual nature: these factors can bind to nucleosomes using certain binding arrangements, as 

https://doi.org/10.7554/eLife.88936
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evident from their positive correlation coefficients, but at the same time, they can interact with the 
naked DNA, as evident from their low enrichment scores. Supplementary file 1—table 9 shows 
16 predictions that coincided with the predicted PTFs from the enrichment analysis (ATF2, BACH1, 
CEBPB, CTCF, ESRRA, HMBOX1, NFATC3, NFYB, SREBF2, USF1, USF2, ZNF24, ZNF274, ZNF282, 
ZNF460 and ZKSCAN1). Among those with high PCC>0.5, there were ZKSCAN1, ESR1, NFATC3, 
ZBTB7B, MAX, and TBX2. Half of them were also predicted to be pioneers by a recent study (Pop 
et al., 2023). With the exception of a few cases, none of TFs was identified as being pioneer in all cell 
types because pioneer activity is often cell-type-specific. For example, CTCF was identified as having 
a significant correlation (although low) between binding motif profile and nucleosome occupancy for 
the human embryonic stem cell line (PCC = 0.1, p-value <0.05), but not for other somatic cell lines 
(Figure 3d). Indeed, previous studies have indicated that CTCF proteins could access the binding sites 
in nucleosomes and may function as PTFs in embryonic stem cells and to a lesser extent in differenti-
ated cells (Teif et al., 2012; Teif et al., 2014; Voong et al., 2016).

Deciphering the interaction modes between TFs and nucleosomes
A recent study characterized the interaction landscape between PTFs and nucleosomes using NCAP-
SELEX (Nucleosome Consecutive Affinity-Purification with Systematic Evolution of Ligands by Expo-
nential Enrichment) (Zhu et al., 2018). It revealed different binding modes of PTFs: DNA end binding, 
dyad binding, gyre binding, and periodic binding (Zhu et al., 2018). The NCAP-SELEX approach was 
based on the analysis of enrichment of specific sequences from the DNA libraries. These sequences 

Figure 3. Association between the binding motif profiles and nucleosome occupancy. (a) Motif profiles for ZKSCAN1 in HeLa-S3 cell line is shown as 
an example. (b) Pearson correlation coefficients between motif profiles and nucleosome occupancy values for each transcription factor (TF) (n=225) 
(the median value of correlation coefficient = –0.46). (c) Binding motif profiles of TFs with positive (red, correlation coefficient ≥ 0.2and p-value <0.05) 
or negative correlation coefficients (black, correlation coefficient ≤ –0.4and p-value <0.05) between binding motif profile and nucleosome occupancy. 
Dashed lines correspond to the average of binding motif profiles. (d) Comparison of binding motif profiles of CTCF between H1 embryonic stem cell 
line and somatic cell lines (normalized within the range between 0 and 1).

The online version of this article includes the following source data for figure 3:

Source data 1. Source data for TF binding profiles, nucleosome occupancy levels and results of the correlation analysis.

https://doi.org/10.7554/eLife.88936
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were reconstituted into nucleosomes and incubated with TFs (Zhu et al., 2018). Then, the dissociated 
nucleosomal DNA was separated from the intact nucleosomes and the analysis of the enrichment 
of sequences allowed to identify TF binding specificities and binding site locations on nucleosomal 
DNA (Zhu et al., 2018). To compare our TF motif profiles with NCAP-SELEX data, we filtered out 
low-quality motif profiles using the criteria described in the Materials and methods section and then 
calculated motif enrichment scores for TFs with different binding modes identified by NCAP-SELEX 
approach. Due to the limited number of TFs observed in both our dataset and NCAP-SELEX study (24 
TFs), we mainly focused on the DNA end binding superhelical locations (SHLs) from ±5.5 to ±7 and 
the dyad binding modes with SHL from 0 to ±1.5. To estimate the preferential binding of TFs to the 
ends of nucleosomal DNA compared to the nucleosomal dyad, we calculated the end/dyad binding 
ratio (‍Rend/dyad‍) as the number of binding motifs at the DNA ends (SHLs from ±5.5 to ±7) divided by 
the number of binding motifs near dyad regions (SHLs from 0 to ±1.5).

