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Abstract With the availability of high-quality full genome polymorphism (SNPs) data, it becomes 
feasible to study the past demographic and selective history of populations in exquisite detail. 
However, such inferences still suffer from a lack of statistical resolution for recent, for example 
bottlenecks, events, and/or for populations with small nucleotide diversity. Additional heritable (epi)
genetic markers, such as indels, transposable elements, microsatellites, or cytosine methylation, 
may provide further, yet untapped, information on the recent past population history. We extend 
the Sequential Markovian Coalescent (SMC) framework to jointly use SNPs and other hyper-mutable 
markers. We are able to (1) improve the accuracy of demographic inference in recent times, (2) 
uncover past demographic events hidden to SNP-based inference methods, and (3) infer the hyper-
mutable marker mutation rates under a finite site model. As a proof of principle, we focus on demo-
graphic inference in Arabidopsis thaliana using DNA methylation diversity data from 10 European 
natural accessions. We demonstrate that segregating single methylated polymorphisms (SMPs) 
satisfy the modeling assumptions of the SMC framework, while differentially methylated regions 
(DMRs) are not suitable as their length exceeds that of the genomic distance between two recom-
bination events. Combining SNPs and SMPs while accounting for site- and region-level epimutation 
processes, we provide new estimates of the glacial age bottleneck and post-glacial population 
expansion of the European A. thaliana population. Our SMC framework readily accounts for a wide 
range of heritable genomic markers, thus paving the way for next-generation inference of evolu-
tionary history by combining information from several genetic and epigenetic markers.

eLife assessment
This important study extends existing sequentially Markovian coalescent approaches to include the 
combined use of SNPs and hypervariable loci such as epimutations. This is an intriguing addition 
to infer population size history in the recent past, and the authors provide solid validation of their 
methods via simulation and analysis of empirical data in Arabidopsis thaliana. Given the increasing 
availability of such data, this work is a timely contribution and represents a foundation for further 
developments to explore when and where these methods will be best used.

Introduction
A central goal in population genetics is to reconstruct the evolutionary history of populations from 
patterns of genetic variation observed in the present. Relevant aspects of these histories include past 
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demographic changes as well as signatures of selection. Inference methods based on deep learning 
(DL, Korfmann et  al., 2023), approximate Bayesian computation (ABC, Boitard et  al., 2016), or 
sequential Markovian coalescent (SMC, Li and Durbin, 2011; Schiffels and Durbin, 2014) aim to infer 
this information directly from full genome sequencing data, which is becoming rapidly available for 
many (non-model) species due to decreasing costs. The SMC, in particular, offers an elegant theoret-
ical framework that builds on the classical Wright-Fisher and the backward-in-time Kingman coalescent 
stochastic models (e.g. Kingman, 1982; Charlesworth and Charlesworth, 2010; Wakeley, 2008). 
Both models conceptualize Mendelian inheritance as generating the genealogy of a population (or a 
sample), that is, the unique history of a fragment of DNA passing from parents to offspring. When this 
genealogy includes the effect of recombination, it is called the ancestral recombination graph (ARG, 
Hudson, 1983; Wiuf and Hein, 1999).

Under the Kingmann coalescent model, the true genealogy of a population (or sample) is defined 
by its topology and branch length, and contains the information on past demographic changes and 
life history traits (Nordborg, 2000; Sellinger et al., 2020; Strütt et al., 2023; Tellier et al., 2011) 
as well as selective events (Charlesworth and Charlesworth, 2010; Wakeley, 2008). The genealog-
ical and the mutational processes of any heritable marker can, therefore, be disentangled, and the 
frequency of any given marker state is given by the shape of the genealogy in time (see Figure 1A). 
A central assumption about heritable genomic markers is that they are generated by two homo-
geneous Poisson mutation processes along the genome as well as through time. This entails that 
mutations in different genealogies are independent due to the effect of recombination (Wiuf and 
Hein, 1999; McVean and Cardin, 2005), and that there are no time periods with a large excess, or a 
severe lack, of mutations along a genealogy (mutations are independently distributed in time within a 
DNA fragment). In other words, the frequencies of polymorphisms at DNA markers observed across a 
sample of sequences are constrained by, as well as inform on, the underlying genealogy at this locus 
(Figure 1A). To clarify these assumptions, we present a schematic representation of marker 1 (yellow 
in Figure 1), which fulfils both homogeneous Poisson processes in time and along the genome. We 

Figure 1. Schematic distribution of two markers along the genealogy and four genomes. (A) Schematic distribution of marker 1 (yellow star) and marker 
2 (green star) along the genealogies in a sample of four genomes, both following a homogeneous Poisson process. (B) The green marker 2 is not 
heritable so its distribution is independent of the genealogy. (C) The green marker 2 is spatially structured along the genome, violating the distribution 
of the Poisson process along the genome and conflicting with the genealogy. (D) The green marker 2 does not follow the Poisson process through time, 
for example burst of mutations at a specific time point represented by given branches of the genealogies in green. The yellow marker 1 has an identical 
Poisson process along the genome and the genealogy in all four panels, and for readability, marker 2 exhibits light and dark green states.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Probability of a site to be segregating in a sample of size two for different mutation rates.

https://doi.org/10.7554/eLife.89470
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also present cases applicable to a second genomic marker 2 that violates the model assumptions, 
namely by not being heritable (Figure 1B) or not following a non-homogeneous Poisson process in 
the genome (Figure 1C) or in time (Figure 1D).

Despite the power of the SMC, well-known model violations such as variation in recombination 
and mutation rates along the genome (Barroso et al., 2019; Barroso and Dutheil, 2023) or perva-
sive selection (Schraiber and Akey, 2015; Johri et al., 2021; Johri et al., 2020) can compromise the 
accuracy of demographic and selective inference (Gattepaille et al., 2013; Sellinger et al., 2021). 
There are two other important issues that have received less attention in the literature. The first issue 
occurs when the population recombination rate (ρ) is higher than the population mutation rate (θ). In 
such cases, inferences can be biased if not erroneous (Terhorst et al., 2017; Sellinger et al., 2021; 
Sellinger et  al., 2020), because several recombination events cannot be inferred due to the lack 
of single-nucleotide polymorphisms (SNPs for point mutations). This problem affects many species, 
though interestingly not humans which have a ratio ‍ρ/θ ≈ 1‍. A second issue occurs when the muta-
tional process along the genealogy is too slow to be informative about sudden and strong variation in 
population size (i.e. population bottlenecks), such as during colonization events of novel habitats. The 
typical low mutation rate of 10−9 up to 10−8 (per base, per generation) found in most species, there-
fore, places strong limitations on SMC analysis of recent bottleneck events (up to ca. 104 generations 
ago) when inference is based solely on SNP data. Indeed, bottlenecks are often either not found, or 
when inferred, their timing and magnitude are not well estimated (inferred smoother than in reality, 
Johri et al., 2021; Sellinger et al., 2021), even when a large number of samples is used. A typical 
example is the large uncertainty of the timing and magnitude of the population size bottleneck during 
the last glacial maximum (LGM) and post-LGM expansion in Arabidopsis thaliana European popula-
tions based on several studies using different accessions and SMC inference methods (Alonso-Blanco 
et al., 2016; Durvasula et al., 2017).

Nonetheless, current SMC, DL, or ABC inference methods making use of full genome sequence 
data rely almost exclusively on SNPs for inference (Schiffels and Durbin, 2014; Terhorst et  al., 
2017; Sellinger et al., 2020; Boitard et al., 2016; Korfmann et al., 2024). There are both practical 
and theoretical reasons for using SNPs: They are easily detectable from short-read re-sequencing 
data and their mutational process is well approximated by the infinite site model (Charlesworth 
and Charlesworth, 2010; Wakeley, 2008), simplifying the inference of the underlying genealogy. 
However, other heritable genomic markers exist whose mutation rates can be several orders of magni-
tude higher than that of SNPs and could thus be more informative about recent demographic events. 
These include microsatellites, insertions, deletions, and transposable elements (TEs). Although those 
heritable markers are not necessarily neutral (such as TEs, which are likely to be under weak purifying 
selection), they contain information on the evolutionary history of the population. Current technolog-
ical limitations still impede the easy detection and estimation of allele frequencies for many of these 
markers (Yang et al., 2018; Ou et al., 2019; Wang, 2018). For example, identifying insertion/excision 
variation of transposable elements or copy number variation of microsatellites requires a high-quality 
reference genome and ideally long-read sequencing approaches (Ou et  al., 2019). In addition to 
these genomic markers, DNA cytosine methylation is emerging as a potentially useful epigenetic 
marker for phylogenetic inference in plants (Yao et al., 2021; Yao et al., 2023). Stochastic gains and 
losses of DNA methylation at CG dinucleotides, in particular, arise at a rate of ca. 10−4 up to 10−3 per 
site per generation (that is 4–5 orders of magnitude faster than DNA point mutations, van der Graaf 
et  al., 2015), and can be inherited across generations (Pisupati et  al., 2023; Weigel and Colot, 
2012). These so-called spontaneous epimutations are likely neutral at the genome-wide scale (Vidalis 
et al., 2016; Johannes and Schmitz, 2019b, but see Muyle et al., 2021; Pisupati et al., 2023), and 
can be easily detected from bisulphite converted short read sequencing data (Lister et al., 2008; 
Schmitz et al., 2013). Recent work suggests that CG methylation data can be used as a molecular 
clock for timing divergence between pairs of lineages over timescales ranging from years to decades 
(Yao et al., 2023).

However, the theoretical integration of the above-mentioned (epi)genomic markers into a popu-
lation genomics and SMC inference framework is not trivial. Because of the high mutation rate, the 
mutational process at these (hyper-mutable) markers is reversible and more consistent with a finite 
site, rather than infinite site, model, which can result in extensive homoplasy (as known for micro-
satellite markers, Estoup et al., 2002). Indeed, classic expectations of population genetics diversity 

https://doi.org/10.7554/eLife.89470
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statistics, mostly built for SNPs, need to be revised for these hyper-mutable markers (Charlesworth 
and Jain, 2014; Wang and Fan, 2014). Here, we develop the theoretical and methodological infer-
ence framework named SMCtheo to include additional (potentially hyper-mutable) markers in the 
SMC. We showcase our model using extensive simulations as well as application to published DNA 
cytosine methylation data (in genic regions) from local populations of A. thaliana (Schmitz et  al., 
2013; Vidalis et al., 2016). We demonstrate that integration of hyper-mutable genomic markers into 
SMC models significantly improves the inference accuracy of past variation of population size or can 
even uncover demographic events not uncovered using SNPs alone. Our proof-of-principle approach 
opens up novel avenues for studying population genetic processes over time scales that have been 
largely inaccessible using traditional SNP-based approaches. This may prove particularly useful when 
exploring recent demographic changes of endangered species as a way to assess their potential for 
extinction in the context of biodiversity loss and global change.

