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Abstract The regulation of inflammatory responses is an important intervention in biological 
function and macrophages play an essential role during inflammation. Skeletal muscle is the largest 
organ in the human body and releases various factors which mediate anti-inflammatory/immune 
modulatory effects. Recently, the roles of extracellular vesicles (EVs) from a large variety of cells 
are reported. In particular, EVs released from skeletal muscle are attracting attention due to their 
therapeutic effects on dysfunctional organs and tissues. Also, ultrasound (US) promotes release of 
EVs from skeletal muscle. In this study, we investigated the output parameters and mechanisms of 
US-induced EV release enhancement and the potential of US-treated skeletal muscle-derived EVs in 
the regulation of inflammatory responses in macrophages. High-intensity US (3.0 W/cm2) irradiation 
increased EV secretion from C2C12 murine muscle cells via elevating intracellular Ca2+ level without 
negative effects. Moreover, US-induced EVs suppressed expression levels of pro-inflammatory 
factors in macrophages. miRNA sequencing analysis revealed that miR-206-3p and miR-378a-3p 
were especially abundant in skeletal myotube-derived EVs. In this study we demonstrated that high-
intensity US promotes the release of anti-inflammatory EVs from skeletal myotubes and exert anti-
inflammatory effects on macrophages.

eLife assessment
This study illuminates the effects of ultrasound-induced extracellular vesicle interactions with macro-
phages. It provides solid data offering insights that will be potentially useful in exploring thera-
peutic approaches to inflammation modulation, by suggesting that ultrasound-treated myotube 
vesicles can suppress macrophage inflammatory responses.

Introduction
Inflammation is a crucial response to defend the body from infection. However, excess and prolonged 
inflammation can also be harmful and needs to be tightly regulated (Funes et al., 2018). Macro-
phages play a leading role in the innate immune system, causing inflammation during infection 
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(Hirayama et  al., 2017). Therefore, regulating the condition of macrophages is a major thera-
peutic strategy for the control of excess inflammation. Various organs including skeletal muscle are 
known to release anti-inflammatory factors. Skeletal muscle is the largest organ in the human body 
accounting for 40% of the body weight (Trovato et  al., 2019) and responsible for whole-body 
metabolism, energy homeostasis, and locomotion. Recently, skeletal muscle is attracting attention 
as a secretory organ of anti-inflammatory factors (Trovato et al., 2019), and extracellular vesicles 
(EVs) are responsible for transporting various factors from skeletal muscle to target organs or cells. 
EVs are nano-sized vesicles secreted by most types of cells and facilitate cell-to-cell communica-
tion (Trovato et al., 2019; Raposo and Stoorvogel, 2013; EL Andaloussi et al., 2013) through 
transportation of proteins, mRNAs, and miRNAs (Zomer et  al., 2010), leading to regulation of 
immune response (EL Andaloussi et  al., 2013), tissue regeneration (Bittel and Jaiswal, 2019), 
and cell proliferation/differentiation (Matsuzaka et al., 2016). EVs from skeletal muscle have also 
been reported to exert therapeutic effects in various dysfunctional organs (Rome et  al., 2019; 
Bei et al., 2017; Madison et al., 2014) and our previous study revealed that skeletal myotube-
derived EVs attenuate inflammatory responses of macrophages (Yamaguchi et al., 2023). EVs from 
mesenchymal stem cells (MSC) also have been reported to suppress inflammatory responses in 
lipopolysaccharide (LPS)-induced macrophages (Harrell et al., 2019; Xin et al., 2020; Shao et al., 
2020) and Kim et al. reported the anti-inflammatory action of MSC EVs depended on the concen-
tration of EVs (Kim et al., 2019). Therefore, an enhancement of EV release may enhance the anti-
inflammatory effects of muscle EVs.

