
Ruan et al. eLife 2023;12:RP89392. DOI: https://doi.org/10.7554/eLife.89392 � 1 of 17

Warming and altered precipitation 
independently and interactively suppress 
alpine soil microbial growth in a decadal-
long experiment
Yang Ruan1,2, Ning Ling1,2*, Shengjing Jiang1, Xin Jing1, Jin-Sheng He1,3*, 
Qirong Shen2, Zhibiao Nan1

1State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, 
College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 
China; 2Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu 
Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 
Nanjing Agricultural University, Nanjing, China; 3Institute of Ecology, College of 
Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes 
of the Ministry of Education, Peking University, Beijing, China

Abstract Warming and precipitation anomalies affect terrestrial carbon balance partly through 
altering microbial eco-physiological processes (e.g., growth and death) in soil. However, little is 
known about how such processes responds to simultaneous regime shifts in temperature and precip-
itation. We used the 18O-water quantitative stable isotope probing approach to estimate bacterial 
growth in alpine meadow soils of the Tibetan Plateau after a decade of warming and altered precip-
itation manipulation. Our results showed that the growth of major taxa was suppressed by the single 
and combined effects of temperature and precipitation, eliciting 40–90% of growth reduction of 
whole community. The antagonistic interactions of warming and altered precipitation on population 
growth were common (~70% taxa), represented by the weak antagonistic interactions of warming 
and drought, and the neutralizing effects of warming and wet. The members in Solirubrobacter 
and Pseudonocardia genera had high growth rates under changed climate regimes. These results 
are important to understand and predict the soil microbial dynamics in alpine meadow ecosystems 
suffering from multiple climate change factors.

eLife assessment
This important study addresses the long-term effect of warming and precipitation on microbial 
growth, as a proxy for understanding the impact of global warming. The evidence that warming and 
altered precipitation exhibit antagonistic effects on bacterial growth is compelling and advances 
our understanding of microbial dynamics affected by environmental factors. This study will interest 
microbial ecologists, microbiologists, and scientists generally concerned with climate change.

Introduction
Global climate change is threatening multi-dimensional ecosystem services, such as terrestrial primary 
productivity and soil carbon storage (Jansson and Hofmockel, 2020; Walker et  al., 2022; Zhou 
et al., 2022), especially in high-elevation ecosystems (Ma et al., 2017; Liu et al., 2018). Of these, 
the effects of global climate change on microbial processes related to soil carbon cycling should 
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receive more extensive attention, because carbon balance will have feedbacks on climate system, and 
further reinforce/diminish the net impact on ecosystem functioning (Jansson and Hofmockel, 2020). 
Microbial growth and death, the critical eco-physiological processes, serve as the major engine of 
soil organic carbon (SOC) turnover and thus dominates the feedback on climate (Sokol et al., 2022). 
Quantitative estimates of trait-based responses of microbes to multiple climate factors is critical for 
improved biogeochemical models and predicting the feedback effects to global change.

Climate warming and precipitation regime shift can influence soil microbial physiological activities 
directly or indirectly (Schimel, 2018; Jansson and Hofmockel, 2020; Purcell et  al., 2022; Sokol 
et  al., 2022). The Tibetan Plateau is considered among the most sensitive ecosystems to climate 
change (Liu et al., 2018). In such alpine regions, warming can alleviate low temperature limitations to 
enzymatic activity, stimulating SOC mineralization and microbial respiration (Dieleman et al., 2012; 
Streit et al., 2014). Long-term warming reduces soil organic carbon pools and exacerbates carbon 
limitation of soil microbes, causing a negative effect on microbial growth and eco-physiological 
functions (Jansson and Hofmockel, 2020; Melillo et al., 2017; Purcell et al., 2022; Streit et al., 
2014). Precipitation fluctuation constrains microbial physiological performance and functions, which 
is expected to be the major consequence of future climate change in mesic grassland ecosystems 
(Cook et al., 2015; McHugh et al., 2017; Oppenheimer-Shaanan et al., 2022; Yuan et al., 2017). 
Reduced precipitation affects soil processes notably by directly stressing soil organisms, and also 
altering the supply of substrates to microbes via dissolution, diffusion, and transport (Schimel, 2018). 
Increased frequency and magnitude of precipitation events could cause microbial species loss by 
‘filtering out’ the taxa with low tolerance to increased soil moisture and drying-rewetting (Evans and 
Wallenstein, 2014). In addition, higher mean annual precipitation (MAP) triggers an increase in SOC 
decomposition (Zhou et al., 2022), which could cause a negative effect on microbial growth in long 
term. Collectively, climate change typically causes negative consequences on the microbe-associated 
processes in terrestrial ecosystems.

As temperature and precipitation are of particular relevance, the interactive effects of warming 
and altered precipitation remain largely illusive, especially on the population growth of soil microbes 
(Zhu et al., 2016; Song et al., 2019). Drought limits the resistance of the entire system to warming 
(Hoeppner and Dukes, 2012). Higher evapotranspiration in a warmer world will result in chronically 
lower average soil moisture (Reich et al., 2018), further reducing the eco-physiological performance 
of soil microbes (Schimel, 2018). In contrast, enhanced precipitation relieves overall water limitations 
caused by warming and improved primary productivity and soil respiration (Fay et al., 2008). The 
responses of microbial population growth to multiple climate factors could be complex because (i) the 
changed climate conditions can directly affect the eco-physiological characteristics of soil microbes 
and (ii) indirectly affect microbial functioning by altering soil physicochemical properties (e.g. redox 
conditions and nutrient allocation) and aboveground plant composition (Qi et al., 2022; Yang et al., 
2021). The response of decomposer growth rates to the interaction of climate factors may be strongly 
idiosyncratic, varying among taxa, thus making predictions at the ecosystem level difficult.

