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Abstract The structure and diversity of microbial communities are intrinsically hierarchical due 
to the shared evolutionary history of their constituents. This history is typically captured through 
taxonomic assignment and phylogenetic reconstruction, sources of information that are frequently 
used to group microbes into higher levels of organization in experimental and natural communities. 
Connecting community diversity to the joint ecological dynamics of the abundances of these groups 
is a central problem of community ecology. However, how microbial diversity depends on the scale 
of observation at which groups are defined has never been systematically examined. Here, we used 
a macroecological approach to quantitatively characterize the structure and diversity of microbial 
communities among disparate environments across taxonomic and phylogenetic scales. We found 
that measures of biodiversity at a given scale can be consistently predicted using a minimal model 
of ecology, the Stochastic Logistic Model of growth (SLM). This result suggests that the SLM is a 
more appropriate null- model for microbial biodiversity than alternatives such as the Unified Neutral 
Theory of Biodiversity. Extending these within- scale results, we examined the relationship between 
measures of biodiversity calculated at different scales (e.g. genus vs. family), an empirical pattern 
previously evaluated in the context of the Diversity Begets Diversity (DBD) hypothesis (Madi et al., 
2020). We found that the relationship between richness estimates at different scales can be quan-
titatively predicted assuming independence among community members, demonstrating that the 
DBD can be sufficiently explained using the SLM as a null model of ecology. Contrastingly, only by 
including correlations between the abundances of community members (e.g. as the consequence of 
interactions) can we predict the relationship between estimates of diversity at different scales. The 
results of this study characterize novel microbial patterns across scales of organization and estab-
lish a sharp demarcation between recently proposed macroecological patterns that are not and are 
affected by ecological interactions.
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This valuable study considers empirical macroecological patterns in microbiome data across multiple 
taxonomic scales. The work convincingly shows that the Stochastic Logistic Growth model is a more 
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Introduction
An essential feature of microbial communities is their heterogeneous composition. A single environ-
mental sample typically has a high richness, harboring hundreds to thousands of community members 
(Thompson et al., 2017; Shoemaker et al., 2017; Barberán et al., 2014). This high level of richness 
reaches an astronomical quantity at the global level, as scaling relationships and models of biodiver-
sity predict upwards of one trillion (∼1012) species on Earth (Locey and Lennon, 2016; Lennon and 
Locey, 2020). Even experimental communities in laboratory settings with a single carbon source can 
harbor ≥40 community members, culminating in a total richness numbering in the hundreds among 
replicate communities (e.g. Dal Bello et al., 2021). This richness contributes to the sheer diversity of 
microbial communities, a challenge for researchers attempting to identify the general principles that 
govern their dynamics and composition.

While richness estimates of microbial communities are undoubtedly high, the choice of assigning a 
community member to a given taxon remains intrinsically arbitrary. This arbitrariness exists regardless 
of whether the definition of a taxon is based on physiological attributes measured in the laboratory, 
entire genomes (i.e. metagenomics), or single- gene amplicon- based methods (i.e. 16S rRNA annota-
tion). Despite their methodological differences, these approaches can all be viewed as different ways 
to cluster individuals within a community into groups. To contend with the sheer richness of microbial 
communities, researchers frequently rely on annotation- based approaches, i.e., by summing the abun-
dances of community members that belong to the same group at a given taxonomic scale (e.g. genus, 
family, etc.). This approach pares down communities to a size that is amenable for the visualization 
of individual groups and allows for questions of scale- dependent community reproducibility to be 
addressed (Louca et al., 2016; Goldford et al., 2018; Estrela et al., 2022; Estrela et al., 2021; Dal 
Bello et al., 2021; Ho et al., 2022; Good and Rosenfeld, 2022; Tian et al., 2020).

This movement towards performing analyses of diversity at various taxonomic scales raises the 
question of how the composition of a community at one scale relates to that at another. To address 
these questions, researchers have examined the relationship between biodiversity measures at 
different scales in order to pare down the set of ecological mechanisms that plausibly govern commu-
nity composition. Specifically, recent efforts have found that microbial richness/diversity within a given 
taxonomic group (e.g. genus) is typically positively correlated with the richness/diversity among the 
remaining groups (e.g. family) (Madi et al., 2020; Estrela et al., 2022), an empirical pattern that 
aligns with the predictions of the Diversity Begets Diversity (DBD) hypothesis (Whittaker, 1972; 
San Roman et al., 2018; Maynard et al., 2017). Evidence of the DBD hypothesis has historically 
been attributed to the construction of novel niches within a community through member interactions 
(Calcagno et al., 2017; Whittaker, 1972), with similar mechanisms having been proposed to explain 
the existence of a positive relationship in microbial communities (Madi et al., 2020). However, we still 
lack a quantitative understanding of how community composition at one scale should relate to that of 
another. Proceeding towards this goal requires two elements: (1) a systematic approach to grouping 
community members and (2) an appropriate null model for the composition of communities.

The operation of grouping the components of a system into a smaller number (e.g. merging read 
counts of OTUs to the family level in a community) is known in the physical sciences as coarse- graining. 
This formalism defines our systematic approach to grouping community members. While it is often 
not explicitly acknowledged as such, coarse- graining is a core concept in the microbial life sciences 
(Good and Hallatschek, 2018). By smoothing over microscopic details at a lower level of biological 
organization in order to make progress at a higher level, the concept of coarse- graining has contrib-
uted towards the development of effective models of physiological growth (Scott et al., 2014; Jun 
et al., 2018), evolutionary dynamics (Schweinsberg, 2003; Desai et al., 2013), and the dependence 
of ecosystem properties on the diversity of underlying communities (Moran and Tikhonov, 2022). 
Coarse- graining has even been used to glean insight into the question of whether ‘species’ as a 
unit has meaning for microorganisms, as modeling efforts have found that the operation permits the 
delimitation of distinct taxonomic groups when the resource preferences of community members are 
structured (Tikhonov, 2017). These theoretical and empirical efforts suggest that coarse- graining may 
provide an appropriate framework for investigating patterns of diversity and abundance within and 
between taxonomic scales of observation.