Ultrasound (US) irradiation is used as a non-invasive therapy and has physiological effects including 
cell proliferation, suppression of inflammatory signaling (Ueno et  al., 2021), and increase cell 
membrane permeability (Ma et al., 2022). Our previous study revealed that high-intensity US can 
promote EV release (Maeshige et al., 2021). An increase in intracellular Ca2+ concentration is one of 
the effects of US irradiation, and elevation of intracellular Ca2+ is a key factor for EV secretion (Savina 
et al., 2003). Previous studies have reported that low-intensity pulsed ultrasound (LIPUS) promotes 
EV release from cells (Deng et al., 2021; Li et al., 2023). Meanwhile, US increases Ca2+ influx into 
cells by increasing cell membrane permeability through sonoporation (Fan et al., 2010), but its action 
has been reported to be dependent on US intensity (Zeghimi et al., 2015), so adopting a higher 
intensity than LIPUS is expected to promote EV release from skeletal muscle cells more efficiently. In 
addition, stimulus-induced EVs can be altered in their contents and effects compared to EVs released 
under normal conditions (Kawanishi et al., 2023; Li et al., 2023), thus EVs released from skeletal 
muscle by US may have different effects. This study aimed to clarify the intensity dependency of EV 
release enhancement by US and anti-inflammatory effects of US-induced skeletal muscle-derived EVs 
on macrophages.

Results
US irradiation has no negative effect on myotube viability, protein 
content, and energy metabolism
To measure the viability of US-irradiated myotubes, MTT assay and Zombie Red immunofluo-
rescence staining were performed. Our results showed no significant decrease in all US groups 
(Figure 1A and B). To assess the potential effect of US irradiation on cultured myotubes, the total 
protein content in myotubes was measured and no significant difference was observed among all 
groups (Figure  1C). Furthermore, citrate synthase (CS) activity was measured to determine the 
effect of US on energy metabolism. CS activity in each group did not decrease in the US-treated 
myotubes (Figure 1D).

US irradiation enhances release of EVs from myotubes
The concentration of EVs in the 3W group was two times higher than that in the control group. The 1W 
and 2W groups also showed an increase in EVs concentration, which was 1.64 and 1.68 times higher 
than that in the control group (Figure 2A), but no significant difference. Regarding size distribution, 
the majority of released EVs were in the range of 50–150 nm and the size of EVs did not change in the 
US groups (Figure 2B).

https://doi.org/10.7554/eLife.89512
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Intracellular Ca2+ upregulation mediates US-induced enhancement of 
EV release from myotubes
To investigate the mechanism of the effect of US on EV release enhancement, we measured intracel-
lular Ca2+ levels in myotubes after US irradiation. Compared to the control group, Ca2+ level in the 
3W group was significantly increased immediately after US irradiation. The 2W group only showed a 
tendency of increased intracellular Ca2+ level, but no significant difference (Figure 3A).

Next, we investigated the calcium dependency of the promotive effect of US on EV release using 
Ca2+-free medium. Here, we used the US intensity of 3.0 W/cm2, which showed the greatest EV release 
enhancement effect. The groups with Ca2+-free medium showed significantly lower levels of Ca2+ 
compared with the control and US groups (Figure 3B). The concentration of EVs in US group was 
significantly increased compared to the control group while this increase was not observed in absence 
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Figure 1. The cytotoxicity of ultrasound (US) irradiation on myotubes was investigated. Viability of myotubes was assessed by (A) MTT assay and 
(B) Zombie Red staining at 24 hr after US irradiation. (red: Zombie Red, blue: DAPI). (C) Total protein content was measured by the Bradford method 
at 24 hr after US irradiation. (D) Energy metabolism in C2C12 myotubes was measured by citrate synthase assay at 24 hr after US irradiation. The US 
intensities of 1.0 W/cm2, 2.0 W/cm2, and 3.0 W/cm2 were tested. Data are expressed as mean ± SEM. n=4.

https://doi.org/10.7554/eLife.89512
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of Ca2+ (Figure 3C). Most of the extracted EVs were 50–150 nm in diameter (Figure 3D). Myotube 
viability did not decrease by Ca2+-free culture (Figure 3E).