Results
Theoretical results with two markers underlying the SMC computations
We study polymorphic sites across genomes of several sampled individuals which exhibit several 
possible markers (DNA nucleotides, methylation, TEs, indels, microsatellites,…). We define any marker 
by (1) its maximum number of possible states (‍nbs‍), for example nucleotide sites have four states (A, 
T, C and G) while a methylation site has two states (methylated or unmethylated), and (2) its mutation 
rate μ, that is the rate at which the state of a marker changes into another state per position and per 
generation Anzai et  al., 2003; for simplicity, we assume equal mutation rates between all bases, 
known as the Jukes-Cantor model. More specifically, we are interested in two rates: the DNA muta-
tion rate for changes in DNA nucleotides and the epimutation rate for changes in methylation state. 
Furthermore, we assume that at each position on the genome, only one type of marker can occur and 
be observed. We obtain as a first theoretical result the probability for a given site in the genome to be 
identical (‍P(id)‍) or segregating (‍P(seg)‍) (i.e. polymorphic) in a sample of size two (‍n = 2‍, two sampled 
chromosomes are compared):

	﻿‍

P(id, n = 2) = 1
nbs

+ (nbs − 1)
nbs

e
−2µtM

(nbs)
(nbs − 1)

P(seg, n = 2) = (nbs − 1)
nbs

− (nbs − 1)
nbs

e
−2µtM

(nbs)
(nbs − 1)

‍�

(1)

This probability is a function of the time to the most recent common ancestor (TMRCA in text 
and ‍tM‍ in Equation 1, details in Appendix 1 and 2 B). The probability for a mutation to occur for a 
given marker increases with an increased TMRCA (Charlesworth and Charlesworth, 2010; Wakeley, 
2008), but under high mutation rates (and high effective population size) the marker may not be 
polymorphic in the sample as mutations may be reversed (so-called homoplasy, Estoup et al., 2002; 
Charlesworth and Jain, 2014). In Figure 1—figure supplement 1, we illustrate these properties by 
computing the probability in Equation 1 for different mutation rates. The inference of recent demo-
graphic events and bottlenecks relies on the presence of polymorphic sites to detect recent coales-
cent events (TMRCA), and should be improved by using markers with high (or fast) mutation rate (e.g. 
hyper mutable).

In the following, we simulate data under different demographic scenarios using the sequence simu-
lator program msprime (Baumdicker et al., 2022; Kelleher et al., 2016), which generates the ARG 
of ‍n‍ sampled diploid individuals (set to ‍n = 5‍ throughout this study, leading to 10 haploid genomes). 
This ARG contains the genealogy of a given sample at each position of the simulated chromosomes. 
We then process the ARG to create DNA sequences according to the model parameters and the type 
of marker considered. We first assume a set of genomic markers obtained for a sample size ‍n‍ and 
mutating according to a homogeneous Poisson process along the genome and in time (along the 
genealogy) as in Figure 1A. To simulate the sequence data, we define the number of marker types 
(any number between 1 and the sequence length) and the proportion of sites of each marker type in 
the sequence. Each marker is characterized by both parameters ‍nbs‍ and μ. For simplicity, we simulate 
sequences with two markers but note that the method can be easily extended to additional markers. 

https://doi.org/10.7554/eLife.89470
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Marker 1 represents 98% of the sequence and has a per-site mutation rate ‍µ1 = 10−8
‍ mimicking 

nucleotide SNP markers under an infinite site model (thus considered as bi-allelic at a given DNA site, 
Yang, 1996). By contrast, marker 2 composes the complementary 2% of the sequence length, with 
a per-site mutation rate of ‍µ2 = 10−4

‍ per generation between two possible states. Marker 2 is thus 
hyper-mutable compared to marker 1 and mimics methylation/epimutation sites. Note that mutation 
events at Markers 1 and 2 are simulated under a finite site model.

We use different SMC-based methods throughout this study. These methods include: (1) MSMC2 
used as a reference method (Malaspinas et al., 2016), (2) SMCtheo is an extension of the PSMC’ (Li 
and Durbin, 2011; Schiffels and Durbin, 2014) accounting for any number of heritable theoretical 
markers, and (3) eSMC2 which is equivalent to SMCtheo but accounting only for SNPs markers (Sell-
inger et al., 2021) (to avoid any bias in implementation differences between SMCtheo and MSMC2). 
All methods are hidden Markov models (HMM) derived from the pairwise sequentially Markovian 
coalescent (PSMC’) (Schiffels and Durbin, 2014) and assume neutral evolution and a panmictic popu-
lation. The hidden states of these methods are the coalescence time of a sample of size two at a posi-
tion on the sequence. From the distribution of the hidden states along the genome, all methods can 
infer population size variation through time as well as the recombination rate (Schiffels and Durbin, 
2014; Malaspinas et al., 2016; Sellinger et al., 2021).

The inclusions of hyper-mutable genomic markers improves 
demographic inference
We assume that the mutation rate of marker 1 is ‍µ1 = 10−8

‍ per generation per bp. We use this infor-
mation to estimate the mutation rate of marker 2, which we vary from ‍µ2 = 10−8

‍ to ‍µ2 = 10−2
‍ per 

generation per bp. The estimation results based on simulated data under a constant population size 
of ‍N = 10, 000‍ are displayed in Table 1. We find that our approach is capable of inferring ‍µ2‍ with 
high accuracy for rates up to ‍µ2 = 10−4

‍. However, when the mutation rate ‍µ2‍ is 10-2, our approach 
underestimates it by a factor three, suggesting the existence of an accuracy limit. To demonstrate 
that information can be gained by integrating marker 2 (with ‍µ2 = 10−4

‍), we compared the ability of 
several inference methods to recover a recent bottleneck (Figure 2A). All methods correctly infer the 
amplitude of population size variation. When accounting only for marker 1 (with ‍µ1 = 10−8

‍), MSMC2 
and eSMC2 fail to infer accurately the sudden variation of population size. However, with the inclusion 
of hyper-mutable marker 2, our SMCtheo approach correctly infers the rapid change of population 
size of the bottleneck (Figure 2A, green). It is encouraging that an accurate estimation of the demog-
raphy is obtained, even when the mutation rate of marker 2 is unknown (Figure 2A, blue).

Furthermore, some species or populations might feature small effective population sizes (ca. 
‍N = 1, 000‍), potentially resulting in reduced genomic diversity. In such cases, the inclusion of hyper-
mutable markers should also improve demographic inference. We present the results of such a 
scenario in Figure 2A, where the population size was divided by a factor 10 compared to the previous 
scenario in Figure 2A. We find that in the absence of the hyper-mutable marker 2, no approach can 
correctly infer the variation of population size. From the shape of the inferred demography, methods 
using only marker 1 do not suggest the existence of a bottleneck followed by recovery (the ‘U-shaped’ 
demographic scenario is not apparent with the orange and red lines, Figure 2B). Yet, when integrating 

Table 1. Average estimated mutation rate of the second theoretical genomic marker.
Average estimated values of the mutation rate of marker 2 (‍µ2‍), knowing that of marker 1. We 
use 10 sequences (5 diploid individuals) of 100 Mb (‍r = µ1 = 10−8

‍ per generation per bp) under 
a constant population size fixed at ‍N = 10, 000‍. The coefficient of variation over 10 repetitions is 
indicated in parentheses.

True ‍µ2‍ value Estimated value of ‍µ2‍

10−8 9.9×10−9 (0.02)

10−6 1.0×10−6 (0.008)

10−4 1.4×10−4 (0.01)

10−2 3.05×10−3 (0.41)

https://doi.org/10.7554/eLife.89470
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both markers, the population size can be recovered, even if the mutation rate of marker 2 is not a 
priori known. In both Figure 2A and B, we assume that marker 2 occurs at a frequency of 2% in the 
genome. This percentage may be unrealistically high depending on the marker and the species. To 
test the impact of reducing marker 2 frequency, we repeat the simulations shown in Figure 2A but set 
its frequency to as low as 0.1% (a 20-fold reduction). We find that the inclusion of the hyper-mutable 
marker 2 continues to improve inference accuracy in very recent times, albeit less pronounced than in 
Figure 2A (see Figure 2—figure supplement 1). This suggests that a very small proportion of hyper-
mutable genomic sites is sufficient to significantly improve the accuracy of inferences.

All full genome inference methods, especially SMC approaches, display lower accuracy when 
the population recombination rate (‍ρ = 4Nr‍) is larger than the population mutation rate of marker 
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Figure 2. Performance of SMC approaches using different markers. Estimated demographic history of a bottleneck (black line) by SMC approaches 
using two genomic markers. In orange and red are the estimates by MSMC2 and eSMC2 based on only marker 1. Estimates from SMCtheo integrating 
both markers are in green (with known ‍µ2‍) and in blue with unknown ‍µ2‍. The demographic scenarios are (A) 10-fold recent bottleneck with an ancestral 
population size ‍N = 10, 000‍, (B) 10-fold recent bottleneck with an ancestral population size ‍N = 1, 000‍, (C) 10-fold bottleneck with an ancestral 

population size ‍N = 10, 000‍, and (D) a very severe (1000 fold) and very recent bottleneck with incomplete size recovery. In A, B, and D, we assume 

‍r/µ1 = 1‍ (with ‍r = µ1 = 10−8
‍, ‍µ2 = 10−4

‍ per generation per bp) and in C, ‍r/µ1 = 10‍ (with ‍r = 10−7‍, ‍µ1 = 10−8
‍, and ‍µ2 = 10−4

‍ per generation per 
bp). In all cases (A, B, C and D) 10 sequences (5 diploid indivudals) of 100 Mb were used as input.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Performance of of SMCtheo using two theoretical markers when marker 2 is very rare.

Figure supplement 2. Performance of the SMCtheo using theoretical markers by maximizing the true Likelihood function.

https://doi.org/10.7554/eLife.89470
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1 (‍θ1 = 4Nµ1‍). We simulate sequence data under a bottleneck scenario slightly more ancient than in 
Figure 2A and assume that ‍ρ/θ1 = r/µ1 = 10‍ and ‍ρ/θ2 = r/µ2 = 10−3

‍. Our results show that by inte-
grating the genomic marker 2 which mutation rate is larger than the recombination rate, estimates of 
the recombination rate as well as past population size variation are substantially improved (Table 2, 
Figure  2C). Indeed, analyzing only marker 1, eSMC2 and MSMC2 identify the bottleneck (albeit 
smoothed) and only slightly overestimate recent population size (Figure  2D). By integrating the 
hyper-mutable marker 2, our SMCtheo approach correctly infers the strength and time of the bottle-
neck when ‍µ1‍ and ‍µ2‍ are known (Figure 2D, green line), while the timing of the bottleneck is slightly 
shifted in the past when ‍µ2‍ is unknown and estimated by our method (Figure 2D, blue line). When 

‍µ2‍ is unknown, SMCtheo additionally infers a spurious sudden variation of population size between 
10,000 and 100,000 generations ago. Using only marker 1, the estimates of the recombination rate 
are inaccurate (Table 2). To complete the visual representation and provide a quantitative assess-
ment of inference accuracy, we compute the root mean square error (RMSE) values for demographic 
inference (Supplementary file 1a). We further improve the accuracy of estimation by optimizing the 
likelihood (LH) to estimate the recombination rate and demography compared to the classically used 
Baum-Welch (BW) algorithm (Table 2 and Figure 2—figure supplement 1, Figure 2—figure supple-
ment 2). Our results demonstrate that SNPs are limiting and insufficient for accurate inferences in 
recent times and that the inclusion of an additional marker with a mutation rate higher than the recom-
bination rate generates significant improvements in demographic inference. However, by directly 
optimizing the likelihood, the true recombination rate can be recovered well even with marker 1 only.

Figure 3. Schematic representation of site and region epimutations. Schematic representation of a sequence 
undergoing epimutation at (A) the cytosine site level and (B) at the region level. A methylated cytosine in CG 
context is indicated in black, and an unmethylated cytosine in white.

Table 2. Estimates of recombination rates with one or both markers.
For SMCtheo, BW stands for the use of the Baum-Welch algorithm to infer parameters, and LH for 
the use of the likelihood. We use 10 sequences of 100 Mb with ‍r = 10−7‍, ‍µ1 = 10−8

‍ and ‍µ2 = 10−4
‍ 

per generation per bp in a population with a past bottleneck event. The coefficient of variation over 
10 repetitions is indicated in brackets.

