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Abstract A core aspect of human speech comprehension is the ability to incrementally inte-
grate consecutive words into a structured and coherent interpretation, aligning with the speaker’s 
intended meaning. This rapid process is subject to multidimensional probabilistic constraints, 
including both linguistic knowledge and non-linguistic information within specific contexts, and 
it is their interpretative coherence that drives successful comprehension. To study the neural 
substrates of this process, we extract word-by-word measures of sentential structure from BERT, 
a deep language model, which effectively approximates the coherent outcomes of the dynamic 
interplay among various types of constraints. Using representational similarity analysis, we tested 
BERT parse depths and relevant corpus-based measures against the spatiotemporally resolved brain 
activity recorded by electro-/magnetoencephalography when participants were listening to the 
same sentences. Our results provide a detailed picture of the neurobiological processes involved 
in the incremental construction of structured interpretations. These findings show when and where 
coherent interpretations emerge through the evaluation and integration of multifaceted constraints 
in the brain, which engages bilateral brain regions extending beyond the classical fronto-temporal 
language system. Furthermore, this study provides empirical evidence supporting the use of artificial 
neural networks as computational models for revealing the neural dynamics underpinning complex 
cognitive processes in the brain.

eLife assessment
This valuable study provides insights into how the brain parses the syntactic structure of a spoken 
sentence. Convincing evidence is provided that distributive cortical networks are engaged for 
incremental parsing of a sentence, and neural activity recorded by MEG correlates with sentence 
structure measures extracted by a deep neural network language model, that is, BERT. A contribu-
tion of the work is to use a deep neural network model to quantify how the mental representation of 
syntactic structure updates as a sentence unfolds in time.

Introduction
Human speech comprehension involves a complex set of processes that transform an auditory input 
into the speaker’s intended meaning, wherein each word is sequentially recognized and integrated 
with the preceding words to obtain a coherent interpretation (Marslen-Wilson and Tyler, 1980; Choi 
et al., 2021; Lyu et al., 2019). Crucially, rather than simple linear concatenation, individual words are 
combined according to the non-linear and often discontinuous structure embedded in an utterance as 
it is delivered over time (Everaert et al., 2015). For example, in the sentence “The boy who chased 
the cat was …”, it is the structurally close word ‘boy’, rather than the linearly close word ‘cat’, that is 
combined with ‘was’. However, the neural dynamics underpinning the incremental construction of a 
structured interpretation from a spoken sentence is still unclear.
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Previous neuroimaging studies on the structure of language primarily focused on syntax (Matchin 
and Hickok, 2020), contrasting grammatical sentences against word lists or sentences with syntactic 
violations (Law and Pylkkänen, 2021; Nelson et al., 2017), manipulating the syntactic complexity in 
sentences (Pallier et al., 2011), or studying artificial grammatical rules elicited by structured, unintelli-
gible strings (Friederici et al., 2006). Nevertheless, finding the structure in an unfolding sentence also 
depends on the constraints jointly placed by other linguistic properties and non-linguistic information 
such as the broad world knowledge (Bever, 1970; Tyler and Marslen-Wilson, 1977).

Unlike the two-stage model (Frazier, 1987; Frazier and Rayner, 1982) which posits an initial parsing 
stage relying solely on syntax, the constraint-based approach to sentence processing (MacDonald 
et al., 1994; Trueswell and Tanenhaus, 1994) proposes that speech comprehension is concurrently 
governed by multiple types of probabilistic constraints (e.g. syntax, semantics, world knowledge), 
generated by individual words as they are sequentially heard. There is no delay in the utilization of 
these multifaceted constraints once they become available, neither is a fixed priority assigned to one 
type of constraint over another; rather, it is the interpretative coherence of all available constraints that 
forms the basis for successful language comprehension (Altmann, 1998). Although lexical constraints 
of individual words can be estimated from large corpora data, it has been challenging to model 
the dynamic interplay between various types of linguistic and non-linguistic constraints in a specific 
context, especially at the sentence level and beyond.

Contemporary deep language models (DLMs) have made great strides in a wide array of natural 
language processing tasks, including text generation, parsing, and translation (Vaswani, 2017; Devlin 
et al., 2019; Brown, 2020; Ouyang et al., 2022). While current DLMs are still imperfect in terms 
of human-level language understanding related to reasoning and complex physical or social situa-
tions (Bisk et al., 2020), they are arguably valuable models of general linguistic capacities due to 
their ability to identify and leverage relevant statistical regularities of linguistic and non-linguistic 
world knowledge present in massive training data (Linzen and Baroni, 2021; Pavlick, 2022). Human 
language comprehension requires a contextualized integration of multifaceted constraints (Tyler 
and Marslen-Wilson, 1977; Marslen-Wilson, 1975; Kuperberg, 2007). In this regard, DLMs excel 
in flexible combination of different types of features (e.g. syntactic structure and semantic meaning) 
embedded in their rich internal representations (Linzen and Baroni, 2021; Pavlick, 2022; Bengio 
et al., 2021; Manning et al., 2020). Their deep contextualized representations capture the distrib-
uted regularities that jointly determine the coherent interpretation of a given sentence, providing 
context-dependent composition and quantitative measures of the underlying sentential structure. 
These properties relate back to Elman’s recurrent neural network (Elman, 1990; Elman, 1993) which 
automatically picks up and encodes lexical syntactic/semantic information in the hidden states.

Recent studies have revealed an overall congruence between language representations in DLMs 
and those observed in the human brain while processing the same spoken or written input (Schrimpf 
et al., 2021; Goldstein et al., 2022; Heilbron et al., 2022; Toneva et al., 2022; Caucheteux et al., 
2022; Caucheteux and King, 2022; Caucheteux et  al., 2023), suggesting the potential value of 
DLMs as a computational tool to investigate the neural basis of language comprehension. To move 
beyond comparing the similarities between entire model hidden states and brain activity, probing 
techniques that can extract specific contents from DLMs (Hewitt and Liang, 2019; Tenney, 2019) 
make it possible to study the neural dynamics relevant to processing such specific information. The 
important advance here is that we can leverage the deep learning strengths of DLMs to create rigor-
ously quantified models of the broader and multifaceted constraint environment in which a struc-
tured interpretation is constructed. Such models can be compared, dynamically, with more restricted 
and interpretable factors that capture the specific linguistic combinatorial constraints necessary for 
successful language comprehension.

Here, we take this approach further by designing sentences with contrasting linguistic structures 
and using a structural probe technique (Hewitt and Manning, 2019) to extract word-by-word contex-
tualized representations of sentential structures from a widely used DLM, namely, BERT (Devlin et al., 
2019). This provides the neurocomputational specificity required to elucidate the neural dynamics 
underlying the incremental construction of a structured interpretation from an unfolding spoken 
sentence. After a detailed evaluation of BERT structural measures according to the hypothesized 
constraint-based approach and human behavioural results, we used spatiotemporal searchlight repre-
sentational similarity analysis (ssRSA) (Kriegeskorte et al., 2008) to test these quantitative structural 
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measures and relevant lexical properties against source-localized EMEG data recorded while partici-
pants were listening to the same sentences. Our findings reveal how the structured interpretation of a 
spoken sentence is incrementally built under multifaceted probabilistic constraints in the brain.

Results
We constructed 60 sets of sentences with varying sentential structures (see ‘Materials and methods’) 
and presented them to human listeners. We also input them word-by-word to BERT to extract incre-
mental structural representations. These natural spoken sentences were constructed to balance off 
specifically linguistic constraints on interpretation against varying non-linguistic constraints as the 
sentence is incrementally interpreted, providing a realistic simulation of real-life language use. In each 
stimulus set, there are two target sentences differing only in the transitivity of the first verb (Verb1) 
encountered, that is, how likely it is that Verb1 takes a direct object see [a] and [b] below and Figure 1:

a.	 The dog found in the park was covered in mud.
b.	 The dog walked in the park was covered in mud.

In the first sentence, Verb1 (i.e. ‘found’) has high transitivity (HiTrans) and strongly prefers a direct 
object (e.g. ball), while in the second sentence, Verb1 (i.e. ‘walked’) has relatively low transitivity 
(LoTrans) and is often used without a following direct object. Critically, the structural interpretation of 
these sentences is ambiguous at the point Verb1 is encountered, and the preferred human resolution 
of this ambiguity depends on the real-time integration of linguistic and non-linguistic constraints as 
more of the sentence is heard. In the example above, the sequence “The dog found …” could initially 
have either an active interpretation – where the dog has found something – or a passive interpretation 

Figure 1. Example spoken sentence stimuli and plausible structured interpretations. The two target sentences in each set differ only in the transitivity of 
the first verb (Verb1). Each sentence has two possible structured interpretations before the actual main verb is presented: an active interpretation, where 
the subject noun (SN) performs the action, and a passive interpretation, where the SN is the recipient of the action. The interpretative preference hinges 
on the likelihood of the SN acting as an agent or a patient (i.e. its thematic role) in conjunction with the transitivity of Verb1. As the sentence progresses 
to the prepositional phrase, a combination of higher SN agenthood and greater Verb1 intransitivity (i.e. a higher active index) generally favours an 
active interpretation. Conversely, increased SN patienthood coupled with higher Verb1 transitivity (i.e. a higher passive index) may lead to a passive 
interpretation. Note that while the SN is the same for the two target sentences within the same set, it varies across different sentence sets. All images 
were generated using Midjourney for illustrative purposes.

https://doi.org/10.7554/eLife.89311
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– where the dog is found by someone (Figure 1). Because ‘find’ is primarily a transitive verb, the 
human listener is likely to be biased towards an initial active interpretation. Similarly, the sequence 
“The dog walked …”, where walk is primarily used as an intransitive verb (without a direct object), 
could also bias the listener to an active interpretation, where the dog is doing the walking, rather than 
the less frequent passive interpretation where someone is taking the dog for a walk (i.e. walking the 
dog).