When evaluating the novelty of an empirical pattern it is useful to identify an appropriate null 
model for comparison (O’Dwyer et  al., 2017; McGill, 2010; Harte, 2011). Prior research efforts 
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have demonstrated the novelty of the fine vs. coarse- grained relationship by contrasting inferences 
from empirical data with predictions obtained from the Unified Neutral Theory of Biodiversity (UNTB) 
(Hubbell, 2011; Volkov et al., 2003; Azaele et al., 2016; Madi et al., 2020; Alonso and McKane, 
2004; Azaele et  al., 2006). These predictions generally failed to reproduce slopes inferred from 
empirical data (Madi et al., 2020), implying that the fine vs. coarse- grained relationship represents 
a novel macroecological pattern that cannot be quantitatively explained by existing null models of 
ecology. However, the task of identifying an appropriate null model for comparison is not straightfor-
ward. Rather, the question of what constitutes an appropriate null model remains a persistent topic of 
discussion in community ecology (Simberloff, 1983; Harvey et al., 1983; Gotelli and Graves, 1996; 
Gotelli and Ulrich, 2012; O’Dwyer et al., 2017). Here, we take the view that a null model is appro-
priate for examining the relationship between two observables (e.g. community diversity at different 
scales) if it was capable of quantitatively predicting each observable (e.g. community diversity at one 
scale). By this standard, the UNTB is an unsuitable choice as a null as it generally fails to capture basic 
patterns of microbial diversity and abundance at any scale (Li and Ma, 2016; Harris et al., 2017; 
Grilli, 2020). One relevant example is that the UNTB predicts that the distribution of mean abun-
dances of community members across sites is extremely narrow (i.e. converging to a delta distribution 
as the number of sites increases), whereas empirical data tends to follow a broad lognormal distribu-
tion (Grilli, 2020). Contrastingly, recent efforts have determined that the predictions of a model of 
self- limiting growth with environmental noise, the SLM, is capable of quantitatively capturing multiple 
empirical macroecological patterns in observational and experimental microbial communities (Grilli, 
2020; Zaoli and Grilli, 2021; Zaoli et al., 2022; Descheemaeker et al., 2021; Descheemaeker and 
de Buyl, 2020; Shoemaker et al., 2023c; Lim et al., 2023). The stationary solution of this model 
predicts that the abundance of a given community member across sites follows a gamma distribution 
(Grilli, 2020), a result that provides the foundation necessary to predict macroecological patterns 
among and between different taxonomic and phylogenetic scales.

In this study, we evaluated macroecological patterns of microbial communities across scales of 
evolutionary resolution. To limit potential biases that may result due to taxonomic annotation errors 
and to use all available data, we investigated the macroecological consequences of coarse- graining 
by developing a procedure that groups community members using the underlying phylogeny in addi-
tion to relying on taxonomic assignment. We used data from the Earth Microbiome Project (EMP), 
a public catalog of microbial community barcode data, to ensure the generality of our findings and 
their commensurability with past research efforts. First, we assessed the extent that microbial diver-
sity varies as the abundances of community members are coarse- grained by phylogenetic distance 
and taxonomic rank. The results of these analyses lead us to consider whether the predictive capacity 
of the gamma distribution remained robust under coarse- graining, a prediction that we quantita-
tively evaluated among community members and then extended to predict overall community rich-
ness and diversity. The accuracy of the gamma distribution provided the necessary motivation to test 
whether the gamma distribution was capable of predicting the relationship between fine and coarse- 
grained estimates, the empirical pattern that has been interpreted as evidence for the DBD hypoth-
esis. Together, these analyses present evidence of the scale invariance of macroecological patterns in 
microbial communities as well as the applicability of the gamma distribution, the stationary distribu-
tion of the SLM, as a null model for evaluating the novelty of macroecological patterns of microbial 
biodiversity.

Results
The macroecological consequences of phylogenetic and taxonomic 
coarse-graining
While microbial communities are often coarse- grained into higher taxonomic scales, their effect on 
measures of biodiversity and the underlying phylogeny are rarely examined. Before proceeding with 
the full analysis using public 16S rRNA amplicon data from the EMP, we elected to quantify the fraction 
of the remaining community members across coarse- graining thresholds, a reflection of the extent 
that coarse- graining reduces global richness and the relation between taxonomic and phylogenetic 
coarse- graining. We first defined a coarse- grained group  g  as the set of OTUs that have the same 
assigned label in a given taxonomic rank out of  G  groups (e.g. Pseudomonas at the genus level) or are 
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collapsed when the phylogeny is truncated by a given root- to- tip distance (Figure 1, Figure 1—figure 
supplement 1). The relative abundance of group  g  in site  j  is defined as  xg,j =

∑
i∈g xi,j .

We found that even minor degrees of coarse- graining had a drastic effect on the total number of 
community members within an environment, reducing global richness by ∼90% even at just the genus 
level (Figure 1—figure supplement 2a). By coarse- graining over a range of phylogenetic distances, 
we found that the fraction of coarse- grained community members comparable to that of genus- level 
coarse- graining occurred at a root- to- tip phylogenetic distance of ∼0.1 (Figure 1—figure supple-
ment 2b). This distance translated to only ∼3% of the total distance of the tree, meaning that the 
majority of OTUs were coarse- grained over a minority of the tree. This pattern was likely driven by 
the underlying structure of microbial phylogenetic trees, where most community members have short 
branch lengths (O’Dwyer et al., 2015). This result suggests that while coarse- graining communities to 
the genus or family level substantially reduces global richness, it does so without coarse- graining the 
majority of the evolutionary history captured by the phylogeny. Assuming that phylogenies capture 
ecological changes that occur over evolutionary time, this detail implies that ecological divergence 
that is captured by the phylogeny should be retained even when communities are considerably 
coarse- grained.

With our coarse- graining procedures established, we proceeded with our macroecological investi-
gation. Recent efforts have found that the distribution of abundances of a given ASV/OTU maintained 
a consistent statistically similar form across independent sites and time, a pattern known as the Abun-
dance Fluctuation Distribution (Grilli, 2020; Zaoli and Grilli, 2021; Zaoli et al., 2022; Shoemaker, 

Figure 1. The process of coarse- graining abundances using the phylogeny. Taxonomic assignment in 16S rRNA amplicon sequence data provided 
the opportunity to investigate how properties of communities vary at different taxonomic scales. The most straightforward means of coarse- graining 
here is to sum the abundances of OTUs/ASVs that belong to the same taxonomic group. Amplicon data- based studies provide information about the 
shared evolutionary history of community constituents, information that can be leveraged by the construction of phylogenetic trees. A coarse- graining 
procedure can be defined that is analogous to one based on taxonomy, where a phylogenetic root- to- tip distance is chosen and terminal nodes are 
collapsed if their distance to a common ancestor is less than the prescribed distance.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The process of coarse- graining using taxonomic information.

Figure supplement 2. Examining the change in relative richness under coarse- graining.

https://doi.org/10.7554/eLife.89650
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2023a; Wolff et  al., 2023). By coarse- graining empirical AFDs and rescaling them by their mean 
and variance across sites (i.e. standard score), we found that AFDs from the human gut microbiome 
retained their shape across phylogenetic scales (Figure 2a). This pattern of invariance held across 
environments for both phylogenetic and taxonomic coarse- graining (Figure 2—figure supplement 1, 
Figure 2—figure supplement 2), suggesting that empirical AFDs can likely be described by a single 
probability distribution.

