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Abstract Observations of power laws in neural activity data have raised the intriguing notion 
that brains may operate in a critical state. One example of this critical state is ‘avalanche criticality’, 
which has been observed in various systems, including cultured neurons, zebrafish, rodent cortex, 
and human EEG. More recently, power laws were also observed in neural populations in the mouse 
under an activity coarse- graining procedure, and they were explained as a consequence of the 
neural activity being coupled to multiple latent dynamical variables. An intriguing possibility is that 
avalanche criticality emerges due to a similar mechanism. Here, we determine the conditions under 
which latent dynamical variables give rise to avalanche criticality. We find that populations coupled 
to multiple latent variables produce critical behavior across a broader parameter range than those 
coupled to a single, quasi- static latent variable, but in both cases, avalanche criticality is observed 
without fine- tuning of model parameters. We identify two regimes of avalanches, both critical but 
differing in the amount of information carried about the latent variable. Our results suggest that 
avalanche criticality arises in neural systems in which activity is effectively modeled as a population 
driven by a few dynamical variables and these variables can be inferred from the population activity.

eLife assessment
This paper provides a simple example of a neural- like system that displays criticality, but not for 
any deep reason; it's just because a population of neurons are driven (independently!) by a slowly 
varying latent variable, something that is common in the brain. Moreover, criticality does not imply 
optimal information transmission (one of its proposed functions). The work is likely to have an 
important impact on the study of criticality in neural systems and is convincingly supported by the 
experiments presented.

Introduction
The neural criticality hypothesis – the idea that neural systems operate close to a phase transition, 
perhaps for optimal information processing – is both ambitious and banal. Measurements from biolog-
ical systems are limited in the range of spatial and temporal scales that can be sampled, not only 
because of the limitations of recording techniques but also due to the fundamentally non- stationary 
behavior of most, if not all, biological systems. These limitations make proving that an observation 
indicates critical behavior difficult. At the same time, the idea that brain networks are critical echoes 
the anthropic principle: tuned another way, a network becomes quiescent or epileptic and in either 
state, seems unlikely to support perception, thought, or flexible behavior, yet these observations 
do not explain how such fine- tuning could be achieved. Further muddying the water, researchers 
have reported multiple kinds of criticality in neural networks, including through analysis of avalanches 
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(Beggs and Plenz, 2003; Plenz et al., 2021; O’Byrne and Jerbi, 2022; Girardi- Schappo, 2021) and 
of coarse- grained activity (Meshulam et al., 2019), as well as of correlations (Dahmen et al., 2019). 
How these flavors of critical behavior relate to each other or any functional network mechanism is 
unknown.

The phenomenon that we will refer to as ‘avalanche criticality’ appears remarkably widespread. It 
was first observed in cultured neurons (Beggs and Plenz, 2003) and later studied in zebrafish (Ponce- 
Alvarez et al., 2018), turtles (Shew et al., 2015), rodents (Ma et al., 2019), monkeys (Petermann 
et al., 2009), and even humans (Poil et al., 2008). The standard analysis, described later, requires 
extracting power- law exponents from fits to the distributions of avalanche size and of duration and 
assessing the relationship between exponents. There is debate over whether these observations 
reflect true power laws, but within the resolution achievable from experiments, neural avalanches 
exhibit power laws with exponent relationships predicted from theory developed in physical systems 
(Perkovic et al., 1995).

Avalanche criticality is not the only form of criticality observed in neural systems. Zipf’s law, in which 
the frequency of a network state is inversely proportional to its rank, appears in systems as diverse 
as fly motion estimation and the salamander retina (Mora and Bialek, 2011; Schwab et al., 2014; 
Aitchison et al., 2016). More recently, Meshulam et al., 2019 reported various statistics of popula-
tion activity in the mouse hippocampus, including the eigenvalue spectrum of the covariance matrix 
and the activity variance. These were found to scale as populations were ‘coarse- grained’ through a 
procedure in which neural activities were iteratively combined based on similarity. Similar observations 
have been reported in spontaneous activity recorded across a wide range of brain areas in the mouse 
(Morales et  al., 2023). Simple neural network models of such data explain neither Zipf’s law nor 
coarse- grained criticality (Meshulam et al., 2019).

Even though these three forms of criticality are observed through different analyses, they may 
originate from similar mechanisms. Numerous studies have reported relatively low- dimensional struc-
ture in the activity of large populations of neurons (Mazor and Laurent, 2005; Ahrens et al., 2012; 
Mante et al., 2013; Pandarinath et al., 2018; Stringer et al., 2019; Nieh et al., 2021), which can 
be modeled by a population of neurons that are broadly and heterogeneously coupled to multiple 
latent (i.e. unobserved) dynamical variables. Using such a model, we previously reproduced scaling 
under coarse- graining analysis within experimental uncertainty (Morrell et al., 2021). Zipf’s law has 
been explained by a similar mechanism (Schwab et al., 2014; Aitchison et al., 2016; Humplik and 
Tkačik, 2017). A single quasi- static latent variable has been shown to produce avalanche power laws, 
but not the relationships expected between the critical exponents (Priesemann and Shriki, 2018), 
while a model including a global modulation of activity can generate avalanche criticality (Mariani 
et  al., 2021), but has not demonstrated coarse- grained criticality (Morrell et  al., 2021). It is not 
known under what conditions the more general latent dynamical variable model generates avalanche 
criticality.

Here, we examine avalanche criticality in the latent dynamical variable model of neural population 
activity. We find that avalanche criticality is observed over a wide range of parameters, some of which 
may be optimal for information representation. These results demonstrate how criticality in neural 
recordings can arise from latent dynamics in neural activity, without need for fine- tuning of network 
parameters.

Results
Critical exponents values and crackling noise
We begin by defining the metrics used to quantify avalanche statistics and briefly summarize experi-
mental observations, which have been reviewed in detail elsewhere (Plenz et al., 2021; O’Byrne and 
Jerbi, 2022; Girardi- Schappo, 2021). Activity is recorded across a set of neurons and binned in time. 
Avalanches are then defined as contiguous time bins, in which at least one neuron in the population is 
active. The duration of an avalanche is the number of contiguous time bins and the size is the summed 
activity during the avalanche. The distributions of avalanche size and duration are fit to power laws 
( P(S) ∼ S−τ

  for size  S , and  P(D) ∼ D−α
  for duration  D ) using standard methods (Clauset et al., 2009).