In NCAP-SELEX experimental analyses, to quantify the preference of PTF binding to nucleosomes 
(Zhu et al., 2018), binding signals were compared by calculating the mutual information (MI) content 
between 3-mer distributions at two non-overlapping positions of the ligand, aimed at finding if SELEX 
ligand may contact these positions at the same time. Since nucleosomes can form on most DNA 
sequences, whereas TFs bind to only a few specific sequences, the NCAP-SELEX study calculated 
the enriched MI (EMI) score to separate the TF signals from nucleosome signals by limiting the MI 
measure to the top 10 most enriched 3-mer pairs. EMI penetration score corresponds to EMI drop by 
half compared to the EMI maximum and larger values pointed to the favorable binding to the dyad 
regions (Zhu et al., 2018). As our ‍Rend/dyad‍ and experimental EMI penetration values should be anti-
correlated, we indeed observed a statistically significant negative correlation between ‍Rend/dyad‍ and 
EMI penetration values (PCC = –0.45, p-value = 0.025). This shows that our computational analysis 

Figure 4. Clusters of transcription factor (TF) binding motif profiles on nucleosomal DNA. Binding motif profiles centered at nucleosomal dyad locations 
(±60bp from dyad) are clustered using k-medoids clustering with k=6. The entry/exit regions of nucleosomal DNA were excluded as a certain nucleotide 
bias exists around the ends of nucleosomal DNA reads produced by the MNase-seq experiments. Binding motif profiles between two symmetrical 
nucleosomal halves are combined for each TF. The black line represents the averaged profiles of all TFs in the same cluster. Cluster members with 
silhouette width ≤ 0.25 were considered as outliers and removed.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Source data for TF binding profiles in each cluster.

Figure supplement 1. Clusters analysis of TF binding motif profiles.

Figure supplement 2. A liner regression model describing the relationship between calculated transcription factor (TF) end/dyad binding ratio 
(‍τend/dyad ‍) from our study and the enriched mutual information (EMI) intensity and EMI penetration values from recent nucleosome NCAP-SELEX 
experiments (Zhu et al., 2018).

Figure supplement 2—source data 1. Source data of the EMI intensity and EMI penetration values from nucleosome NCAP–-SELEX experiments.

https://doi.org/10.7554/eLife.88936
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is able to capture the detailed features of TF binding motifs on nucleosomes. For the EMI inten-
sity, although a negative linear dependence trend was evident, the correlation was not significant 
(Figure 4—figure supplement 2).

Clustering analysis reveals several groups of PTF binding sites
Previous studies indicated that while nucleosome positioning acted as a barrier to TF binding, there 
was a number of different signatures of mutual TF/nucleosome positioning (Kundaje et al., 2012). 
We attempted to characterize the details of PTF binding motifs at near-single nucleotide resolution 
on nucleosomal DNA and performed k-medoids clustering of binding motif profiles for all 225 TFs 
(Figure 4 and Figure 4—figure supplement 1). TFs in the first and second cluster showed that motif 
density increased with the distance from the dyad. These clusters include cases of canonical factors or 
those PTFs that preferentially interact with the ends of nucleosomal DNA from SHLs ±5 to SHL ±6. In 
clusters 4 and 6, TFs preferentially interact with the nucleosomal DNA around the dyad regions and 
SHL from ±3.5 to SHL ±5.5, whereas TFs from clusters 3 and 5 preferentially occupy SHL 1 to SHL ±3, 
respectively. Indeed, it has been recently shown that GATA3 factor targets nucleosomal DNA around 
the SHL ±5.5 position (Tanaka et al., 2020).

We found that many TFs from the same family and even from different cell types were assigned to 
the same cluster. For example, all known PTFs from FOXA families belong to cluster 4 and indeed it has 
been shown that FOXA1 can target its binding motifs to nucleosomal DNA near the dyad and linker 
regions (Iwafuchi-Doi et al., 2016). However, there are a few exceptions, such as CEBPB, CREB1, 
CTCF, MEF2A, NFYA, and NFYB, where the same TF from different cell lines has been assigned to 
different clusters.