This initial structural interpretation up to Verb1 does not, however, just depend on linguistic knowl-
edge such as Verb1 transitivity. It also depends on non-linguistic information, that is, how likely the 
subject is (or is not) to adopt the active (agent) role to perform the specified action (Dowty, 1991; 
Marslenwilson et al., 1993), that is, ‘thematic role’ properties of the subject noun. Although it could 
be reflected by statistical regularities in language, thematic role preference hinges more on world 
knowledge, plausibility, or real-world statistics. So, regardless of Verb1 transitivity, the active interpre-
tation should be more strongly favoured in “The king found/walked …” given the higher agenthood 
of the ‘king’ and thus the greater implausibility of a passive interpretation involving a ‘king’ relative 
to a ‘dog’. Hence, the word-by-word interpretation of the sentential structure – and of the real-world 
event structure evoked by this interpretation – is determined by the constraints jointly placed by the 
subject noun and Verb1, which is manifested by the interpretative coherence between non-linguistic 
world knowledge (i.e. thematic role preference) and linguistic knowledge (i.e. verb transitivity).

As the sentence evolves, and the prepositional phrase ‘in the park’ that follows Verb1 is incre-
mentally processed, there is further modulation of the preferred interpretation, again reflecting both 
Verb1 transitivity and the plausibility of the event being constructed. Specifically, the passive inter-
pretation will become more preferred in a HiTrans sentence, given the absence of an expected direct 
object for the highly transitive Verb1, so Verb1 tends to be interpreted as a passive verb [i.e. the head 
of a reduced relative clause in “The dog (that was) found in the park …”]. Conversely, in a LoTrans 
sentence, the active interpretation of Verb1 is strengthened by the incoming prepositional phrase, 
which is in accord with the verb’s intransitive use and the event conjured up by the sequence of words 
heard so far (e.g. “The dog walked in the park …”). Hence, these two sentence types are likely to 
differ in the structural interpretation preferred by the end of the prepositional phrase. However, with 
the appearance of the actual main verb (e.g. ‘was covered’ in the example sentences), the active 
interpretation of Verb1 as the main verb will be completely rejected, which resolves the potential 
ambiguity and confirms the passive interpretation in both HiTrans and LoTrans sentences.

In brief, understanding these complex sentences require listeners to integrate discontinuous words 
to solve a long-distance dependency between the subject noun and the actual main verb separated 
by an intervening clause. This engages the neurobiological processes of integration across different 
lexical constraints and multiple levels of the sentence processing system. For example, the incre-
mental building, maintenance, and update of sentential structure over time might primarily involve 
activity in the fronto-temporal regions (Friederici, 2012), while estimating the plausibility of the event 
interpreted from the sentence with prior knowledge of the world may elicit neural responses in the 
default mode network (DMN) (Yeshurun et al., 2021).

Human incremental structural interpretations
As the first step, and to quantify how the stimulus sentences exemplified a constraint-based account 
of incremental structural interpretation, we conducted two pre-tests where participants listened to 
sentence fragments, starting from sentence onset and continuing either until the end of Verb1 or to 
the end of the prepositional phrase (Figure 2A), and then produced a continuation to complete the 
sentence (see ‘Materials and methods’). Based on the continuations provided by the listeners at these 
two gating points, we can infer their online structural interpretations.

In the continuations after Verb1, a direct object was more likely to be found in HiTrans sentences, 
indicating a transitive use of Verb1, while an opposite pattern was found for a PP continuation, indi-
cating an intransitive use of Verb1 (Figure 2B). As expected, the probability of a main verb (MV) in the 
continuations after the prepositional phrase was lower in LoTrans sentences (Figure 2C), suggesting 
that listeners preferred the active interpretation and tended to interpret Verb1 as the main verb by the 
end of the prepositional phrase in LoTrans sentences, and vice versa in HiTrans sentences. Crucially, 
neither of the two pre-tests resulted in a complete separation between HiTrans and LoTrans sentences; 
instead, they were characterized by two different but overlapping probabilistic distributions. This 
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finding suggests that passive and active interpretations varied in plausibility in each sentence type 
before the actual main verb was presented, reflecting the probabilistic constraints jointly placed by 
the combination of the specific subject noun, Verb1, and the prepositional phrase in each sentence.

To relate these human interpretative preferences to the broader landscape of distributional 
language data, we developed corpus-based measures of the thematic role preference of the subject 
noun (i.e. how likely it is interpreted as an agent that conducts an action) and the transitivity of Verb1 
in each sentence, from which we derived a passive index and an active index (see ‘Materials and 
methods’). These indices separately capture the interpretative coherence between these two lexical 
properties towards passive and active interpretations. Both high subject noun agenthood and low 
Verb1 transitivity coherently preferred an active interpretation as the prepositional phrase was heard 
(i.e. a high active index), and vice versa for the passive interpretation (i.e. a high passive index). In 
accord with the constraint-based hypothesis, we found that human interpretative preference for the 
two types of sentences was significantly correlated with the lexical constraints placed by the subject 
noun and Verb1 (Figure 2D).

Figure 2. Human incremental structural interpretations derived from continuation pre-tests. (A) An example set of target sentences differing only in 
the transitivity of Verb1, HiTrans: high transitivity; LoTrans: low transitivity. Det: determiner; SN: subject noun; V1: Verb1; PP1–PP3: prepositional phrase; 
MV: main verb; END: the last word in the sentence. (B) Probability of a direct object (left) and a prepositional phrase (right) continuation after Verb1. 
(C) Probability of a main verb in the continuations after Verb1, which indicates an active interpretation. (D) Correlations between corpus-based lexical 
constraints and probabilistic interpretations in the two pre-tests (Spearman rank correlation, black dots indicate significance determined by 10,000 
permutations, PFDR<0.05 corrected).

https://doi.org/10.7554/eLife.89311
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Incremental structural representations extracted from BERT
Next, we extracted structural representations at various positions in the same sentences from BERT 
and evaluated them according to the constraint-based hypothesis and human behavioural results. This 
evaluation is needed to motivate the use of BERT structural measures to reveal how the structured 
interpretation of a spoken sentence is incrementally built in the brain.

Typically, the structure of a sentence can be represented by a dependency parse tree (MacCartney 
and Manning, 2006), where words are situated at different depths given their structural dependency 
(Figure 3A). Each edge links two structurally proximate words as being the head and the dependent 
separately (e.g. a verb and its direct object). However, such a parse tree is context-free, that is, it only 
captures the syntactic relation between each pair of words and abstracts away from the specific lexical 
(and higher order) contents of the sentence that constrain its structural interpretation. This context-
free parse depth is always the same for words at the same position in sentences with the same struc-
tured interpretation (e.g. ‘found’ and ‘walked’ in either of the two parse trees in Figure 3A).

To obtain structural measures that also encode the specific lexical contents in a sentence, we 
adopted a structural probing technique (Hewitt and Manning, 2019) to reconstruct a sentence’s 
structure by estimating each word’s parse depth based on their contextualized representations gener-
ated by BERT (see ‘Materials and methods’). Note that BERT is a multi-layer DLM (24 layers in the 
version used in this study) which may distribute different aspects of its computational solutions over 
multiple layers. Accordingly, we trained a structural probing model for each layer and selected the one 
with the most accurate structural representations while also including its neighbouring layers to cover 
relevant upstream and downstream information. Following this strategy, we used the BERT structural 
measures obtained from layers 12–16 with the best performance achieved in layer 14 (see Figure 3—
figure supplement 1 and ‘Materials and methods’).

We input each sentence word-by-word to the trained BERT structural probing models, focusing 
on the incremental structural representation being built as it progressed from Verb1 to the main verb 
(see examples in Figure 3B and C). Note that we defined the first word after the prepositional phrase 
as the main verb since its appearance is sufficient to resolve the intended structure where Verb1 is 
a passive verb. We found that, for each type of sentences, the BERT parse depth of words at the 
same position formed a distribution ranging around the corresponding context-free parse depths 
in either the passive or the active interpretation (see Figure 3—figure supplement 2), suggesting 
a word-specific rather than position-specific structural representation. In addition, we quantified the 
contributions of words at different positions to the variances encoded in BERT parse depth vectors. 
Our analysis revealed that content words contributed significantly more than function words (i.e. the 
determiners) (see Figure 3—figure supplement 3).