Power laws can be indicative of criticality, but they can also result from non- critical mechanisms 
(Touboul and Destexhe, 2017; Priesemann and Shriki, 2018). A more stringent test of criticality 
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is the ‘crackling’ relationship (Perkovic et al., 1995; Touboul and Destexhe, 2017), which involves 
fitting a third power- law relationship,  ̄S(D) ∼ Dγfit , and comparing  γfit  to the predicted exponent  γpred , 
derived from the size and duration exponents,  τ   and  α :

 
γfit

?= γpred ≡ α− 1
τ − 1

.
  

(1)

Previous work demonstrating approximate power laws in size and duration distributions through 
the mechanism of a slowly changing latent variable did not generate crackling (Touboul and Destexhe, 
2017; Priesemann and Shriki, 2018).

Measuring power- laws in empirical data is challenging: it generally requires setting a lower cut- off 
in the size and duration, and the power- law behavior only has limited range due to the finite size and 
duration of the recording itself. Nonetheless, there is some consensus (Shew et al., 2015; Fontenele 
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Figure 1. Latent dynamical variable model produces avalanche criticality. Simulated network is  N = 1024  neurons. Other parameters in Table 1. 
(A) Model structure. Latent dynamical variables  hµ(t)  are broadly coupled to neurons  si(t)  in the recorded population. (B) Raster plot of a sample of 
activity binned at 3 ms resolution across 128 neurons with five latent variables, each with correlation timescale  τF = 15 s . (C) Projection of activity into a 
simulated field of view for illustration. (D- F) Avalanche analysis in a network (parameters  NF = 5 ,  τF = 104 ,  η = 4  and  ϵ = 12 ), showing size distribution 
(D), duration distribution (E), and size with duration scaling (F). Lower cutoffs used in fitting are shown with vertical lines and their values are indicated in 
the figures. There are  Nobs = 42725  avalanches of size  S ≥ Smin  in this simulated dataset. Estimated values of the critical exponents are shown in the 
titles of the panels.
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et al., 2019; Ma et al., 2019) that even if  τ   and 
 α  vary over a wide range (1.5 to about 3) across 
recordings, the values of  γfit  and  γpred  stay in a 
relatively narrow range, from about 1.1 to 1.3.

Avalanche scaling in a latent 
dynamical variable model
We study a model of a population of neurons 
that are not coupled to each other directly but 
are driven by a small number of latent dynamical 
variables – that is, slowly changing inputs that 
are not themselves measured (Figure  1A). We 

are agnostic as to the origin of these inputs: they may be externally driven from other brain areas, 
or they may arise from large fluctuations in local recurrent dynamics. The model was chosen for its 
simplicity, and because we have previously shown that this model with at least about five latent vari-
ables can produce power laws under the coarse- graining analysis (Morrell et al., 2021). In this paper, 
we examine avalanche criticality in the same model.

Specifically, we model the neurons as binary units ( si ) that are randomly ( Jiµ ∼ N(0, 1) ) coupled 
to dynamical variables  hµ(t) . The probability of any pattern  {si} , given the current state of the latent 
variables, is

 

P(si|{hµ(t)}) =
1

Z({hµ(t)})
exp


−η

NF∑
µ=1

siJiµhµ(t)− ϵsi


 ,

  
(2)

where the parameter  η  controls the scaling of the variables and  ϵ  controls the overall activity level. We 
modeled each latent variable as an Ornstein- Uhlenbeck process with the time scale  τF  (see Materials 
and methods). Thus our model has four parameters:  η  (input scaling),  ϵ  (activity threshold),  τF  (dynam-
ical timescale), and  NF  (number of latent variables).

Distributions of avalanche size and avalanche duration within this model followed approximate 
power laws (Figure 1C; see Materials and methods). In the example shown ( NF = 5 ,  τF = 104 ,  η = 4  
and  ϵ = 12 ), we found exponents  τ = 1.89± 0.02  (size) and  α = 2.11± 0.02  (duration). Further, the 
average size of avalanches with fixed duration scaled as  S ∼ Dγ , with the fitted  γfit = 1.24± 0.02 , in 
agreement with the predicted value  γpred = 1.24± 0.02 . Thus, our model could generate avalanche 
scaling, at least for some parameter choices. In the following sections, we examine how avalanche 
scaling depends on model parameters ( NF ,  τF ,  η  and  ϵ ; see Table 2). We first focus on two sets of simu-
lations: one set with  NF = 1  latent variable, which does not generate scaling under coarse- graining 
(Morrell et al., 2021), and one set with  NF = 5  latent variables, which can generate such scaling for 
some values of parameters  τF ,  η , and  ϵ  (Morrell et al., 2021; Table 1).

Avalanche scaling depends on the number of latent variables
We analyzed avalanches from one- and five- variable simulations, each with fixed latent dynamical 
timescale ( τF = 5× 103  time steps; see Table  2 for parameters). In the following sections, time is 
measured in simulation time steps, see Materials and methods for converting time steps to seconds. 
We used established methods for measuring empirical power laws (Clauset et  al., 2009). The 

Table 1. Simulation parameters for Figure 1.

Parameter Description Value

 ϵ bias towards silence  ϵ = 12 

 η variance multiplier  η = 4.0 

 NF number of latent fields  NF = 5 

 τF  latent field time constant  τ = 104 

 N  number of cells  N = 1024 

Table 2. Simulation parameters for Figure 2.

Parameter Description Value

 ϵ bias towards silence  ϵ = 8  (for  NF = 1 ) or  ϵ = 12  (for  NF = 5 )

 η variance multiplier  η = 4.0 

 NF number of latent fields  NF = 1 or 5 

 τF  latent field time constant  τF = 103, ...105 

 N  number of cells  N = 1024 
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minimum cutoffs for size ( Smin ) and duration ( Dmin ) are indicated by vertical lines in Figure 2. For the 
population coupled to a single latent variable, the avalanche size distribution was not well fit by a 
power law (Figure 2A). With a sufficiently high minimum cut- off ( Dmin ), the duration distribution was 
approximately power- law (Figure 2B).