Method True recombination rate Average estimated recombination rate

MSMC2 (BW) 10−7 0.23×10−7 (0.017)

1 Marker: BW 10−7 0.25×10−7 (0.012)

2 Marker: BW 10−7 0.90×10−7 (0.004)

1 Marker: LH 10−7 0.84×10−7 (0.036)

2 Marker: LH 10−7 0.94×10−7 (0.01)

https://doi.org/10.7554/eLife.89470
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Integrating DNA methylation improves the accuracy of inference
Definition of the theoretical model for DNA methylation
Following the previously encouraging results of demographic inference with SNPs and a hyper-
mutable marker under the specific assumptions of Figure 1A, we develop a specific SMCm method 
to jointly analyse SNPs and CG methylation as an epigenetic hyper-mutable marker. Since our SMCm 
stems from the eSMC (Sellinger et al., 2020; Strütt et al., 2023), it corrects for the effect of self-
fertilization when applying to A. thaliana. We focus here on methylation located in CG contexts within 
genic regions as these have been found to evolve neutrally (Vidalis et al., 2016; Yao et al., 2021; 
Yao et al., 2023). The methylation of individual CG dinucleotides produces a biallelic heritable marker 
with a finite number of (epi)mutable sites (Figure 3). In a sample of several sequences from a popu-
lation, variation in the methylation status of individual CGs is known as single methylation polymor-
phism (SMP, Figure 3A), which could be used for demographic and divergence inference (van der 
Graaf et al., 2015; Vidalis et al., 2016). However, CG methylation sites can also be organized in 
spatial clusters (of similar state) due to region-level epimutation (Figure 3B, Weigel and Colot, 2012; 
Denkena et al., 2021; Muyle et al., 2021). Region-level epimutations can have different epimutation 
rates than individual CG sites. Population-level variation in the methylation status of these clusters 
is known as differentially methylated regions (DMRs). Furthermore, when integrating SMP and DMR 
epimutational processes (i.e. what we here call region-level epimutation), the methylation status of 
CG sites is therefore affected by the superposition of both processes. Therefore, the simulation and 
modeling of epimutation processes of SMPs are more complex than in our previous model as we need 
to account for the effect of region methylation as well as for methylation and demethylation epimuta-
tion rates to be different and asymmetrical (van der Graaf et al., 2015; Denkena et al., 2021).

To make our simulations realistic, we use the A. thaliana genome sequence as a starting point, and 
focus on CG dinucleotides within genic regions. To that end, we select random 1 kb regions within 
genes and choose only those CG sites that are clearly methylated or unmethylated in A. thaliana 
natural populations based on whole genome bisulphite sequencing (WGBS) measurements from the 
1001 G project (SI text). Our simulator for CG methylation is built in a similar way as the one described 
above, but the epimutation rates are allowed to be asymmetric with the per-site methylation rate 
(‍µSM‍) and demethylation (‍µSU‍). Region-level epimutations are also implemented, setting the region 
length to either 1 kb (Muyle et al., 2021) or 150 bp (Denkena et al., 2021). The region-level meth-
ylation and demethylation rates are defined as ‍µRM‍ and ‍µRU‍, respectively. We assume that site-level 
and region-level epimutation processes are independent. Making this assumption explicit later allows 
us to test if it is violated in comparisons with actual data. Our simulator also assumes that DNA muta-
tions and epimutations are independent of one another. That is, for simplicity, we ignore the fact that 
methylated cytosines are more likely to transition to thymines as a result of spontaneous deamination 
(Johannes, 2019a). We also ignore the possibility that new DNA mutations could act as CG methyl-
ation quantitative trait loci and affect CG methylation patterns in both cis and trans. Such events are 
extremely rare, so the above assumptions should hold reasonably well over short evolutionary time 
scales. As the goal is to apply our approach to A. thaliana, we simulate sequence data for a sample 
size ‍n = 10‍ (but considering A. thaliana haploid) from a population displaying 90% selfing (Sellinger 
et al., 2020) under a recent severe population bottleneck demographic scenario. We simulate data 
assuming previous estimates of the rates of recombination (Salomé et  al., 2012), DNA mutation 
(Ossowski et al., 2010), and site- and region-level methylation (van der Graaf et al., 2015; Denkena 
et al., 2021).

As guidance for future analyses of demographic inference using SNPs and DNA methylation data, 
the theoretical and empirical analysis of A. thaliana methylomes consist of the following five steps: 
(1) assessing the relevance of region-level methylation (DMRs) for inference, (2) inference of site and 
region epimutation rates, (3) comparing statistics for the SNPs, SMPs, and DMRs distributions, (4) 
demographic inference using SNPs with SMPs or DMRS, and (5) demographic inference using SNPs 
with SMPs and DMRs.

Step 1: assessing the relevance of region-level methylation (DMRs) for 
inference
We determine our ability to detect the existence of spatial correlations between epimutations. That 
is, we asked if site-specific epimutations can lead to region-level methylation status changes across a 

https://doi.org/10.7554/eLife.89470
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range of epimutation rates (assuming two sequences of 100 Mb, ‍r = µ1 = 10−8
‍ per generation per bp 

and a constant population size ‍N = 10, 000‍, results in Supplementary file 1b). If site-specific epimu-
tations are independently distributed, the probability of a given site being in a given (methylated or 
unmethylated) state should be independent of the state of nearby sites (knowing the epimutation rate 
per site). Conversely, if there is a region effect on epimutation (DMRs), two consecutive sites along the 
genome would exhibit a positive correlation in their methylated states. We therefore calculate from 
the per-site (de)methylation rates ‍µSM‍ and ‍µSD‍ the probability that two successive cytosine positions 
are identical in their methylation assuming they are independent. This probability can be compared 
to the one observed from methylation data (here simulated) so that we obtain a statistical test for the 
existence of a positive correlation in the methylation status of nearby sites, interpreted as a regional-
level epimutation process (p-value = 0.05) according to Figure 1A. A small p-value of the test (<0.05) 
suggests the existence of a region effect for methylation/demethylation affecting neighbouring cyto-
sines, contrary to a high p-value indicating no spatial structure of methylation distribution. We find 
that when region epimutation rates are higher than (or similar to) site-level epimutation rates, namely 

‍µRM ⪆ µSM‍ and (‍µRU ⪆ µSU‍), the existence of regions of consecutive cytosines is detected with high 
accuracy. However, when site-level epimutation rates are higher (‍µSU > µRU‍ and ‍µSM > µRM‍) than 
region-level epimutation rates, region-level changes cannot be readily detected (Supplementary file 
1b). When methylated regions are detected, we can further determine their length using a specifically 
developed HMM using all pairs of genomes (similarly to Shahryary et al., 2020; Denkena et al., 
2021; Taudt et al., 2018). While the length of the methylated region is pre-determined in our simula-
tions (1 kb or 150 bp), site-level epimutation occur which can change the distribution of methylation 
states in that region and across individuals, thus DMR regions can vary in length along the genome 
and between pairs of chromosomes.

Step 2: inference of site- and region-level epimutation rates
As the epimutation rates of most plant species remain unknown, we assess the accuracy of SMCm to 
infer epimutation rates at the site- and region-level directly from simulated data. We first assume that 
either only site- or only region epimutations can occur and infer their respective rates (see Supple-
mentary file 1c and d). Our SMCm approach can accurately recover these rates except when these 
are higher than 10-4. Next, we assess the accuracy of our approach to simultaneously infer site- and 
region-level epimutation rates, assuming that region and site epimutation rates are equal (Supple-
mentary file 1e and Figure 4—figure supplement 1). Similar to our previous observation, we find 
that when the epimutation rates are very high (e.g. close to 10-2), accuracy is lost compared to slower 
epimutation rates. Nonetheless, our average estimated rates are off from the true value by less than 
a factor 10. Hence, under our model assumptions, we can recover the correct order of magnitude for 
site- and region-level methylation and demethylation rates.

Step 3: distribution of statistics for SNPs, SMPs, and DMRs
To gain insights on the distribution of epimutations under the described assumptions, we look at key 
statistics from our simulations: the distribution of distance between two recombination events versus 
the distribution of the length of estimated DMR regions (Figure 4A), and the LD decay for SMPs (in 
genic regions) and SNPs (in all contexts) (Figure 4C and D). In our simulations, DMR regions have a 
maximum fixed size, but their length depends on the interaction between the region- and site-level 
epimutation rates. As mentioned in step 1, the methylated/demethylated regions are detected using 
the binomial test and their length estimated by the HMM. Therefore, while variation exists for the 
length of these regions (Figure 4A), regions are on average shorter than the span of genealogies 
along the genome, which are defined by the frequency of recombination events along the genome 
(‍r = 3.5 × 10−8‍ as in A. thaliana). There is virtually no linkage disequilibrium (LD) between epimuta-
tions due to the high epimutation rate (Figure 4C), while the LD between SNPs can range over few 
kbp (Figure 4D, as observed in A. thaliana [Cao et al., 2011; Schmitz et al., 2013]). Note, however, 
that the region methylation process in itself does not generate LD because this measure can only 
be computed if SMPs are present in frequency higher than ‍2/n‍ in the sample, that is there is no LD 
measure defined for monomorphic methylated/unmethylated regions. In other words, our simulator 
generates SNPs, SMPs, and DMRs, which fulfil the three key assumptions from Figure 1A. We note 
that by using a constant population size ‍N = 10, 000‍, the LD decay for SNPs is higher than in the A. 

https://doi.org/10.7554/eLife.89470
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thaliana data which exhibit an effective population size of ca. ‍N = 250, 000‍ (Cao et al., 2011) and past 
changes in size.

Step 4: demographic inference based on SNPs with SMPs or DMRs
We test the usefulness of either SMPs or DMRs for demographic inference. Simulations under the 
demographic model from steps 1–3 assume DNA mutations (SNPs) and only site epimutations (SMPs), 
that is no region-level methylation (‍µRM = µRU = 0‍). We perform inference of past demographic 
history under different amounts of potentially methylated sites with and without a priori knowledge of 
the methylation/demethylation rates (Figure 5A and B). When the site epimutation rates are a priori 
known, the sharp decrease of population size can be accurately detected. When epimutation rates 
are unknown, the shape of the past demographic history is also well inferred except for a scaling issue 
(a shift along the x- and y-axes similar to that in Figure 5D). When we vary the amount of potentially 
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Figure 4. Key statistics for epimutations and mutations. (A) Histogram of the length between two recombination events (genomic span of a genealogy) 
and DMRs size in bp of the simulated data. (B) Histogram of genealogy span and DMRs size in bp from the A. thaliana data (10 German accessions). 
(C) Linkage disequilibrium decay of epimutations in our samples of A. thaliana (red) and simulated data (blue). (D) Linkage disequilibrium decay of 
mutations in our A. thaliana samples (red) and simulated data (blue). The simulations reproduce the outcome of a recent bottleneck with sample size 

‍n = 5‍ diploid of 100 Mb, the rates per generation per bp are ‍r = 3.5 × 10−8‍, ‍µ1 = 7 × 10−9
‍, ‍µSM = 3.5 × 10−4

‍, ‍µSU = 1.5 × 10−3
‍, and per 1 kb 

region ‍µRM = 2 × 10−4
‍ and ‍µRU = 1 × 10−3

‍.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Average estimates of the site and region methylation and demethylation rates for simulated data.

https://doi.org/10.7554/eLife.89470
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methylated sites (2%, 10%, and 20%) our inference results remain largely unchanged. This suggests 
that having methylation measurements for as low as 2% of all CG sites being epimutable in the 
genome is entirely sufficient to improved SNP-based demographic inference (eSMC2 in Figure 5A). 
The RMSE values for demographic inference are computed for all cases in Figure 5 to provide an 
additional quantitative understanding of our results (Supplementary file 1f).