Then we visualized BERT’s word-by-word structural measures, focusing on the dependency between 
the subject noun and Verb1 that is core to the current interpretation of the sentence – whether the 
subject noun is the agent or the patient of Verb1. To this end, we built a three-dimensional (3D) vector 
including BERT parse depths of the first three words up to Verb1 for each sentence (e.g. “The dog 
found …”). This 3D vector was updated incrementally with each additional word in the input, thereby 
capturing the dynamic interpretation of the structural dependency between the subject noun and 
Verb1, influenced by the context provided by subsequent words in a specific sentence. Like the proba-
bilistic interpretation found within each type of sentences in human listeners, trajectories of individual 
HiTrans and LoTrans sentences are considerably distributed and intertwined (see the upper panel of 
Figure 3D), implying that BERT structural interpretations are sensitive to the idiosyncratic contents in 
each sentence.

To make sense of these trajectories, we also vectorized the context-free parse depth of the first 
three words indicating passive and active interpretations (Figure 3A) separately and located them 
in the 3D vector space as landmarks (hollow triangle and circle in Figure 3D), so that the plausibility 
of either interpretation can be estimated by a sentence’s distance from its landmark. As shown by 
the trajectories of the median BERT parse depth of the two sentence types (see the lower panel of 
Figure  3D), in general, HiTrans sentences continuously moved towards the passive interpretation 
landmark after Verb1, with a significant change of distances detected at the main verb (see the orange 
bars in Figure 3E). LoTrans sentences started by approaching the active interpretation landmark but 
were reorientated to the passive counterpart with the appearance of the actual main verb, with signif-
icant changes of distances detected at both Verb1 and main verb (see the purple bars in Figure 3E). 

https://doi.org/10.7554/eLife.89311
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Figure 3. Incremental interpretation of sentential structure by BERT. (A) Context-free dependency parse trees of two plausible structural interpretations. 
Left: passive interpretation where V1 is the head of a reduced relative clause. Right:aActive interpretation where V1 is the main verb. (B) Incremental 
input to BERT structural probing model, with the lightness of dots encoding different positions in the target sentences. Det: determiner; SN: subject 
noun; V1: Verb1; PP1–PP3: prepositional phrase; MV: main verb; END: the last word in the sentence. (C) BERT structural probing model is trained to 
output a parse depth vector, representing the parse depths of all the words in the sentence input. The BERT parse depth for a specific word is updated 
incrementally as the sentence unfolds word-by-word. In this example, the parse depth of ‘found’ increases with the presence of the prepositional 
phrase, indicating an increased preference for the passive interpretation according to the context-free parse depths in (A). (D) Incremental interpretation 
of the dependency between SN and V1 in the model space consisting of the parse depth of Det, SN, and V1. Upper: Each coloured circle represents the 
parse depth vector up to V1 derived at a certain position in the sentence (with the same colour scheme as in B). The hollow triangle and circle represent 
the context-free dependency parse vectors for passive and active interpretations in (A). Lower: incremental interpretation of the two target sentence 
types represented by the trajectories of median parse depth. (E) Distance from passive and active landmarks in the model space as the sentence unfolds 
(between each coloured circle and the two landmarks in the upper panel of D) (two-tailed two-sample t-test, *p<0.05, **p<0.001, n = 60 for both HiTrans 
and LoTrans sentences, error bars represent SEM).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Performance of structural probing models trained on different BERT layers.

Figure supplement 2. BERT structural representations of incremental sentence inputs.

Figure supplement 3. Contribution of words at different positions in BERT parse depth vectors.

https://doi.org/10.7554/eLife.89311
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These results resemble the pattern of human interpretative preference observed in the continua-
tion pre-tests (Figure 2C), where the passive and active interpretations were separately preferred in 
HiTrans and LoTrans sentences by the end of the prepositional phrase in a probabilistic manner, before 
the passive interpretation was established with the appearance of the actual main verb.

BERT structural measures are correlated with constraints driving human 
interpretation
To further assess whether BERT’s preferences for structural interpretation align with the constraints 
considered by human listeners during speech comprehension, we correlated BERT structural measures 
with relevant corpus-based measures and human behavioural data (see ‘Materials and methods).

We first focused on BERT’s interpretative mismatch quantified as the distance between an unfolding 
sentence and each of the two landmarks in the model space, which was dynamically updated as the 
sentence unfolded (Figure  3D). Consistently, from the incoming prepositional phrase to the main 
verb, sentences that are closer to the passive landmark in the model space have higher Verb1 tran-
sitivity, a higher passive index but a lower active index, while sentences closer to the active interpre-
tation landmark exhibited higher active index and lower passive index (Figure 4A and B). Moreover, 
at the beginning of the prepositional phrase, the change of distance towards either interpretation 
landmark between two consecutive words is also correlated with these constraints (Figure 4C and D), 
suggesting an immediate update in the structural interpretation in combination with the accumulated 
constraints from the preceding subject noun and Verb1.

Figure 4. Correlation between incremental BERT structural measures and explanatory variables. BERT structural measures include (A, B) BERT 
interpretative mismatch represented by each sentence’s distance from the two landmarks in model space (Figure 3D); (C, D) dynamic updates of BERT 
interpretative mismatch represented by each sentence’s movement to the two landmarks; (E, F) overall structural representations captured by the first 
two principal components (i.e. PC1 and PC2) of BERT parse depth vectors; (G, H) BERT Verb1 (V1) parse depth and its dynamic updates. Explanatory 
variables include lexical constraints derived from massive corpora and the main verb probability derived from the continuation pre-test (Spearman 
correlation, permutation test, PFDR<0.05, multiple comparisons corrected for all BERT layers, results shown here are based on layer 14, see Figure 4—
figure supplements 1–3 for the results of all layers, see Figure 7—figure supplement 1 for the dynamic change of Verb1 parse depth); PP1–PP3: 
prepositional phrase; MV: main verb; END: the last word in the sentence.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation between BERT structural interpretations and explanatory variables.

Figure supplement 2. Correlation between the principal components (PCs) of BERT parse depth vectors and explanatory variables.

Figure supplement 3. Correlation between BERT parse depth of individual words and explanatory variables.

https://doi.org/10.7554/eLife.89311
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Moreover, we found that both the incremental BERT parse depth vectors as a whole (which are 
captured by their principal components) and the BERT parse depth of Verb1 (which is the most indic-
ative marker of the interpretation preferred) are correlated with the constraints placed by the subject 
noun and Verb1 (Figure 4E–H). Moreover, the significant effects consistently found as the sentence 
unfolds suggest that properties of preceding words are used to constrain the interpretation of the 
upcoming input, which is key to resolving discontinuous structural dependencies. In addition, we 
found that BERT structural interpretations were also correlated with the main verb probability in the 
continuation pre-test which directly reflects human interpretation preference (black bars in Figure 4).

Overall, these results illustrated, at which position in a sentence, relevant lexical constraints started 
being encoded by BERT, which also validated the contextualized BERT structural measures in terms 
of the constraint-based hypothesis and human behavioural results, and motivated the use of them 
to probe the neural processes involved during the incremental structural interpretation of spoken 
sentences.

Neural dynamics of incremental structural interpretation
To study how the structured interpretation of a spoken sentence is built word-by-word in the brain, 
we used ssRSA to test the incremental BERT structural measures in source-localized EMEG collected 
when the same sentences were delivered to human listeners (see Figure 5 for the pipeline of ssRSA). 
This combination of methods gains improved neurocomputational specificity by probing the spatio-
temporally resolved neural activity with detailed structural representations rather than the entire 
hidden states of BERT. We compared the representational geometry of BERT structural measures 
with that of neural responses inside a spatiotemporal searchlight moving across the cortical surface, 
significant model fits showed when and where the incremental structural interpretations or relevant 
lexical constraints emerge and update in the brain. Given the probabilistic interpretations in BERT 
and human listeners reported above, we combined HiTrans and LoTrans sentences as one group to 
increase the range of pair-wise dissimilarity to be modelled in ssRSA.