We next assessed whether the simulation produced crackling. If so, the value  γfit  obtained by 
fitting  ̄S(D) ∼ Dγfit  would be similar to  γpred = α−1

τ−1  . In many cases, such as the one- variable example 
shown in Figure 2C, the full range of avalanche durations were not fit by a single power law. There-
fore, we determined the largest range, over which a power law was a good fit to the simulated 
observations. In this case, slightly over two decades of apparent scaling were observed starting from 
avalanches with minimum duration slightly less than 100 time steps (Figure 2C), with a best- fit value 
of  γfit ∈ [1.69, 1.74] . As we did not find a power- law in the size distribution, calculating  γpred  is meaning-
less. If we do it anyway, we obtain  γpred = 0.83± 0.03  (yellow line in Figure 2C), which clearly deviates 
from the fitted value of  γ . Thus, for the single latent dynamical variable model ( τF = 5000 ), power- law 
fits are poor, and there is no crackling.

The five- variable model produces a different picture. We now find avalanches, for which size and 
duration distributions are much better fit by power- law models starting from very low minimum 
cutoffs (Figure 2D–E, Figure 2—figure supplement 2). Average size scaled with duration, again over 
more than two decades, with  γfit = 1.27± 0.03 , which was in close agreement with  γpred = 1.25± 0.02  
(Figure 2F). Holding other parameters constant, we thus found that scaling relationships and crackling 
arise in the multi- variable model but not the single- variable model.

Avalanche scaling depends on the time scale of latent variables
Based on simulations in the previous section, we surmised that the five- variable simulation generated 
scaling more readily due to creating an ‘effective’ latent variable that had slower dynamics than any 
individual latent variable. We reasoned that at any moment in time, the latent variable state  hµ(t)  
is a vector in the latent space. Because coupling to the latent variables is random throughout the 
population, only the length ( ∼

√
NF  ) and not the direction of this vector matters, and the timescale 

of changes in this length would be much slower than  τF , the timescale of each of the components 

 hµ(t) . We therefore speculated that increasing the timescale of dynamics of the latent variables should 
eventually lead to scaling and crackling in the single- variable model as well as the five- variable one. 
To examine the dependence of avalanche scaling on this timescale, we simulated one- variable and 
five- variable networks at fixed  η  and  ϵ  coupled to latent variables with the correlation time of their 
Ornstein- Uhlenbeck dynamics of  τF ∈ [103, 105]  time steps, spanning from a factor of 10 faster to a 
factor of 10 slower than the original  τF  in Figure 1. Simulations were replicated five times at each 
combination of parameters by drawing new latent variable coupling values ( Jiµ ), as well as new latent 
variable dynamics and instances of neural firing. For simulations that passed the criteria to be fitted 
by power laws, we plot the fitted values of  τ   ,  α ,  γfit , and  γfit − γpred  (Figure 2G–J). Missing points are 
those for which distributions did not pass the power law fit criteria.

In the single- variable model, best- fit exponents changed abruptly for latent variable timescale 
around  τF = 104  (Figure 2G and H), while in the five- variable model, exponents tended to increase 
gradually (Figure 2G and H, red). The discontinuity in the single- variable case reflected a change in 
the lower cutoff values in the power- law fits: size and duration distributions generated with faster 
latent dynamics could be fit reasonably well to a power law by using a high value of the lower cutoff 
(Figure 2—figure supplement 3). For time scales greater than ∼104, the minimum cutoffs dropped, 
and the single- variable model generated power- law distributed avalanches and crackling (Figure 2J), 
similar to the five- variable model. In summary, in the latent dynamical variable model, introducing 
multiple variables generated scaling at faster timescales. However, by slowing the timescale of the 
latent dynamics, the model generated signatures of critical avalanche scaling for both multi- and 
single- variable simulations.

Avalanche criticality, input scaling, and firing threshold
In the previous section, we found that a very slow single latent dynamical variable generated 
avalanche criticality in the simulation population. Thus, from now on, we simplify the model in order 
to characterize avalanche statistics across values of input scaling  η  and firing threshold  ϵ . Specifically, 
we modeled a population of  N = 128  neurons coupled to a single quasi- static latent variable. We 

https://doi.org/10.7554/eLife.89337
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Figure 2. Multiple latent variables generate avalanche scaling at shorter timescales than a single latent variable. Simulated network is  N = 1024  
neurons. Other parameters used for simulations for this figure are found in Table 2. (A- C) Scaling analysis for one variable models where the dynamic 
timescale is equal to 5×103 time steps. (A) Distribution of avalanche sizes. MLE value of exponent for best- fit power law is  τ = 1.98  (0.02 SE), with lower 
cutoff indicated by the vertical line. (B) Distribution of avalanche duration. MLE value of  α  is 1.81 (0.02 SE). (C) Average size plotted against avalanche 
duration (blue points), with power- law fit (black line) and predicted relationship (yellow line) from MLE values for exponents in A and B. Gray bar on the 
horizontal axis indicates range, over which a power law with  γ = 1.72  fits the data (see Materials and methods). (D- F) Analysis of avalanches from a 
simulation of a population coupled to five independent latent variables where the dynamic timescale is equal to 5×103 time steps. (G) Exponents  τ   for 
avalanche size distributions across timescales for one- variable (blue) and five- variable (red) simulations. Each circle is a simulation with independently 
drawn coupling parameters. Simulations had to show scaling over at least two decades to be included in panels (G–J). (H) Exponents  α  for avalanche 
duration distributions for simulations in G. (I) Fitted values of  γ   for simulations in G. (J) Difference between fitted and predicted  γ   values. Five- variable 
simulations produce crackling over a wider range of timescales than single- variable simulations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Illustration of algorithm for determining  τ   and  α , using one variable example in Figure 2.

Figure supplement 2. Illustration of algorithm for determining  τ   and  α , using example in Figure 2, five latent variables.

Figure supplement 3. Illustration of algorithm for fitting the exponent  γ   and determining the range, over which power law scaling of average size with 
duration is observed, using example in Figure 2(A–D).

Figure 2 continued on next page
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Figure 3. Exponents across network simulations for networks of  N = 128  neurons. Each parameter combination  η, ϵ  was simulated for ten replicates, 
each time drawing randomly the couplings  Ji , the latent variable values, and the neural activities. Other parameters in Table 3. (A) Average across 
replicates for the size exponent  τ  . (B) Scatter plot of  α  vs.  τ   for each network replicate for parameter combinations indicated in A. Linear relationships 
between  τ   and  α , corresponding to the minimum and maximum values of  γfit  from panel E, are shown to guide the eye. (C) Same as A, for duration 
exponent  α . (D) Predicted exponent,  γpred , derived from A and C. (E) Value of  γfit  from fit to  ̄S ∼ Dγ . (F) Difference between  γpred  and  γfit .