It has been previously demonstrated that empirical microbial AFDs are well- described by a gamma 

distribution that is parameterized by the mean relative abundance  ̄xi  and the shape parameter 
 
βi = x̄2

i
σ2

i  
 

(equal to the squared inverse of the coefficient of variation Grilli, 2020). This distribution can be 

Figure 2. The shape of the AFD remained qualitatively invariant under coarse- graining. (a) Under phylogenetic coarse- graining the general shape of the 
AFD for OTUs that were present in all sites (i.e. an occupancy of one) remained qualitatively invariant. (b) Similarly, the shape of the relationship between 
the mean coarse- grained abundance across hosts and occupancy across sites did not tend to vary. Predictions obtained from the gamma distribution 
are capable of capturing the relationship between the mean abundance and occupancy, suggesting that the gamma distribution remains a useful 
quantitative null model under coarse- graining. All data in this plot is from the human gut microbiome.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The AFD of all environments under taxonomic coarse- graining.

Figure supplement 2. The AFD of all environments under phylogenetic coarse- graining.

Figure supplement 3. The predicted occupancy across sites for a gamma- distributed AFD under taxonomic coarse- graining for all environments.

Figure supplement 4. The predicted occupancy across sites for a gamma distributed AFD under phylogenetic coarse- graining for all environments.

Figure supplement 5. The relationship between the mean abundance across sites and the occupancy for various taxonomic coarse- graining scales.

Figure supplement 6. The relationship between the mean abundance across sites and the occupancy for various phylogenetic coarse- graining scales.

Figure supplement 7. Predictions of the variance of occupancy failed across taxonomic coarse- graining thresholds.

Figure supplement 8. Predictions of the variance of occupancy failed across phylogenetic coarse- graining thresholds.

Figure supplement 9. Occupancy predictions of the gamma remained invariant despite coarse- graining.

Figure supplement 10. The sum of the variances of OTUs was close to the value of the variance of a taxonomic coarse- grained group, implying that 
the contribution of covariance to the variance of a given coarse- grained group was low.

Figure supplement 11. The analysis presented in Figure 2—figure supplement 10 but for phylogenetic coarse- graining.

Figure supplement 12. The plot presented in Figure 2—figure supplement 10 but with the ratio of coarse and fine- grained variances plotted on the 
y- axis for the purpose of visualizing deviations from the 1:1 line.

Figure supplement 13. The analysis presented in Figure 2—figure supplement 12 but for phylogenetic coarse- graining.
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viewed as the stationary distribution of a SLM of growth, a mathematical model that successfully 
captures macroecological patterns of microbial communities across both sites and time (Grilli, 2020; 
Descheemaeker and de Buyl, 2020; Zaoli and Grilli, 2021; Equation 5 in Materials and methods).

Using this result, we determined whether the gamma distribution sufficiently characterized coarse- 
grained AFDs. In order to accomplish this task, it is worth noting that we do not directly observe  xi . 
Rather, our ability to observe a community member is dependent on sampling effort (i.e. total number 
of reads for a given site). To account for sampling, one can derive a form of the gamma distribution 
that explicitly accounts for the sampling process, obtaining the probability of obtaining  n  reads out 
of  N   total reads belonging to a community member (Materials and methods, Grilli, 2020). Given 
that  n = 0  for a community member, we do not observe, we defined the fraction of  M   sites where a 
community member was observed (i.e. occupancy,  oi ) as

 
⟨oi⟩ = 1 − 1

M

M∑
m=1

P(0|Nm, x̄i,βi)
  

(1)

We then compared this prediction to observed estimates of occupancy to assess the accuracy of the 
gamma distribution across coarse- grained thresholds. We found that Equation 1 generally succeeded 
in predicting observed occupancy across phylogenetic and taxonomic scales for all environments 
(Figure 2—figure supplement 3, Figure 2—figure supplement 4). We then determined whether the 
gamma distribution was capable of predicting the relationship between macroecological quantities. 
One such relationship is that the occupancy of a community member should increase with its mean 
abundance, known as the abundance- occupancy relationship (Gaston et al., 2000). This pattern has 
been found across microbial systems (Shade et al., 2018; Sloan et al., 2007; Burns et al., 2016) and 
can be quantitatively predicted using the gamma distribution (Grilli, 2020). We see that this relation-
ship is broadly captured across taxonomic and phylogenetic scales for all environments (Figure 2b, 
Figure 2—figure supplement 5, Figure 2—figure supplement 6). This result implies that the ability 
to observe a given taxonomic group was primarily determined by its mean abundance across sites 
and the sampling effort within a site, regardless of one’s scale of observation. In contrast, under the 
assumption of demographic indistinguishability under the UNTB we would expect the mean abun-
dance distribution to be extremely narrow, following a delta distribution. Under the SLM, the variation 
in mean relative abundances we observed implies that the carrying capacities of community members 
vary over multiple orders of magnitude. We also note that at high mean abundances our predictions 
show slight variation, which is likely driven by variation in the shape parameter  β  (Figure  2b). In 
contrast with these results, the gamma distribution was unable to predict the variance of occupancy 
under both taxonomic and phylogenetic coarse- graining (Equation 11; Figure 2—figure supplement 
7, Figure 2—figure supplement 8), the implications of which we will address in a later section.

To quantitatively assess the accuracy of the gamma distribution we calculated the relative error of 
our mean occupancy predictions (Equation 12) for all coarse- graining thresholds. We found that the 
mean logarithm of the error only slightly increased for the initial taxonomic and phylogenetic scales, 
where it then exhibited a sharp decrease across environments (Figure 2—figure supplement 9). The 
error then only began to decrease once the community became highly coarse- grained, harboring a 
global richness (union of all community members in all sites for a given environment) <20. This result 
means that, if anything, the accuracy of the gamma distribution only improved with coarse- graining.

Reconciling coarse-graining and the predictions of the gamma 
distribution
The consistent predictive success of the gamma distribution under coarse- graining raises the ques-
tion of why it remains a sufficient null model. The sum of independent gamma- distributed random 
variables only returns a gamma through analytic calculation if all random variables have identical rate 
parameters ( βi/x̄i = β/x̄ ), a requirement that microbial communities clearly do not meet since they typi-
cally harbor broad mean abundance distributions. Given that, a gamma AFD cannot predict the distri-
bution of correlations between AFDs (Grilli, 2020), it is first worth examining whether the degree of 
dependence between AFDs shapes coarse- grained variables. We first consider the relation between 
the variance of the sum and the sum of variances.

https://doi.org/10.7554/eLife.89650
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Var(

Stot∑
i

xi) =
Stot∑

i
Var(xi) + 2

∑
i<j

Cov(xi, xj)
  

(2)

By plotting  Var(
∑Stot

i xi)  against  
∑Stot

i Var(xi)  across coarse- grained thresholds, we found that the 
contribution of covariance to individual coarse- grained taxa was weak, suggesting that the statistical 
moments at higher scales can be approximated by those at lower scales (Figure 2—figure supplement 
10, Figure 2—figure supplement 11). Similar conclusions can be drawn by plotting the variances as a 
ratio, with slight deviations above a ratio of one, suggesting that coarse- grained variance was slightly 
higher (Figure 2—figure supplement 12, Figure 2—figure supplement 13). These results are consis-
tent with previous efforts demonstrating that the strongest correlations between AFDs are typically 
concentrated among pairs of closely related community members (i.e. low phylogenetic distance) 
(Sireci et al., 2023), implying that the effects of correlation should dissipate when communities are 
coarse- grained. Given that the variance of the sum can be approximated by the sum of the variances 
and that, by definition, the mean of a sum is the sum of the means, it is reasonable to propose that the 
statistical moments of coarse- grained AFDs are sufficient to characterize the distribution.