We began with the BERT parse depth vector containing the parse depth of each word in an incre-
mental input, providing a dynamic structural representation updated as the sentence unfolded. Then, 
we tested the interpretative mismatch between the incremental BERT parse depth vector and the 
corresponding context-free parse depth vector for the passive or the active interpretation. The degree 
of this mismatch is proportional to the evidence for or against the two interpretations, that is, the 

Figure 5. Illustration of the pipeline for spatiotemporal searchlight representational similarity analysis (ssRSA). For each pair of sentences, we extract 
their BERT or corpus-based measures and calculate the dissimilarity between these measures, resulting in a model representational dissimilarity matrix 
(RDM). Meanwhile, we also extract the neural activity recorded while participants are listening to these sentences and calculate their dissimilarity to 
create a data RDM. Specifically, we use a spatiotemporal searchlight in EMEG source space, which moves across the brain and captures the neural 
activity within a 10-mm-radius sphere over a 60 ms sliding time window. By correlating the model RDM with data RDMs from all spatiotemporal 
searchlights, we can identify whether, and if so, when and where the brain represents the information captured by the model RDM. The ssRSA is 
conducted in V1, PP1, and MV epochs, respectively, with HiTrans and LoTrans sentences combined as one group (i.e. 120 sentences in total).
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smaller the distance, the more positively loaded this interpretation. Besides these two measures based 
on the entire incremental input, we also focused on Verb1 since the potential structural ambiguity lies 
in whether Verb1 is interpreted as a passive verb or the main verb. Given the context-free parse depth 
of Verb1 that is 2 in the passive interpretation and 0 in the active interpretation (Figure 3A), with each 
incoming later word, an increased BERT Verb1 parse depth towards 2 or a decreased value towards 
0 reflects separately the preference biased to a passive or an active interpretation (Figure 7—figure 
supplement 1). All quantitative measures tested in ssRSA are summarized in Supplementary file 1.

For the listener’s neural activity, we focused on three critical epochs in each sentence: (a) Verb1 
– when its structural dependency with the preceding subject noun was initially established despite 
potential ambiguity; (b) the preposition – when the initial structural interpretation started being 

Figure 6. Neural dynamics underpinning the emerging structure and interpretation of an unfolding sentence. (A–C) Spatiotemporal searchlight 
representational similarity analysis (ssRSA) results of BERT parse depth vector up to Verb1 (V1), the preposition (PP1), and the main verb (MV) in epochs 
separately time-locked to their onsets. (D–F) ssRSA results of the mismatch for the preferred structural interpretation (the specific BERT layer from 
which BERT structural measures were derived is denoted in parentheses). From top to bottom in each panel: vertex t-mass (each vertex’s summed 
t-value during its significant period); heatmap of time series of region of interest (ROI) peak t-value (the highest t-value in an ROI at each time point) 
with a green bar indicating effect onset and ROI t-mass (each ROI’s summed mean t-value during its significant period); cluster t-mass time series 
(summed t-value of all the significant vertices of a cluster at each time point) (cluster-based permutation test, vertex-wise p<0.01, cluster-wise p<0.05 in 
A–E; marginal significance in F with cluster-wise p=0.06). Solid vertical lines indicate the timings of onset, average uniqueness point (UP), and average 
offset of the word time-locked in the epoch with grey shades indicating the range of 1 SD. LH/RH: left/right hemisphere. See Supplementary file 2 
for full anatomical labels. See Figure 6—figure supplement 1 for Spearman’s rho time series of ROIs in individual participants, and Figure 6—figure 
supplement 2 for the significant results of other BERT layers in the MV epoch.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Spearman’s rho time series of ROIs across individual participants and their mean (with SEM) for BERT parse depth vector and its 
mismatch for active and passive interpretations in V1, PP1 and MV epochs.

Figure supplement 2. Spatiotemporal searchlight representational similarity analysis (ssRSA) results of BERT structural measures in the main verb (MV) 
epoch.

Figure supplement 3. Spatiotemporal searchlight representational similarity analysis (ssRSA) results of BERT structural measures in the Verb1 
(V1) epoch.

Figure supplement 4. Comparison between the representational similarity analysis (RSA) model fits of BERT structural metrics and behaviour-/ corpus-
based metrics in the Verb1 (V1) epoch.

Figure supplement 5. Comparison between the representational similarity analysis (RSA) model fits of BERT structural metrics and behaviour-/corpus-
based metrics in the preposition (PP1) epoch.

Figure supplement 6. Comparison between the representational similarity analysis (RSA) model fits of BERT structural metrics and behaviour-/ corpus-
based metrics in the main verb (MV) epoch.
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updated, to be either strengthened or weakened by the incoming preposition phrase; and (c) main 
verb – when the intended passive interpretation was finally confirmed. We aligned the continuous 
EMEG data to the onset of Verb1, the preposition, and the main verb respectively and obtained three 
600 ms epochs.

We found that the incremental BERT parse depth vectors exhibited significant fits to brain activity 
consistently in all three epochs as the corresponding word was being heard at that time (Figure 6A–C). 
In Verb1 epoch, effects in bilateral frontal and anterior-to-middle temporal regions started immedi-
ately from Verb1 onset and continued until the uniqueness point – the point at which the word has 
been uniquely identified. These early effects could be due to the different subject nouns included in 
the BERT parse depth vectors. While the BERT parse depth of Verb1 per se showed similar effects but 
with greater duration which peaked exactly at Verb1 uniqueness point (Figure 6—figure supplement 
3). As the sentence unfolded, effects of BERT parse depth vectors were found in the left fronto-
temporal regions in the two later epochs, starting after the recognition of the preposition or the main 
verb separately.

Turning to the interpretative mismatch for the two possible interpretations, we only observed 
significant effects of the mismatch for active interpretation in Verb1 epoch (Figure 6D). However, it 
was the mismatch for passive interpretation that fitted brain activity in the preposition and main verb 
epochs (Figure 6E and F, marginal significance in main verb epoch with cluster-wise p=0.06). These 
results suggest that listeners, in general, tended to have an initial preference for an active interpreta-
tion (even before the recognition of Verb1) but might start favouring a passive interpretation when the 
prepositional phrase began to be heard. This finding is consistent with the tendency to process the 
first noun encountered at the beginning of a sentence as the agent (Bever, 1970; Jackendoff, 2002; 
Mahowald et al., 2023). Note that our approach does not constitute a direct test for the hypothesis 
of parallel parsing, as we did not uncover evidence supporting the maintenance of parallel represen-
tations of different syntactic structures in the brain; rather, we only found one preferred structure in 
each epoch.

Effects of the BERT parse depth vectors and those of the interpretative mismatch for the preferred 
structural interpretation have substantial overlaps in terms of their spatiotemporal patterns in the 
brain, characterized primarily by a transition from bilateral to left-lateralized fronto-temporal regions 
as the sentence unfolds. Across the three epochs, the most sustained effects were observed in the left 
inferior frontal gyrus (IFG) and the anterior temporal lobe (ATL). Notably, with the identification of the 
actual main verb, effects of the eventually resolved structure also involved regions in the left prefrontal 
and inferior parietal regions (Figure  6C) which belong to the multiple-demand network (Duncan, 
2010). The involvement of the prefrontal regions could be indicative of the varying working memory 
demands (e.g. the different number of open nodes in the sentence structures for active and passive 
interpretations before the actual main verb is recognized) for building the structure of the unfolding 
sentence (Nelson et al., 2017; Pallier et al., 2011).

Structural ambiguity resolution probed using BERT Verb1 parse depth
As mentioned above, the potential ambiguity between a passive and an active interpretation centres 
around whether Verb1 is considered as a passive verb or the main verb, which is resolved upon the 
appearance of the actual main verb. We probed how this is implemented in the brain using the 
dynamic BERT parse depth of Verb1. Specifically, the cognitive demands required by this resolution 
process can be characterized by the change between the updated BERT parse depth of Verb1 when 
the actual main verb is presented and its initial value when Verb1 is first encountered (see Figure 7—
figure supplement 1 for the dynamic change of BERT Verb1 parse depth).

We first tested the change of Verb1 parse depth in the main verb epoch. Significant fits to brain 
activity emerged in the left posterior temporal and inferior parietal regions upon the main verb 
uniqueness point, and then extended to more anterior temporal regions (Figure 7A). After the main 
verb offset, the declining effects of the Verb1 parse depth change in the left anterior temporal region 
seamlessly overlapped with the arising effects of the updated Verb1 parse depth (Figure 7B and C). 
These results indicate that the recognition of the actual main verb immediately triggered an update 
of the previous interpretation of Verb1, with the resolved interpretation emerged in the left temporal 
lobe and was later delivered to the right posterior temporal and parietal areas. It is also worth noting 
that the left hippocampus was activated for both measures of Verb1 parse depth after the actual main 
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verb is recognized, suggesting that the episodic memory of experienced events might contribute to 
the updating of structural interpretations (Bicknell et al., 2010; Altmann and Ekves, 2019; Metu-
salem et al., 2012). These results address the dynamic update of structured interpretation by focusing 
on the BERT parse depth of Verb1, which complements those of the interpretative mismatch based 
on the incremental BERT parse depth vector incorporating constraints of all the words heard so far 
(Figure 6F).