The goal of current study is to comprehensively estimate taxon-specific growth responses of soil 
bacteria following a decade of warming and altered precipitation manipulation on the alpine grassland 
of the Tibetan Plateau, by using the 18O-quantitative stable isotope probing (18O-qSIP) (Figure 1A). 
We focused on the single and interactive effects of temperature (T) and precipitation (P) on the 
population-specific growth of soil bacteria. We classified the interaction types as additive, syner-
gistic, weak antagonistic, strong antagonistic and neutralizing interactions between climate factors 
(Figure 1B) by using the effect sizes and Hedges’ d (an estimate of the standardized mean differ-
ence; Côté et al., 2016; Harpole et al., 2011; Ma et al., 2019; Yue et al., 2017). We addressed the 
following hypotheses: (1) long-term warming and altered precipitation regimes (i.e. drought or wet) 
have negative effects on microbial growth in alpine meadow soils; (2) the interactive effects between 
warming and altered precipitation on microbial population growth rates are not simply additive.

https://doi.org/10.7554/eLife.89392
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Results
Overall growth response of soil bacteria to warming and altered 
precipitation
Excess atom fraction 18O value (Figure 2) and the population growth rate of each OTU were calcu-
lated using the qSIP pipeline. Collectively, 1373 OTUs were identified as ‘18O incorporators’ (i.e. 
OTUs with growth rates significantly greater than zero) and used for subsequent data analyses. The 
maximum cumulative growth rates of the whole communities occurred in the ambient temperature 
and ambient precipitation condition (T0nP), and all climate manipulations had negative effects on soil 
bacterial growth (Figure 3A). The individual impact of warming, drought, and wet conditions resulted 
in the most substantial negative effects on bacterial growth compared with the combined effects of 
warming × drought and warming × wet. A result that illustrates the antagonistic interactions between 
warming and modified precipitations patterns (Figure 3B). Moreover, the combined effect size of wet 
and warming was smaller than that of drought and warming, indicating a higher degree of antagonism 
of warming × wet.

Growth of the major bacterial phyla was also negatively influenced by the individual climate factors 
(Figure 3C and D). The antagonistic interactions of T and P were prevalent among the major phyla 
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Figure 1. Field experiment design for simulated warming and altered precipitation, qSIP incubation, and the growth responses of soil bacteria to 
changing climate regimes. To examine the effects of warming and altered precipitation on an alpine grassland ecosystem, two levels of temperature 
(T0, T+), and three levels of precipitation (-P, nP, +P) were established in 2011. The soil samples were collected in 2020 and used for 18O-qSIP incubation 
(A). Potential interaction types between multiple climate factors (B). The diagram shows that two factors (X and Y) of warming and altered precipitation 
impact a biological response in the same direction (upper) or have opposing effects on when acting separately. Their combined effect could be 
additive, that is the sum of the two factor effects. Alternatively, the interaction types can be antagonistic or synergistic. Null model (we use the additive 
expectation as the null model here) provides the threshold for distinguishing between these interactions.
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(except Bacteroidetes showed the additive interaction between drought and warming). We also found 
the significant smaller combined effect sizes of warming × wet in the major phyla compared with 
that of warming × drought (p < 0.05), such as Actinobacteria, Bacteroidetes and Betaproteobacteria, 
indicating higher degree of antagonism. In Actinobacteria and Bacteroidetes, the effect of wet and 
warming neutralized each other, as the combined effect of these two factors had no effect on growth.

Phylogeny for the species whose growth subjected to different factor 
interactions
We constructed a phylogenetic tree including all 18O incorporators in all six climate treatments 
(Figure  4A). The single-factor effects on the growth of incorporators tended to be negative 
(Figure 4B): Warming (T+nP) reduced the growth of 75% of the taxonomic groups, which was followed 
by drought and wet (74% and 67%, respectively). Warming × drought and warming × wet had the 
smaller impacts on the growth of incorporators, compared with the single effects (especially T++P, 
only 43% of incorporators showed negative growth responses). The interaction type of T and P on 
the growth of ~70% incorporators was antagonistic (i.e. the combined effect size is smaller than the 
additive expectation) (Figure 4C). The weak antagonistic interaction on bacterial growth was domi-
nant under the warming × drought conditions (41% of incorporators), while more incorporators (34%) 
whose growth subjected to neutralizing effect was found under the warming × wet conditions. These 
findings were robust at a subOTUs level by the zero-radius OTU (ZOTU) analysis (Figure 3—figure 
supplement 1 and Figure 4—figure supplement 1).
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Figure 2. Species-specific shifts of 18O excess atom fraction (EAF-18O). Bars represent 95% confidence intervals (CIs) of OTUs. Each circle represents 
an OTU and color indicates phylum. The open circles with gray bars represent OTUs with 95% CI intersected with zero (indicating no significant 18O 
enrichment); Closed circles represent the OTUs enriched 18O significantly, whose 95% CIs were away from zero (i.e. the OTUs had detectable growth).
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Phylogenetic relatedness can provide information on the ecological and evolutionary processes 
that influenced the emergence of the eco-physiological responses in taxonomic groups (Evans and 
Wallenstein, 2014). Nearest taxon index (NTI) was used to determine whether the species in a partic-
ular growth response are more phylogenetically related to one another than to other species (i.e. 
close or clustering on phylogenetic tree; Figure 4—source data 1). NTI is an indicator of the extent 
of terminal clustering, or clustering near the tips of the tree (Evans and Wallenstein, 2014; Webb 
et al., 2002). Overall, the most incorporators whose growth was influenced by the antagonistic inter-
action of T and P showed significant phylogenetic clustering (i.e. species clustered at the phylogenetic 
branches, indicating close genetic relationship; NTI > 0, p < 0.05). The incorporators whose growth 