Finally, while we know of no general closed- form solution for the sum of independent gamma- 
distributed random variables with different rate parameters (equivalent to considering the convo-
lution of many AFDs with different carrying capacities), progress has been made towards obtaining 
suitable approximations (Stewart et al., 2007; Murakami, 2015; Hu et al., 2020; Behme and Bond-
esson, 2017; Barnabani, 2017). This body of work includes an analysis demonstrating that a single 
gamma distribution can provide a suitable approximation to the distribution of the sum of many 
gamma random variables with different rate parameters (Covo and Elalouf, 2014). In summary, the 
gamma distribution appears to successfully captures patterns of biodiversity under taxonomic and 
phylogenetic coarse- graining because the sum of multiple gamma distributions can be approximated 
by a single gamma distribution.

Predicting measures of richness and diversity within a coarse-grained 
scale
Given that the presence or absence of a community member is used to estimate community richness, 
a measure previously used to make claims about patterns of microbial diversity across taxonomic 
scales (Madi et al., 2020), we can visualize the sufficiency of the gamma distribution by predicting 
the mean richness within an environment at a given coarse- grained scale (Equation 13a). Likewise, we 
can use the entirety of the distribution of read counts to predict the diversity within a site, a measure 
that reflects richness as well as the distribution of abundances within a community (Equation 14a), 
analytic predictions that we validated through simulations (Figure 3—figure supplement 1). We note 
that we observe consistent deviations between the analytic predictions of the variance of diversity and 
simulation results. These deviations are likely driven by small deviations in predictions of the second 
moment of diversity, which are slight for individual community members, but become considerable 
when terms are summed over hundreds or thousands of community members.

Focusing on the human gut microbiome as an example, we found that we can predict the typical 
richness of a community across phylogenetic scales using the gamma distribution (Figure 3a). Similar 
results were obtained when we repeated our analysis for predicted diversity (Figure 3b). By exam-
ining all nine environments we found that despite the dissimilarity in environments, we were able to 
predict mean richness and diversity in the face of coarse- graining (Figure 3c and d). In contrast, the 
UNTB failed to predict richness (Figure 3—figure supplement 3). The results of this analysis suggest 
that the composition of microbial communities remained largely invariant under coarse- graining 
and that the gamma distribution remained a suitable null model for predicting mean community 
measures across coarse- grained scales. Identical results were obtained for taxonomic coarse- graining 
(Figure 3—figure supplement 2).

Turning to higher- order moments, we examined the variance of richness and diversity across sites. 
Using a similar approach that was applied to the mean, we derived analytic predictions for the vari-
ance (Equation 17a). With the human gut as an example, we see that analytic predictions typically 
fail to capture estimates of variance obtained from empirical data for phylogenetic coarse- graining 
(Figure 4a and b). This lack of predictive success was consistent across environments (Figure 4c and 
d), implying that a model of independent community members with gamma- distributed abundances 

https://doi.org/10.7554/eLife.89650
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Figure 3. The gamma distribution successfully predicted mean richness and diversity under phylogenetic coarse- graining. (a) The expected richness 
derived from the gamma distribution (Equation 13a) was capable of predicting richness across phylogenetic coarse- graining scales, as illustrated 
by data from the human gut. (b) Predictions remained successful across all environments, suggesting that a minimal model of zero interactions was 
sufficient to predict observed properties of community composition, (c, d) Similarly, predictions of expected diversity (14) also succeeded across coarse- 
graining scales for all environments. The shade of a color of a given datapoint represents the phylogenetic distance used for coarse- graining, with 
lighter colors representing finer scales and darker colors representing coarser scales.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The analytic predictions of the mean and variance of richness and diversity vs. the results of simulations that assume gamma- 
distributed AFDs and reads drawn from a multinomial distribution.

Figure supplement 2. The gamma distribution successfully predicted mean richness and diversity under taxonomic coarse- graining.

Figure supplement 3. Unified Neutral Theory of Biodiversity (UNTB) failed to predict mean richness. UNTB consistently overpredicted richness under 
both taxonomic and phylogenetic coarse- graining.

https://doi.org/10.7554/eLife.89650
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Figure 4. The gamma distribution only predicts the variance of richness and diversity under phylogenetic coarse- graining when covariance is included. 
(a, b) In contrast with the mean, the variance of richness and diversity estimates predicted by the gamma distribution (Equation 17a) failed to capture 
empirical estimates from the human gut. Predictions are only comparable when empirical estimates of covariance are included in the predictions of the 
gamma distribution, meaning that dependence among community members is essential to describe the variation in measures of biodiversity across 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.89650
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was insufficient to capture the variance of measures of biodiversity. A major assumption made in our 
derivation was that community members are independent, an assumption that is unjustified given that 
the gamma distribution has been previously shown to be unable to capture the empirical distribution 
of correlations in the AFDs of community members (Grilli, 2020). To attempt to remedy this failed 
prediction, we again turned to the law of total variance by estimating the covariance of richness and 
diversity from empirical data and adding the covariance to the predicted variance for each measure. 
We found that the addition of this empirical estimate was sufficient to predict the observed variance 
in the human gut (Figure 4a and b) as well as across environments (Figure 4e and f), implying that 
the underlying model is fundamentally correct for predicting the first moment of measures of biodi-
versity but cannot capture the correlations necessary to explain higher statistical moments such as 
the variance. Identical results were again obtained with taxonomic coarse- graining (Figure 4—figure 
supplement 1).

Predicting patterns of richness and diversity between fine and coarse-
grained scales
Our predictions of the statistical moments of richness and diversity using the gamma distribution 
provided the foundation necessary to investigate macroecological patterns between different taxo-
nomic and phylogenetic scales. One such prominent pattern is the relationship between the fine- 
grain richness/diversity within a given coarse- grained group vs. the coarse- grained richness/diversity 
among all remaining groups (e.g. the number of classes within Firmicutes vs. the number of phyla 
excluding the phylum Firmicutes), a pattern that has been purported to demonstrate the existence 
of DBD processes in microbial systems. Before continuing, we note that the acronym DBD technically 
refers to the hypothesis that such positive relationships reflects the existence of ecological interac-
tions through which coarse- grained diversity bolsters the accumulation of fine- grained diversity (e.g. 
niche construction Laland et al., 1999; San Roman et al., 2018). Since we are primarily interested in 
the predictive power of an empirically- validated null model of biodiversity, we distinguish between 
DBD as a hypothesis and DBD as an empirical pattern by referring to the slope as the fine vs. coarse- 
grained relationship throughout the remainder of this manuscript.