Emergent structural interpretations driven by multifaceted constraints 
in the brain
Next, we further asked how the multifaceted constraints, considered by human listeners and encoded 
in BERT parse depths, drive the structured interpretation in the brain? When and where in the brain do 
these constraints emerge? How are their neural effects related to those of the final resolved senten-
tial structure? To address these questions, we first tested the subject noun thematic role properties 
obtained from corpus data. Significant effects of agenthood and patienthood were found in the prep-
osition epoch (Figure 8A) and in the main verb epoch (Figure 8B) separately. Notably, effects of the 
subject noun itself preceded those of incremental BERT parse depth vectors modelling the sentence 
fragments in the same epoch (compare Figure 8A with Figure 6B and Figure 8B with Figure 6C). 
These findings indicate that subject noun thematic role might be evaluated before building the 
overall structural interpretation of the utterance delivered so far. Specifically, the initial preference 
for an active interpretation during Verb1, while present as the preposition started (i.e. subject noun 

Figure 7. Neural dynamics updating the incremental structural interpretation. (A) Spatiotemporal searchlight representational similarity analysis (ssRSA) 
results of BERT Verb1 (V1) parse depth change at the main verb (MV) relative to the parse depth of V1 when it is first encountered. (B) ssRSA results 
of the updated BERT V1 parse depth when the input sentence reaches the MV. (C) Spatiotemporal overlap between the effects in (A) and (B). (cluster-
based permutation test, vertex-wise p<0.01, cluster-wise p<0.05). See Figure 7—figure supplement 2 for Spearman’s rho time series of ROIs in 
individual participants.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. The dynamic change of BERT Verb1 (V1) parse depth in unfolding sentences.

Figure supplement 2. Spearman’s rho time series of ROIs across individual participants and their mean (with SEM) for BERT V1 parse depth change and 
the updated BERT V1 parse depth in the MV epoch.

https://doi.org/10.7554/eLife.89311
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agenthood in Figure 8A), was superseded by the preference for a passive interpretation as the rest of 
the prepositional phrase (Figure 6A) and the main verb (Figure 6B) were heard.

Despite being jointly constrained by subject noun thematic role preference and Verb1 transitivity 
in a probabilistic manner, the structural interpretation temporarily held just before the recognition of 
the actual main verb could differ across sentences (e.g. passive interpretation in “The dog found in 
the park …” and active interpretation in “The dog walked in the park …”). Therefore, in contrast to 
the passive or active index specialized for one particular structural interpretation, we constructed a 
non-directional index that merely quantifies the degree of interpretative coherence for one interpre-
tation, whether passive or active (see ‘Materials and methods’ for details). Thus, a higher value only 
indicates greater interpretative coherence between the subject noun and Verb1 regardless of which 
interpretation is preferred.

Effects of this non-directional measure of interpretative coherence appeared very soon after the 
main verb onset in both hemispheres and lasted till its offset (Figure 8C), suggesting an immediate 
evaluation of the previously integrated constraints from the subject noun and Verb1 when a listener 
realized that the sentence had not finished yet. Moreover, these effects roughly co-occurred with the 
effects of subject noun patienthood (compare Figure 8B and C), indicating that a patient role for the 
subject noun was considered as the main verb was being recognized. Intriguingly, the most sustained 
regions associated with this non-directional index, including the left ATL, angular gyrus (AG), and 
precuneus, are also the classical areas of the DMN. This finding is consistent with recent claims that 
the DMN integrates external input with internal prior knowledge to make sense of an input stimulus 
such as speech (Yeshurun et  al., 2021). In particular, precuneus and AG have been found to be 
involved in building thematic relationships and event structures (Baldassano et al., 2017; Humphreys 
et al., 2021).

Figure 8. Neural dynamics of multifaceted probabilistic constraints underpinning incremental structural interpretations. (A, B) Spatiotemporal 
searchlight representational similarity analysis (ssRSA) results of subject noun (SN) agenthood and SN patienthood (i.e. plausibility of SN being the 
agent or the patient of Verb1 [V1]) in PP1 and main verb (MV) epochs separately. (C) ssRSA results of non-directional index (i.e. interpretative coherence 
between SN and V1 regardless of the structure preferred) in MV epoch. (D) ssRSA results of passive index (i.e. interpretative coherence for the passive 
interpretation) in MV epoch. (E) Influence of the passive interpretative coherence on the emerging sentential structure in MV epoch revealed by the 
Granger causal analysis (GCA) based on the non-negative matrix factorization (NMF) components of whole-brain ssRSA results (see Figure 8—figure 
supplement 1 for more details). (A–D) Cluster-based permutation test, vertex-wise p<0.01, cluster-wise p<0.05; (E) permutation test PFDR<0.05. See 
Figure 8—figure supplement 2 for Spearman’s rho time series of ROIs in individual participants.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Directional relationship between multifaceted constraints and structured interpretation in the brain.

Figure supplement 2. Spearman’s rho time-series of ROIs across individual participants and their mean (with SEM) for corpus-based measures in PP1 
and MV epochs.

Figure supplement 3. Illustration of directionality of dissimilarity geometry in the representational dissimilarity matrix (RDM) based on a ratio measure.
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Following the declining effects of the non-directional index upon the recognition of the main verb, 
we found significant effects of the passive index in right anterior fronto-temporal regions (Figure 8D), 
suggesting that the intended passive interpretation was eventually established in all sentences. 
Previous studies have revealed that the relatively narrow sentence-specific information and the broad 
world knowledge are processed in the left and right hemispheres separately (Jung-Beeman, 2005; 
Metusalem et al., 2016; Troyer et al., 2022). Relevant to this, in the main verb epoch, we found 
effects of the BERT parse depth vector and those of the passive index in the left and right hemi-
spheres, respectively, arising almost at the same time as the main verb was recognized (compare 
Figure 6C and Figure 8D). Therefore, a critical question is whether and how the online structural 
interpretation of a specific sentence is facilitated by the interpretative coherence conjured up from 
lexical constraints that also depend on broad world knowledge (e.g. thematic role).

To address this question, we adopted non-negative matrix factorization to decompose the whole-
brain ssRSA fits of the passive index and the BERT parse depth vector found in the main verb epoch 
into two sets of components given their temporal synchronizations (see ‘Materials and methods’). We 
then conducted multivariate Granger causality analyses (GCA) to infer directed connections among 
them. We found only GC connections from the components of passive index to those of BERT parse 
depth vector (Figure  8E). Specifically, we identified information flows from the right hemisphere 
components of the passive index to the left hemisphere components of BERT parse depth vector, 
suggesting that a sentence’s structure represented in the left hemisphere might be influenced by the 
coarse estimate of the event plausibility concurrently determined by broad world knowledge in the 
right hemisphere (Jung-Beeman, 2005; see Figure 8—figure supplement 2 for more details).

Comparisons between BERT and corpus/behavioural measures in fitting 
neural activity
To directly assess the performance of BERT structural measures with that of traditional measures 
extracted from corpus or behavioural data in fitting listeners’ neural activity, we also conducted 
ssRSA with model RDMs of corpus-based or behavioural measures. In the Verb1 epoch, we tested 
Verb1 transitivity obtained from either corpus data or human continuations; however, neither of them 
exhibited significant model fits, which contrasted with the pronounced effects of BERT Verb1 parse 
depth (Figure 6—figure supplement 4). Similarly, in the PP1 and MV epochs, the probabilities of 
PP and MV continuations, as determined from behavioural data, did not show any significant model 
fits (Figure 6—figure supplements 5 and 6). Furthermore, the effects of BERT parse depth vector 
in these two epochs (Figure 6B and C) remained largely unchanged after controlling for the vari-
ance explained by the behavioural measures. These findings suggest that BERT structural measures, 
compared to corpus-based and behavioural measures, are better at fitting the neural dynamics during 
incremental speech comprehension. This might be attributed to the capacity of DLMs to capture more 
nuanced and contextually rich representations (Linzen and Baroni, 2021; Pavlick, 2022).

Discussion
In this study, we investigated the neural dynamics involved in constructing structured interpretations 
from speech. We combined spatiotemporally resolved brain activity of human listeners, quantita-
tive structural representations derived from a DLM (i.e. BERT), and corpus-based and behavioural 
measures. Our study revealed the emergence and update of a structured interpretation, jointly 
constrained by different lexical properties related to both linguistic and non-linguistic world knowl-
edge, in an extensive set of brain regions beyond the core fronto-temporal language network. Specif-
ically, our results show (1) a shift from bi-hemispheric lateral frontal-temporal regions to left-lateralized 
regions in representing the current structured interpretation as a sentence unfolds, (2) a pattern of 
sequential activations in the left lateral temporal regions, updating the structured interpretation as 
syntactic ambiguity is resolved, and (3) the influence of lexical interpretative coherence activated in 
the right hemisphere over the resolved sentence structure represented in the left hemisphere. These 
findings provide empirical evidence for the constraint-based approach to sentence processing and 
deepen the understanding of specific spatiotemporal patterning and neuro-computational properties 
underpinning incremental speech comprehension.

https://doi.org/10.7554/eLife.89311
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Using artificial neural networks (ANNs) to study the neural substrates of human cognition comple-
ments the long-time pursuit of generative rules and interpretable models (Kriegeskorte and 
Douglas, 2018). ANNs have informed our understanding of various cognitive processes in the brain 
by providing quantifiable predictions that aim to connect behaviours and relevant neural activity 
(Yamins and DiCarlo, 2016; Rabovsky et al., 2018; Donhauser and Baillet, 2020; Yang et al., 2019; 
Kietzmann et al., 2019; Bao et al., 2020; Sheahan et al., 2021; Giordano et al., 2023; Doerig 
et al., 2023). This is crucial for quantifying the outcome of complex, interrelated constraints that arise 
in specific contexts, such as spoken sentences, and constructing the representational geometry to be 
probed in the brain. Where DLMs are concerned, recent studies have systematically compared the 
internal representations of DLMs to those observed in the human brain during language processing, 
which highlights the importance of predictive coding and contextual information (Schrimpf et al., 
2021; Goldstein et al., 2022; Heilbron et al., 2022; Toneva et al., 2022; Caucheteux et al., 2022; 
Caucheteux and King, 2022; Caucheteux et al., 2023). Furthermore, these studies have motivated 
the use of DLMs as a computational tool, or hypothesis, to study the neural substrates of language.