Discussion
The modulation of chromatin accessibility with high spatiotemporal precision is a subject of ongoing 
debate as it is a crucial factor in regulation of transcription, replication, and DNA repair processes. 
Chromatin accessibility is precisely modulated involving multiple aspects: epigenetic modifications, 
PTF infiltration, ATP-dependent remodeling, and spontaneous chromatin dynamics. There are about 
2000 TFs in the human genome and a few hundred of them may have PTF properties. Yet, for the vast 
majority of human PTFs, the locations of their binding sites and mechanisms of binding and regulation 
remain unknown (Fernandez Garcia et al., 2019; Lambert et al., 2018). There are many different 
experimental assays that can provide information on TF binding sites but these assays suffer from 
multiple drawbacks and often require prior knowledge of the TFs being tested. Moreover, PTFs are 
very dynamic, may target partial binding sites, and work cooperatively with other factors. For example, 
two recent cryo-EM structures of the PTF SOX2-nucleosome complexes showed different mechanisms 
of binding (Michael et al., 2020; Dodonova et al., 2020). All this complicates the identification and 
characterization of human PTFs pointing to the pressing need to develop predictors and classifiers 
(Zaret and Mango, 2016; MacCarthy et al., 2022; Zaret et al., 2016; Nagaich et al., 1999).

The goal of this study has been to gain functional insights into the mechanisms of binding and 
infiltration of PTFs into chromatin at the level of nucleosomes. To achieve this goal, we used ChIP-seq, 
MNase-seq, and DNase-seq data from five different cell lines for 225 human TFs. A computational 
framework has been developed to systemically investigate the ability of TFs to bind to nucleosomes. 
As a result, we found that using the information on differentially open chromatin regions (open in 
one cell line, closed in another) leads to the highest classification accuracy in discriminating pioneer 
from canonical TFs. This finding supports the view that TF binding to nucleosomes leads to DNA and 
chromatin opening and might correlate with the reprogramming potential (Fernandez Garcia et al., 
2019). Our study has also verified the known and predicted several dozens of new PTFs as nucleo-
some binders (Supplementary file 1—tables 2, 4, and 9). These predicted cases include TFs without 
previously known pioneer activity which could be subject to the future experimental validation. Finally, 
we have identified six distinctive clusters of TF binding profiles with the nucleosomal DNA. These 
clusters point to the diversity of binding motifs where TFs belonging to the same cluster may exhibit 
potential competitive binding.

We should mention that our classification method and the data used in this study have certain 
limitations. First, interactions of PTFs with nucleosomes may depend on binding of other factors. 

https://doi.org/10.7554/eLife.88936
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Second, PTF binding relies on specific recognition of DNA binding sites and can be governed by 
nucleosome dynamics. Indeed, initial stages of binding can happen via the DNA site exposure through 
thermal fluctuations, leading to DNA unwrapping and the formation of DNA looping or twist defects 
(Poirier et  al., 2009; Li et  al., 2022; Brandani et  al., 2018). PTFs can exploit DNA unwrapping 
and trap nucleosomes in a partially unwrapped states (Donovan et  al., 2019). TF binding motifs 
close to the nucleosome entry-exit sites may have increased exposure but would be error-prone to 
capture using MNase-seq data as a nucleotide bias exists around the ends of nucleosomal DNA reads 
produced by the MNase-seq experiments. Moreover, as we showed recently, the degree of sponta-
neous DNA unwrapping from nucleosomes depends on the incorporation of histone variants, like 
H2A.Z (Li et al., 2023), which, in turn, might be needed for PTF recruitment to promote embryonic 
stem cell differentiation (Li et al., 2012). The third group of limitations pertains to the nucleosome 
positioning in a genome, as binding dissociation constants for PTFs depend on where nucleosomes 
are located. Indeed, nucleosome positioning and stability is not uniform throughout the genome and 
depends on local nucleosomal DNA sequence, histone variant deposition, and epigenetic chromatin 
modifications. Finally, PTFs may exhibit multivalent binding recognizing not only DNA binding sites 
but also some parts of the histone core or histone tail regions. Deducing such dependencies from the 
experimental assays utilized in this study is very challenging, if not impossible.

Nucleosomes represent hub points in epigenetic signaling pathways and identifying complex 
epigenetic relationships at the level of single nucleosomes may yield functional insights into the mech-
anisms of binding and infiltration of PTFs into chromatin during differentiation and reprogramming. 
TFs regulate a large number of signaling pathways and their dysregulation contributes to a plethora 
of human diseases, including diabetes, cardiovascular diseases, and many cancers. Conventional TFs 
have been used for a long time as biomarkers and drug targets, however, the targeted therapeutic 
potential of PTFs is lagging. To fill this gap, integrative approaches using large-scale low- or medium-
resolution data with precise molecular modeling or protein-protein docking may provide the required 
detailed characterization of many predicted PTFs in the future.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers

Additional 
information

Software, algorithm nf-core-mnaseseq pipeline
The Bioinformatics & Biostatistics Group and 
Patel, 2020

https://github.com/nf-​
core/mnaseseq

Software, algorithm
Burrows-Wheeler Aligner 
(BWA) Li and Durbin, 2009a

https://bio-bwa.​
sourceforge.net

Software, algorithm BEDTools suite Quinlan and Hall, 2021

https://bedtools.​
readthedocs.io/​
en/latest/content/​
bedtools-suite.html

Software, algorithm FIMO Grant et al., 2011a

https://meme-suite.​
org/meme/doc/fimo.​
html

Software, algorithm t-SNE Donaldson, 2022

https://cran.r-project.​
org/web/packages/​
tsne/index.html

Software, algorithm Cluster Maechler et al., 2023

https://cran.r-project.​
org/web/packages/​
cluster/index.html

Software, algorithm TTR Ulrich and Smith, 2023

https://cran.r-project.​
org/web/packages/​
TTR/index.html

Genome-wide mapping of nucleosome dyads and footprint regions
High-coverage micrococcal nuclease sequencing data (MNase-seq) of five human cell lines (H1, HepG2, 
MCF-7, K562, and HeLa) from paired-end sequencing was used for nucleosome mapping (Supple-
mentary file 1—table 10). The raw MNase-seq data was downloaded from the NCBI Sequence Read 

https://doi.org/10.7554/eLife.88936
https://github.com/nf-core/mnaseseq
https://github.com/nf-core/mnaseseq
https://bio-bwa.sourceforge.net
https://bio-bwa.sourceforge.net
https://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html
https://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html
https://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html
https://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html
https://meme-suite.org/meme/doc/fimo.html
https://meme-suite.org/meme/doc/fimo.html
https://meme-suite.org/meme/doc/fimo.html
https://cran.r-project.org/web/packages/tsne/index.html
https://cran.r-project.org/web/packages/tsne/index.html
https://cran.r-project.org/web/packages/tsne/index.html
https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/cluster/index.html
https://cran.r-project.org/web/packages/cluster/index.html
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Archive (SRA) and converted into the fastq format using SRA Toolkit (Leinonen et al., 2011). Then, the 
downloaded fastq files were processed using the mnaseseq pipeline from nf-core (The Bioinformatics 
& Biostatistics Group and Patel, 2020; Ewels et al., 2020), a recently developed bioinformatics 
pipeline for MNase-seq data analysis. Adapter trimming of sequencing reads was performed with Trim 
Galore. Then, adapter-trimmed reads were mapped to the reference genome using Burrows-Wheeler 
Aligner (BWA) (Li and Durbin, 2009b). Human genome GRCh37 was used as a reference genome for 
reads mapping and the maximum number of mismatches in alignment was set to 4. The minimum and 
maximum insert sizes for filtering of mono-nucleosome paired-end reads were set to 120 and 180 bp. 
Duplicate reads were marked using Picard MarkDuplicates command (http://broadinstitute.github.​
io/picard/) and discarded from the analysis to avoid PCR duplication artifacts (less than 10% of reads 
were duplicated). Read libraries of replicates from the same experiment condition were merged into 
the analysis. Next, the BAM sequence alignment files were converted into BED format using bedtools 
v2.30.0 (Quinlan and Hall, 2010). The aligned reads with fragment sizes from 146 to 148 bp were 
selected for mapping of the representative dyad positions (center of the nucleosomal DNA).

To determine the representative dyad position of nucleosomes, we implemented and modified a 
previously developed nucleosome mapping protocol (Valouev et al., 2011) and dyad positions were 
determined as midpoints of mapped MNase-seq reads (Gaffney et al., 2012). Namely, we used a 
triweight kernel K as a weighting function (Equation 1) and the kernel-smoothed dyad counts D at 
each genomic coordinate i is calculated as (Valouev et al., 2011)
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Here, N is the length of a chromosome, d(j) is the dyad count at genomic coordinate j, and D(i) is 
the smoothed dyad count at genomic coordinate i. Small values of bandwidth h lead to less smoothing 
but more accurate estimates of dyad positions. In our case, we chose a relatively small bandwidth 
value h=15 to improve the accuracy of the mapped dyad positions.