The fine vs. coarse- grained relationship can be quantified as the slope of the relationship between 
the fine- grained richness within a given coarse- grained group  g  ( Sg,m ) and the richness in the remaining 
 G − 1  coarse- grained groups:  Sg,m ∝ αSG\g,m , where  G \ g  denotes the exclusion of group  g  and  α  is 
the slope of the relationship. This formulation was proposed by Madi et al., and to ensure commen-
surability we adopted it here (Madi et al., 2020). Furthermore, keeping with the approach used by 
Madi et al., fine and coarse- grained measures were compared across increasing taxonomic and phylo-
genetic scales (e.g. OTU vs. genus, genus vs. family, etc.), (Madi et al., 2020). Using Equation 1, we 
then defined each of these estimators in terms of the sampling form of the gamma distribution while 
accounting for sampling

 
Sg,m = |g| −

∑
i∈g

P(0|Nm, x̄i,βi)
  

(3a)

 
SG\g,m = (|G| − 1) −

∑
g′∈G
g′ ̸=g

P(0|Nm, x̄g′ ,βg′ )
  

(3b)

Similarly, we used Equation 14a to derive predictions for fine and coarse- grained diversity.

 
Hg,m = −

∑
i∈g

⟨
x ln

[
x
]

|Nm, x̄g,βg
⟩
  

(4a)

communities. (c, d) This lack of predictive success was constant across environments, (e, f) though the addition of covariance consistently improves our 
analytic predictions. The color scale used here is identical to the color scale used in Figure 3.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. A gamma AFD can only predict the variance of richness and diversity under taxonomic coarse- graining when covariance is 
included.

Figure 4 continued

https://doi.org/10.7554/eLife.89650
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HG\g,m = −

∑
g′∈G
g′ ̸=g

⟨
x ln

[
x
]

|Nm, x̄g′ ,βg′
⟩
  

(4b)

By repeating this calculation for all  M   sites, we obtained vectors of coarse and fine- grained richness 
estimates for group  g  from which we inferred the slope of the fine vs. coarse- grained relationship 
through ordinary least squares regression. By repeating this process for all  G  groups we obtained 
a distribution of slopes that can be directly compared to those obtained from empirical data. We 
include a conceptual diagram visualizing this process as a supplement (Figure 5—figure supplement 
1).

Before performing a direct comparison, we first note the features of the empirical slopes and how 
they pertain to the predictions we obtained. By examining the distribution of empirical slopes pooled 
over all coarse- graining thresholds for each environment, we found that they were rarely less than zero 
(Figure 5a, Figure 5—figure supplement 2a). The few negative slopes inferred from empirical data 
were extremely small, having absolute values <10−4 and could be treated as zeros. Furthermore, the 
distribution of slopes follows the same form across environments, suggesting that the slope of the fine 
vs. coarse- grained relationship reflects a general feature of community sequence data rather than the 
ecology of specific environments. Like the empirical slopes, the gamma distribution virtually always 
predicted a positive slope for all environments for both taxonomic and phylogenetic coarse- graining. 
This paucity of negative slopes suggests that the prediction of the alternative to the DBD hypothesis, 
the Ecological Controls hypothesis (Schluter and Pennell, 2017), is virtually absent in empirical data 
and cannot be generated from an empirically validated null model of microbial biodiversity.

However, only observing positive slopes does not necessarily provide support for the DBD hypoth-
esis. A direct comparison of slopes predicted from the gamma distribution to those inferred from 
empirical data is necessary to determine whether the predictions of DBD lie outside what can be 
reasonably captured by an interaction- free model such as the SLM. To evaluate the novelty of the 
slope of the fine vs. coarse- grained relationship we compared the values of observed slopes to those 
obtained from the interaction- free SLM. We found that the predictions of the gamma distribution 
closely matched the observed slopes across environments for both taxonomic and phylogenetic 
coarse- graining (Figure 5—figure supplement 3, Figure 5—figure supplement 4). We consolidated 
these results by taking the mean slope for a given coarse- grained scale, from which we see that the 
mean slope predicted by the gamma distribution does a reasonable job capturing empirical slopes 
across environments (Figure 5b, Figure 5—figure supplement 2b). These results indicate that we 
should expect to see a positive relationship between richness estimates at different scales and that 
the relationships we observe can be quantitatively captured by a gamma- distributed AFD. It is worth 
noting that the slope of the fine vs. coarse- grained relationship could be sufficiently predicted even 
though the gamma distribution only succeeded at predicting mean richness, suggesting that higher- 
order statistical moments, and by extension interactions between community members, are unnec-
essary to quantitatively capture the positive relationship observed between fine and coarse- grained 
estimates of richness.

As a point of comparison, we predicted the slope of the fine vs. coarse- grained relationship for 
richness using a UNTB model (Madi et al., 2023) (Supporting information). We found that generally, 
the UNTB slopes deviated from those obtained from empirical data, exhibiting far greater bias and 
variation around the 1:1 line than what was observed of the SLM (Figure 5—figure supplement 5, 
Figure 5—figure supplement 6). By examining the mean slope we found that predictions from the 
UNTB tended to systematically underpredict the observed slope under both taxonomic and phyloge-
netic coarse- graining (Figure 5—figure supplement 7). Directly comparing the mean relative error 
of the UNTB predictions to those of the SLM confirms these observations, as the UNTB predictions 
tended to have larger errors by an order of magnitude (Figure 5—figure supplement 8, Figure 5—
figure supplement 9). To summarize, in contrast to the SLM, the UNTB cannot predict the slope of 
the fine vs. coarse- grained relationship for richness.

While richness is a widespread and versatile estimator that is commonly used in community ecology, 
neglects considerable information by focusing on presences and absences instead of the entirety of 
the distribution of abundances. To rigorously test the predictive power of the gamma distribution it 
was necessary to evaluate the fine vs. coarse- grained relationship for diversity. We again found that 
disparate environments had similar distributions of slopes from empirical data (Figure 5c, Figure 5—
figure supplement 2c), suggesting that the slope of the relationship is likely a general property of 

https://doi.org/10.7554/eLife.89650
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Figure 5. The slope of the fine vs. coarse- grained relationship for richness could be predicted by the gamma distribution, but was novel for estimates of 
diversity. (a, b) The predictions of the gamma distribution (Equation 3a) successfully reproduced observed fine vs. coarse- grained richness slopes across 
scales of phylogenetic coarse- graining. (c, d) In contrast, the predictions of the gamma distribution failed to capture diversity slopes (Equation 4a). The 

color scale used here is identical to the color scale used in Figure 3. Squared Pearson correlation coefficients ( ρ
2
 ) are computed over all slopes for all 

taxa across all coarse- graining scales.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Conceptual diagram illustrating how fine vs. coarse- grained slopes are inferred.