T+T0
-P

T+T0
nP

T+T0
+P

2×
10

7
1×

10
7

0
2×

10
7

1×
10

7
0

W × D

W × W

T0 nP T+ nP
T0 -P T0 +P
T+ -P T+ +P

Positive
Negative
No change

A C
Ab

so
lu

te
 G

ro
w

th
 ra

te
 (1

6S
 rR

N
A 

ge
ne

 c
op

ie
s 

· d
-1

· g
-1

 d
ry

 s
oi

l)
4×

10
7

2×
10

7
0

6×
10

7

T+T0
-P

T+T0
nP

T+T0
+P

ANOVA
W ns
P ***
W×P ***

Alphaproteobacteria Betaproteobacteria Gammaproteobacteria

Actinobacteria Acidobacteria Bacteroidetes

ANOVA
W ns

P ***
W×P ***

ANOVA
W ns

P ***
W×P ***

ANOVA
W ns

P **
W×P ***

ANOVA
W ns

P ***
W×P ***

ANOVA
W ns

P ***
W×P ***

ANOVA
W ns

P **
W×P ***

T+T0
-P

T+T0
nP

T+T0
+P

T+T0
-P

T+T0
nP

T+T0
+P

-2

-1

0

1 Strong
antagonistic

Strong
antagonistic

-4

-2

0
Strong
antagonistic

Strong
antagonistic

-4
-3
-2
-1
0
1

-P nP +P

Strong
antagonistic

Strong
antagonistic

Weak
antagonistic

Weak
antagonistic

-1

0

1

Additive

Neutralizing 
effect-3

-2
-1
0
1

-P nP +P

Strong
antagonistic

Neutralizing 
effect

-3
-2
-1
0
1

-P nP +P

Alphaproteobacteria Betaproteobacteria Gammaproteobacteria

Actinobacteria Acidobacteria Bacteroidetes

Whole bacterial community

Strong
antagonistic

Strong
antagonistic

-P nP +P

-2

-1

0

1

R
es

po
ns

e
of

 b
ac

te
ria

l g
ro

w
th Whole bacterial community

Alphaproteobacteria
Betaproteobacteria

Gammaproteobacteria Bacteroidetes
Gemmatimonadetes

Planctomycetes
Deltaproteobacteria Acidobacteria

Actinobacteria
Verrucomicrobia Others

Unassigned

B D

8×
10

7

a

b

d
cd

cdc a b
c cb bc

a
ab

b
ab

b b

a

a

b
c bc bc

a

ab
c

d d
d

a
b c

abb

a

b

d

c cd

d

Figure 3. Bacterial growth responses to climate change and the interaction types between warming and altered precipitation. The growth rates (A), and 
responses of soil bacteria to warming and altered precipitation (B) at the whole community level. The growth rates (C), and responses of the dominant 
bacterial phyla (D) had similar trends with that of the whole community. Error bars depict means ± SD (n = 3). Different letters indicate significant 
differences between climate treatments (p < 0.05). The p-values were calculated using a two-tailed Student’s t-test. Two-way ANOVA was used to 
examine the effects of climate factors on bacterial growth (**: p ≤ 0.01, ***: p ≤ 0.001, ns: no significance). ‘W×P’: the interaction effects of warming and 
altered precipitation; ‘W×D’: warming and drought scenario; ‘W×W’: warming and wet scenario.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The growth responses of grassland bacteria to warming and altered precipitation based on ZOTU (zero-radius OTU) analysis.
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Figure 4. The growth responses and phylogenetic relationship of incorporators subjected to different interaction types under two climate scenarios. 
A phylogenetic tree of all incorporators observed in the grassland soils (A). The inner heatmap represents the single and combined factor effects of 
climate factors on species growth, by comparing with the growth rates in T0nP. The outer heatmap represents the interaction types between warming 
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The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. The nearest taxon index (NTI) for incorporators subjected to different interaction types under two climate change scenarios.

Figure supplement 1. The growth responses of grassland bacteria at the genus level to warming and altered precipitation based on OTU analysis (A 
and C) and ZOTU analysis (B and D).

Figure supplement 2. The higher level of antagonism of wet × warming than that of drought × warming.

https://doi.org/10.7554/eLife.89392
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subjected to the additive interaction of warming  × drought  also showed significant phylogenetic 
clustering (p < 0.05), but randomly distributed under warming × wet scenario (p = 0.116). In addition, 
incorporators whose growth is influenced by the synergistic interaction of T and P showed random 
phylogenetical distribution under both climate scenarios (p > 0.05).

Higher degree of antagonism in warming and wet scenario
We further assigned the antagonistic intensity to the five interaction types on a 5-point scale, from –1 
to 3 for synergistic, additive, weak antagonistic, strong antagonistic and neutralizing effect, respec-
tively (Figure 4—figure supplement 2), where the larger values represent higher degree of antag-
onism. Then, the overall antagonistic intensities of all incorporators under warming × drought and 
warming  × wet scenarios were estimated by weighting the relative proportions of incorporators 
subjected to different interaction types (Figure 4—figure supplement 2). We found higher overall 
antagonistic intensity of warming × wet than that of warming × drought, contributing by a higher 
proportion of incorporators whose growth subjected to neutralizing effect (Figure 4C and Figure 4—
figure supplement 2).