Figure supplement 4. Illustration of algorithm for fitting the exponent  γ   and determining the range over which power- law scaling of average size with 
duration is observed, using example in Figure 2E–H.

Figure 2 continued
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simulated 103 segments of 104 steps each and drew a new value of the latent variable ( h ∼ N(0, 1) ) for 
each segment. Ten replicates of the simulation were generated at each of the combinations of  η  and 
 ϵ  (see Materials and methods).

Almost independent of  η  and  ϵ , we found quality power law fits and crackling. Figure 3 shows 
the average (across  n = 10  network realizations) of the exponents extracted from size ( τ  , Figure 3A) 
and duration ( α , Figure 3C) distributions. At small firing threshold ( ϵ = 2 ), we do not observe scaling 
because the system is always active, and all avalanches merge into one. At large firing threshold  ϵ  and 
low input scaling  η , we do not observe scaling because activity is so sparse that all avalanches are small. 
At intermediate values of the parameters, the simulations generated plausible scaling relationships 
in size and duration. The difference between  γfit  and  γpred  was typically less than 0.1 (Figure 4D–F), 
which was consistent with previously reported differences between fit and predicted exponents (Ma 
et al., 2019). Thus, there appears to be no need for fine- tuning to generate apparent scaling in this 
model, at least in the limit of (near) infinite observation time. Wherever  η  and  ϵ  generate avalanches, 
there are approximate power- law distributions and crackling.

To determine where avalanches occur, we derive the avalanche rate across values of the latent 
variable  h . In the quasi- static model, the probability of an avalanche initiation is the probability of a 
transition from the quiet to an active state. Because all neurons are conditionally independent, this 
is  Pava = Psilence(1− Psilence) . Then the expected number of avalanches  ̂Nava  is obtained by integrating 
 Pava  over  h  at each value of  η  and  ϵ :
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Figure 4. Avalanches in the latent dynamical variable model with a single quasistatic variable. Parameters in Table 3. (A) Number of avalanches in 
simulations from Figure 3 as a function of the calculated probability of avalanches at fixed  η  across values of  ϵ  and latent variable  h . Line indicates 
equality. (B) Probability of avalanches with  η = 2  across values of  ϵ  and  h . The latent variable  h  is normally distributed with mean 0 and variance 1. 
Where the distribution of  h  overlaps with regions of high probability (black), avalanches occur. (C) Probability of avalanches at  ϵ = 8  across values of  η  
and  h . Increasing  η  narrows the range of  h  that generates avalanches. (D) Probability of avalanches at  h = 0  for a populations of 128 neurons (black line) 
and for a varying  ϵ . Size distributions corresponding to simulations marked by the green and orange crosses are in E, F. (E) Example of size distribution 
with  ϵ < ϵ0  (orange marker in D). Size cutoff is close to 100. (F) Example of size distribution with  ϵ > ϵ0  (green marker in D). Size cutoff is < 10.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Estimate of how long it takes to observe avalanche criticality at each combination of  η  and  ϵ .
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N̂ava =

ˆ
Pava(ϵ, η, h; Ji,N)p(h)dh =

ˆ ∏
i

(
1

1 + e−ηJih−ϵ

)(
1−

∏
i

(
1

1 + e−ηJih−ϵ

))
p(h)dh,

  
(3)

where  p(h)  is the standard normal distribution. This probability tracks the observed number of 
avalanches across simulations, Figure 4A.

To gain an intuition for the conditions under which avalanches occur, we show two slices of the 
avalanche probability, at fixed  η  (Figure 4B) and at fixed  ϵ  (Figure 4C). Black regions indicate where 
avalanches are likely to occur. If, for a given value of  ϵ  and  η , there is no overlap between high 
avalanche probability regions and the distribution of  h , then there will be no avalanches. For large 
 ϵ , avalanches occur because neurons with large coupling to the latent variable ( η|Ji| >> 1 , recall 

 Ji ∼ N(0, 1) ) are occasionally activated by a value of the latent variable  h  that is sufficient to exceed 
 ϵ  (Figure 4B). Thus, the scaling parameter  η  controls the value of  h  for which avalanches occur most 
frequently (Figure 4C). As  ϵ  decreases, avalanches occur for smaller and smaller  h  until avalanches 
primarily occur when  h = 0 .

To calculate the probability of avalanches, we must integrate over all values of  h , but we can gain a 
qualitative understanding of which avalanche regime the system is in by examining the probability of 
avalanches at  h = 0 . At  h = 0 , the avalanche probability (see Materials and methods) is

 
Pava(ϵ, η, h = 0; Ji,N) =

(
1

1 + e−ϵ

)N
(
1−

(
1

1 + e−ϵ

)N
)

,
  

(4)

which is maximized at  ϵ0 = − log(21/N − 1) , independent of  Ji  and  η . After some algebra, we find 
that  ϵ0 ∼ logN   for large  N  . The dependence on  N   reflects that a larger threshold is required for 
larger networks: large networks ( N → ∞ ) are unlikely to achieve complete network silence, therefore 
preventing avalanches from occurring. Similarly, small networks ( N ∼ 1 ) are unlikely to fire consecu-
tively and thus are unlikely to avalanche.

We plot  Pava(ϵ, η; Ji,N, h = 0)  as a function of  ϵ  in Figure 4D. The peak at  ϵ0  divides the space into 
two regions. For  ϵ < ϵ0 , a power- law is only observed in the large- size avalanches, which are rare 
(Figure 4E, green). By contrast, when  ϵ > ϵ0 , minimum size cutoffs are low (Figure 4F, orange). Both 
regions,  ϵ < ϵ0  and  ϵ > ϵ0 , exhibit crackling noise scaling. If observation times are not sufficiently long 
(estimated in Figure 4—figure supplement 1), then scaling will not be observed in the  ϵ < ϵ0  region, 
whose scaling relations arise from rare events. Insufficient observation times may explain experiments 
and simulations where avalanche scaling was not found.