US-induced EVs exert anti-inflammatory effects on macrophages
To investigate the anti-inflammatory effect of myotube EVs on macrophages, qPCR analysis was 
performed. While C2C12 myotube conditioned medium only showed a tendency to suppress the 
expression of pro-inflammatory factors, US-treated C2C12 myotube conditioned medium (US-CM) 
significantly suppressed the expression of pro-inflammatory Il-1b and Il-6, compared to LPS-stimulation 

Figure 2. Characterization of extracellular vesicles (EVs) from ultrasound (US)-treated/untreated myotubes. EVs were isolated using ExoQuick reagent 
12 hr after US irradiation. (A) EV concentration in each group was quantified by a qNano system. (B) Size distribution of EVs in each group was 
investigated by a qNano system. The mode value was indicated as a red line. The US intensities of 1.0 W/cm2, 2.0 W/cm2, and 3.0 W/cm2 were tested. 
Data are expressed as mean ± SEM. *p<0.01, vs. control. n=6.

https://doi.org/10.7554/eLife.89512
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alone (LPS), and expression of Il-1b in US-CM significantly decreased compared to non-treated C2C12 
myotube conditioned medium. Furthermore, the expression of Il-1b and Il-6 were not suppressed 
when the EVs were eliminated from the conditioned media (Figure 4A). When EV concentrations were 
equated, the upregulation of the anti-inflammatory effect of myotube EVs by US was not observed 
(Figure 4B). Myotube EVs did not decrease macrophage viability (Figure 4C). EV concentration in 
each group is shown in Figure 4D.

miRNA profile change in myotube EVs by US
To investigate the effect of US on miRNA profile in myotube-derived EVs, miRNA sequencing analysis on 
EVs was performed. A total of 524 miRNAs were identified by proteomic quantitative analysis. Twenty-
nine miRNAs were expressed specifically in the control group, and 81 miRNAs were expressed specifically 
in the US group (Figure 5A). Lists of miRNAs specific to each group are shown in Supplementary file 

Figure 3. Ca2+ mediates the promotive effect of ultrasound (US) on extracellular vesicle (EV) release from myotubes. (A) Intracellular Ca2+ levels were 
measured after US irradiation. The US intensities of 1.0 W/cm2, 2.0 W/cm2, and 3.0 W/cm2 were tested. (B) Cell culture with Ca2+-free medium decreased 
the intracellular Ca2+ level and canceled the facilitating effect of US on Ca2+ uptake by myotubes. (C) Cell culture with Ca2+-free medium inhibited the 
facilitating effect of US on EV release from myotubes. (D) Size distribution of EVs in each group. EV concentration and size distribution were quantified 
by a qNano system. (E) Cytotoxicity of cell culture with Ca2+-free medium was investigated by MTT assay. Control: untreated; US: 3.0 W/cm2 US 
treatment; Ca(-): Ca2+-free culture; USCa(-): 3.0 W/cm2 US treatment and Ca2+-free culture. Data are expressed as mean ± SEM. *p<0.01 vs. control, 
†p<0.05 vs 1W, ‡p<0.01 vs. US. n=4.

https://doi.org/10.7554/eLife.89512
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Figure 4. Anti-inflammatory effect of extracellular vesicles (EVs) from ultrasound (US)-treated myotubes on bone marrow-derived macrophages 
(BMDMs). (A) The mRNA expression levels of Il-1b and Il-6 were measured by qPCR. Lipopolysaccharide (LPS): LPS-treated BMDMs; CM: BMDMs 
treated with C2C12 conditioned medium and LPS; US-CM: BMDMs treated with US-irradiated C2C12 conditioned medium and LPS; EV-depleted CM: 
BMDMs treated with EV-depleted C2C12 conditioned medium and LPS; USEV-depleted: BMDMs treated with EV-depleted C2C12 (US-irradiated) 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.89512


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Yamaguchi et al. eLife 2023;12:RP89512. DOI: https://doi.org/10.7554/eLife.89512 � 7 of 17

1. Although miRNAs specific to each group were identified, they accounted for only 0.014% of the total 
miRNAs, and 99.99% of total miRNAs were common to the control and US groups (Figure 5B). According 
to the standard of a fold change ≥2 or ≤0.5 as well as an FDR <0.05, we screened 13 upregulated miRNAs 
(Table 1) and 14 downregulated miRNAs (Table 2) in the EV group versus the control group. Differentially 
expressed miRNAs are displayed as a volcano plot (Figure 5C). The top 10 abundant miRNAs and their 
proportion to the total miRNAs are shown (Figure 5D). In both the control and US groups, the two most 
abundant miRNAs, miR-206-3p and miR-378a-3p, accounted over 60% of the total.