Of the total 1373 incorporators, 1218 were shared in both warming × drought and warming × wet 
scenarios (Figure 5A). That is, the difference in interactive effects between warming × drought and 
warming × wet we observed was due to a within-species change in growth response (i.e. pheno-
typic plasticity of organisms), rather than changes in species composition (i.e. species sorting). Of 
these species identified in both warming × drought and warming × wet scenarios, 453 incorporators 
were assigned a higher degree of antagonistic interaction of warming × wet than that of warming × 
drought. Further, the growth of 215 incorporators were influenced by the weak antagonistic interac-
tion of warming × drought, and neutralizing effect of warming × wet. The growth response of these 
215 species could contribute mainly to the overall growth patterns observed in grassland bacterial 
community under warming and altered precipitation scenarios, because of the prevalence of weak 
antagonistic interaction of warming × drought and neutralizing effect of warming × wet (Figure 4C).

We further assessed the potential functional traits of these 215 incorporators subjected to the 
dominant interaction types by PICRUST2 software (Figure 5B). The top three OTUs with the highest 
growth rates possessed extremely high species abundance (Figure 5—source data 1). The three taxa 
also possessed a higher functional potential related to carbon (C), nitrogen (N), sulfur (S), and phos-
phorus (P) cycling: the member affiliated to Solirubrobacter (OTU 14), has the high functional potential 
for aerobic C fixation and CO oxidation, nitrogen assimilation and assimilatory nitrite to ammonia, and 
phosphatase synthesis and phosphate transport transport-related functions. The members affiliated 
to the genus Pseudonocardia (OTU 5 and OTU 31), harbor a higher functional potential for aerobic 
C fixation, aerobic respiration, and CO oxidation, dissimilatory nitrate to nitrite and nitrogen assimi-
lation, and sulfur mineralization functions. Furthermore, we annotated the genomic characteristics by 
aligning species sequences to the GTDB database (Genome Taxonomy Database), and we found that 
OTU 14 (Solirubrobacter) was predicted to have larger genomes and proteomes (Figure 5—source 
data 1). All these results suggested that these three species could play essential roles at the species 
and functional levels of ecosystems.

Discussion
Microbial populations might respond differently to environmental changes, resulting in differential 
contributions to ensuing biogeochemical fluxes (Blazewicz et al., 2020). Here, we estimated micro-
bial growth responses by using the qSIP technique to decadal-long warming and altered precipita-
tion regimes in the alpine grassland ecosystem on the Tibetan Plateau, which is considered highly 
susceptible and vulnerable to climate change (Ma et al., 2017). After a decade of temperature and 
precipitation regime shift, the pervasive negative impacts of climate factors on soil bacterial growth in 
alpine grassland ecosystem were observed (Figure 3), which supports our first hypothesis that long-
term warming and altered rainfall events consistently reduce microbial growth. Consistent with our 
findings, a recent experimental study demonstrated that 15 years of warming reduced the growth rate 
of soil bacteria in a montane meadow in northern Arizona (Purcell et al., 2022). These negative effects 
of climate factors on microbial growth are likely due to the variation related to availability of soil 
moisture and organic carbon (Dieleman et al., 2012; Wu et al., 2011). Previous evidences suggest 
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that warming has a negative impact on soil carbon pools (Jansson and Hofmockel, 2020; Purcell 
et al., 2022), mainly because of the rapid soil carbon mineralization and respiration (Melillo et al., 
2017). Carbon is the critical element in cell synthesis, the reduction of microbially accessible carbon 
pools may explain the diminished microbial growth after long-term warming. In addition, long-term 
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Figure 5. Within-species shift in interaction types contributed to the variance of the whole community growth response under two climate scenarios. 
Venn plots showing the overlaps of incorporators, and their interaction types between two climate scenarios (A). The phylogenetic relationship of the 
215 incorporators whose growth dynamics were influenced by the weak antagonistic interaction of warming × drought and by the neutralizing effect of 
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The online version of this article includes the following source data for figure 5:

Source data 1. Species and genomic information of the dominant active taxa in grassland soil under climate change conditions.
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warming can induce soil water deficiency (Dieleman et al., 2012; Jansson and Hofmockel, 2020), 
thereby slowing microbial growth.

Altered rainfall patterns, resulting in increased aridity or wetter conditions, mediate ecosystem 
cycling by affecting above- and below-ground biological processes (Song et al., 2019). As soil water 
availability is reduced, changes in osmotic pressure cause microbial death or dormancy, while others 
can accumulate solutes to survive under lower water potentials (Schimel, 2018). However, such accu-
mulation of osmolytes could depend on highly energetic expenses (Boot et al., 2013; Jansson and 
Hofmockel, 2020; Schimel et al., 2007), resulting in less energetic allocation to growth (trade-offs 
between microbial growth and physiological maintenance). On the other hand, intensified rainfall 
patterns alter the composition and life strategies of soil bacteria, enriching the taxa with higher toler-
ance to frequent drying-rewetting cycles (Evans and Wallenstein, 2014). Such taxa may possess 
physiological acclimatization, such as synthesizing chaperones to stabilize proteins and thicker cell 
wall to withstand osmotic pressure (Schimel et al., 2007). These adaptation and acclimation strate-
gies also create physiological costs (Schimel et al., 2007), increasing carbon allocation to physiolog-
ical maintenance instead of new biomass (Lipson, 2015).