Inferring the latent variable
Our analysis of  Pava(ϵ, η, h)  at  h = 0  suggested that there are two types of avalanche regimes: one with 
high activity and high minimum cutoffs in the power law fit (Type 1), and the other with lower activity 
and size cutoffs (Type 2). Further, when  Pava  drops to zero, avalanches disappear because the activity 
is too high or too low. We now examine how information about the value of the latent variables 
represented in the network activity relates to the activity type. To delineate these types, we calcu-
lated numerically  ϵ

∗(η) , the value of  ϵ , for which the probability of avalanches is maximized, and the 
contours of  Pava  (Figure 5A). Curves for  ϵ

∗(η)  and  ϵ0  and  Pava = 10−3  are shown in Figure 5A and B.
We expect that the more cells fire, the more information they would convey, until the firing rate 

saturates, and inferring the value of the latent variable becomes impossible. Figure 5B supports the 
prediction: generally, information is higher in regions with more activity (lower  ϵ , higher  η ), but only 
up to a limit: as  ϵ → 0 , information decreases. This decrease begins approximately where the proba-
bility of avalanches drops to nearly zero (dashed black lines, Figure 5B–E) because all of the activity 
merges into a few very large avalanches. In other words, the Type- 1 avalanche region coincides with 
the highest information about the latent variable.

The critical brain hypothesis suggests that the brain operates in a critical state, and its functional 
role may be in optimizing information processing (Beggs, 2008; Chialvo, 2010). Under this hypoth-
esis, we would expect the information conveyed by the network to be maximized in the regions we 
observe avalanche criticality. However, we see that critical regions do not always have optimal infor-
mation transmission. In Figure 5, the region that displays crackling noise is that where avalanches 
exist ( Pava > 0.001 ), which corresponds to any  η  value and  ϵ ≳ 3 . This avalanche region encompasses 

https://doi.org/10.7554/eLife.89337
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both networks with high information transmission and networks with low information transmission. 
In summary, observing avalanche criticality in a system does not imply a high- information processing 
network state. However, the scaling can be seen at smaller cutoffs, and hence with shorter recordings, 
in the high- information state. This parallels the discussion by Schwab et al., 2014, who noticed that 
the Zipf’s law always emerges in neural populations driven by quasi- stationary latent fields, but it 
emerges at smaller system sizes when the information about the latent variable is high.

Discussion
Here, we studied systems with distributed, random coupling to latent dynamical variables and we 
found that avalanche criticality is nearly always observed, with no fine- tuning required. Avalanche 
criticality was surprisingly robust to changes in input gain and firing rate threshold. Loss of avalanche 
criticality could occur if the latent process was not well- sampled, either because the simulation was 
not long enough or the dynamics of the latent variables were too fast. Finally, while information about 
the latent variables in the network activity was higher where avalanches were generated compared 
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Figure 5. Information in the neural activity about the latent variable is higher in the low- ϵ  avalanche region, compared to high- ϵ  avalanche or high- rate 
avalanche- free activity. (A) Probability of avalanche per time step across values of  η  and  ϵ . Solid magenta curve follows  ϵ

∗(η) , the value of  ϵ  maximizing 
the probability of avalanches at fixed  η . Dashed magenta line indicates  ϵ0 , calculated analytically, which matches  ϵ∗  at  η = 0 . (B) Information about 
latent variable, calculated from maximum likelihood estimate of  h  using population activity. MLE approximation is invalid in the dark- blue region 
bounded by gray curve. Magenta line marks the maximum values of  Pava , reproduced from A. Dashed black curve indicates  Pava = 0.001 . The highest 
information region falls between  ϵ

∗(η)  and the contour for  Pava = 0.001 . (C - E) Slices of B, showing  IMLE(ϵ)  for  η = {2, 5, 9} . Magenta and dashed 
black lines again indicate  ϵ∗  and  Pava = 0.001 , respectively, as in B. Black dashed line marks the approximate boundary between the high- activity/no 
avalanche and the high- cutoff avalanche, and magenta line marks boundary between high- cutoff and low- cutoff avalanche regions.
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to when they were not, there was a range of information values across the critical avalanche regime. 
Thus, avalanche criticality alone was not a predictor of optimal information transmission.

Explaining experimental exponents
A wide range of critical exponents has been found in ex vivo and in vivo recordings from various 
systems. For instance, the seminal work on avalanche statistics in cultured neuronal networks by 
Beggs and Plenz, 2003 found size and duration exponents of 1.5 and 2.0 respectively, along with 

 γ = 2 , when time was discretized with a time bin equal to the average inter- event interval in the 
system. A subset of the in vivo recordings analyzed from anesthetized cat (Hahn et al., 2010) and 
macaque monkeys (Petermann et  al., 2009) also exhibited a size distribution exponent close to 
1.5. By contrast, a survey of many in vivo and ex vivo recordings found power- law size distributions 
with exponents ranging from 1 to 3 depending on the system (Fontenele et al., 2019). Separately, 
Ma et al., 2019 reported recordings in freely moving rats with size exponents ranging from 1.5 to 
2.7. In these recordings, when the crackling relationship held, the reported value of  γ  was near 1.2 
(Fontenele et al., 2019; Ma et al., 2019).

A model for generating avalanche criticality is a critical branching process (Beggs and Plenz, 
2003), which predicts size and duration exponents of 1.5 and 2 and scaling exponent  γ  of 2. However, 
there are alternatives: Lombardi et al., 2023 showed that avalanche criticality may also be produced 
by an adaptive Ising model in the sub- critical regime, and in this case, the scaling exponent  γ  was not 
2 but close to 1.6. Our model, across the parameters we tested that produced exponents consistent 
with the scaling relationship, generated  τ   values that ranged from 1.9 to about 2.5. Across those simu-
lations, we found values  γ  within a narrow band from 1.1 to 1.3 (see Figure 2I and J and Figure 3H). 
While the exponent values our model produces are inconsistent with a critical branching process 
( γ = 2 ), they match the ranges of exponents estimated from experiments and reported by Fontenele 
et al., 2019. In this context, it might be useful to explore if our model and that of Lombardi et al., 
2023 might be related, with the adaptive feedback signal of the latter viewed as an effective, latent 
variable of the former.