conditioned medium and LPS. (B) When the concentration of EVs are equated, the enhancement of anti-inflammatory effect of EVs by US was not 
observed. LPS: LPS-treated BMDMs; CM: BMDMs treated with myotube EVs and LPS; diluted US-CM: BMDMs treated with US-EVs at the same 
concentration as the EV group and LPS. (C) Cytotoxicity of C2C12 conditioned medium on BMDMs was investigated by MTT assay. (D) EV concentration 
in each condition was measured by a qNano system. Data are expressed as mean ± SEM. *p<0.05 vs. LPS, †p<0.01 vs. CM, ‡p<0.01 vs. control, 
§p<0.01 vs. US. n=4.

Figure 4 continued
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Figure 5. miRNA-sequencing analysis in extracellular vesicles (EVs) from ultrasound (US)-treated/untreated C2C12 myotubes. (A) miRNA 
characterization in EVs from US-treated/untreated myotubes. (B) Percentage of miRNAs that were common to the control and US groups and those that 
were not. (C) Volcano plot of differentially expressed RNAs in the control group vs. US group. Blue dots represent miRNAs with statistically significant 
difference and red dots show miRNAs with no statistically significant difference between the control group vs. US group. (D) Top 10 abundant miRNAs 
and their proportion to total miRNA content in each group. n=3.
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Discussion
This study demonstrated the facilitatory effect of US irradiation on EV release from cultured skeletal 
myotubes and the enhanced anti-inflammatory effect of EVs from US-irradiated myotubes. These 
findings contribute to the development of non-invasive complementary therapy using skeletal muscle-
derived EVs for various inflammatory diseases.

Skeletal muscle-derived EVs have been reported to exert therapeutic effects in various dysfunc-
tional organs (Rome et al., 2019), including prevention of cardiac damage by ischemia-reperfusion 
injury (Bei et al., 2017), enhancement of neurite outgrowth in motor neurons (Madison et al., 2014), 
and enhancement of angiogenesis (Ma et al., 2018). Furthermore, since skeletal muscle EVs mediate 
cross-talk between skeletal muscle and other tissues (Whitham et al., 2018), methods to enhance the 

Table 1. Upregulated miRNAs in myotube-derived extracellular vesicles by ultrasound irradiation.

miRNA logFC FDR

miR-193a-3p 4.012954262 0.000742983

miR-138-5p 3.800680285 0.00141537

miR-223-3p 3.462174268 0.008790418

miR-362-3p 2.195592968 0.009437513

miR-34a-5p 2.105459261 0.009437513

miR-675-3p 1.876128033 0.009966738

miR-106b-5p 1.862814288 0.009966738

miR-30b-5p 1.566332803 0.011740976

miR-188-5p 1.559409694 0.015175451

miR-133b-3p 1.48161012 0.016332293

miR-1a-3p 1.450599776 0.016622751

miR-30a-5p 1.367918225 0.019014654

miR-27b-3p 1.330089099 0.01987041

Table 2. Downregulated miRNAs in myotube-derived extracellular vesicles by ultrasound irradiation.

miRNA logFC FDR

miR-128-2-5p –3.254069169 0.000118723

miR-184-3p –2.779741068 0.000118723

miR-615-3p –2.393817511 0.000263853

miR-344d-3p –2.324403579 0.00041415

miR-344d-4p –2.308193263 0.000742983

miR-1964-3p –2.267802775 0.00141537

miR-320-3p –2.212812155 0.00141537

miR-128-3p –2.031468208 0.003795561

miR-351-3p –1.963143876 0.004305251

miR-1198-5p –1.733517014 0.009437513

miR-501-3p –1.72302403 0.009643704

miR-222-3p –1.547695372 0.009966738

let-7a-5p –1.538094973 0.009966738

miR-423-5p –1.404879603 0.019014654

https://doi.org/10.7554/eLife.89512
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release of skeletal muscle-derived EVs are potentially beneficial in the treatment of various diseases 
and health management.