Here we asked a more specific question, that is, how a sequence of spoken words is incrementally 
structured and coherently interpreted in the brain? Our goal was to use quantitative measures of 
sentence structure that capture the interplay between different types of constraints that simultane-
ously influence this process. As a potential solution, we extracted detailed structural measures specific 
to the contents in each sentence from the hidden states of BERT, which was trained on massive 
corpora from real-life language use. Although DLMs such as BERT are not specifically designed to 
parse sentences, they can learn from training corpora the multi-dimensional properties related to 
sentence structure and dependency (Manning et al., 2020). In line with this, our analyses confirmed 
that BERT structural measures incorporate relevant lexical constraints and that they exhibit both 
behavioural and neural alignments with human listeners.

Taking advantage of the contextualized BERT structural measures, our ssRSA results provide neural 
evidence for the construction of a coherent interpretation driven by the interaction between linguistic 
and non-linguistic knowledge evoked by individual words as they are heard sequentially in a spoken 
sentence. Specifically, neural representations of an unfolding sentence’s structure initially emerged 
in bilateral fronto-temporal regions and became left-lateralized when more complex syntactic prop-
erties, rather than canonical linear adjacency, were considered to build a structured interpretation 
(e.g. beyond Verb1 in our stimulus sentences). Meanwhile, we found right-hemisphere activations 
associated with broad world knowledge, which is essential for understanding the intended meaning 
conveyed by the speaker (Bicknell et al., 2010). In addition to the core fronto-temporal language 
network, we found that the multiple-demand network and the DMN were also involved during 
online construction of structured interpretations, which may reflect additional cognitive demands for 
resolving potential structural ambiguity and evaluating the plausibility of underlying events (Small-
wood et al., 2021).

Moreover, our results show that, compared to corpus-based and behavioural measures, BERT struc-
tural measures are more effective in fitting listeners’ neural activity, possibly due to its advanced ability 
in modelling specific contexts within each sentence. Nevertheless, it is important to recognize the 
important role of corpus-based and behavioural measures as explanatory variables. They are crucial 
not only in interpreting BERT measures but also in understanding their alignment with listeners’ neural 
activity. This includes, for instance, the temporal sequence of activations of key lexical constraints and 
the emerging structure of a sentence (e.g. effects of subject noun patienthood leading those of BERT 
parse depth vector in the MV epoch, as seen in Figures 8B and 6C) and the spatial distribution of 
their model fits in the brain (e.g. contrasting model fits of passive index and BERT parse depth vector 
in the MV epoch across different hemispheres, as shown in Figures 8D and 6C). Such an integrative 
approach allows for a more comprehensive understanding of the complex mental processes under-
pinning speech comprehension, which takes advantages of the interpretability of traditional measures 
and the deep contextualized representations of DLMs.

There are two points to note about the use of BERT. Firstly, unlike autoregressive DLMs trained 
using left-to-right attention and the next-word prediction task, BERT is trained to predict masked 
words in a sentence with a bidirectional attention mechanism. The additional right-to-left attention 
provides updated representations of preceding words every time an incoming word is added to the 
input (e.g. representation of ‘dog’ in “The dog …” is different from that in “The dog found …”). This 
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feature of BERT is useful for tracking the dynamic change of the representation of a specific word 
as its context evolves (e.g. Verb1 in this study), particularly in sentences with structural ambiguity. 
Although autoregressive DLMs also update hidden states as the input unfolds and could be used to 
study complex sentential structures (Jurayj et al., 2022), the updated contextual effects are reflected 
in the hidden states of the right-most incoming word, while those of the preceding words on the left 
remain unchanged (i.e. the representation of ‘dog’ is the same in “The dog …” and “The dog found 
…”). This is different from BERT, where the updated contextual effects are reflected in the hidden 
states of all preceding words.

Secondly, although we input each sentence word-by-word to BERT, however, unlike human listeners 
or recurrent neural networks, BERT process two consecutive inputs (e.g. “The dog …” and “The dog 
found …”) independently, and there is no direct relationship between the hidden states of these two 
inputs. In fact, human listeners would not start over from the beginning of a sentence as it unfolds 
word-by-word, but update it continually as each word is heard and use whatever information currently 
available to build a coherent interpretation (McRae and Matsuki, 2013). This difference, however, 
does not impede our objective of extracting contextualized structural representations at critical points 
within a sentence. In the case of BERT, the representation of each word is continuously updated in a 
bidirectional manner as a new word is added. This process accounts for the constraints imposed by 
all the words of the input and their interactions, forming a coherent interpretation. Nonetheless, for 
other hypotheses in speech comprehension, such as parallel parsing and how various grammatically 
correct sentence structures are maintained and compete in the brain, DLMs with recurrent memory 
might be more suitable. Such models can better stimulate the continuous, dynamic updating of inter-
pretations that characterizes human sentence processing.

In summary, recent developments in DLMs have shown great potential in capturing the dynamic 
interplay between syntax, semantics, and broader world knowledge that is essential for successful 
language comprehension. The empirical evidence from this study supports the notion that DLMs, 
when utilized as potential models of brain computation and integrated with advanced neuroim-
aging techniques within a well-defined framework, can offer significant insights into human cognition 
(Kriegeskorte and Douglas, 2018; Doerig et al., 2023). Future DLMs, especially those with more 
human-like model architecture (McClelland et al., 2020) and subjected to rigorous evaluation (Binz 
and Schulz, 2023), hold the potential to shed light on the neural implementation of various incre-
mental processes that support the rapid transition from sound to meaning in the brain.

Materials and methods
Participants
Seventeen right-handed native British English speakers participated in this study and provided written 
consent. This sample size was determined according to previous MEG studies on speech compre-
hension (Choi et al., 2021; Lyu et al., 2019; Klimovich-Gray et al., 2019; Kocagoncu et al., 2017). 
One participant was excluded from subsequent analysis due to sleepiness during EMEG scanning, the 
other 16 participants were included in the following analyses (aged between 19 and 38 y, 26.5 y on 
average; seven females). All participants had normal hearing, and none had any pre-existing neuro-
logical condition or mental health issues. This study was approved by the Cambridge Psychology 
Research Ethics Committee (reference number PRE2019.051).

Stimuli
We constructed 60 sets of six spoken sentences (360 in total) with varying sentential structures. As 
shown in the example sentence set (see Supplementary file 3), unambiguous (UNA), high transitivity 
(HiTrans), and low transitivity (LoTrans) sentences contain a long-distance dependency between the 
subject noun and the main verb introduced by a full or reduced relative clause inserted in between. 
Whereas there is no long-distance dependency in the sentences of passive (PAS) and two direct object 
(DO1 and DO2) conditions.

Unlike the first verb (Verb1) in the UNA sentences which is unambiguously interpreted as the head 
of a relative clause, Verb1 in both HiTrans and LoTrans sentences can also be considered alternatively 
as the ‘main verb’ before the actual main verb (e.g. was covered in the example set in Supplementary 
file 3) was heard. By varying the nature of Verb1 in the reduced relative clause (e.g. found/walked), 

https://doi.org/10.7554/eLife.89311


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Lyu et al. eLife 2023;12:RP89311. DOI: https://​doi.​org/​10.​7554/​eLife.​89311 � 17 of 25

we manipulated the preference for the two plausible structural interpretations in HiTrans and LoTrans 
sentences before the appearance of the actual main verb (i.e. a passive interpretation where Verb1 
is the head of a relative clause – the subject noun undergoes the action specified by Verb1; an active 
interpretation where Verb1 is the main verb – the subject noun performs the action specified by 
Verb1).

Specifically, in the LoTrans sentences, Verb1 was selected to be optionally transitive according 
to CELEX (Baayen, 1993) and Google n-gram corpus (books.google.com/ngrams), meaning that 
it can either take a direct object or not. Thus, a listener could be initially ‘garden-pathed’ into the 
alternative active interpretation where the Verb1 is considered as the main verb when a following 
prepositional phrase fits its intransitive use. Whereas Verb1 in HiTrans sentences was selected to 
have a higher preference for taking a direct object than Verb1 in LoTrans sentences [subcategoriza-
tion frame (SCF) probability for direct object according to VALEX (Korhonen et al., 2006): HiTrans 
0.71 ± 0.16, LoTrans 0.44 ± 0.19, two-tailed two-sample t-test, t(117) = 8.45, p=9.3 × 10–14]. Therefore, 
Verb1 in HiTrans sentences was more likely to be recognized as the head of a reduced relative clause 
given the appearance of a prepositional phrase (e.g. in the park) rather than a highly expected direct 
object.