A genuine challenge in comparing exponents estimated from different experiments with different 
recording modalities (spiking activity, calcium imaging, LFP, EEG, or MEG) arises from differences in 
spatial and temporal scale specific to a particular recording, as well as the myriad decisions made 
in avalanche analysis, such as defining thresholds or binning in time. Thus, one possible reason for 
differences in exponents across studies may derive from how the system is sub- sampled in space or 
coarse- grained in time, both of which systematically change exponents  τ   and  α  (Beggs and Plenz, 
2003; Shew et al., 2015) and could account for differences in  γ  (Capek et al., 2023). The model we 
presented here could be used as a test bed for examining how specific analysis choices affect expo-
nents estimated from recordings.

A second possible explanation for differences in exponents is that different experiments study 
similar, but distinct biological phenomena. For instance, networks that were cultured in vitro may 
differ from those that were not, whether they are in vivo or ex vivo (i.e. brain slices), and sensory- 
processing networks may have different dynamics from networks with different processing demands. 
It is possible that certain networks develop connections between neurons such that they truly do 
produce dynamics that approximate a critical branching process, while other networks have different 
structure and resulting dynamics and thus can be better understood as coupled neurons receiving 
feedback (Lombardi et al., 2023) or as a system coupled to latent dynamical variables. This is espe-
cially true in sensory systems, where coupling to (latent) external stimuli in a way that the neural 
activity can be used to infer the stimuli is the reason for the networks’ existence (Schwab et al., 2014).

Relationship to past modeling work
Our model is not the first to produce approximate power- law size and duration distributions for 
avalanches from a latent variable process (Touboul and Destexhe, 2017; Priesemann and Shriki, 
2018). In particular, Priesemann and Shriki, 2018 derived the conditions, under which an inhomo-
geneous Poisson process could produce such approximate scaling. The basic idea is to generate a 
weighted sum of exponentially distributed event sizes, each of which are generated from a homo-
geneous Poisson process. How each process is weighted in this sum determines the approximate 
power- law exponent, allowing one to tune the system to obtain the critical values of 1.5 and 2. 

https://doi.org/10.7554/eLife.89337
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Interestingly, this model did not generate non- trivial scaling of size with duration ( S ∼ Dγ ). Instead, they 
found  γ = 1 , not the predicted  γ = 2 . Our results differ significantly, in that  γ  was typically between 1.1 
and 1.3 and it was nearly always close to the prediction from  α  and  τ  . We speculate that this is due to 
nonlinearity in the mapping from latent variable to spiking activity, as doubling the latent field  h  does 
not double the population activity, but doubling the rate of a homogeneous Poisson process does 
double the expected spike count. As biological networks are likely to have such nonlinearities in their 
responses to common inputs, this scenario may be more applicable to certain kinds of recordings.

Summary
Latent variables – whether they are emergent from network dynamics (Clark et al., 2023; Sederberg 
and Nemenman, 2020) or derived from shared inputs – are ubiquitous in large- scale neural popu-
lation recordings. This fact is reflected most directly in the relatively low- dimensional structure in 
large- scale population recordings (Stringer et al., 2019; Pandarinath et al., 2018; Nieh et al., 2021). 
We previously used a model based on this observation to examine signatures of neural criticality 
under a coarse- graining analysis and found that coarse- grained criticality is generated by systems 
driven by many latent variables (Morrell et al., 2021). Here, we showed that the same model also 
generates avalanche criticality, and that when information about the latent variables can be inferred 
from the network, avalanche criticality is also observed. Crucially, finding signatures of avalanche 
criticality required long observation times, such that the latent variable was well- sampled. Previous 
studies showed that Zipf’s law appears generically in systems coupled to a latent variable that changes 
slowly relative to the sampling time, and that the Zipf’s behavior is easier to observe in the higher 
information regime (Schwab et al., 2014; Aitchison et al., 2016). However, this also suggests that 
observation of either scaling at modest data set sizes indeed points to some fine- tuning — namely 
to the increase of the information in the individual neurons (and, since neurons in these models are 
conditionally independent, also in the entire network) about the value of the latent variables. In other 
words, one would expect a sensory part of the brain, if adapted to the statistics of the external stimuli, 
to exhibit all of these critical signatures at relatively modest data set sizes. In monocular deprivation 
experiments, when the activity in the visual cortex is transiently not adapted to its inputs, scaling 
disappears, at least for recordings of a typical duration, and is restored as the system adapts to the 
new stimulus (Ma et al., 2019). We speculate that the observed recovery of criticality by Ma et al., 
2019 could be driven by neurons adapting to the reduced stimuli state, for instance, by adjusting  η  
(input scaling) and  ϵ  (firing rate threshold).

Taken together, these results suggest that critical behavior in neural systems – whether based 
on the Zipf’s law, avalanches, or coarse- graining analysis – is expected whenever neural recordings 
exhibit some latent structure in population dynamics and this latent structure can be inferred from 
observations of the population activity.

Materials and methods
Simulation of dynamic latent variable model
We study a model from Morrell et al., 2021, originally constructed as a model of large populations 
of neurons in mouse hippocampus. In the original version of the model, neurons are non- interacting, 
receiving inputs reflective of place- field selectivity as well as input current arising from a random 
projection from a small number of latent dynamical variables, representing inputs shared across the 
population of neurons that are not directly measured or controlled. In the current paper, we incorpo-
rate only the latent variables (no place variables), and we assume that every cell is coupled to every 
latent variable with some randomly drawn coupling strength.

The probability of observing a certain population state  {si}  given latent variables  hµ(t)  at time  t  is

 
P({si}|{hµ}) =

1
Z({hµ})

e−H({si},{hµ}),
  

(5)

where  Z   is the normalization, and  H   is the ‘energy’:

 
H =

N,Nf∑
i,µ=1

ηhµ(t)Jiµsi + ϵsi.
  

(6)
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The latent variables  hµ(t)  are Ornstein- Uhlenbeck processes with zero mean, unit variance, and 
time constant  τm . Couplings  Jiµ  are drawn from the standard normal distribution.

Parameters for each figure are laid out in Tables 1–3. For the infinite time constant simulation, we 
draw a value  h ∼ N (0, 1)  and simulate for 10000 time steps, then repeat for 1000 draws of  h .