Figure supplement 2. The gamma distribution as a tool for investigating the novelty of fine vs.coarse- grained slopes.

Figure supplement 3. The predicted slopes of fine vs. coarse- grained richness from the sampling form of the gamma distribution under taxonomic 
coarse- graining.

Figure 5 continued on next page

https://doi.org/10.7554/eLife.89650
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microbial communities rather than an environment- specific pattern. However, unlike richness, diversity 
predictions obtained from the gamma distribution generally failed to capture observed slopes, as the 
squared correlation between observed and predicted slopes can be less than that of richness by over 
an order of magnitude (Figure 5d, Figure 5—figure supplement 10, Figure 5—figure supplement 
11, Figure 5—figure supplement 2d). Here, we see where the predictions of an interaction- free SLM 
succeeded and failed to predict observed macroecological patterns.

Given that the gamma distribution failed to predict the observed diversity slope, it is worth eval-
uating whether additional features could be incorporated to generate successful predictions. A 
notable omission is that there is an absence of interactions between community members in the 
SLM, meaning that we were unable to predict correlations between community member abun-
dances. However, while considerable progress has been made (e.g. Ho et al., 2022), predicting the 
observed distribution of correlation coefficients between community members while accounting 
for sampling remains a non- trivial task. Given that the gamma distribution succeeded at predicting 
other macroecological patterns, we elected to perform a simulation where a collection of sites was 
modeled as an ensemble of communities with correlated gamma- distributed AFDs with the means, 
variances, correlations, and total depth of sampling set by estimates from empirical data (Materials 
and methods). By including correlations between AFDs into the simulations, the statistical outcome 
of ecological interactions between community members, we were able to largely capture observed 
fine vs. coarse- grained diversity slopes (Figure 6, Figure 6—figure supplement 1, Figure 6—figure 
supplement 2, Figure 6—figure supplement 3). These results suggest that rather than diversity at a 
fine- scale begetting diversity at a coarse- scale, the correlations that exist at a fine- scale (e.g. genus) 
contribute to measures of biodiversity at the nearest coarse- grained scale (e.g. family), resulting in a 
positive relationship between measures of diversity at different scales.

Discussion
The results of this study demonstrate that macroecological patterns in microbial communities remain 
largely invariant across taxonomic and phylogenetic scales. By focusing on the predictions of the 
SLM, an interaction- free model of microbial growth under environmental fluctuations, we were able 
to evaluate the extent that measures of biodiversity can be predicted under coarse- graining. We 
were largely able to predict said measures using the same model with parameters estimated from 
data across scales, implying that certain macroecological patterns of microbial communities remained 
self- similar across taxonomic and phylogenetic scales. Building off of this result, we investigated the 
dependence of community measures between different degrees of coarse- graining, a pattern that has 
been formalized as the Diversity Begets Diversity hypothesis (Whittaker, 1972; Madi et al., 2020). 
The prediction derived from the sampling form of the gamma distribution quantitatively captured 
the observed slopes of the fine vs. coarse- grained relationship for richness, while it failed to capture 

Figure supplement 4. The predicted slopes of fine vs. coarse- grained richness from the sampling form of the gamma distribution under phylogenetic 
coarse- graining.

Figure supplement 5. The predicted slopes of fine vs. coarse- grained richness under taxonomic coarse- graining using the UNTB.

Figure supplement 6. The predicted slopes of fine vs. coarse- grained richness under phylogenetic coarse- graining using the UNTB.

Figure supplement 7. The mean predicted slopes of fine vs. coarse- grained richness under (a) taxonomic and (b) phylogenetic coarse- graining using 
the Unified Neutral Theory of Biodiversity (UNTB).

Figure supplement 8. Comparisons of the relative error of fine vs. coarse- grained richness slope predictions between the Stochastic Logistic Model 
(SLM) and Unified Neutral Theory of Biodiversity (UNTB) for taxonomic coarse- graining.

Figure supplement 9. Comparisons of the relative error of fine vs. coarse- grained richness slope predictions between the Stochastic Logistic Model 
(SLM) and Unified Neutral Theory of Biodiversity (UNTB) for phylogenetic coarse- graining.

Figure supplement 10. The predicted slopes of fine vs. coarse- grained diversity from the sampling form of the gamma distribution under taxonomic 
coarse- graining.

Figure supplement 11. The predicted slopes of fine vs. coarse- grained diversity from the sampling form of the gamma distribution under phylogenetic 
coarse- graining.

Figure 5 continued
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the slope of diversity. However, introducing correlations between abundance fluctuation distribution 
permitted the recovery of the slope of the fine vs. coarse- grained diversity relationship.

Our richness results complement past work demonstrating that occupancy, the constituent of rich-
ness, is highly dependent on two parameters: sampling depth (i.e. total read count) and the mean 
abundance of a community member (Grilli, 2020). Our ability to predict the relationship between fine 
and coarse- grained measures of richness using the gamma distribution, despite our inability to predict 
the variance of richness, suggest that correlations driving the slope of the fine vs. coarse- grained 
relationship is primarily driven by the effects of finite sampling. This past work, and the relationships 
between the mean abundance and occupancy evaluated in this manuscript, demonstrate that occu-
pancy alone is unlikely to contain ecological information that is not already captured by the distri-
bution of abundances across sites (i.e. the AFD). Our analyses of the relationship between fine and 
coarse- grained richness support this conclusion, as predictions derived from a gamma distribution 
quantitatively captured the observed slope. The success of an interaction- free model in predicting 
the slope of the fine vs. coarse- grained relationship is an indictment of the appropriateness of estima-
tors that rely solely on the presence of a community member for identifying novel macroecological 
patterns, a measure that has been used to bolster support for the DBD hypothesis at the level of 16S 
rRNA amplicons as well as strains (Madi et al., 2020; Madi et al., 2023). Rather, estimates of rich-
ness harbor little information about the dynamics of a community across taxonomic and phylogenetic 
scales that is not already captured by the sampling form of the gamma distribution. Contrasting with 
richness, the predictions of diversity from the gamma distribution were unable to capture fine vs. 
coarse- grained relationships in empirical data. Given that measures of diversity incorporate informa-
tion about the richness and evenness of a community (Magurran, 2004), the comparative deficiency 
of our predictions for fine vs. coarse- grained diversity suggests that forms of the SLM that neglect 
interactions between community members cannot capture relationships between phylogenetic/taxo-
nomic scales that depend on the evenness of the distribution of abundances.