The amount of sequence data used in Figure 5A, B is fairly large compared to real datasets (10 
haploid genomes of length 100 Mb). We therefore ran the SMCm and eSMC2 on sequence data 
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Figure 5. Performance of SMC approaches using site epimutations (SMPs) and mutations (SNPs) under a bottleneck scenario. Estimated demographic 
history by eSMC2 (blue) and SMCm assuming the epimutation rate is known (B and D) or not (A and C) where the percentage of CG sites with 
methylated information varies between 20% (red), 10% (orange) and 2% (green) using 10 sequences of 100 Mb in A and B (with 10 repetitions) and 

10 sequences of 10 Mb in C and D (three repetitions displayed) under a recent severe bottleneck (black). The parameters are: ‍r = 3.5 × 10−8‍ per 

generation per bp, mutation rate ‍µ1 = 7 × 10−9
‍, methylation rate to ‍µSM = 3.5 × 10−4

‍ and demethylation rate to ‍µSU = 1.5 × 10−3
‍ per generation 

per bp.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Performance of SMCm for methylation with only DMR regions of length 1kbp.

Figure supplement 2. Performance of SMCm for methylation with only DMR regions of length 150 bp.

Figure supplement 3. Performance of SMCm for methylation with site and region epimutations.

Figure supplement 4. Performance of SMCm for methylation, accounting only for SMPs.

Figure supplement 5. Average pvalue of the binomial test for epimutations.
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simulated under the same scenario but with a reduced sequence length of 10  Mb (‍n = 5‍ diploid, 
Figure 5C and D, only 3 repetitions are presented for visibility). In this case, we found that infer-
ence is significantly affected when using only SNPs (eSMC2 in blue), as we are unable to correctly 
recover the demographic scenario. However, incorporating SMPs with known site-level epimutations 
into the model leads to substantial inference improvements (Figure 5C, D, Supplementary file 1f). 
We additionally quantify the accuracy gain in ARG inference by inferring the expected coalescent 
time (TMRCA) at each position in the genome by the three approaches (eSMC2, SMCm with unknown 
epimutation rates and SMCm with known epimutation rates) under the same scenario from Figure 5. 
The RMSE values of the TMRCA inference are presented in Supplementary file 1g. We confirm our 
intuition that integrating epimutations slightly improves the accuracy of TMRCA when the epimuta-
tion rates are known but does not when the rates are unknown.

To quantify the effect of DMRs on inference, we simulate data under the same demographic 
scenario but assume only region-level epimutations (DMRs, ‍µSM = µSU = 0‍). The results for DMR 
region sizes 1 kb and 150 bp are displayed in Figure 5—figure supplement 1 and Figure 5—figure 
supplement 1, respectively. As in Figure 5, we observed a gain of accuracy in inference when region-
level epimutation rates are known, while the length of the region (1 kb or 150 bp) does not seem to 
affect the result. However, no significant gain of information is observed when integrating DMR data 
with unknown epimutation rates (Figure 5—figure supplement 1, Figure 5—figure supplement 2). 
In summary, CG methylation SMPs and to a lesser extend DMRs, can be used jointly with SNPs to 
improve demographic inference (Supplementary file 1h presents the corresponding RMSE values for 
demographic inference shown in Figure 5—figure supplement 1, Figure 5—figure supplement 2), 
especially in recent times (Supplementary file 1f and h).

Step 5: demographic inference based on SNPs with SMPs and DMRs
Since site- and region-level methylation processes can occur in real data, we run SMCm on simu-
lated data under the same demographic scenario, but now using both site (SMPs) and region (DMRs) 
epimutations and accounting for both mutation processes (with rates similar to the one found in A. 
thaliana). Inference results are displayed in Figure 5—figure supplement 3 (RMSE values in Supple-
mentary file 1i). When the epimutations rates are unknown, we observe a gain of accuracy when inte-
grating epimutations, especially in recent times. However, when epimutation rates are a priori known, 
we observe a loss of accuracy when accounting for epimutations. This loss of accuracy is due to the 
mislabeling of the methylation region status (in step 1) when site and region-level epimutations occur 
jointly at similar rates (as there will be methylated sites in unmethylated regions and unmethylated 
sites in methylated regions).

Finally, we assess the inference accuracy when using SNPs and SMPs but ignoring in SMCm the 
region methylation effect (DMRs), even though this latter process takes place (Figure  5—figure 
supplement 4, RMSE values in Supplementary file 1j). The inference accuracy decreases compared 
to the previous results (Figure 5—figure supplements 1–4), and while the sudden variation of popu-
lation is somehow recovered, the estimates of the time and magnitude of size change are not well 
recovered in recent times. Hence, those results demonstrate the importance of accounting for site 
and region-level epimutations processes in steps 1–5. We demonstrate that our SMCm can exhibit, 
to some extent, an improved statistical power for demographic inference using SNPs and SMPs while 
accounting for site and region-level methylation processes under the assumptions of Figure 1A. We 
show that (1) using SMPs we can unveil past demographic events hidden by limitations in SNPs, (2) 
the correct demography can be uncovered irrespective of knowing a priori the epimutation rates, (3) 
ignoring site or region-level processes can decrease the accuracy of inference, and (4) knowing the 
epimutation rates may improve the estimate of demography compared to simultaneously estimating 
them with SMCm.

Joint use of SNPs and SMPs improves the inference of recent 
demographic history in A. thaliana
Step 1: assessing the strength of region-level methylation process in A. 
thaliana
We apply our inference model to genome and methylome data from 10 A. thaliana plants from a 
German local population (Cao et al., 2011). We start by assessing the strength of a region effect on 

https://doi.org/10.7554/eLife.89470
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the distribution of methylated CG sites along the genome. As expected from Denkena et al., 2021, 
for all 10 individual full methylomes, we reject the hypothesis of a binomial distribution of methylated 
and unmethylated sites along the genomes, suggesting the existence of region effect methylation 
(yielding DMRs), meaning that CG are more likely to be methylated if in a highly methylated region, 
and conversely for unmethylated CG. This is consistent with the autocorrelations in mCG found in 
Denkena et  al., 2021; Briffa et  al., 2023; Lyons et  al., 2023. As a first measure of methylated 
region length, we test the independence between two annotated CG methylations given a minimum 
genomic distance between them (within one genome). We observe an average p-value smaller than 
0.05 for distances up to 2,000 bp but then the p-value rapidly increases (>0.4) (Figure 5—figure 
supplement 5). As a second measure, our HMM (based on pairs of genomes) yields a DMR average 
length of 222 bp (distribution in Figure 4B).

We conclude that the minimum distance for epimutations to be independent along a genome is 
over 2 kb and spans larger distances than the typically proposed DMR size (ca. 150 bp in Denkena 
et al., 2021 and 222 bp in our analysis) and can therefore cover the size of a gene (see Muyle et al., 
2021; Briffa et al., 2023). The simulations and data from A. thaliana indicates that the epimutation 
processes that produce DMRs at the population level in plants cannot simply result from the cumula-
tive action of single-site epimutations. This insight is consistent with recent analyses of epimutational 
processes in gene bodies, which seems to indicate that the autocorrelation in CG methylation is a 
function of cooperative methylation maintenance and the distribution of histone modifications (Briffa 
et al., 2023; Lyons et al., 2023).

Step 2: site- and region-level epimutation rates
We use the rates empirically estimated in A thaliana and taken in the above simulations (‍µSM = 3.5 × 10−4

‍ 
and ‍µSU = 1.5 × 10−3

‍ per bp per generation and ‍µRM = 2 × 10−4
‍ and ‍µRU = 1 × 10−3

‍ per region per 
generation, van der Graaf et al., 2015; Denkena et al., 2021).

Step 3: distribution statistics for SNPs, SMPs and DMRs in A. thaliana
Since our SMC model assumes that DNA, SMP and DMR polymorphisms are determined by the 
underlying population/sample genealogy, DMR which span long genomic regions may spread across 
multiple genealogies and thus violates our modeling assumptions. We thus further investigate the 
potential discrepancies between the data and our model (Figure 4). We infer the DMR sizes from all 
10 A. thaliana accessions using our ad hoc HMM, and measure the bp distance between a change 
in the expected hidden state (i.e. coalescent time) along the genome, which we interpret as recom-
bination events (called the genomic span of a genealogy). The resulting distributions are found in 
Figure 4B. We observe that both distributions have a similar shape, but DMRs are, on average, twice 
as large as the inferred genomic genealogy span: average length of 222 bp (DMR) vs 137 bp (gene-
alogy) and median length of 134 bp (DMR) vs 62 bp (genealogy). This means that, on average, DMRs 
are larger than the average distance between two recombination events, thus violating the homoge-
neous distribution of epimutations along the genome (Figure 1C).

To further unveil potential non-homogeneity of the distribution of epimutations, we assess the 
decay of LD of mutations (SNPs) and epimutations (SMPs) (Figure 4C and D), confirming the results 
in Schmitz et al., 2013. We find the LD between SMPs in the data to be high (and higher than LD 
between SNPs) for distances smaller than 100 bp (red line in Figure 4C, D). The LD decay of SMPs is 
much faster than for SNPs (no linkage disequilibrium between epimutations for distances >100 bp), 
likely stemming from (1) epimutation rates being much higher than the DNA mutation rate, and (2) the 
high per-site recombination rate in A. thaliana. Moreover, the LD between SMPs at distances smaller 
than 100 bp in A. thaliana being much higher compared to our simulations (Figure 4C), we suggest 
that additional local mechanisms of epimutation processes may not be accounted for in our model of 
the region-level methylation process.

Step 4: demographic inference for A. thaliana based only on SNPs and SMPs
Finally, we apply the SMCm approach to data from the German accessions of A. thaliana. When using 
SNP data only, the demographic results are similar to those previously found (Sellinger et al., 2020; 
Strütt et al., 2023; Figure 6 purple lines), with no strong evidence for an expansion post-Last Glacial 
Maximum (LGM) (Cao et al., 2011). We then sub-sample and analyze segregating SMPs, which exhibit 

https://doi.org/10.7554/eLife.89470
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both methylated and unmethylated states in our sample (as in van der Graaf et al., 2015). Here we 
ignore DMRs and account only for SMPs. When we use as input the methylation and demethylation 
rates that have been inferred experimentally (van der Graaf et al., 2015), a mild bottleneck post-LGM 
is followed by recent expansion (Figure 6 blue lines). By contrast, letting our SMCm estimate the 
epimutation rates, we find in recent times a somehow similar but stronger demographic change 
post-LGM. We find a strong bottleneck event occurring between ca. 5,000 and 10,000 generations 
ago, followed by an expansion until today (Figure 6 green lines). The inferred site epimutation rates 
are 10,000 faster than the DNA mutation rate (Supplementary file 1k), which is close to the expected 
order of magnitude from experimental measures with and without DMR effects (van der Graaf et al., 
2015; Denkena et al., 2021). Both estimates thus yield a post-LGM bottleneck followed by a recent 
population expansion. These results indicate that the inclusion of DNA methylation data can aid in 
the accurate reconstruction of the evolutionary history of populations, particularly in the recent past, 
where SNPs reach their resolution limit. This is made possible by the fact that the DNA methylation 
status at CG dinucleotide undergoes stochastic changes at rates that are several orders of magnitude 
higher than the DNA mutation rate and can be inherited across generations similar to DNA mutations.
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Figure 6. Integrating epimutations and mutations on German accessions of A. thaliana. Estimated demographic 
history of the German population by eSMC2 (only SNPs, purple) and SMCm when keeping polymorphic 
methylation sites (SMPs) only: green with epimutation rates estimated by SMCm, blue with epimutation rates 
fixed to empirical values. The region epimutation effect is ignored. The parameters are ‍r = 3.6 × 10−8‍, 

‍µ1 = 6.95 × 10−9
‍, and when assumed known, the site methylation rate is ‍µSM = 3.5 × 10−4

‍ and demethylation 

rate is ‍µSU = 1.5 × 10−3
‍.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Demographic estimation using all methylation sites from German accessions of A. thaliana.