In all the six types of sentences, the subject noun phrase comprised a single-word noun and a 
preceding determine ‘The’. In each sentence set, sentences of the first four types had the same 
subject noun, while DO1 and DO2 sentences shared a different subject noun. The reduced relative 
clause in HiTrans and LoTrans sentences consisted of a head verb, that is, Verb1 (e.g. found/walked) 
which was followed by a three-word prepositional phrase (e.g. in the park). Note that, in 15 out of the 
60 sentence sets, the actual main verb in UNA, RR, and GP conditions was preceded by an auxiliary 
verb (e.g. ‘was covered’ in the example set in Supplementary file 3). In the following analyses, we 
defined the first word after the prepositional phrase as the main verb since its appearance is sufficient 
to resolve the intended passive interpretation where Verb1 is a passive verb (i.e. the head of a reduced 
relative clause).

Note that, although UNA, PAS, DO1, and DO2 conditions were not included in subsequent anal-
yses, they added variety to the types of syntactic construction of the stimuli and ecological validity of 
the experiment, which also prevented potential adaption to a particular sentence structure.

Procedure
The experimental stimuli (360 spoken sentences recorded by a female native British English speaker 
with a neutral intonation throughout) were equally divided into four blocks with 90 experimental 
trials in each. To maintain participants’ attention while they were listening to the stimuli, the experi-
mental trials in each block were interspersed with nine additional trials consisting of questions related 
to the contents in the preceding sentence. These questions were presented in written form on the 
screen, and a ‘yes’ or ‘no’ response was required by button pressing. Each of these question trials 
was followed by a filler trial (including a normal spoken sentence outside the experimental stimuli) 
to ensure that no residual task effects would be picked up in the next experimental trial. Each block 
started with two filler trials. All question trials and filler trials (20 in each block) were excluded from 
the following analyses. The order of blocks and the order of trials within each block were pseudoran-
domized across participants.

Each experimental trial began with a fixation cross presented at the centre of the screen with a 
random period ranging from 750 ms to 1250 ms (1000 ms on average) before the onset of the spoken 
sentence. Participants were asked to look at the fixation cross and avoid eye movement or blinking 
while listening to the spoken sentences. There was a 1000 ms silence from the end of each sentence 
followed by a ‘blink cue’ that lasted for 1400 ms during which participants could blink. E-Prime Studio 
version 2 (Psychology Software Tools Inc, PA) was used to present stimuli and record participants’ 
responses.

Auditory stimuli were delivered binaurally through MEG-compatible ER3A insert earphones 
(Etymotic Research Inc, IL). There was a 26 ms ± 2 ms delay in sound delivery due to the transmis-
sion of auditory signal from the stimulus computer to the earphones. This sound delivery delay was 
corrected in the following analyses. To ensure that participants were able to hear the stimuli through 
both earphones, a short hearing test was conducted before the main experiment.

https://doi.org/10.7554/eLife.89311
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Sentence continuation pre-tests
To obtain human incremental interpretations for each of the HiTrans and LoTrans sentences (120 in 
total), we conducted two continuation pre-tests which involved two different groups of native British 
English speakers (30 participants in the first pre-test, 18 participants in the second, aged between 18 
and 34 y) who did not participate in the main experiment. Specifically, participants wore headphones 
and were seated in front of a computer. They listened to a fragment of one of the HiTrans/LoTrans 
sentences starting from its onset and continuing until a certain position in the sentence, and then they 
were asked to complete this sentence by producing a meaningful continuation. The sentence frag-
ment was binaurally presented up to the Verb1 (e.g. The dog found …) in the first pre-test and was 
presented up to the end of the prepositional phrase in the second pre-test (e.g. The dog found in the 
park …). In the second pre-test, participants were allowed to provide a full stop as a continuation if 
they thought that what they had heard was a complete sentence.

Based on the continuations obtained in the first pre-test, we calculated the probability of direct 
object or prepositional phrase in the continuations immediately after the Verb1, that is, DO proba-
bility and PP probability. This provided contextualized measures of the transitive or the intransitive use 
of Verb1 given the preceding subject noun phrase. Specifically, we defined Verb1 transitivity as DO 
probability/(1 - DO probability) and defined Verb1 intransitivity as (1 - DO probability)/DO probability. 
Given the continuations collected in the second pre-test, we calculated the probability of a main verb 
in the continuations immediately after the prepositional phrase, that is, MV probability, which directly 
reflected a listener’s structural interpretation by the end of the prepositional phrase. The absence of 
a main verb in the continuation after the prepositional phrase indicated that the active interpretation 
was taken and the Verb1 was considered as the ‘main verb’, whereas the appearance of a main verb 
in the continuation indicated that the passive interpretation was taken (i.e. Verb1 was interpreted as a 
passive verb), and thus a main verb was needed to complete the sentence.

EMEG and MRI acquisition
Participants were seated in a magnetically shielded room (IMEDCO GmbH, Switzerland) with their 
head placed in the helmet of the MEG scanner. MEG data were collected using a Neuromag Vector 
View system (Elekta, Helsinki, Finland) with 102 magnetometers and 204 planar gradiometers at 1 kHz 
sampling rate. Simultaneous EEG was recorded at 1 kHz sampling rate from 70 Ag–AgCl electrodes 
within an elastic cap (ESACYCAP GmbH, Herrsching-Breitbrunn, Germany). Vertical and horizontal 
eye movements were recorded by two EOG electrodes attached below and lateral to the left eye, 
and cardiac signals were recorded by two ECG electrodes attached separately to the right shoulder 
blade and left torso. Five head position indicator (HPI) coils were used to monitor head motion. A 3D 
digitizer was used to record the position of EEG electrodes, HPI coils and head points on participants’ 
scalp relative to the three anatomical fiducials (i.e. nasion and bilateral preauricular points). To source 
localize EMEG data, T1-weighted MPRAGE structural MRI image with 1 mm isotropic resolution was 
acquired using a Siemens Prisma 3T scanner (Siemens, Erlangen, Germany). All EMEG and MRI data 
were collected at the MRC Cognition and Brain Sciences Unit, University of Cambridge.

EMEG preprocessing and source localization
Maxfilter (Elekta) was applied to raw MEG data for bad channel removal and head-motion compensa-
tion. Signals outside the brain were removed using the temporal extension of signal-space separation 
(Taulu and Simola, 2006). EMEG data were low-pass filtered at 40 Hz and high-pass filtered at 0.5 Hz 
with a fifth-order bidirectional Butterworth filter using SPM12 (Wellcome Trust Centre for Neuroim-
aging, UCL). Independent component analysis (ICA) was conducted using EEGLAB (SCCN, UCSD), 
components related to blink, eye-movement, and physiological noises were removed according to the 
correlation with EOG, ECG signals, and further visual inspection. The preprocessed EMEG data were 
then downsampled to 200 Hz. Three epochs were extracted from the continuous EMEG recordings 
of each HiTrans or LoTrans sentence with auditory delivery delay corrected – V1 epoch was aligned 
to the onset of the Verb1, PP1 epoch was aligned to the onset of the preposition, and MV epoch 
was aligned to the onset of the main verb. All the three epochs were 600 ms in length. For all three 
epochs, baseline correction was performed using the signal from a silent period (i.e. –200 ms to 0 
ms relative to sentence onset). Finally, automatic artefact rejection was conducted to exclude trials 
with signals that exceeded predefined amplitude thresholds (60 ft/mm for gradiometers, 3000 ft for 
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magnetometers, and 200 uV for EEG electrodes). The uniqueness point of V1/PP1/MV was defined 
as the earliest point in time when this word can be fully recognized after removing all of its phono-
logical competitors. We first identified the phoneme by which this word can be uniquely recognized 
according to CELEX (Baayen, 1993). Then, we manually labelled the offset of this phoneme in the 
auditory file of the spoken sentence.

EMEG data source localization was performed using SPM12. Source space was modelled by 
a cortical mesh consisting of 8196 vertices. The sensor positions were co-registered to individual 
T1-weighted structural image by aligning fiducials and the digitized head shape to the outer scalp 
mesh. MEG forward model was constructed using the single-shell model (Sarvas, 1987), while EEG 
forward model was built using the boundary element model (Mosher et al., 1999). Inversion of EMEG 
data was conducted for V1, PP1, and MV epochs separately using the least-squares minimum norm 
method (Hämäläinen and Ilmoniemi, 1994) and an empirical Bayesian MEG and EEG data fusion 
scheme implemented in SPM12 (Henson et al., 2009).