Macroecological patterns are not imbued with mechanistic explanation (Warren et  al., 2022). 
Rather, the onus is on the investigator to identify plausible mechanisms. Often in ecology this task is 
made easier by evaluating whether a model lacking a particular mechanism is capable of producing 
the observed pattern, that is, identifying an appropriate null. The novelty of the fine vs. coarse- grained 
relationship was previously assessed using a null model which assumed demographic equivalence 
among community members and community dynamics driven by demographic noise (i.e. the UNTB) 
(Madi et al., 2020; Alonso and McKane, 2004). Empirical patterns of microbial abundance cannot 
be reasonably captured by such models, making predictions obtained from the UNTB invalid for 
evaluating the novelty of microbial macroecological patterns. In contrast, models that combine self- 
limiting growth with environmental noise reproduces several empirical patterns, making the SLM an 
appropriate choice for evaluating the novelty of fine vs. coarse- grained relationships (Grilli, 2020; 
Descheemaeker and de Buyl, 2020). This is not a trivial detail, as there is historical precedence on 
the need to identify an appropriate null in order to investigate how fine and coarse- grained measures 
of biodiversity relate to one another, as one of the earliest adoptions of null model analysis in ecology 
was done to investigate the ratio of species to genera in a community (Williams, 1947; Smith et al., 
2014).

In this study, the predictions of the sampling form of the gamma distribution considerably improved 
when correlations between community members were included. This result suggests that rather than 
exclusively pointing to niche construction as previously suggested (Madi et al., 2020), any ecological 
mechanism that can capture the observed distribution of correlation coefficients is a plausible candi-
date. Given that models of consumer- resource dynamics have succeeded in capturing macroecolog-
ical patterns (Chesson, 1990; Cui et al., 2021), including quantitatively predicting the distribution of 
correlation coefficients (Ho et al., 2022), it is reasonable to suggest that such mechanisms are ulti-
mately responsible for the relationship between fine and coarse- grained measures of diversity and can 
be reduced to phenomenological models such as the SLM. Indeed, experimental investigations of the 
slopes evaluated here have found the existence of positive slopes in artificial communities maintained 
in a laboratory setting, where the strength of the correlation between fine and coarse- grained scales 
is driven by the secretion of secondary metabolites (Estrela et al., 2022). This mechanism, known as 
cross- feeding, can be viewed as compatible with the concept of niche construction (San Roman et al., 
2018) as well as with the original interpretation of Madi et al., 2020.

https://doi.org/10.7554/eLife.89650
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In the interest of providing macroecological insight into the DBD hypothesis, we solely focused on 
coarse- graining procedures that relied on phylogenetic reconstruction and taxonomic assignment. 
However, it is worth noting that it is also possible to coarse- grain community members by the strength 
of their correlations (i.e. sum the abundances of each pair of community members with the strongest 
correlation in AFDs). This procedure has been named the phenomenological renormalization group 
method due to its ability to identify if and where a system is stable despite knowing little about the 
system’s dynamics (i.e. fixed points in nonlinear systems) (Nicoletti et al., 2020; Meshulam et al., 
2019). However, given that the AFD correlation between two community members is often inversely 
related to their phylogenetic distance, such an analysis would likely be redundant, as coarse- graining 
based on the strength of correlation would effectively coarse- grain the most closely related commu-
nity members (Sireci et al., 2023).

A major goal of this study was to evaluate the novelty of macroecological patterns that were used 
to bolster support for the DBD hypothesis. We used the same dataset in order to ensure generality and 
commensurability with past research efforts. However, it is worth inspecting how the use of a global 
survey dataset constrains the inferences one can make. Throughout this study, we implicitly assumed 
that an ensemble approach is valid, meaning that we viewed different sites/hosts as virtual copies of 
a given environment. This assumption can remain valid for time- series studies where the distribution 
of microbial abundances remains stationary with respect to time (Faith et al., 2013), as the stationary 

Figure 6. Including correlations allows the gamma distribution to capture observed diversity slopes. Observed 
fine vs. coarse- grained diversity slopes could be quantitatively reproduced under phylogenetic coarse- graining 
by simulating correlated gamma- distributed AFDs at the OTU- level. The color scale used here is identical to the 

color scale used in Figure 3. Squared Pearson correlation coefficients ( ρ
2
 ) are computed over all slopes for all taxa 

across all coarse- graining scales.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The predicted slopes of fine vs. coarse- grained diversity from the sampling form of the 
gamma distribution with correlations between OTUs under taxonomic coarse- graining.

Figure supplement 2. The predicted slopes of fine vs. coarse- grained diversity from the sampling form of the 
gamma distribution with correlations between OTUs under phylogenetic coarse- graining.

Figure supplement 3. Gamma distribution simulations with correlations capture observed diversity slopes.

https://doi.org/10.7554/eLife.89650
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solution of the SLM has successfully characterized microbial community time- series at both the level of 
OTUs (Grilli, 2020) and strains (Wolff et al., 2023). Given these past results, we predict that the fine 
vs. coarse- grained relationship results presented here will remain valid in longitudinal studies where 
community members fluctuate around a single point with respect to time.

Materials and methods
Data acquisition and processing
To ensure that our analyses were generalizable across ecosystems and commensurate with prior DBD 
investigations, we used amplicon sequence data from the V4 region of the 16S rRNA gene gener-
ated and curated by the Earth Microbiome Project (Thompson et al., 2017; Madi et al., 2020). We 
restricted our analysis to the quality control (QC)- filtered subset of the EMP, which was annotated 
using the closed- reference database SILVA (Quast et  al., 2013) and consists of 96 studies culmi-
nating in 23,828 total samples with each processed sample having ≥10,000 reads. We downloaded 
the public Silva reference tree for OTUs with 97% similarity  97_ otus. tre from the EMP database. We 
identified nine heavily sampled environments in the metadata file  emp_ qiime_ mapping_ qc_ filtered. 
tsv and selected 100 random sites from each environment. Summary statistics for each environment 
are provided (Table 1, Table 2).

We briefly note that our occupancy and richness predictions depend on the form of the gamma 
distribution that explicitly accounts for sampling as a multinomial process. The multinomial distribution 

Table 1. Summary statistics for the 100 sites randomly selected for each environment.
These statistics reflect the data used for taxonomic coarse- graining, as OTUs lacking taxonomic 
labels were excluded from taxonomic coarse- graining analyses.

Environment Total # OTUs Mean # OTUs Mean # reads

Marine 9090 690.80 95,129.43

Marine sediment 16,110 1,393.67 40,440.38

Human gut 6175 599.09 32,894.50

Human oral 4716 537.45 44,271.22

Human skin 17,955 1293.45 36,344.13

Freshwater sediment 12,231 1080.95 18,979.56

Microbial mat 5087 200.24 8,659.36

Freshwater 12,052 822.37 33,646.53

Soil 20,298 1814.76 36,268.93

Table 2. Summary statistics for the 100 sites randomly selected for each environment.
These statistics reflect the data used for phylogenetic coarse- graining as all OTUs could be used.