Figure supplement 2. Average number of segregating site per window of 100kp on chromosome 1.

Figure supplement 3. Average number of segregating site per window of 100kp on chromosome 2.

Figure supplement 4. Average number of segregating site per window of 100kp on chromosome 3.

Figure supplement 5. Average number of segregating site per window of 100kp on chromosome 4.

Figure supplement 6. Average number of segregating site per window of 100kp on chromosome 5.
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Step 5: demographic inference correcting for DMRs in A. thaliana
To assess the robustness of our inference results, we run SMCm using all cytosines (CG) sites with 
an annotated methylation status (segregating or not) while accounting or not for DMRs (Figure 6—
figure supplement 1). We fix epimutation rates to the empirically estimated values and confirm the 
estimates from Figure 6. When the region-level methylation process is ignored, the inferred demog-
raphy (blue lines in Figure 6—figure supplement 1) is similar to the estimates from SMPs with fixed 
rates in Figure 6 (blue lines). When the region-level methylation process is taken into account (orange 
lines in Figure 6—figure supplement 1), the inferred demography is similar to that of Figure 6 (green 
lines). In the case where we infer the epimutation rates (sites and region) the demographic history 
inference is not improved compared to that estimated using SNPs only (Figure 6—figure supplement 
1, green and red lines) while the inferred epimutation rates are lower than expected (Supplementary 
file 1k and l), but the ratio of site to region epimutation rates is consistent with empirical estimates 
(Denkena et al., 2021).

Discussion
Current approaches analyzing whole genome sequences rely on statistics derived from the distribu-
tion of ancestral recombination graphs (Gattepaille et al., 2016; Sellinger et al., 2021; Korfmann 
et al., 2024; Strütt et al., 2023; Brandt,, 2022; Wohns et al., 2022; Speidel et al., 2019; Kelleher 
et al., 2019). In this study we present a new SMC method that combines SNP data with other types 
of genomic (TEs, microsatallites) and epigenomic (DNA methylation) markers. We focus mainly on 
the inclusion of genomic markers whose mutation rates exceed the DNA point mutation rate, as such 
(hyper-mutable) markers can provide increased temporal resolution in the recent evolutionary past of 
populations, and aid in the identification of demographic changes (e.g. population bottlenecks). We 
demonstrate that by integrating multiple heritable genomic markers, the population size variation 
in very recent time can be more accurately recovered (outperforming any other methods given the 
amount of data used in this study [Terhorst et al., 2017; Speidel et al., 2019]). Our results indicate 
that correctly integrating multiple genomic marker can improve TRMCA inference, which is becoming 
a field of high interest (Korfmann et al., 2024; Hubisz et al., 2020; Mahmoudi et al., 2022). Our 
simulations demonstrate that if the SNP mutation rate is known, the mutation rate of other markers 
can be recovered (under the condition that the marker follow all hypotheses described in Figure 1). 
Moreover, our method accounts for the finite site problem that arises at reversible (hyper-mutable) 
markers and/or where effective population size is high (Tellier et  al., 2011; Upadhya and Stein-
rücken, 2022). Overall, the simulator and SMC methods presented here therefore pave the way for 
a rigorous statistical framework to test if a common ARG can explain the observed diversity patterns 
under the model hypotheses laid out in Figure 1. We find that comparisons of LD for different markers 
along the genome is a useful way to assess violations of our model assumptions.

As proof of principle, we apply our approach on data originating from whole genome and meth-
ylome data of A. thaliana natural accessions (focusing on CG context in genic regions, as in Vidalis 
et al., 2016; Yao et al., 2021; Yao et al., 2023). Indeed, A. thaliana presents the largest genetic 
and epigenetic data-set of high quality. Additionally, the methylation states in CG context has been 
proven mainly heritable and is well documented (Denkena et al., 2021; Hazarika et al., 2022; van 
der Graaf et al., 2015). We first investigate the distribution of epimuations along the genomes. Our 
model-based approach provides strong evidence that DMRs cannot simply emerge from spontaneous 
site-level epimutations that arise according to a Poisson processes along genome. Instead, stochastic 
changes in region-level methylation states must be the outcome of spontaneous methylation and 
demethylation events that operate at both the site- and region-level (as corroborated by Pisupati 
et al., 2023; Briffa et al., 2023; Lyons et al., 2023). Our epimutation model cannot fully describe 
the observed diversity of epimutations along the genome (Denkena et al., 2021), meaning that the 
epimutation processes may indeed be more complex than expected (Denkena et al., 2021; Hazarika 
et al., 2022; Briffa et al., 2023; Lyons et al., 2023). We observe non-independence between anno-
tated methylation sites spanning genomic regions larger than the span of the underlying genealogy 
(determined by recombination events) which no model can currently describe. Additionally, we find 
high LD between SMPs over short distances which does not appear in our simulations (simulation 
performed under the current measures of epimutation rates). Thus, methylation probably violate the 
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assumptions of a Poisson process distribution along the genome and in time (i.e. Figure 1), in line 
with recent functional studies (Pisupati et  al., 2023; Hazarika et  al., 2022; Lyons et  al., 2023). 
We thus further caution against conclusions on the role of natural (purifying) selection (Muyle et al., 
2021) or its absence (Vidalis et al., 2016) based on population epigenomic data due to the violation 
of the above-mentioned assumptions. Additionally, we suspect those model violations to explain the 
discrepancy between the epimutation rates we inferred and the ones measured experimentally (van 
der Graaf et al., 2015; Denkena et al., 2021). To solve this discrepancy, one would need to develop 
a theoretical epimutation model capable of describing the observed diversity at the evolutionary 
time scale and then use this model to reanalyse the sequence data from the biological experiment 
to re-estimate the epimutation rates. We thus suggest a possible way forward for modeling epimu-
tations through an Ising model (Zhang et al., 2018) to account for the heterogeneous methylation 
process. However, our preliminary work and the simulation results in Briffa et  al., 2023, indicate 
that such model generates non-homogeneous mutation process in space (i.e. along the genome) 
and time, violating our current SMC assumptions (Figure 1C, D). Hence, there is a need to develop 
a more realistic methylation model for epimutations. A model accounting for heterogeneous rates 
would probably need to rely on a more sophisticated HMM (e.g. continuous time Markov chains Ki 
and Terhorst, 2023 for SMC approaches) than what is presented here or to use other full genome 
inference methods (see Korfmann et al., 2024) which are not constrained by the SMC assumptions 
(Figure 1) but depends on simulations.

Interestingly, the distance of LD decay for SMPs matches quite well the estimated distance between 
recombination events (Figure 4). In addition to our theoretical results in Table 2, this observation 
reinforces the usefulness of using SMPs (or any hyper-mutable marker) to improve estimates of the 
recombination rate along the genome in species where the per site DNA mutation rate (μ) is smaller 
than the per site recombination rate (‍r‍) as in A. thaliana.

Nonetheless, we find that a restricted focus on segregating SMPs in genic regions could meet our 
model assumptions reasonably well, and thus provides a promising way forward. Using these segre-
gating SMPs, we recover a past demographic bottleneck followed by an expansion which could fit the 
post- Last Glacial Maximum (LGM) colonization of Europe (although caution must be taken concerning 
the reliability of those results as pointed above), a hypothesized scenario (François et  al., 2008) 
which could not be clearly identified using SNPs only from European (relic and non-relic) accessions 
(Cao et al., 2011). Currently strong evidence from inference methods are lacking (Cao et al., 2011, 
Figure 4 in Durvasula et al., 2017). Indeed, beyond the limits of using SNPs only, current results are 
limited by theoretical frameworks unable to simultaneously account (and disentangle) for extensive 
background selection (reinforced by very high selfing), population structure and variation in molecular 
rates (e.g. mutation rates, Monroe et al., 2022), which are all known to be present in A. thaliana. 
Those various forces are known to bias inference results when non-accounted for (Charlesworth and 
Jensen, 2023; Rodríguez et al., 2018), and may explain the variance in our demographic estimates. 
We also note that using CG methylated sites in genic regions may be problematic as the typical gene-
alogies at these loci could be shorter than the genome average due to the presence of background 
selection, thus making the inference of such short TMRCA more difficult (even with SMPs) than in 
non-coding regions (which do not harbour desirable CG methylation sites, van der Graaf et al., 2015; 
Vidalis et al., 2016; Yao et al., 2021).

We suggest that simultaneously accounting for multiple heritable markers can help disentangle 
different evolutionary forces, such as between selection and variation in mutation rate: selection 
has a local effect on the population genealogy, while the mutation rate variation would only locally 
affect that given marker but not the genealogy (Charlesworth and Jensen, 2023). The absence of 
conflicting demography inferred from SNPs and from methylation confirms at the time scale of thou-
sands of generations, CG methylation sites are mainly heritable and can be modeled using population 
genetics theory (Charlesworth and Jain, 2014; Vidalis et al., 2016 but see Pisupati et al., 2023) 
and used to estimate divergence between lineages (Yao et  al., 2023; Yao et  al., 2021). In other 
words, fast ecological local adaptation (Schmid et al., 2018) and response to stresses (Srikant and 
Drost, 2020) may likely not be prominent forces endlessly reshaping CG methylation patterns (non-
heritability in Figure 1B).

Overall, our results demonstrate that our approach can be used in different cases. If the epimu-
tations/genomic markers evolutionary mechanisms are not well understood (Pisupati et al., 2023; 
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Briffa et al., 2023; Lyons et al., 2023), our approach provides inference tools to study the markers’ 
rates and distribution process along the genome, without requiring additional experimental data. 
If the evolution of epimutations/genomic markers are well understood (including a measure of the 
mutation rates) and can be modeled to describe the observed intra-population diversity, these can be 
integrated to improve the SMC performance. Hence, when applying our approach to genome-wide 
genetic and epigenetic data, it is advisable to use accurately annotated markers with, if possible, 
information regarding their inheritance and mutational properties. Regarding methylation specifically, 
while the set of gene body methylated genes previously used (Vidalis et al., 2016; Yao et al., 2023) 
are likely the optimal choice (Yao et al., 2021), these are too few and too scattered across the genome 
to maximize the statistical power of SMC methods. We, therefore, use methylation sites at all genic 
regions. Yet, despite the wealth of functional studies and data on methylation in A. thaliana, the distri-
bution of epimutations is not fully understood (Hazarika et al., 2022; Pisupati et al., 2023), but inde-
pendent rates for sites and region-level have been estimated (van der Graaf et al., 2015; Denkena 
et  al., 2021; Yao et  al., 2023). We note here the promising methylation modeling framework by 
Briffa et al., 2023; Lyons et al., 2023, albeit it does not yet consider evolutionary processes at the 
population level. Our results shed light on the inference accuracy in presence of site and region-level 
epimutations when occurring at similar rates (Figure 5—figure supplement 3). When accounting for 
region-level epimutations, our algorithm requires first inferring via an HMM the methylation status of 
a region in order to later on compute the epimutation probabilities (i.e. the emission matrix of the 
SMC HMM). Hence, in the presence of site and region-level epimutations occurring at similar rates, 
recovering the region methylation status becomes harder as methylated sites are observed in the 
unmethylated regions (and unmethylated sites observed in the methylated regions). The mislabelling 
of the region methylation status lead to accuracy loss due to the use of the wrong emission probability 
at the later steps of the SMC inference (Forward-Backward algorithm). When epimutation rates are 
freely inferred, their values are based on the estimated methylation region status. Therefore, even if 
the inferred rates are incorrect, these are sufficiently consistent with the inferred region methylation 
status to contain information and slightly improve inference accuracy. Additionally, extra care must be 
taken when dealing with epigenomic data in other species as the SMP calling might not be as simple 
as for Arabidopsis thaliana due to potential difference of methylation between different tissues or 
pool of cells. Similarly, we ignore here the potential dependence between SNPs and SMPs, as more 
empirical evidence (and modeling) is required to quantify the potential interaction between both 
mutational processes.