Climate-induced changes in the growth and structure of plant communities can also influence soil 
microbial growth by altering the amount and quality of plant-derived carbon (Bardgett et al., 2013). 
Increasing drought reduced the transfer of recently fixed plant carbon to soil bacteria and shifts the 
bacterial community towards slow growth and drought adaptation (Fuchslueger et  al., 2014). A 
17-year study of California grassland provided evidence that terrestrial net primary production (NPP) 
to precipitation gradient are hump-shaped, peaking when precipitation is near the multi-year mean 
growing season level (Zhu et al., 2016). Reduced NPP under increasing rainfall conditions could affect 
plant carbon inputs to the soil, ultimately having a negative effect on microbial growth.

Characterizing the interactive effects of multiple global change drivers on microbial physiological 
traits is important for predicting ecosystem responses and soil biogeochemical processes (Song et al., 
2019; Zhu et al., 2016). In this study, a decade-long experiment revealed that bacterial growth in 
alpine meadows is primarily influenced by the antagonistic interaction between T and P (Figures 3 
and 4). Similarly, a range of ecosystem processes have been revealed to be potentially subject to 
antagonistic interactions between climate factors, for instance, net primary productivity (Shaw et al., 
2002), soil C storage and nutrient cycling processes (Dieleman et al., 2012; Wu et al., 2011; Larsen 
et al., 2011). Reduced precipitation can mute organic carbon mineralization by inhibiting soil respira-
tion, which could maintain a relatively adequate soil carbon content and explain the diminished nega-
tive effects on microbial growth by the combined manipulation of warming and drought (Jansson 
and Hofmockel, 2020; Wu et al., 2011). Conversely, enhanced precipitation could stimulate SOM 
decomposition, causing further loss of soil carbon under warming conditions (Zhou et  al., 2022). 
However, increased rainfall can also alleviate the moisture limitation on plant growth induced by 
warming, increasing plant-derived carbon inputs (Jansson and Hofmockel, 2020; Wu et al., 2011). 
The increased carbon inputs may alleviate microbial carbon limitation in soil, which partly explains the 
higher microbial growth rates under the combined treatment of warming and enhanced precipitation 
than that in the single climate factor treatments.

The degree of phylogenetic relatedness can indicate the processes that influenced community 
assembly, like the extent a community is shaped by environmental filtering (clustered by phylogeny) 
or competitive interactions (life strategy is phylogenetically random distribution) (Evans and Wallen-
stein, 2014; Webb et  al., 2002). The results showed that the incorporators whose growth was 
influenced by the antagonistic interaction of T and P showed significant phylogenetic relatedness, 
indicating the occurrence of taxa more likely shaped by environment filtering (i.e. selection pressure 
caused by changes in temperature and moisture conditions). In contrast, the growing taxa affected 
by synergistic interactions of T and P showed random phylogenetic distributions (Figure 4—source 
data 1), which may be explained by competition between taxa with similar eco-physiological traits or 
changes in genotypes (possibly through horizontal gene transfer) (Evans and Wallenstein, 2014). We 
also found that the extent of phylogenetic relatedness to which taxa groups of T and P interaction 
types varied by climate scenarios, suggesting that different climate history processes influenced the 
ways bacteria survive temperature and moisture stress.

About one-third of bacterial species had growth with higher levels of antagonistic interaction of 
warming × wet than that of warming × drought (Figure 5A). By annotating the genomic information, 

https://doi.org/10.7554/eLife.89392


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Ruan et al. eLife 2023;12:RP89392. DOI: https://doi.org/10.7554/eLife.89392 � 10 of 17

we further found that the species with the high growth rate (OTU 14, Solirubrobacter) has a relatively 
larger genome size and protein coding density (Figure 5—source data 1), indicating larger gene 
and function repertoires. A previous study showed that the genus Solirubrobacter detected in the 
Thar desert of India is involved in multiple biochemical processes, such as N and S cycling (Sivakala 
et al., 2018). Members in the genus Solirubrobacter are also considered to contribute positively to 
plant growth (Liu et al., 2020), and can be used to predict the degradation level of grasslands, indi-
cating the critical roles on maintaining ecosystem services (Yan et al., 2022). This is, however, still to 
be verified, as the functional output from PICRUSt2 is less likely to resolve rare environment-specific 
functions (Dieleman et al., 2012). This suggests the development of methods combining qSIP with 
metagenomes and metatranscriptomes to assess the functional shifts of active microorganisms under 
global change scenarios. Note that the experimental parameters such as DNA extraction and PCR 
amplification efficiencies also have significant effects on the accuracy of growth assessment. This alerts 
the need to standardize experimental practices to ensure more realistic and reliable results.

The evaluation of ecosystem models based on results obtained from single-factor experiments 
usually overestimate or underestimate the impact of global change on ecosystems, because the 
interactions between climate factors may not be simply additive (Dieleman et al., 2012; Wu et al., 
2011; Zhou et  al., 2022). Our results demonstrated that both warming and altered precipitation 
negatively affect the growth of grassland bacteria; However, the combined effects of warming and 
altered precipitation on the growth of ~70% soil bacterial taxa were smaller than the single-factor 
effects, suggesting antagonistic interaction. This suggests the development of multifactor manipu-
lation experiments in precise prediction of future ecosystem services and feedbacks under climate 
change scenarios.

Materials and methods
Study design and soil sampling
The warming-by-precipitation experiment was established in 2011 at the Haibei National Field 
Research Station of Alpine Grassland Ecosystem (37°37′N, 101°33′E, with elevation 3215 m), which 
is located on the northeastern Tibetan Plateau in Qinghai Province, China. The climate type is a 
continental monsoon with mean annual precipitation of 485 mm and the annual average temperature 
approximately –1.7℃. The high rainfall and temperature mainly occur in the peak-growing season 
(from July to August Liu et al., 2018). The soils are Mat-Gryic Cambisols, with the average pH value 
of surface soil (0–10 cm) being 6.4 (Ma et al., 2017).