Our results showed that the intracellular Ca2+ level significantly increased in the US-irradiated group, 
indicating that US irradiation promoted the uptake of Ca2+ to myotubes. This result is supported by 
previous reports investigating Ca2+ uptake by US in various types of cells (Ambattu et  al., 2020; 
Scheffer et al., 2014; Fan et al., 2010; Lentacker et al., 2014; Honda et al., 2004). In the present 
study, the effect of US on Ca2+ uptake was observed in an intensity-dependent manner. US irradiation 
has been reported to exert a physiological action to promote transient membrane permeabilization, 
which can promote the Ca2+ influx pathways (Fan et al., 2010; Cao et al., 2019; Zhou et al., 2008), 
and the efficiency of permeabilization depends on the intensity of irradiation (Kumon et al., 2009; 
Zeghimi et al., 2015). Thus, the change of cell membrane structure is supposed to be the mechanism 
of the enhancement of Ca2+ influx. In this study, EV release was promoted by US of 3.0 W/cm2, and this 
effect was cancelled by inhibition of Ca2+. Since intracellular Ca2+ level is reported to be a factor that 
promotes EVs release (Savina et al., 2003; Taylor et al., 2020), US irradiation was shown to enhance 
EV release from myotubes via promotion of influx of Ca2+.

We found that C2C12 myotube conditioned medium was capable of suppressing LPS-induced 
inflammatory responses in macrophages, and this effect was enhanced by US irradiation to myotubes. 
In addition, the anti-inflammatory effects were cancelled by eliminating EVs from the culture medium. 
This indicates that EVs in the culture medium were responsible for this effect, which is consistent with 
our previous study (Yamaguchi et al., 2023).

IL-1β is essential for an adequate acute inflammatory response to a variety of pathogens and inju-
ries, but its excessive overexpression leads to sepsis, septic shock, or chronic inflammation (Dinarello, 
2009; Piccioli and Rubartelli, 2013). IL-6 also contributes to host defense, however, dysregulated 
continual synthesis of it leads to prolonged chronic inflammation (Tanaka et al., 2014) and can drive 
tumorigenesis (Chang et al., 2014). Since blockade of these factors is reported to alleviate several 
inflammatory diseases (Chevalier et al., 2005; Emsley et al., 2005; Choy et al., 2002; Nishimoto 
et al., 2004; Ito et al., 2004; Yokota et al., 2005), eliciting the anti-inflammatory effects of skeletal 
muscle-derived EVs by US and suppressing the production of IL-1β and IL-6 suggests a new thera-
peutic strategy against inflammatory diseases utilizing US.

Meanwhile, it has been reported that the contents of EVs released from cells vary depending 
on the cellular microenvironment and that certain factors are selectively internalized in response to 
specific stimuli. The results of our analysis on miRNAs in EVs revealed that the EVs from US-exposed 
myotubes contain several unique miRNAs. However, only about 0.01% of the total miRNAs were 
altered by US irradiation, suggesting that the change was very small. Furthermore, no upregulation of 
the anti-inflammatory effect of myotube EVs by US was observed when the EV concentrations were 
equalized. Thus, the enhancement of the anti-inflammatory effect of myotube conditioned medium by 
US irradiation is assumed to be due to changes in the amount of EVs, not to changes in the content 
of EVs. Consistent with our results, a previous study reported that MSC-EVs regulated inflammatory 
responses in macrophages concentration dependently (Kim et al., 2019).

Analysis on miRNA profiles in the EVs revealed that the two most abundant miRNAs, miR-206-3p 
and miR-378a-3p, were common to both control and US EVs, and these two types accounted for 
more than 60% of the total miRNA contents in the both conditions. The most abundant miR-206 is a 
member of the skeletal muscle-specific myo-miR family of miRNAs (Carpi et al., 2020). It is reported 
that miR-206 targets IL-17A and REG3A and suppresses macrophage inflammation (Huang et al., 
2020). Furthermore, Lin et al. reported that transfection of miR-mimic-206-3p into macrophages 
suppressed macrophage inflammation by targeting PPP3CA and transfection of miR-inhibitor-206-3p 
increased the level of inflammatory factors in macrophages (Lin et  al., 2020). miR-378a is highly 
expressed in skeletal muscle and is involved in metabolism and mitochondrial energy homeostasis 
(Krist et al., 2015). Rückerl et al. identified miR-378a-3p as a factor contributing to the induction of 
anti-inflammatory macrophage reprogramming through IL-4-induced gene transcription by targeting 
Akt (Rückerl et al., 2012). In addition, Kris et al. reported that miR-378a has anti-inflammatory effects 
on macrophages and its deficiency enhances severity of inflammation (Krist et al., 2020). Based on 
these previous studies, it is assumed that myotube-derived EVs elicited the anti-inflammatory effects 
in macrophages by delivering these miRNAs. Additionally, miR-206 has been reported to modulate 
fat metabolism in diabetes (Wu et al., 2017) and control the tumorigenesis process of cancer (Ding 