Next, we identified the genomic locations with the local maximum values of the smoothed dyad 
counts using bwtool (Pohl and Beato, 2014) and the minimum distance between the neighboring 
local maxima was set to 150 bp with ‘find local-extrema -maxima -min-sep=150’. Then, for every 60 bp 
window centered at each local maxima, one representative dyad location was determined as the dyad 
location with the highest number of dyad counts in this interval. Other dyad positions within the same 
60 bp interval were discarded. If two or more dyad positions had the same dyad counts within the 
same interval, the dyad position located closest to the local maximum of the smoothed counts was 
selected as the representative dyad. Last, NRs were determined as genomic regions centered at the 
representative dyad positions and flanked by 73 bp segments on each side.

Genome-wide mapping of active enhancers, open chromatin, and NDRs
To map the open chromatin and active enhancer regions, we used DNase-seq and H3K27ac and 
H3K4me1 ChIP-seq data from the following five human cell lines (H1, HepG2, MCF7, K562, and 
HeLa-S3, Supplementary file 1—tables 10 and 11). The narrowPeak files were downloaded from 
the ENCODE and Roadmap project (Moore et  al., 2020; Kundaje et  al., 2015). The open chro-
matin regions were identified as genomic regions centered at narrow peaks and flanked by 1000bp 
segments on each side. The active enhancer regions were defined as the open chromatin regions 
overlapped with both H3K27ac and H3K4me1 ChIP-seq narrow peaks. The NDRs represent genomic 
regions free of nucleosomes and were identified as open chromatin regions not covered by any mono-
nucleosome fragments (120–180 bp length) in MNase-seq data in all replicate experiments.

Using open chromatin regions from the DNase-seq data, we identified differentially and conserved 
open chromatin regions using the ‘intersect’ command from the BEDTools suite (Quinlan and 
Hall, 2010). Conserved open chromatin regions represent open chromatin regions that are more 
than 80% shared between embryonic H1 and at least one other differentiated cell line used in this 
study (Piroeva et  al., 2023; Figure 1—figure supplement 1). Chromatin regions with differential 

https://doi.org/10.7554/eLife.88936
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accessibility (‘differentially open chromatin regions’) are defined as those that have less than 20% 
overlap between open regions in H1 embryonic cell line and open regions in one of differentiated cell 
lines so that these regions are closed in one cell line type and open in another (Piroeva et al., 2023; 
Figure 1—figure supplement 1). While predicting PTFs, that are important during the differentiation 
of embryonic stem cells (TFs in Test set 2), we defined differentially open chromatin regions as those 
closed in H1 and open in differentiated cell lines. Vice versa, based on their functions, for seven 
factors from Test set 3, which act in reprogramming somatic cells into induced pluripotent stem cells, 
we defined the differentially open regions as those closed in differentiated cell lines and open in the 
H1 embryonic cell line. For motif enrichment analysis of TFs, we selected two sets of NRs and NDRs: 
(1) NDRs located in the open chromatin regions and all identified NRs using the MNase-seq data; (2) 
NDRs located in conserved open chromatin regions and NRs located in the differentially open regions 
so that their accessibility may be associated with TF binding.

Analysis of dinucleotide patterns of nucleosomal DNA
Using identified representative nucleosome dyad positions, we examined dinucleotide patterns of 
nucleosomal DNA and mapped genomic coordinates of WW/SS (where W is A or T, and S is G or 
C) and YY/RR (R=A or G, and Y=C or T) dinucleotides on NRs. Then, we aligned NRs by superim-
posing their dyad positions and computed the frequency of observed dinucleotides at each location 
of nucleosomal DNA (as a function of distance in base pairs from the nucleosome dyad). As a result, 
we observed pronounced dinucleotide patterns at specific nucleosomal DNA positions for all cell lines 
which are indicative of the high quality of the data and nucleosome mapping procedure (Figure 1—
figure supplement 2).

Genome-wide mapping of TF binding sites
To map the genome-wide locations of binding sites of various TFs, we matched the ChIP-seq data 
from the ENCODE project (Moore et al., 2020) with the MNase-seq data for the same human cell 
lines (H1, HepG2, MCF-7, HeLa-S3, and K562) (Supplementary file 1—table 12). In case of HeLa cell 
line, we used ChiP-seq data in HeLa-S3, which is a clonal derivative of HeLa. In total, ChIP-seq data 
for 225 TFs could be matched with the corresponding MNase-seq data from the same cell type. All 
available narrow peak files of ChIP-seq of these TFs were downloaded, and files corresponding to the 
same TF were merged for further analysis. To map binding sites from ChIP-seq narrow peaks, referred 
to as ‘ChiP-seq TF motif’, we downloaded position frequency matrices (PFMs) for each TF from the 
JASPAR CORE database (Sandelin et  al., 2004). Then, we applied FIMO program (Grant et  al., 
2011b) to scan the DNA sequences within ChIP-seq narrow peaks using each PFM and identified 
motifs with p-value less than 10–4 for further analysis.