The experimental design has been described previously in Ma et al., 2017. Briefly, experimental 
plots were established in an area of 50 m × 110 m in 2011, using a randomized block design with 
warming and altered precipitation treatments. Each block contained six plots (each plot was 1.8 m 
× 2.2 m), crossing two levels of temperature [ambient temperature (T0), elevated temperature of 
top 5  cm layer of the soil by 2℃ (T+)], and three levels of precipitation [natural precipitation (nP, 
represents ambient condition), 50% reduced precipitation (-P, represents ‘drought’ condition) and 
50% enhanced precipitation (+P, represents ‘wet’ condition)]. In the warming treatments, two infrared 
heaters (1000 mm length, 22 mm width) were suspended in parallel at 150 cm above the ground 
within each plot. Rain shelters were used to control the received precipitation in the experimental 
plots. Four ‘V’-shaped transparent polycarbonate resin channels (Teijin Chemical, Japan) were fixed 
at a 15° angle, above the infrared heaters, to intercept 50% of incoming precipitation throughout the 
year. The collected rainfall from the drought plots was supplied to the wet plots manually after each 
precipitation event by sprinklers, increasing precipitation by 50%. To control for the effects of shading 
caused by infrared heaters, two ‘dummy’ infrared heaters and four ‘dummy’ transparent polycar-
bonate resin channels were installed in the control plots. Each treatment had six replicates, resulting 
in thirty-six plots.

Soil samples for qSIP incubation were collected in August 2020. Considering the cost of qSIP 
experiment (including the use of isotopes and the sequencing of a large number of DNA samples), we 
randomly selected three out of the six plots, serving as three replicates for each treatment. In each 
plot, three soil cores of the topsoil (0–5 cm in depth) were randomly collected and combined as a 
composite sample, which can be considered as a mixture of rhizosphere and bulk soils. Each sampling 
point was as far away from infrared heaters as possible to minimize the impact of physical shading on 
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the plants. The fresh soil samples were shipped to the laboratory and sieved (2 mm) to remove root 
fragments and stones.

18O-qSIP incubation
The incubations were similar to those reported in a previous study (Ruan et al., 2023). Soil samples 
of ambient temperature treatments (including T0-P, T0nP, and T0 +P) were air-dried at 14℃ (average 
temperature across the growth season), while the soil samples of warming treatments (including T+-P, 
T+nP, and T++P) were air-dried at 16℃ (increased temperature of 2℃). There is no violent air convec-
tion in the incubator and the incubation temperature is relatively low (compared to 25℃ used in 
previous studies), resulting slower evaporation and no significant discoloration caused by severe soil 
dehydration after 48 hr. A portion of the air-dried soil samples was taken as the pre-wet treatment 
(i.e., before incubation without H2O addition). We incubated the air-dried soils (2.00 g) with 400 μl of 
98 atom% H2

18O (18O treatment) or natural abundance water (16O treatment) in the dark for 2 d by 
using sterile glass aerobic culture bottles (Diameter: 29 mm; Height: 54 mm). After incubation, soils 
were destructively sampled and stored at –80℃ immediately. A total of 54 soil samples, including 
18 pre-wet samples (6 treatments × 3 replicates) and 36 incubation samples (6 treatments × 3 repli-
cates × 2 types of H2O addition), were collected.

DNA extraction and isopycnic centrifugation
Total DNA from all the collected soil samples was extracted using the FastDNA SPIN Kit for Soil 
(MP Biomedicals, Cleveland, OH, USA) according to the manufacturer’s instructions. Briefly, the 
mechanical cell destruction was attained by multi-size beads beating at 6 m s–1 for 40 s, and then 
FastDNA SPIN Kit for Soil (MP Biomedicals, Cleveland, OH, USA) was used for DNA extraction. All 
DNA samples were extracted by the same person within 2–3 hr, and a unifying procedure of cell lysis 
and DNA extraction was used. The concentration of extracted DNA was determined fluorometrically 
using Qubit DNA HS (High Sensitivity) Assay Kits (Thermo Scientific, Waltham, MA, USA) on a Qubit 
4 fluorometer (Thermo Scientific, Waltham, MA, USA). The DNA samples of 2-d incubation were used 
for isopycnic centrifugation, according to a previous publication (Ruan et al., 2023). Briefly, 3 μg DNA 
were added into 1.85  g ml–1 CsCl gradient buffer (0.1 M Tris-HCl, 0.1 M KCl, 1 mM EDTA, pH = 8.0) 
with a final buoyant density of 1.718  g ml–1. Approximately 5.1 ml of the solution was transferred to an 
ultracentrifuge tube (Beckman Coulter QuickSeal, 13 mm × 51 mm) and heat-sealed. All tubes were 
spun in an Optima XPN-100 ultracentrifuge (Beckman Coulter) using a VTi 65.2 rotor at 177000  g at 
18℃ for 72  h with minimum acceleration and braking.

Immediately after centrifugation, the contents of each ultracentrifuge tube were separated into 20 
fractions (~250  μl each fraction) by displacing the gradient medium with sterile water at the top of the 
tube using a syringe pump (Longer Pump, LSP01‐2 A, China). The buoyant density of each fraction 
was measured using a digital hand-held refractometer (Reichert, Inc, Buffalo, NY, USA) from 10 μl 
volumes. Fractionated DNA was precipitated from CsCl by adding 500  μl 30% polyethylene glycol 
(PEG) 6000 and 1.6 M NaCl solution, incubated at 37℃ for 1 hr and then washed twice with 70% 
ethanol. The DNA of each fraction was then dissolved in 30  μl of Tris‐EDTA buffer.