Time step units
Most results were presented using arbitrary time units: all times (i.e.  τF  and avalanche duration  D ) are 
measured in units of an unspecified time step. Specifying a time bin converts the probability of firing 
into actual firing rates, in spikes per second, and this choice determines which part of the  η - ϵ  phase 
space is most relevant to a given experiment.

The time step is the temporal resolution at which activity is discretized, which varies from several to 
hundreds of milliseconds across different experimental studies (Beggs and Plenz, 2003; Fontenele et al., 
2019; Ma et al., 2019). In physical units and assuming a bin size of 3 ms to 10 ms, our choice of  η  and  ϵ  
in Figure 2 would yield physiologically realistic firing rate ranges (Hengen et al., 2016), with high- firing 
neurons reaching averages rates of 20- 50 spikes/second and median firing- rate neurons around 1- 2 spikes/
second. The timescales of latent variables examined range from about 3 s to 3000 s, assuming 3- ms bins. 
Inputs with such timescales may arise from external sources, such as sensory stimuli, or from internal sources, 
such as changes in physiological state.

Simulations were carried out for the same number of time steps (2×106), which would be approxi-
mately 1 to 2 ‘hours’, a reasonable duration for in vivo neural recordings. Note that at large values of 

 τF , the latent variable space is not well sampled during this time period.

Analysis of avalanche statistics
Setting the threshold for observing avalanches
In our model, we count avalanches as periods of continuous activity (in any subset of neurons) that 
is book- ended by time bins with no activity in the entire simulated neural network. For real neural 
populations of modest size, this method fails because there are no periods of quiescence. The typical 
solution is to set a threshold, and to only count avalanches when the population activity exceeds that 
threshold, with the hope that results are relatively robust to that choice. In our model, this operation is 
equivalent to changing  ϵ , which shifts the probability of firing up or down by a constant amount across 
all cells independent of inputs. Our results in Figure 3 show that  α  and  τ   decrease as the threshold 
for detection is increased (equivalent to large  |ϵ| ), but that the scaling relationship is maintained. The 
model predicts that  γpred − γfit  would initially increase slightly with the detection threshold before 
decreasing back to near zero.

Following the algorithm laid out in Clauset et al., 2009, we fit power laws to the size and duration 
distributions from simulations generating avalanches. We use least- squares fitting to estimate  γfit , the 
scaling exponent for size with duration, assessing the consistency of the fit across decades.

Reading power laws from data
We want, from each simulation, a quantification of the quality of scaling (how many decades, mini-
mally) and an estimate of the scaling exponents ( τ   for the size distribution,  α  for the duration distribu-
tion). We first compile all avalanches observed in the simulation and for each avalanche, calculate its 
size (total activity across the population during the avalanche) and its duration (number of time bins). 

Table 3. Simulation parameters for Figures 3 and 4.

Parameter Description Value

 ϵ bias towards silence  ϵ ∈ {2, 4, ...14} 

 η variance multiplier  η ∈ {1, 2, ...10} 

 NF number of latent fields  NF = 1 

 τF  latent field time constant quasistatic

 N  number of cells  N = 128 

https://doi.org/10.7554/eLife.89337
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Following the steps outlined by Clauset et al., 2009, we use the maximum- likelihood estimator to 
determine the scaling exponent. This is the solution to the transcendental equation

 

ζ′(α̂, xmin)
ζ(α̂, xmin)

= −1
n

n∑
i=1

ln xi
  

(7)

where  ζ(α, xmin)  is the Hurwitz zeta function and  xi  are observations; that is, either the size or the 
duration of each avalanche i. For values of  xmin < 6 , a numerical look- up table based on the built- in 
Hurwitz zeta function in the symbolic math toolbox was used (MATLAB2019b). For  xmin > 6  we use an 
approximation (Clauset et al., 2009),

 

α̂ = 1 + n



∑

i
ln xi

xmin −
1
2




−1

.

  

(8)

To determine  xmin , we computed the maximum absolute difference between the empirical cumu-
lative density ( S(x) ) function and model’s cumulative density function  P(x)  (the Kolmogorov- Smirnov 
(KS) statistic;  D = maxx≥xmin |S(x)− P(x)| ). The KS statistic was computed between for power- law models 
with scaling parameter  ̂α  and cutoffs  xmin . The value of  xmin  that minimizes the KS statistic was chosen. 
Occasionally the KS statistic had two local minima (as in Figure 2—figure supplement 1), indicating 
two different power- laws. In these cases, the minimum size and duration cutoffs were the smallest 
values that were within 10% of the absolute minimum of the KS statistic. Note that the statistic is 
computed for each model only on the power- law portion of the CDF (i.e.  xi ≥ xmin ). We do not attempt 
to determine an upper cut- off value.

To assess the quality of the power- law fit, Clauset et al., 2009 compared the empirical observa-
tions to surrogate data generated from a semi- parametric power- law model. The semi- parametric 
model sets the value of the CDF equal to the empirical CDF values up to  x = xmin  and then according 
to the power- law model for  x > xmin . If the KS statistic for the real data (relative to its fitted model) 
is within the distribution of the KS statistics for surrogate datasets relative to their respective fitted 
models, the power- law model was considered a reasonable fit.

Strict application of this methodology could give misleading results. Much of this is due to the 
loss of statistical power when the minimum cutoff is so high that the number of observations drops. 
For instance, in the simulations shown in Figure 2, the one- variable duration distribution passed the 
Clauset et al., 2009 criterion, with a minimum KS statistic of 0.03 when the duration cutoff was 18 
time steps. However, for the five- variable simulation in Figure  2, a power- law would be narrowly 
rejected for both size and duration, despite having much smaller KS statistics: for  τ  , the KS statistic 
was 0.0087 (simulation range: 0.0008 to 0.0082; number of avalanches observed: 58,787) and for  α  it 
was 0.0084 (simulation range: 0.0011 to 0.0075). Below we discuss this problem in more detail.

Determining range over which avalanche size scales with duration
For fitting  γ , our aim was to find the longest sampled range, over which we have apparent power- law 
scaling of size with duration. Because our sampled duration values have linear spacing, error estimates 
are skewed if a naive goodness of fit criterion is used. We devised the following algorithm. First, the 
simulation must have at least one avalanche of size 500. We fit  S = cDγ  over one decade at a time. 
We chose as the lower duration cutoff the value of minimum duration, for which the largest number 
of subsequent (longer- duration) fits produced consistent fit parameters (Figure 2—figure supple-
ments 3 and 4, top row). Next, with the minimum duration set, we gradually increased the maximum 
duration cut- off, and we determined whether there was a significant bias in the residual over the first 
decade of the fit. We selected the highest duration cutoff, for which there was no bias. Finally, over 
this range, we re- fit the power law relationship and extracted confidence intervals.