https://doi.org/10.7554/eLife.89512


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Yamaguchi et al. eLife 2023;12:RP89512. DOI: https://doi.org/10.7554/eLife.89512 � 10 of 17

et al., 2017), and miR-378a has been shown to inhibit cardiac hypertrophy (Ganesan et al., 2013) and 
cancer growth (Zeng et al., 2017) and alleviate spinal cord injury (Zhang et al., 2021), indicating that 
these miRNAs are expected to have therapeutic effects against various diseases. Therefore, promoting 
the release of EVs containing these factors by US stimulation to skeletal muscle is potentially effective 
in the prevention and treatment of various diseases, and further investigations of its effects on other 
pathological conditions are expected.

On the other hand, while this study attributed the anti-inflammatory effect of US on skeletal 
muscle-derived EVs to increased EV release, we identified several miRNAs increased in US-induced 
EVs. Further studies are needed on this point for a more detailed understanding about the effect of 
US on skeletal muscle.

In summary, this study showed that US irradiation promoted the secretion of myotube-derived EVs 
which have anti-inflammatory effects and suggested that US irradiation to skeletal muscles is a potent 
candidate as a novel treatment for various inflammatory disorders.

Materials and methods
Cell culture
C2C12 myoblasts were purchased from the American Type Culture Collection (ATCC, USA). Myoblasts 
were cultured on 35 mm dishes (Iwaki) in Dulbecco’s modified Eagle medium (DMEM, Wako Junyaku 
Co., Ltd., Japan) supplemented with 10% fetal bovine serum (FBS) at 37°C under 5% CO2. At 90% 
confluence, differentiation into myotubes was initiated by changing the growth medium to differentia-
tion medium (DMEM supplemented with 2% horse serum). Differentiation was continued for 6–7 days, 
refreshing the medium every 2  days. Efficiency of differentiation was confirmed by observing the 

Figure 6. In vitro ultrasound (US) irradiation system. The culture dish was placed on the probe of a US transducer (SONICTIZER SZ-100, Minato Medical 
Science Co., Ltd., Japan). US waves are sent out from the probe placed under the culture dish, and surplus energy is absorbed by the silicon. 
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contractile ability using electrical stimulation (Supplementary file 2). US was applied to the myotubes 
for 5 min after changing the differentiation medium to serum-free medium. After incubation for 12 hr, 
the culture medium was collected to extract EVs.

To generate bone marrow-derived macrophages (BMDMs), bone marrow cells from femur and 
tibias of 7-week-old male C57BL/6 mice were harvested and cultured in Petri dishes with RPMI 1640 
(DMEM, Wako Junyaku Co., Ltd., Japan) supplemented with 10% FBS, 1% penicillin/streptomycin, 1% 
L-glutamine, and 25% L929 cell supernatant for 8 days. Differentiated macrophages were harvested 
and plated in 12-well tissue culture plates with macrophage culture media (RPMI 1640 supplemented 
with 10% FBS, 1% penicillin/streptomycin, 1% L-glutamine, and 10% L929 cell supernatant) for subse-
quent experiments.