Quantitative PCR and sequencing
Total 16S rRNA gene copies for DNA samples of all the fractions were quantified using the primers for 
V4-V5 regions: 515F (5′‐GTG CCA GCM GCC GCG G‐3′) and 907R (5′‐CCG TCA ATT CMT TTR AGT 
TT‐3′) (Guo et al., 2018). The V4-V5 primer pairs were chosen to facilitate integration and compar-
ison with data from previous studies (Ruan et al., 2023; Zhang et al., 2016). Plasmid standards were 
prepared by inserting a copy of purified PCR product from soil DNA into Escherichia coli. The E. coli 
was then cultured, followed by plasmid extraction and purification. The concentration of plasmid was 
measured using Qubit DNA HS Assay Kits. Standard curves were generated using 10‐fold serial dilu-
tions of the plasmid. Each reaction was performed in a 25 μl volume containing 12.5 μl SYBR Premix Ex 
Taq (TaKaRa Biotechnology, Otsu, Shiga, Japan), 0.5 μl of forward and reverse primers (10 μM), 0.5 μl 
of ROX Reference Dye II (50 ×), 1 μl of template DNA and 10 μl of sterile water. A two-step thermocy-
cling procedure was performed, which consisted of 30 s at 95℃, followed by 40 cycles of 5 s at 95℃, 
34 s at 60℃ (at which time the fluorescence signal was collected). Following qPCR cycling, melting 
curves were conducted from 55 to 95℃ with an increase of 0.5℃ every 5 s to ensure that results were 
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representative of the target gene. Average PCR efficiency was 97% and the average slope was –3.38, 
with all standard curves having R2 ≥ 0.99.

The DNA of pre-wet soil samples (unfractionated) and the fractionated DNA of the fractions with 
buoyant density between 1.703 and 1.727 g ml–1 (7 fractions) were selected for 16S rRNA gene 
sequencing by using the same primers of qPCR (515F/907R). The fractions with density between 1.703 
and 1.727 g ml–1 were selected because they contained more than 99% gene copy numbers of each 
sample. A total of 270 DNA samples [18 total DNA samples of prewet soil +252 fractionated DNA 
samples (6 treatments × 3 replicates × 2 types of water addition × 7 fractions)] were sequenced using 
the NovaSeq6000 platform (Genesky Biotechnologies, Shanghai, China).

The raw sequences were quality-filtered using the USEARCH v.11.0 (Edgar, 2010). In brief, the 
paired-end sequences were merged and quality filtered with ‘fastq_mergepairs’ and ‘fastq_filter’ 
commands, respectively. Sequences < 370  bp and total expected errors > 0.5 were removed. 
Next, ‘fastx_uniques’ command was implemented to identify the unique sequences. Subsequently, 
high-quality sequences were clustered into operational taxonomic units (OTUs) with ‘cluster_otus’ 
commandat a 97% identity threshold, and the most abundant sequence from each OTU was selected 
as a representative sequence. The taxonomic affiliation of the representative sequence was deter-
mined using the RDP classifier (version 16) (Wang et  al., 2007). In total, 19,184,889 reads of the 
bacterial 16S rRNA gene and 6,938 OTUs were obtained. The sequences were uploaded to the 
National Genomics Data Center (NGDC) Genome Sequence Archive (GSA) with accession numbers 
CRA007230.

Quantitative stable isotope probing calculations
As 18O labeling occurs during cell growth via DNA replication, the amount of 18O incorporated into 
DNA was used to estimate the growth rates of active taxa. The density shifts of OTUs between 16O 
and 18O treatments were calculated following the qSIP procedures (Hungate et al., 2015; Koch et al., 
2018). Briefly, the number of 16S rRNA gene copies per taxon (e.g. genus or OTU) in each density 
fraction was calculated by multiplying the relative abundance (acquisition by sequencing) by the total 
number of 16S rRNA gene copies (acquisition by qPCR). Then, the GC content and molecular weight 
of a particular taxon were calculated. Further, the change in 18O isotopic composition of 16S rRNA 
genes for each taxon was estimated. We assumed an exponential growth model over the course of 
the incubations. The growth rate is a function of the rate of appearance of 18O-labeled 16S rRNA 
genes. Therefore, the growth rate of taxon i was calculated as:

	﻿‍
gi = ln( NTOTALit

NLIGHTit
) × 1

t ‍�
(1)

where NTOTALit is the number of total gene copies for taxon i and NLIGHTit represents the unlabeled 16S 
rRNA gene abundances of taxon i at the end of the incubation period (time t). NLIGHTit is calculated by 
a function with four variables: NTOTALit, average molecular weights of DNA (taxon i) in the 16O treatment 
(MLIGHTi) and in the 18O treatment (MLABi), and the maximum molecular weight of DNA that could result 
from assimilation of H2

18O (MHEAVYi) (Koch et al., 2018). We further calculated the average growth rates 
(represented by the production of new16S rRNA gene copies of each taxon per g dry soil per day) 
along the incubation, using the following equation (Stone et al., 2021):

	﻿‍
dNi
dt

= NTOTALit(1 − e−git) × 1
t ‍�

(2)

where t is the incubation time (day). All data calculations were performed using the qSIP pipeline 
Source code 1 in R (Version 3.6.2) (Streit et al., 2014).