On a brighter note, with the release of new sequencing technology (Lang et al., 2020), long 
and accurate reads are becoming accessible, leading to the availability of highquality reference 
genomes for model and non-model species alike (Nurk et al., 2020). Additionally, the quality of 
re-sequencing (population sample) genome data and their annotations is enhanced so that addi-
tional markers such as transposable elements, insertion, deletion or microsatellites can be called 
with increasing confidence. These accurate genomes will provide access to new classes of genomic 
markers that span the entire mutational spectrum. We therefore suspect that, in the near future, 
there will be an improvement in our understanding of the heritability of many markers besides 
SNPs. Adding other genomic markers besides SNPs will improve full genome approaches, which 
are currently limited by the observed nucleotide diversity (Kelleher et al., 2019; Speidel et al., 
2019; Schweiger and Durbin, 2023). Additionally, the potential complexity resulting by integrating 
multiple independent markers could be tackled by the use of continuous time Markov chains for the 
emission matrix. We predict that our results pave the way to improve the inference of (1) biolog-
ical traits or recombination rate through time (Deng et al., 2021; Strütt et al., 2023), (2) multiple 
merger events (Korfmann et al., 2024), and (3) recombination and mutation rate maps (Barroso 
et al., 2019; Barroso and Dutheil, 2023). Our method also should help to dissect the effect of 
evolutionary forces on genomic diversity (Johri et al., 2022; Johri et al., 2021), and to improve the 
simultaneous detection, quantification and dating of selection events (Albers and McVean, 2020; 
Bisschop et al., 2021; Johri et al., 2020).

Hence, there is no doubt that extending our work, by simultaneously integrating diverse types of 
genomic markers into other theoretical framework (e.g. ABC approaches), likely represents the future 
of population genomics, especially to study species for which many thousands of samples cannot 
be obtained. We believe our approach helps to develop more general classes of models capable of 
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leveraging information from any type and amount of diversity observed in sequencing data, and thus 
to challenge our current understanding of genome evolution.

Materials and methods
Simulating two genomic markers
The sequence is written as a sequence of markers with a given state. Each site is annotated as M ‍X ‍ 
S ‍Y ‍, where ‍X ‍ indicates the marker type and ‍Y ‍ is the current state of that marker: for example, M1S1 
indicates a marker of type 1 in state 1 at this position. To simulate sequence of theoretical marker we 
start by simulating an ARG which is then split in a series of genealogies (i.e. a sequence of coalescent 
trees) along the chromosome and create an ancestral sequence (based on equilibrium probability 
of marker states). Mutation events (nucleotides or epimutations for methylable cytosine) are added 
along the sequence, that is along the series of genealogies. The ancestral sequence is thus modified 
by mutation event assuming a finite site model (Yang, 1996) conditioned to the branch length and 
topology of the genealogies. Each leaf of the genealogy is one of the ‍n‍ samples. Our model has 
thus two important features: (1) markers are independent from one another, and (2) a given marker 
has a polymorphism distribution between samples (frequencies of alleles) determined by one given 
genealogy. The simulator can be found in the latest version of eSMC2 R package (https://github.com/​
TPPSellinger/eSMC2; copy archived at Sellinger, 2024a).

Simulating methylome data
We now focus on methylation data located at cytosine in CG context within genic regions. Only, CG 
sites in those regions are considered ‘methylable’, and CG sites outside those defined genic regions 
do not have a methylation status and are considered ‘unmethylable’. We vary the percentage of 
CG site with methylation state annotated from 2 to 20% of the sequence length. The simulator can 
in principle simulate epimutations in different methylation context and different rates (Lister et al., 
2008; Cokus et al., 2008; Zilberman et al., 2007; Zhang et al., 2006). We simulate epimutations as 
described above but with asymmetric rates: the methylation rate per site is ‍µSM = 3.5 × 10−4

‍, and the 
demethylation rate per site is ‍µSM = 1.5 × 10−3

‍(van der Graaf et al., 2015; Denkena et al., 2021). 
For simplicity and computational tractability, we assume that when an epimutation occurs, it occurs on 
both DNA strands which then present the same information. In other words, for a haploid individual, 
a cytosine site can only be methylated or unmethylated (as in Taudt et al., 2018). For region level 
epimutations, the region length is either 1kbp (Muyle et al., 2021) or 150 bp (Denkena et al., 2021). 
The region level methylation and demethylation rates are set to ‍µRM = 2 × 10−4

‍ and ‍µRU = 10−3
‍ 

respectively (similar to rates measured in A. thaliana, Denkena et al., 2021). In addition to this, unlike 
for theoretical marker described above, mutations, site and region epimutations can occur at the 
same position of the sequence.

To simulate methylation data, we start with an ancestral sequence of random nucleotide and then 
randomly select regions in which CG sites have their methylation state annotated (representing the 
genic regions). Cytosine in CG context in those regions are either methylated or unmethylated (noted 
as M or U). Cytosine in other context or regions are considered as non-methylable (and noted as C). 
The ancestral methylation state is then randomly attributed according to the equilibrium probabili-
ties. Our simulator then introduces DNA mutations, site- and region-epimutations in a similar way as 
described above.

SMC methods
All three methods (eSMC2, SMCtheo, and SMCm) are based on the same mathematical foundations 
and implemented in a similar way within the eSMC2 R package (https://github.com/TPPSellinger/​
eSMC2; Strütt et al., 2023; Korfmann et al., 2024; Sellinger et al., 2021; copy archived at Sellinger, 
2024a). This allows to specifically quantify the accuracy gained by accounting for multiple genomic 
markers.

SMC optimization function
All current SMC approach rely on the Baum-Welch (BW) algorithm for parameter estimation in order to 
reduce computational load (as described in Terhorst et al., 2017). Yet, the Baum-Welch algorithm is 
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an Expectation-Maximization algorithm, and can hence fall in local extrema when optimizing the like-
lihood. We alternatively extend SMCtheo to estimate parameters by directly optimizing the likelihood 
(LH) at the greater cost of computation time (even when using the speeding techniques described 
in Sand et al., 2013). We run this approach on a sub-sample of size six haploid genomes to limit the 
required computational time.

eSMC2 and MSMC2
SMC methods based on the PSMC’ (Schiffels and Durbin, 2014), such as eSMC2 and MSMC2, focus 
on the coalescent events between two individuals (i.e. two haploid genomes or one diploid genome). 
The algorithm moves along the sequence and estimates the coalescence time at each position by 
assessing whether the two sequences are similar or different at each position. If the two sequences 
are different, this indicates a mutation took place in the genealogy of the sample. The intuition being 
that the absence of mutations (i.e. the two sequences are identical) is likely due to a recent common 
ancestor between the sequences, and the presence of several mutations likely reflects that the most 
recent common ancestor of the two sequences is distant in the past. In the event of recombina-
tion, there is a break in the current genealogy and the coalescence time consequently takes a new 
value according to the model parameters (Marjoram and Wall, 2006; Schiffels and Durbin, 2014). A 
detailed description of the algorithm can be found in Malaspinas et al., 2016; Sellinger et al., 2020.

SMCtheo based on several genomic markers
Our SMCtheo approach is equivalent to PSMC’ but takes as input a sequence of several genomic 
markers. The algorithm goes along a pair of haploid genomes and checks at each position which 
marker is observed and whether both states of the marker are identical or not. The approach is iden-
tical to the one described above, except that the probability of both sequences being identical at one 
site depends on the mutation rate of the marker at this site (Equation 1). While the mutation rates for 
many heritable genomic markers are unknown, there is an increasing amount of measures of the DNA 
(SNP) mutation rate for many species. Our SMCtheo approach is able to leverage the information 
from the distribution of one theoretical marker (e.g. mutations for SNPs) to infer the mutation rate 
of the other marker 2 (assuming both mutation rates to be symmetrical). If more than 1% of sites are 
polymorphic in a sequence, we use the finite site assumption. If not, then from the diversity observed, 
the different mutation rates can be recovered by simply comparing Waterson’s theta (‍θW ‍) between 
the reference marker (i.e. with known rate) and the marker with the unknown rates. For example, if the 
diversity (‍θW ‍) at marker 2 is smaller by a factor ten than the reference marker 1 (and no marker violates 
the infinite site hypothesis), the mutation rate of marker 2 is inferred to be ten times smaller (corrected 
by the number of possible states). However, if the marker 2 violates the infinite site hypothesis, a 
Baum-Welch algorithm is run to infer the most likely mutation rates under the SMC to overcome this 
issue (the Baum-Welch algorithm description can be found in Sellinger et al., 2020).

SMCm
When integrating epimutations, the number of possible observations increases compared to eSMC2. 
As in eSMC2, if the two nucleotides (DNA mutation) at one position are identical at a non-methylable 
site, we indicate this as 0. If the two nucleotides differ, it is indicated as 1 (i.e. a DNA mutation 
occurred). When assuming site-level epimutation only, three possible observations are possible at a 
given methylable posisiton: (1) if the two cytosines from the two chromosomes are unmethylated, it 
is indicated as a 2, (2) if the two cytosines are methylated, it is indicated as a 3, and (3) if at a position 
a cytosine is methylated and the other one unmethylated, it is indicated as a 4. Depending on the 
mutation, methylation and, demethylation rates, different frequencies of these states are possible in 
the sample of sequences, which provide information on the emission rate in the SMC method. When 
both site- and region-level methylation processes occur, the methylation state is conditioned by the 
region-level methylation state (increasing the number of possible observations to 9).

To choose the appropriate settings for SMCm (i.e. if there are region-level epimutations), we test 
if the methylation state is distributed independently from one another along one genome. In the 
absence of a region methylation effect, the probability at each site (position) to be methylated or 
unmethylated should be independent of the previous position (or any other position). Conversely, 
if there is a region effect on epimutation, two consecutive sites along one genome would exhibit a 
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positive correlation in their methylated states (and across pairs of sequences). We, therefore, calculate 
the probability that two successive positions with an annotated methylation state would be identical 
under a binomial distribution of methylation along a given genome. We then compare theoretical 
expectations to the observed data and build the statistical test based on a binomial distribution of 
probabilities. If the existence of region-level epimutation is detected, the regions level methylation 
states are recovered through a HMM similar to Shahryary et al., 2020; Denkena et al., 2021; Taudt 
et al., 2018. Note that this HMM model does not include information from epimutation rates known 
from empirical studies. The complete description of the mathematical models and probabilities are in 
the Appendix 1 and 2.