Our analysis focused on finding the apparent power- law relationship that held over the largest 
log- scale range. A common feature across simulation parameters ( τF ,  NF ) was the existence of two 
distinct power- law regimes. This is apparent in Figure 2I, which shows that when  NF = 1  at small  τF , 
the best- fit  γ  (that showing the largest range with power- law- consistent scaling) is much larger ( 1.7), 
and then above  τF ∼ 3000 , the best- fit  γ  drops to around 1.3.

https://doi.org/10.7554/eLife.89337
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Statistical power of power-law tests
In several cases, we found examples of power- law fits that passed the rejection criteria commonly 
used to determine avalanche scaling relationships because of limited number of observations. A key 
example is that of the single latent variable simulation shown in Figure 2B, where we could not reject 
a power law for the duration distribution. Conversely, strict application of the surrogate criteria would 
reject a power law for distributions that were quantitatively much closer to a power- law (i.e. lower 
KS statistic), but for which we had many more observations and thus a much stronger surrogate test 
(Figure 2). This points to the difficulty of applying a single criterion to determining a power- law fit. In 
this work, we adhere to the criteria set forth in Clauset et al., 2009, with a modification to control for 
the unreasonably high statistical power of simulated data. Specifically, the number of avalanches used 
for fitting and for surrogate analysis was capped at 500,000, drawn randomly from the entire pool of 
avalanches.

Additionally, we found examples, in which a short simulation was rejected, but increasing the simu-
lation time by a factor of five yielded excellent power- law fits. We speculate that this arises due 
to insufficient sampling of the latent space. These observations raise an important biological point. 
Simulations provide the luxury of assuming the network is unchanging for as long as the simulator 
cares to keep drawing samples. In a biological network, this is not the case. Over the course of hours, 
the effective latent degrees of freedom could change drastically (e.g. due to circadian effects [Aton 
et al., 2009], changes in behavioral state [Fu et al., 2014], plasticity [Hooks and Chen, 2020], etc.), 
and the network itself (synaptic scaling, firing thresholds, etc.) could be plastic (Hengen et al., 2016). 
All these factors can be modeled in our framework by determining appropriate cutoffs (in duration 
of recording, in time step sizes, for activity distributions) based on specific experimental timescales.

Calculation of avalanche regimes
In the quasistatic model, we derive the dependence of the avalanche rate on  η ,  ϵ  and number of 
neurons  N  , finding that there are two distinct regimes, in which avalanches occur. Each time bin is 
independent, conditioned on the value of  h . For an avalanche to occur, the probability of silence in the 
population (i.e. all  si = 0 ) must not be too close to 0 (or there are no breaks in activity) or too close to 
1 (or there is no activity). At fixed  h , the probability of silence is

 
Psilence(ϵ, η; Ji,N, h) =

∏
i

1
1 + exp(−ηJih + ϵ)

.
  

(9)

An avalanche occurs when a silent time bin is followed by an active bin, which has probability 

 Pava(ϵ, η; Ji,N, h) = Psilence(1− P silence) .

Information calculation
Maximum-likelihood decoding
For large populations coupled to a single latent variable, we estimated the information between 
population spiking activity and the latent variable as the information between the maximum- likelihood 
estimator  h∗  of the latent variable  h  and the latent variable itself. This approximation fails at extremes 
of network activity levels (low or high).

Specifically, we approximated the log- likelihood of  h∗  given  htrue  near  h∗  by 

 
log L(h − h∗) ≈ log Lmax − 1

2
(h−h∗)2
σ2

h∗  
. Thus we assume that  h∗  is normally distributed about  htrue  with vari-

ance  σ
2(htrue) . The variance is then derived from the curvature of the log- likelihood at the maximum. 

The information between two Gaussian variables, here  P(h
∗|h) = N(h,σ2

h∗ )  and  p(h) = N(0, 1) , is

 
I(h; s̄i,T) ≈

1
2

⟨
log T

σ2
htrue

⟩

htrue

,
  

(10)

where the average is taken over  htrue ∼ N(0, 1) .
Given a set of  T   observations of the neurons  {si} , the likelihood is
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P({si}t|h) =

N,T∏
i,t

P(si|h) =
N,T∏
i,t

e−ηsiJih−ϵsi

1 + e−(ηJih+ϵ)
.
  

(11)

Maximizing the log likelihood gives the following condition:

 

0 = ∂(logP)
∂h

��h∗ = ∂

∂h


∑

i,t

(
(−ηsiJih − ϵsi)− log(1 + e−(ηJih+ϵ))

)��h∗
  

(12)

 
=
∑

i
−ηs̄iJiT + TJiη

1 + eηJih∗+ϵ
,
  

(13)

where  ̄si = 1
T
∑

t sit  is the average over observations  t . The uncertainty in  h∗  is  σh , which was calculated 
from the second derivative of the log likelihood:

 

1
σ2

h∗
= −∂2(logP)

∂h2
  

(14)

 
= − ∂

∂h

(∑
i

−ηs̄iJiT + TJiη

1 + eηJih+ϵ

)��h∗
  

(15)

 
=
∑

i

T(ηJi)2eηJih∗+ϵ

(1 + eηJih∗+ϵ)2   
(16)

 

=
∑

i

T(ηJi)2

4 cosh2(ηJih∗ + ϵ

2
)
.

  
(17)

This expression depends on the observations  ̄si  only through the maximum- likelihood estimate  h∗ . 
When  h∗ → htrue , then the variance is

 

1
σ2

h∗
=
∑

i

T(ηJi)2

4 cosh2(ηJihtrue + ϵ

2
)
≡ T

σ2
htrue

.

  
(18)

To generate Figure 5, we evaluated Equation 10 using Equation 18.

Code availability
Simulation code was adapted from our previous work (Morrell et al., 2021). Code to run simulations 
and perform analyses presented in this paper is uploaded as Source code 1 and also available from 
https://github.com/ajsederberg/avalanche (copy archived at Sederberg, 2024).
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