Single and combined effects of climate change factors
To address the effects of warming and altered precipitation on microbial growth rates, three single-
factor effects (warming, 50% reduced precipitation only, and 50% enhanced precipitation only) and 
two combined effects (combined warming and reduced precipitation manipulation and combined 
warming and enhanced precipitation manipulation) were calculated by the natural logarithm of 
response ratio (lnRR), representing the response of microbial growth rates in the climate change 

https://doi.org/10.7554/eLife.89392


 Research article﻿﻿﻿﻿﻿﻿ Ecology

Ruan et al. eLife 2023;12:RP89392. DOI: https://doi.org/10.7554/eLife.89392 � 13 of 17

treatment compared with that in the ambient treatment (Yue et al., 2017). The lnRR for growth rates 
was calculated as:

	﻿‍
lnRR = ln( Xt

Xc
)
‍
 
�

(3)

where Xt is the observed growth rates in climate treatment and Xc is that in control. 95% confidence 
interval (CI) was estimated using a bootstrapping procedure with 1000 iterations (Ruan et al., 2023). 
If the 95% CI did not overlap with zero, the effect of treatment on microbial growth is significant.

The interaction between warming and altered precipitation
All six climate treatments were divided into two groups, warming combined with reduced precipi-
tation scenario (Warming × Drought), and warming combined with enhanced precipitation scenario 
(Warming × Wet), by using the ambient temperature and precipitation treatment (T0nP) as control 
(Figure 1A). Hedges’ d, an estimate of the standardized mean difference, was used to assess the 
interaction effects of warming × drought (i.e. reduced precipitation) and warming × wet (i.e. enhanced 
precipitation), respectively (Yue et al., 2017). The interaction effect size (dI) of warming × drought or 
warming × wet was calculated as:

	﻿‍
dI =

(
XAB − XA

)
−

(
XB − Xc

)
2s

J(m)
‍�

(4)

where Xc, XA, XB, and XAB are growth rates in the control, treatment groups of factor A, B, and their 
combination (AB), respectively. 95% CI was estimated using a bootstrapping procedure with 1000 
iterations. The s and J(m) are the pooled standard deviation and correction term for small sample bias, 
respectively, which were calculated by the following equations:

	﻿‍
s =

√(
nc − 1

)
s2

c +
(
nA − 1

)
s2

A +
(
nB − 1

)
s2

B +
(
nAB − 1

)
s2

AB
nc + nA + nB + nAB − 4 ‍�

(5)

	﻿‍
J(m) = 1 − 3

4
(
nc + nA + nB + nAB − 4

)
− 1‍�

(6)

where nc, nA, nB, and nAB are the sample sizes, and sc, sA, sB, and sAB are the standard deviations in the 
control, experimental groups of A, B, and their combination (AB), respectively.

The interaction types between warming and altered precipitation were mainly classified into three 
types, that is additive, synergistic and antagonistic, according to the single-factor effects and 95% CI 
of dI. If the 95% CI of dI overlapped with zero, the interactive effect of warming and altered precipi-
tation was additive. The synergistic interaction included two cases: (1) the upper limit of 95% CI of dI 
< 0 and the single-factor effects were either both negative or have opposite directions; (2) the lower 
limit of 95% CI of dI > 0 and both single-factor effects were positive. The antagonistic interaction 
also included two cases: (1) the upper limit of 95% CI of dI < 0 and both single-factor effects were 
positive; (2) the lower limit of 95% CI of dI > 0 and the single-factor effects were either both negative 
or have opposite directions (Yue et al., 2017). We further divided antagonistic interaction into three 
sub-categories: weak antagonistic interaction, strong antagonistic interaction, and neutralizing effect, 
by comparing the single-factor and combined effect sizes (Figure 1B). The weak antagonistic interac-
tion determined if the combined effect size was larger than the single-factor effect sizes, but smaller 
than their expected additive effect. The strong antagonistic interaction determined if the combined 
effect size was smaller than the single-factor effect sizes but not equal to zero. The neutralizing effect 
represented the combined effect size is equal to zero, and at least one single-factor effect size is not 
equal to zero.

Statistical analyses
Uncertainty of growth rates (95% CI) was estimated using a bootstrapping procedure with 1000 itera-
tions (Ruan et al., 2023). The cumulative growth rates at the phylum-level were estimated as the sum 
of taxon-specific growth rates of those OTUs affiliated to the same phylum. Significant differences of 
bacterial growth rates for each group between climate treatments were assessed by two-way ANOVA 
in R (version 3.6.2). Phylogenetic trees were constructed in Galaxy /DengLab (http://mem.rcees.ac.cn:​
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8080) with PyNAST Alignment and FastTree functions (Caporaso et al., 2010; Price et al., 2009). The 
trees were visualized and edited using iTOL (Letunic and Bork, 2016). To estimate the phylogenetic 
patterns of incorporators whose growth subjected to different factor interaction types, the nearest 
taxon index (NTI) was calculated by the ‘picante’ package in R (version 3.6.2; Webb et al., 2002). NTI 
with values larger than 0 and their p values less than 0.05 represent phylogenetic clustering. The p 
values of NTI between 0.05 and 0.95 represent random phylogenetic distributions. KO gene annota-
tion of taxa was performed by PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruc-
tion of Unobserved States), which predicted functional abundances based on marker gene sequences 
(Dieleman et al., 2012). The marker genes related to carbon (C), nitrogen (N), sulfur (S), and phos-
phorus (P) cycling were selected according to the conclusions reported in previous documents (Dai 
et al., 2020; Llorens-Marès et al., 2015; Nelson et al., 2015).
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