We postulate that the epimutation rates remain unknown in most species, while the DNA muta-
tion rate may be known (or approximated based on a closely related species). Hence, we develop 
an approach based on the SMC capable of leveraging information from the distribution of DNA 
mutations to infer the epimutation rates (similar to what is described above). Our approach first tests 
if epimutations violate or not the infinite site assumptions. If less than 1% of sites with their methyla-
tion state annotated are polymorphic in a sequence, we use the infinite site assumption: the site and 
region level epimutation rates can be recovered straightforwardly from the observed diversity (‍θW ‍, 
see above). Otherwise, a Baum-Welch algorithm is run to infer the most likely epimutation rates (site 
rate for SMP and region rates for DMRs; van der Graaf et al., 2015; Vidalis et al., 2016; Taudt et al., 
2018).

Calculation of the root mean square error (RMSE)
To quantify the accuracy of each demographic inference, we evaluate the root mean square error 
(RMSE). To do so, we choose a hundred points uniformly spread across the time window (in ‍log10‍ 
scale), and compare the actual population size and the one estimated by a given method at each of 
these points. We thus have the following formula:

	﻿‍
RMSE =

√∑102

i=1(yi − y∗i )2

102 ,
‍�

(2)

where ‍yi‍ is the true population size at the time point i, and ‍y
∗
i ‍ is the estimated population size at the 

time point ‍i‍.

Inference of the time to the most recent common ancestor (TMRCA)
To infer the TMRCA at each position of the genome, we use an approach similar to the PSMC’ 
described in Schiffels and Durbin, 2014. We first run a forward and backward algorithm on our 
sequence data (see appendix of Sellinger et al., 2020; Terhorst et al., 2017 for computation details). 
From the output results, we calculate the probability to be in each hidden state at each position of the 
genome (note that the output product of the forward-backward algorithm is rescaled so that the sum 
of probability is one), which we use to compute the expected coalescent time at each position on the 
genome using the following formula:

	﻿‍
TMRCAi =

n∑
j=1

foi,j × bai,j × Tcj,
‍�

(3)

with ‍i‍ is the position on the genome, ‍j‍ is the hidden state index, ‍n‍ is the number of hidden state, ‍fo‍ is the 
output from the forward algorithm, ‍ba‍ is the output from the backward algorithm, ‍

∑n
j=1 foi,j × bai,j = 1‍, 

and ‍Tc‍ is a vector containing all the hidden states (i.e. coalescent times).

Sequence data of Arabidopsis thaliana
We download genome and methylome data of A. thaliana from the 1001 genome project Cao et al., 
2011. We select 10 individuals from the German accessions, respectively, corresponding to the acces-
sion numbers: 9783, 9794, 9808, 9809, 9810, 9811, 9812, 9816, 9813, 9814. We only keep methy-
lome data in CG context and in genic regions (Vidalis et al., 2016; Denkena et al., 2021). The genic 
regions are based on the current reference genome TAIR 10.1. The SNPs and epimutations are called 
according to previously published pipeline (Taudt et al., 2018; Denkena et al., 2021). As in previous 
studies Sellinger et al., 2020; Fulgione et al., 2018; Durvasula et al., 2017, we assume A. thaliana 
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data to be haploid due to high homozygosity (caused by high selfing rate). The resulting files are avail-
able on GitHub at https://github.com/TPPSellinger. To perform analysis, we chose ‍µ = 6.95 × 10−9

‍ per 
generation per bp as the DNA mutation rate Ossowski et al., 2010 and ‍r = 3.6 × 10−8‍ as the recom-
bination rate Salomé et al., 2012 per generation per bp. To have the most realistic model, we assume 
that the methylome of A. thaliana undergoes both region (RMM) and site (SMM) level epimutations 
(Denkena et al., 2021). When fixed, we respectively set the site methylation and demethylation rate 
to ‍µSM = 3.48 × 10−4

‍ and ‍µSU = 1.47 × 10−3
‍ per generation per bp according to van der Graaf et al., 

2015. We additionally set the region level methylation and demethylation rate to ‍µRM = 1.6 × 10−4
‍ 

and ‍µRU = 9.5 × 10−4
‍ per generation per bp according to Denkena et al., 2021. Because we do not 

account for the effect of variable mutation or recombination rate along the genome, we cut the five 
chromosomes of A. thaliana into eight smaller scaffolds (Barroso and Dutheil, 2023; Barroso et al., 
2019). By doing this, we remove centromeric regions and limit the effect of the variation of muta-
tion and recombination rate along the genome. The selected regions and the SNP density (from the 
German accessions) are represented in Figure 6—figure supplements 2–6.
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indicated in parentheses (b) Percentage of repetitions rejecting the ‍H0‍ hypothesis at P=0.05 of 
binomial distribution of epimutations over 100 repetitions using two sequences of 100 Mb with 
recombination and mutation rate set to ‍1 × 10−8‍ per generation per bp under a constant population 
size fixed to 10,000. (c) Average estimated rate of the site methylation and demethylation rates 
from simulations. True versus average estimated values of the site methylation and demethylation 
rates over ten repetitions. We use two sequences of 100 Mb with ‍r = µ1 = 10−8

‍ per generation 
per bp under a constant population size fixed to 10,000. The coefficient of variation is indicated 
in brackets. (d) Average estimated rate of the region methylation and demethylation rates from 
simulations. True versus average estimated values of the region methylation and demethylation 
rates over ten repetitions. We use two sequences of 100 Mb with ‍r = µ1 = 10−8

‍ per generation 
per bp under a constant population size fixed to 10,000. The coefficient of variation is indicated in 
brackets. (e) Average estimated rate of both site and region methylation and demethylation rates 
from simulations. Average estimated values of the site and region methylation and demethylation 
rates over ten repetitions using 2 sequences of 100 Mb with recombination and mutation rate set 
to ‍1 × 10−8‍ per generation per bp under a constant population size fixed to 10,000. The coefficient 
of variation is indicated in brackets. (f) Average mean root square error of demographic inference 
in Figure 5. Average mean root square error (in log10) of demographic inference in Figure 5 by the 
two approaches eSMC2, SMCm with unknown epimutations rates (A and C), and SMCm with known 
epimutation rates (B and D). Note the second row indicates the MRSE in recent times (younger than 
400 generations ago). The coefficient of variation is indicated in parentheses (g) Average mean root 
square error of coalescent time along the genome inference. Average mean root square error of 
inferred coalescent time (in generation unit) along the genome over ten repetitions by the three 
approaches (eSMC2, SMCm with unknown epimutation rates and SMCm with known epimutation 
rates) under the same scenario from Figure 5. Inference was performed on two haploid sequences 
of 10 Mb with ‍µ = 7 × 10−9

‍, ‍r = 3.5 × 10−8‍ per generation per bp. Methylation and demethylation 
rates were respectively fixed to ‍3.5 × 10−4‍ and ‍1.5 × 10−3‍ per generation per bp. The selfing rate 
was fixed to 90%. The coefficient of variation is indicated in parentheses. (h) Average mean root 
square error of demographic inference in Figure 5—figure supplements 1 and 2. Average mean 
root square error (in log10) of demographic inference in Figure 5—figure supplements 1 and 2 
by the three approaches (eSMC2, SMCm with unknown epimutations rates and SMCm with known 
epimutation rates). Note that the second row indicates the MRSE in recent times (younger than 
400 generations ago). The coefficient of variation is indicated in parentheses (i) Average mean root 
square error of demographic inference in Figure 5—figure supplement 3. Average mean root 
square error (in log10) of demographic inference in Figure 5—figure supplement 3 by the three 
approaches (eSMC2, SMCm with unknown epimutations rates, SMCm with known epimutation 
rates). Note that the second row indicates the MRSE in recent times (younger than 400 generations 
ago). The coefficient of variation is indicated in parentheses (j) Average mean root square error 
of demographic inference in Figure 5—figure supplement 4. Average mean root square error 
(in log10) of demographic inference in Figure 5—figure supplement 4 by the three approaches 
(eSMC2, SMCm with unknown epimutations rates, SMCm with known epimutation rates). Note 
that the second row indicates the MRSE in recent times (younger than 400 generations ago). The 
coefficient of variation is indicated in parentheses. (k) Average estimated rate of the site methylation 
and demethylation rates in A. thaliana. Average estimated values of the site methylation and 
demethylation rates by SMCm using genomes and methylomes from 10 German accessions of 
A. thaliana. We use eight scaffolds each of 10 sequences with recombination and mutation rate 
respectively set to ‍r = 3.6 × 10−8‍ and ‍µ1 = 6.95 × 10−9

‍ per generation per bp with selfing set to 
90%. The polymorphic SMPs CG sites estimations corresponds to the green line in Figure 6. All CG 
sites estimations and CG site separated by 3,000 bp corresponds to the data of the green line in 
Figure 6—figure supplement 1. (l) Average estimated rate of the site and region methylation and 
demethylation rates in A. thaliana. Average estimated values of the site and region methylation and 
demethylation rates by SMCm using genomes and methylomes from 10 German accessions of A. 
thaliana. These estimations are produced during the inference of the red line in Figure 6—figure 
supplement 1. We use eight scaffolds each of 10 sequences with recombination and mutation rate 
respectively set to ‍r = 3.6 × 10−8‍ and ‍µ1 = 6.95 × 10−9

‍ per generation per bp with selfing set to 
90%.

•  MDAR checklist 

https://doi.org/10.7554/eLife.89470


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Sellinger et al. eLife 2023;12:RP89470. DOI: https://doi.org/10.7554/eLife.89470 � 23 of 31

Data availability
The eSMC2 R package can be found at: https://github.com/TPPSellinger/eSMC2 (copy archived at 
Sellinger, 2024a). The input files created from Arabidopsis thaliana sequence data are available on 
GitHub at https://github.com/TPPSellinger/Arabidopsis_thaliana_methylation (copy archived at Sell-
inger, 2024b).

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Cao J, Schneeberger 
K, Ossowski S, 
Günther T, Bender S, 
Fitz J, Koenig D, Lanz 
C, Stegle O, Lippert 
C, Wang X, Ott F, 
Müller J, Borgwardt 
K, Schmid KJ, Weigel 
D, Alonso-Blanco C

2011 Arabaidopsis thaliana 
methylomes

https://​1001genomes.​
org/​projects/​
MPICao2010/​index.​
html

Genomes, 
ProjectMPICao2010
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Appendix 1
Sequentially Markovian Coalescent for several markers
Our approach is a re-implementation of the PSMC’,MSMC2, eSMC and eSMC2 but accounting 
for different genomic markers. Hence, the Hidden Markov model is exactly the same as previously 
described, but with a different emission matrix. For each site, we first check what marker is present. 
We then set the correct substitution rate and number of hidden states. We note as ‍id‍ (identical) the 
event where both markers are in the same state, and ‍seg‍ if both are in different states (polymorphic). 
Extending the work in Yang, 1996, we have the following formula:

	﻿‍

P(id|γ) = 1
nbs

+ (nbs − 1)
nbs

∗ e
−2µtγ

(nbs)
(nbs − 1)

P(seg|γ) = (nbs − 1)
nbs

− (nbs − 1)
nbs

∗ e
−2µtγ

(nbs)
(nbs − 1)

‍�

(4)

Where ‍µ‍ is the substitution rate of the marker per N generation, ‍tγ‍ is the average coalescent time 
in state γ and ‍nbs‍ is the number of possible stat the marker can take.

https://doi.org/10.7554/eLife.89470
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Appendix 2
Sequentially Markovian Coalescent with DNA methylation (SMCm)
SMCm is similar to PSMC’,MSMC2, eSMC and eSMC2 but additionally accounting for epimutations.