Incremental structural representations of BERT
To obtain incremental structural representations of BERT, we adopted a structural probing approach 
(Hewitt and Manning, 2019) to quantify a sentence’s structure by estimating each word’s parse depth 
in the corresponding dependency parse tree based on the contextualized word embeddings from 
the hidden states of BERT, which explicitly considers the specific contents of the words in the input. 
Specifically, a structural probing model was trained to find an optimal linear transformation to be 
applied to the BERT contextualized embeddings of words in the input sentence, so that the squared 
L2 norm of the transformed word embeddings provided the best estimate for each word’s parse 
depth of in the dependency parse tree of this sentence.

We followed the procedure described in a previous study (Hewitt and Manning, 2019) and trained 
a structural probing model for each BERT layer with the annotated corpus from Penn Treebank (Marcus 
et al., 1993). Contextualized word embeddings were extracted from each of the 24 layers in a pre-
trained version of BERT (BERT-large-cased) using HuggingFace (Wolf, 2019). For each BERT layer, the 
training process was repeated 10 times with different random initializations, and the averaged BERT 
parse depth was used in the following analyses. The performance of structural probing models trained 
by different BERT layers was evaluated by root accuracy. Root accuracy is defined as the percentage 
of the sentences in which the smallest parse depth is assigned to the main verb (i.e. the root of the 
dependency parse tree has a parse depth of 0) when the whole sentence is input to the model.

Each HiTrans or LoTrans sentence was input word-by-word to the trained BERT structural probing 
models, which resulted in a vector consisting of the parse depth of each word in the incremental 
input (e.g. a3D BERT parse depth vector for the input “The dog found …”). Taking advantage of the 
bidirectional attention mechanism of BERT, the parse depth of each preceding word was constantly 
updated as the input unfolded word-by-word, capturing the incrementality of speech comprehension. 
Besides, we defined interpretive mismatch as the cosine distance between an incremental BERT parse 
depth vector and the corresponding incremental context-free parse depth vector for the passive or 
the active interpretation. The smaller the interpretive mismatch with one particular interpretation, the 
higher the preference for this interpretation given BERT structural representations.

To determine the contribution of the words at different positions in a sentence to the incremental 
BERT parse depth vectors, we shuffled the parse depths of the words at a particular position across 
sentences at a time and kept the parse depths of the other words unchanged. Then we calculated 
the Spearman distance (i.e. 1-Spearman’s rho) between the original BERT parse depth vector and the 
shuffled counterpart. The higher this distance, the more important the words at this position are to the 
BERT parse depth vectors (see Figure 3—figure supplement 3).

Corpus-based measures of multifaceted constraints and their 
interpretative coherence
We quantified subject noun thematic role properties and Verb1 transitivity preference based on a 
concatenated corpus (3.4 billion tokens, 162.1 million sentences) consisting of the British National 
Corpus, the Wikipedia dump (by October 2020) and ukWaC (Baroni et al., 2009). A dependency 
parser (Mrini et al., 2020) was first applied to each sentence in the concatenated corpus to specify the 
subject noun and the verb(s) related to it. For the subject noun in each sentence, we used a semantic 
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role labelling model (Li et al., 2020) to obtain its thematic role. For simplicity, we only considered the 
thematic role of an agent or a patient (Dowty, 1991).

For each subject noun in HiTrans and LoTrans sentences, we counted separately how many times 
it took the thematic role of an agent or a patient in the concatenated corpus. Then we defined its 
agenthood as the ratio of the number of its appearances as an agent to that of its appearances as a 
patient, and vice versa for its patienthood. We also counted separately how many times the Verb1 in 
each HiTrans or LoTrans sentence took a direct object or alternative SCFs in the corpus. Each Verb1’s 
transitivity was defined as the ratio of the frequency it took a direct object to that it took alternative 
SCFs, and vice versa for its intransitivity. By doing so, we obtained subject noun agenthood and 
patienthood, Verb1 transitivity and intransitivity. Note that the Verb1 (in)transitivity estimated from the 
human continuations in the pre-test is context-dependent given the specific preceding subject noun, 
while the Verb1 (in)transitivity estimated from the concatenated corpus is context-independent in the 
sense that it accounted for every appearance of this verb without being biased to a specific context.

We further derived passive/active index capturing the interpretative coherence between the subject 
noun and Verb1 as they affected passive and active interpretations separately. The passive index was 
obtained by multiplying subject noun patienthood with Verb1 transitivity, given that both high subject 
noun patienthood and high Verb1 transitivity coherently prefer a passive interpretation as the prepo-
sitional phrase is heard (e.g. The dog found in the park …). In contrast, the active index was obtained 
by multiplying subject noun agenthood by Verb1 intransitivity, capturing the preference for an active 
interpretation (e.g. The king walked in the garden …). Besides, we also calculated a contextualized 
version of passive/active index by using Verb1 (in)transitivity derived from human continuation pre-
tests instead of that derived from the concatenated corpus. In addition, we derived a non-directional 
index by applying logarithmic transformation to the ratio measures of lexical constraints (i.e. subject 
noun agenthood or patienthood, Verb1 intransitivity or transitivity) before multiplying them. This 
manipulation removed the directionality of the passive or the active index, so that the non-directional 
index only indicates the interpretative coherence between the subject noun and Verb1 regardless of 
which interpretation is considered (see illustrations of directionality in Figure 8—figure supplement 
3).

Spatiotemporal searchlight representational similarity analysis (ssRSA)
ssRSA was conducted to compare the (dis)similarity structure of BERT structural measures or the multi-
faceted probabilistic constraints with the (dis)similarity structure of observed spatiotemporal patterns 
of listeners’ brain activity. We used a spatiotemporal searchlight with a 10 mm spatial radius and 30 
ms temporal radius (i.e. a 60 ms sliding time window) which was mapped across the whole brain in the 
source-localized EMEG.

For brain activity, we constructed data representational dissimilarity matrix (RDM) by vectorizing 
the source-localized EMEG data within each spatiotemporal searchlight for all the trials (i.e. 60 HiTrans 
sentences and 60 LoTrans sentences) and calculated the pair-wise Pearson’s correlation distance (i.e. 
1 - Pearson’s r) among them, which resulted in a 120 × 120 data RDM. Multivariate normalization was 
applied to improve the reliability of distance measures and reduce the task-irrelevant heteroscedastic 
structure across trials and vertices (Guggenmos et al., 2018). Model RDMs of the same size (i.e. 120 × 
120) were constructed by calculating either the absolute pair-wise difference for a scalar measure (e.g. 
SN agenthood/patienthood, passive/active index, BERT Verb1 parse depth) or the cosine distance 
among the incremental BERT parse depth vectors of the 120 sentences (see Supplementary file 
1 for a summary of all the model RDMs). We used ratio measures to represent subject noun agent-
hood/patienthood, Verb1 transitivity/intransitivity, and passive/active index because they provided 
the directionality needed to differentiate the two opposite aspects of the same lexical constraint in 
the model RDMs (see illustrations in Figure 8—figure supplement 3) and made it possible to test 
them separately in the brain.

Each model RDM was compared against the data RDM of a searchlight centred at each vertex and 
time point using Spearman’s rank correlation, which resulted in a time series of model fit (i.e. rank 
correlation coefficient rho) for each vertex. For each time point, a one-tailed one-sample t-test was 
conducted at each vertex with the fits of all participants for this model RDM to test whether the mean 
model fit is significantly above zero. Cluster permutation tests were performed for multiple compar-
ison correction with 5000 nonparametric permutations, vertex-wise p<0.01 and cluster-wise p<0.05.
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GCA based on ssRSA model fits
GCA was conducted to investigate the relationship between multifaceted constraints and BERT struc-
tural measures in terms of their effects in the brain, that is, ssRSA model fits of the corresponding 
model RDMs. For a given model RDM, each participant’s non-thresholded whole-brain model fit time 
series were normalized and concatenated across participants, which resulted in a vertex by time point 
matrix. Non-negative matrix factorization (NMF) was applied to this concatenated model fit matrix 
with negative model fits zeroed. NMF was repeated 20 times with random starting values using a 
multiplicative update algorithm in MATLAB, results with the least root mean square residual (RMS) was 
used in the following analyses. The optimal number of NMF factors was determined by searching for 
the one with the least RMS in a wide range of factor numbers (from 2 to 50). With the optimal number 
of factors, the resulted time series of NMF factors from all participants were reshaped into a factor by 
time point by participant matrix which was used as the input of multivariate GCA implemented by the 
Multivariate GCA toolbox (Barnett and Seth, 2014). Multivariate GCA was conducted using two sets 
of NMF factors derived from the fits of two model RDMs with Akaike information criterion adopted 
for GCA model order estimation. GC significance was determined by a permutation test in which 
1000 surrogate data sets were created by randomly rearranging short time windows (of length model 
order) from the original factor time course. p-Values <0.005 were refined via a tail approximation from 
the Generalised Pareto Distribution using PALM (Winkler et al., 2016). Multiple comparisons were 
controlled with false discovery rate (FDR) alpha < 0.05 for both between- and within-model RDM GC 
connections.
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