US irradiation
To expose the myotubes to US, the culture dish was placed on the probe of an US transducer (SONIC-
TIZER SZ-100, Minato Medical Science Co., Ltd., Japan). Coupling gel was applied to fill the space 
between the probe surface and the bottom of the dish and sterilized silicone was inserted into the 
culture medium and fixed to the dish with a distance of 2 mm from the bottom of the dish (Figure 6). 
The US parameters used were as follows: duty cycle of 20%; acoustic frequency of 1 MHz; duration of 
5 min; repetition frequency of 100 Hz; beam nonuniformity ratio of 2.0; and effective radiation area 
of 8.0 cm2 (Maeshige et al., 2021). In this study, three exposure intensities of 1.0 W/cm2, 2.0 W/cm2, 
and 3.0 W/cm2 were investigated. After US irradiation, the myotubes were incubated at 37°C for 12 hr. 
We adopted the intensities of 1.0–3.0 W/cm2 because output intensities of 0.1–2.5 W/cm2 are typically 
applied for therapeutic purposes in clinical practice (Draper, 2014). After US irradiation, we moni-
tored the temperature of the culture medium with a thermometer (TM-947SDJ, SATO-SHOJI, Japan) 
and confirmed it below 37°C to distinguish the advantage of US therapy from its thermal effect.

To investigate the involvement of intracellular Ca2+ in the mechanism of EV release from myotubes, 
Ca2+-free medium (Nacalai Tesque Inc, Japan) was used. The culture medium for Ca2+-free groups 
was changed from normal medium (serum-free DMEM with calcium) to Ca2+-free medium (serum-free 
DMEM without calcium) 1 hr before US irradiation.

EV isolation
EVs were isolated from the conditioned medium of cultured myotubes with polymer precipitation as 
previously reported (Ter-Ovanesyan et al., 2021). The conditioned medium was collected and centri-
fuged for 15 min at 3000×g to remove cell debris. The supernatant was transferred to a sterile vessel 
and added Exo Quick-TC (System Biosciences, Palo Alto, CA, USA) (supernatant: Exo Quick reagent 
= 5:1). The tubes were stored overnight at 4°C and centrifuged at 1500×g for 30 min at 4°C. All traces 
of fluid were removed and the pellet was resuspended with 100 μL of PBS.

EV characterization
A tunable resistive pulse sensing technology (qNano, IZON system; Izon Science Ltd., Christchurch, 
New Zealand) was used to measure the concentration, size distribution, and diameter of extracted 
EVs. The system was calibrated for voltage, stretch, pressure, and baseline current using standard 
beads: CPC100 (concentration; 1.0×1010 beads/mL). An NP100 nanopore (for 50–200 nm size range) 
was used and data analysis was performed by a qNano IZON software.

Macrophage treatment with conditioned medium of C2C12 myotubes
At 3 hr after US irradiation, the conditioned media were collected and centrifuged (1500×g, 10 min). 
Obtained supernatant was supplemented with 10% FBS, 1% penicillin/streptomycin, 1% L-glutamine, 
and 10% L929 cell supernatant and applied to BMDMs. After 1.5 hr treatment by myotube conditioned 
medium, BMDMs were incubated with macrophage culture media overnight (12 hr). Subsequently, 
BMDMs were treated with 100 ng/mL LPS for 1.5 hr for pro-inflammatory marker quantification. To 
clarify the involvement of EVs in the anti-inflammatory effects on macrophages, EV-depleted culture 
medium was added to macrophages. EV depletion was performed using Exo Quick-TC reagent as 
previously reported (Mathew et al., 2019).

MTT assay
MTT assay was performed to evaluate cell viability 24 hr after US irradiation to myotubes. BMDM 
viability was also assessed 24 hr after EV treatment to examine the effect of the treatment with C2C12 

https://doi.org/10.7554/eLife.89512


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation

Yamaguchi et al. eLife 2023;12:RP89512. DOI: https://doi.org/10.7554/eLife.89512 � 12 of 17

conditioned medium on macrophages. The cells were incubated for 3 hr at 37°C with MTT solution 
(MTT, Wako Junyaku Co., Ltd., Japan) dissolved in culture medium at 0.5 mg/mL, then dissolved in 
DMSO. The absorbance at 595 nm was measured using a microplate reader.

Zombie Red immunostaining
C2C12 myotube viability was assessed at 24 hr after US irradiation or treatment with 1% povidone-
iodine (positive control) by Zombie Red immunostaining. This reagent is an amine-reactive fluorescent 
dye that is non-permeant to live cells but permeant to cells with a compromised plasma membrane. 
Myotubes were washed twice with PBS, stained with Zombie Red (1 : 1000) for 15 min at 37°C, and 
fixed with 4% paraformaldehyde for 30 min. Nuclei were stained with DAPI for 5 min at 37°C. The 
images were captured with a 10× objective on a BX50 (OLYMPUS, Japan).