Accounting only for site DNA epimutations
Here we assume epimutations occur similarly as mutations (under a finite site model). Since the model 
accounts for sequence and DNA methylation polymorphisms, there are at each position 5 different 
possible observations when comparing two sequences. The first observation is 0, corresponding 
to a non-methylable site where the two nucleotides are identical. 1, if the two nucleotides are 
different. 2 if it is a methylable site and both are unmethylated. 3, if the site is methylable and both 
are methylated. Finally, 4 is it is a methylable site and one cytosine is methylated and the other 
unmethylated. Therefore, after approximating the formula assuming DNA methylation state is not 
affected by DNA mutations, we find:

	﻿‍

P(0|γ) = e−2µtγ

P(1|γ) = 1 − e−2µtγ

P(2|γ) = pu × pm1 × pm1 + (1 − pu) × (1 − pm2) × (1 − pm2)

P(3|γ) = pu × (1 − pm1) × (1 − pm1) + (1 − pu) × pm2 × pm2

P(4|γ) = pu × 2 × pm1 × (1 − pm1) + (1 − pu) × 2 × pm2 × (1 − pm2)

pu = µu
µu + µm

θm = (µu + µm) × tγ
pm1 = pu + (1 − pu) × e−θm

pm2 = (1 − pu) + pu × e−θm ‍�

(5)

Where ‍µ‍ is the mutation rate per nucleotide per N generation, ‍µm‍ the methylation rate per 
generation, ‍µu‍ the demethylation rate per generation and ‍tγ‍ the average coalescent time in state γ. 
Additionally, we define ‍pu‍ as the probability to be unmethylated at equilibrium, as well as ‍pm1‍ and 

‍pm2‍ the respective probability to stay unmethylated or methylated after a time ‍tγ‍.

Accounting only for region epimutations
Here, we assume region epimutation occurs similarly to mutations (under a finite site model). 
However, unlike previously, the epimutations affect multiple sites; hence, only the first position of 
a methylated region is considered, and the following positions will be considered as missing data 
(because it is one block of information). Therefore, there are at each position 6 different possible 
observations when comparing two sequences. The first observation is 0, corresponding to a non-
methylable site where the two nucleotides are identical. 1, if the two nucleotides are different. 2 if it 
is a region with methylation state annotated and both regions are unmethylated. 3, if it is a region 
with methylation state annotated and both regions are methylated. 4 if it is a region with methylation 
state annotated and both regions are in different methylation states. 5 is missing data. Therefore, 
after approximating the formula, assuming the methylation state is not affected by mutations, we 
have the following formula:

https://doi.org/10.7554/eLife.89470
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P(0|γ) = e−2µtγ

P(1|γ) = 1 − e−2µtγ

P(2|γ) = pu × pm1 × pm1 + (1 − pu) × (1 − pm2) × (1 − pm2)

P(3|γ) = pu × (1 − pm1) × (1 − pm1) + (1 − pu) × pm2 × pm2

P(4|γ) = pu × 2 × pm1 × (1 − pm1) + (1 − pu) × 2 × pm2 × (1 − pm2)

P(5|γ) = 1

pu = µu
µu + µm

θm = (µu + µm) × tγ
pm1 = pu + (1 − pu) × e−θm

pm2 = (1 − pu) + pu × e−θm ‍�

(6)

Where ‍µ‍ is the mutation rate per nucleotide per N generation, ‍µm‍ the region methylation rate 
per generation, ‍µu‍ the region demethylation rate per generation and ‍tγ‍ the average coalescent 
time in state ‍γ‍. Additionally, we define ‍pu‍ as the probability for the region to be unmethylated at 
equilibrium, as well as ‍pm1‍ and ‍pm2‍ the respective probability for the region to stay unmethylated 
or methylated after a time ‍tγ‍. To recover the region epimutations, we use a hidden Markov model 
(HMM). The HMM takes as input genome and methylome data described above and compares two 
sequences to recover epiregion. The hidden Markov model has 9 hidden states: 1 (regions with no 
methylation information), 2 (no methylation information in individual 1& mainly methylated region in 
individual 2), 3 (no methylation information in individual 1& mainly unmethylated region in individual 
2), 4 (no methylation information in individual 2& mainly methylated region in individual 1), 5 (mainly 
methylated region in individual 1& mainly methylated region in individual 2), 6 (mainly methylated 
region in individual 1& mainly unmethylated region in individual 2), 7 (mainly unmethylated region in 
individual 1& no methylation information in individual 2), 8 (mainly unmethylated region in individual 
1& mainly methylated region in individual 2), 9 (mainly unmethylated region in individual 1& mainly 
unmethylated region in individual 2). Additional parameters are necessary to define the transition 
rate. The user needs to define the minimum number of annotated methylable sites to form a region 
(by default 4) and minimum size of a region in bp (100 by default). Our approach then defines the 
transition rate as the transition rate maximizing the number of regions respecting the defined criteria. 
The emission matrix is defined by the user, but by default, the probability of observing methylated 
and unmethylated in a methylated region is set to 0.8 and 0.2 respectively. In an unmethylated 
region, the probabilities are respectively set to 0.2 and 0.8. We use those values throughout the 
study.

Accounting for site and region epimutations
Here, we assume site and region epimutation occur similarly to mutations (under a finite site model). 
Like previously, the epimutations affect multiple sites; hence, only the first position of a methylated 
region is considered, and the following positions will be considered as missing data (because it is 
one block of information). However, the observation will depend on the region. Therefore, there 
are at each position 10 different possible observations when comparing two sequences. The first 
observation is 0, corresponding to a non-methylable site where the two nucleotides are identical. 1, if 
the two nucleotides are different. 2 if it is a region with methylation state annotated and both regions 
are unmethylated, and all sites are unmethylated. 3 if it is a region with methylation state annotated, 
both regions are unmethylated, and all sites are methylated. 4 if it is a region with methylation state 
annotated, and both regions are unmethylated, and at least one site is segregating. 5 if it is a region 
with methylation state annotated and both regions are methylated, and all sites are unmethylated. 
6 if it is a region with a methylation state annotated, both regions are methylated, and all sites are 
methylated. 7 if it is a region with methylation state annotated, both regions are methylated, and at 
least one site is segregating. 8 if it is a region with a methylation state annotated and both regions 
are in different methylation states. 9 is missing data. Therefore, we have the following formula:

https://doi.org/10.7554/eLife.89470
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P(0|γ) = e−2µtγ

P(1|γ) = 1 − e−2µtγ

P(2|γ) = (PO(POOPOO)) + (PP(PPOPPO)) + (PM(PMOPMO)) + (PU(PUOPUO))

P(3|γ) = (PO(POPPOP)) + (PP(PPPPPP)) + (PM(PMPPMP)) + (PU(PUPPUP))

P(4|γ) = (PO(2POPPOO)) + (PP(2PPPPPO)) + (PM(2PMPPMO)) + (PU(2PUPPUO))

P(5|γ) = (PO(POUPOU)) + (PP(PPUPPU)) + (PM(PMUPMU)) + (PU(PUUPUU))

P(6|γ) = (PO(POMPOM)) + (PP(PPMPPM)) + (PM(PMMPMM)) + (PU(PUMPUM))

P(7|γ) = (PO(2POUPOM)) + (PP(2PPUPPM)) + (PM(2PMUPMM)) + (PU(2PUUPUM))

P(8|γ) = (pu2pm1(1 − pm1)) + (1 − pu)2pm2(1 − pm2)

P(9|γ) = 1‍�

(7)

Where we have:

https://doi.org/10.7554/eLife.89470
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pu = µu
µu + µm

; preg_d =
µreg_d

µreg_d + µreg_m

θm = (µu + µm)tγ ; θreg_m = (µreg_d + µreg_m)tγ
pm1 = (pu + ((1 − pu)e(−θm))); pm2 = ((1 − pu) + (pue(−θm)))

preg_m1 = (preg_d + ((1 − preg_d)e(−θreg_m))); preg_m2 = ((1 − preg_d) + (preg_de(−θreg_m)))

tm = 1
(µreg_d + µreg_m)

peq1 = (p + ((1 − p)e(−(µu+µm)∗(tm)))); peq2 = ((1 − p) + (pe(−(µu+µm)∗(tm))))

Pno_reg_event = (exp(−(µreg_d + µreg_m) ∗ tγ ))

pm1_small = (pu + ((1 − pu)e
(−(µu+µm)∗((

1
(µreg_d + µreg_m)

)−(
(tγe(−(µreg_d+µreg_m)tγ ))

(1 − exp(−(µreg_d + µreg_m)tγ ))
)))

))

pm2_small = ((1 − pu) + (pue
(−(µu+µm)∗((

1
(µreg_d + µreg_m)

)−(
(tγe(−(µreg_d+µreg_m)tγ ))

(1 − exp(−(µreg_d + µreg_m)tγ ))
)))

))

PO = (preg_d)(1 − peq1)

PP = (preg_d)(peq1)

PU = (1 − preg_d)(1 − peq2)

PM = (1 − preg_d)(peq2)

POO = preg_m1(((1 − Pno_reg_event)(1 − pm1_small)) + (Pno_reg_event(pm2)))

POP = preg_m1(((1 − Pno_reg_event)(pM1small)) + (Pno_reg_event(1 − pm2)))

POM = (1 − preg_m1)pm2_small

POU = (1 − preg_m1)(1 − pm2_small)

PPO = preg_m1(((1 − Pno_reg_event)(1 − pm1_small)) + (Pno_reg_event(1 − pm1)))

PPP = preg_m1(((1 − Pno_reg_event)(pm1_small)) + (Pno_reg_event(pm1)))

PPM = (1 − preg_m1)pm2_small

PPU = (1 − preg_m1)(1 − pm2_small)

PMO = (1 − preg_m2)(1 − pm1_small)

PMP = (1 − preg_m2)(pm1_small)

PMM = preg_m2(((1 − Pno_reg_event)(pm2_small)) + (Pno_reg_event(pm2)))

PMU = preg_m2(((1 − Pno_reg_event)(1 − pm2_small)) + (Pno_reg_event(1 − pm2)))

PUO = (1 − preg_m2)(1 − pm1_small)

PUP = (1 − preg_m2)(pm1_small)

PUM = preg_m2(((1 − Pno_reg_event)(pm2_small)) + (Pno_reg_event(1 − pm1)))

PUU = preg_m2(((1 − Pno_reg_event)(1 − pm2_small)) + (Pno_reg_event(pm1)))‍�

(8)

Where ‍µ‍ is the mutation rate per nucleotide per N generation, ‍µm‍ the site methylation rate 
per generation, ‍µu‍ the site demethylation rate, ‍µreg_m‍ the region methylation rate per generation, 

‍µreg_d‍ the region demethylation rate per generation and ‍tγ‍ the average coalescent time in state 

‍γ‍. Please refer to the R function build_emi_m from the Package eSMC2 for a clearer description 
of the probabilities. Note that in the text, these probabilities are written as ‍µ1‍ for mutation rate 
per nucleotide, ‍µSM‍ the site methylation rate, ‍µSU‍ the site demethylation rate, ‍µRM‍ the region 
methylation rate, and ‍µRU‍ the region demethylation rate.

https://doi.org/10.7554/eLife.89470
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