Next, we calculated the TF binding motif profiles or briefly ‘motif profiles’. To do that, we first 
mapped ChIP-seq TF motifs for a given TF to the closest nucleosome dyad position and then aligned 
all dyad positions and corresponding ChIP-seq TF motifs. For each TF binding motif, we consid-
ered sequences in both strands of DNA. Then, we counted the number of base pairs from different 
TF binding motifs that mapped at each location of nucleosomal DNA and flanking DNA regions 
(±1000 bp) around the dyad.

TF motif enrichment analysis
PTFs can engage nucleosomal DNA, while truly canonical TFs cannot bind to nucleosomes. To predict 
PTFs, we calculated the binding motif enrichment of different TFs on NRs compared to NDRs. Namely, 
we counted a number of base pairs of ChIP-seq TF motifs overlapped with the NRs and NDRs and 
constructed the following contingency table (Supplementary file 1—table 13). We then calculated 
the enrichment score for each TF (Equation 3) and applied a Fisher’s exact test to evaluate the signif-
icance of TF motif enrichment on NRs compared to NDRs.

	﻿‍ Enrichment score (Odds ratio) = (a/c)/(b/d)‍� (3)

Here, a and c are the numbers of base pairs overlapped with ChIP-seq TF motifs on NR and NDR, 
respectively. Counts b and d correspond to the number of base pairs outside of ChIP-seq TF motifs 
on NR and NDR, respectively. We further collected the data on expression levels of various TFs from 

https://doi.org/10.7554/eLife.88936
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the NIH roadmap epigenomics program and identified TFs which are significantly expressed in each 
cell line (RPKM value ≥ 10).

ROC and PR curve analyses were further performed to evaluate the power of enrichment scores in 
discriminating PTFs from other TFs. 32 known PTFs from the literature (which were also included in our 
list of 225 TFs) were used as positives (Supplementary file 1—table 5) and other TFs were considered 
as negatives for this test.

Clustering of TF binding motif profiles
To identify the prevalent interaction modes of various TFs with nucleosomes, we have performed 
clustering of TF binding motif profiles. Prior to clustering, we filtered out potentially low-quality 
binding profiles using the following criteria. First, we removed under-represented TFs with the total 
genome-wide cumulative sum of ChiP-seq TF motifs on NRs of less than 500 bp. Second, due to the 
twofold symmetry of DNA in nucleosome structures, ChiP-seq TF motifs on DNA complementary 
plus and minus strands should be structurally superimposed if the nucleosome structure is rotated 
by 180 degrees. If we are analyzing relatively large number of binding motifs on both DNA strands, 
binding motif profiles should be symmetrical with respect to the nucleosome dyad. Therefore, we 
calculated the Pearson correlation coefficient of motif profiles between two symmetrical nucleosomal 
halves (positive and negative SHLs of nucleosomal DNA) for each TF and removed those with Pearson 
correlation coefficient values less than 0.4.

Next, we applied t-distributed stochastic neighbor embedding (t-SNE) and projected all profiles 
onto two dimensions using the Rtsne function from the R package (van der Maaten, 2014). Then, the 
projected data were subjected to k-medoids clustering using the pam function from the R package 
with the number of clusters equal to 6 (Figure 4—figure supplement 1). The silhouette width is an 
estimate of the goodness of clusters, its values close to 1 correspond to a cluster where most objects 
are much closer to other objects in the same cluster than to other clusters. For each cluster, members 
with silhouette width ≤ 0.25 were considered as outliers and 33 outliers were removed.

Since Micrococcal Nuclease has a sequence bias and cleaves DNA upstream of A or T more effi-
ciently than of G or C nucleotides, a certain nucleotide preference exists around the ends of nucle-
osomal DNA reads produced by the MNase-seq experiments. It may potentially bias the TF binding 
profiles near the nucleosomal DNA ends. Therefore, in our analysis, we excluded regions near the 
nucleosomal DNA ends. To identify binding modes between TFs and nucleosomes, we clustered 
binding motif profiles of different TFs centered at the nucleosomal dyad locations (±60 bp from dyad) 
using k-medoids.
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