Total protein assay
Total protein content in myotubes was measured at 24 hr after US irradiation. The cells were washed 
with PBS and collected into tubes using a cell scraper. After centrifugation at 13,000 rpm for 20 s, 
the pellet was processed with 100 μL of PRO- PREP reagent (iNtRON Biotechnology Co., Ltd. Japan), 
followed by incubation on ice for 20 min. After centrifugation at 13,000 rpm for 5 min, the protein 
concentration was analyzed using the Bradford method.

CS activity
Energy metabolism was evaluated 24 hr after US irradiation to the myotube by CS assay as previously 
reported (Srere, 1963). Briefly, the samples of total protein extraction were mixed with the following 
solution: distilled water (DW)+3mMAcetylCoA+1mMDTNB (1 mM DTNB+1 M Tris-HCL). Oxaloace-
tate was added to the mixture and the absorbance at 415 nm was measured using a microplate reader 
every 2 min for 10 min at 37°C.

Intracellular Ca2+ levels
The concentration of intracellular Ca2+ in the medium of C2C12 myotubes was measured using a 
Metallo assay calcium kit LS (CPZIII) (Metallogenics Ltd., Japan). This method determines intracellular 
Ca2+ levels by observing the coloration in the visible region caused by the chelate complex formation 
between chlrophosphonazo-III (CPZIII) and Ca2+. Briefly, the cells were collected and centrifuged at 
13,000 rpm for 20 s to remove the supernatant. The pellet was suspended with a mixture of 200 μL of 
RIPA buffer (RIPA Lysis Buffer, SCB Ltd., Japan) and 1 μL of hydrochloric acid (2 M). After incubation 
for 30 min, the samples were centrifuged at 10,000 rpm for 10 min and the Ca2+ concentration in the 
supernatant was analyzed. Ca2+ was dissociated by low pH and collected as the supernatant. Finally, 
the absorbance was converted to concentration (mM) according to the manufacturer’s protocol.

Quantitative real-time PCR
To measure gene expression in BMDMs, mRNA was isolated with TRIzol RNA Isolation protocol and 
used to make cDNA using iScript cDNA Synthesis Kit (Bio-Rad). The StepOne Real-Time PCR System 
was used to analyze the samples under the following conditions: 95°C (3 min), 40 cycles of 95°C (10 s), 
and 60°C (30 s). The reaction mixture consisted of 8 μL cDNA, 1.5 μL 10× buffer, 0.3 μL 10 mM dTNPs, 
1.5 μL 5 μM primers for each gene used in the study (F+R), 3.58 μL H2O, 0.075 μL Go Taq DNA poly-
merase and 0.045 μL 2×SYBR green (Invitrogen). Target genes were the pro-inflammatory markers 
Il-1b and Il-6 (Moore et al., 2013). Relative expression values for target genes were calculated by 
normalization to the expression of glyceraldehyde-3-phosphate dehydrogenase (Gapdh). Data was 
analyzed using the ΔΔCT method. Sequences for qPCR primers are shown in Supplementary file 3.

miRNA sequencing
miRNA was extracted from myotube-derived EVs using TRIzol reagent (Takara Biotechnology, Japan) 
according to the manufacturer’s instructions. Raw miRNA sequence data were obtained using an Illu-
mina NovaSeq 6000 machine. After acquiring the raw data, the fold change (mean of each miRNA in 
the US group/mean of each RNA in the control group) and p-values were calculated for each miRNA. 
These p-values were used to calculate the false discovery rate (FDR) for each miRNA, which was 
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further used as a filter to identify significant miRNAs with a fold change ≥2 or ≤0.5 and an FDR <0.05. 
The volcano plots were generated using the R 3.5.3 software.

Statistical analysis
Statistical analysis was conducted using Statistical 4 (OMS, Tokyo, Japan). For two-group comparison, 
Student’s t-test was used and for multiple comparisons, ANOVA (Tukey’s multiple comparison test as 
post hoc) was used. Power analysis using G Power software (Kang, 2021) was conducted to deter-
mine the sample size for each experiment to provide a power of at least 0.8 at a significance level of 
0.05 (α=0.05, β=0.2).
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