Environment Total # OTUs Mean # OTUs Mean # Reads

Marine 18,173 1,356.37 168,520.66

Marine sediment 41,304 4,167.25 106,166.92

Human gut 10,190 862.73 44,031.12

Human oral 7062 614.97 46,104.84

Human skin 29,448 1817.12 48,285.68

Freshwater sediment 33,193 3,569.59 65,582.56

Microbial mat 11,869 431.42 23,216.02

Freshwater 26,645 1775.89 74,298.17

Soil 45,273 4730.74 106,578.45
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 Research advance Ecology | Physics of Living Systems

Shoemaker and Grilli. eLife 2023;12:RP89650. DOI: https://doi.org/10.7554/eLife.89650  17 of 27

describes the probability of sampling  n  reads given a relative abundance of  x  and total read count 
 N   with replacement, a process we can model as the Poisson limit of a binomial sampling process for 
individual community members. Given this choice and the past success of the gamma distribution, 
we deviated from past analyses by electing to not sub- sample read counts to the same depth, as the 
process of sampling without a replacement would bias the sampling distribution for rare community 
members (Madi et al., 2020).

Coarse-graining protocol
Taxonomic coarse- graining was performed as the summation of the abundances of all OTUs within a 
given taxonomic group. We removed taxa with indeterminate labels to prevent potential biases due 
to taxonomic misassignment, (e.g. ‘uncultured,’ ‘ambiguous taxa,’ ‘candidatus,’ ‘unclassified,’ etc.). 
Manual inspection of EMP taxonomic annotations revealed a low number of OTUs that had been 
assigned the taxonomic label of their host (e.g. Arachis hypogaea (peanut)). These marked OTUs were 
removed from all downstream analyses.

Phylogenetic coarse- graining was performed using the phylogenetic tree provided by SILVA 123  
97_ otus. tre in the EMP release. Each internal node of a phylogenetic tree was collapsed if the mean 
branch lengths of its descendants was less than a given distance. All phylogenetic operations were 
performed using the Python package ETE3 (Huerta- Cepas et al., 2016).

Deriving biodiversity measure predictions
While the gamma distribution as the stationary solution of the SLM and the sampling form of the 
gamma distribution have been previously derived (Grilli, 2020), we briefly outline relevant deriva-
tions here for the convenience of the reader before deriving the predicted richness and diversity of a 
community. We define the SLM as the following Langevin equation

 

dxi
dt

= xi
τi

(
1 − xi

Ki

)

� �� �
Self-limiting growth

+
√

στi

τi
xi · η(t)

� �� �
Environmental noise  

(5)

Here  τi ,  Ki , and  στi  represent the timescale of growth, the carrying capacity, and the coefficient of 
variation of growth rate fluctuations, respectively. Multiplicative environmental noise is captured by 
the product of a linear frequency term, the coefficient of variation of growth rate fluctuations, and a 
Brownian noise term  η(t)  that introduces stochasticity into the equation. The expected value of  η(t)  
is  ⟨η(t)⟩ = 0  (Gardiner, 2009). The dependence of  η(t′)  at time  t′  on an earlier time  η(t)  is defined as 

 
⟨
η(t)η(t′)

⟩
= δ(t − t′) (Gardiner, 2009). This standard definition means that if the noise term is shifted 

in time, it has zero correlation with itself. We briefly note that because DBD patterns were originally 
investigated by Madi et al., using an ensemble of sites that belong to the same type of ecosystem 
rather than the time series of a single site (Madi et al., 2020), the gamma distribution alone does not 
prove the validity of the SLM nor does it prove alternatively formulated stochastic differential equa-
tions of ecology that also predict a gamma distribution (e.g. George and O’Dwyer, 2022). However, 
given that the SLM has successfully characterized the temporal dynamics of microbial communities, 
we believe that this model is an appropriate formulation for investigating DBD patterns (Grilli, 2020; 
Wolff et al., 2023; Descheemaeker and de Buyl, 2020).

In contrast to the SLM, macroecological predictions can be derived from the UNTB. There are many 
forms of the UNTB, but the novelty of observed fine vs. coarse- grained relationships was assessed 
using a form of the UNTB that predicts that the distribution of community member abundances within 
a given site follows a zero- sum multinomial distribution (Alonso and McKane, 2004; Madi et al., 
2020). For the convenience of the reader the predicted richness using the form of the UNTB relevant 
to this study has been rederived (Supporting information).

The stationary distribution of the SLM can be derived using the Itô ↔ Fokker- Planck equivalence 
and solving for the stationary solution (Grilli, 2020; Engen and Lande, 1996), resulting in the gamma- 
distributed AFD. Through the SLM, we can define the mean relative abundance and its squared 

inverse coefficient of variation as 
 
x̄i = Ki

(
1 − στi

2

)
 
 and 

 
βi = 2−στi

στi  
, respectively. These are parameters 

that were estimated from the empirical data and were used below to obtain predictions. Using these 
definitions and the stationary distribution of Equation 5, we obtained the gamma distribution
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P(xi |̄xi,βi) = 1

Γ
(
βi
)
(
βi
x̄i

)βi

exp
[
−xi

βi
x̄i

]
xβi−1

i
  

(6)

When we sequence microbial communities, one obtains read counts rather than actual abun-
dances. Therefore, it is necessary to account for the reality of sampling when we apply to empirical 
data. We can account for sampling by first assuming that the probability of observing a single commu-
nity member can be modeled as a binomial sampling process. Given that the total number of reads 
is typically large ( N ≫ 1 ) and the typical relative abundance of a community member is much smaller 
than one ( xi ≪ 1 ), the binomial can be approximated as a Poisson sampling process with the following 
probability of sampling  n  reads

 
P(n|N, xi) = (N · xi)ne−N·xi

n!   
(7)

This formulation of the sampling process is convenient, as it can be used to obtain an analytic 
solution for the probability of observing  n  reads given  ̄xi  and  βi , the parameters we estimate from 
the data. This distribution can be obtained by solving the convolution of the Poisson and the gamma 
distribution (Grilli, 2020). The resulting distribution can be considered a negative binomial distribu-
tion if sites have identical sampling depths (Fisher, 1941). Using this distribution, we calculated the 
probability of obtaining  nm  reads out of a total sampling depth of  Nm  for the ith OTU in sample  m  as

 
P(nm|Nm, x̄i,βi) =

ˆ ∞

0
P(xi |̄xi,βi) · P(nnm|Nm, xi)dxi

  
(8a)

 
= Γ(βi + nm)

nm!Γ(βi)

(
x̄iNm

βi + x̄iNm

)nm (
βi

βi + x̄iNm

)βi

  
(8b)

This distribution requires two parameters that can be estimated from the data ( ̄xi  and  βi ) and one 
parameter that is known (total number of reads,  Nm ). This equation will be used to obtain predictions 
of measures of biodiversity. First, noticing that the probability of a community member’s absence is 
the complement of its presence, we can define the expected occupancy of a community member 
across  M   sites as

 

⟨
oi
⟩

= 1
M

M∑
m

(
1 − P(0|Nm, x̄i,βi)

)
  

(9)

And the second moment of occupancy as

 

⟨
o2

i

⟩
= 1

M

M∑
m

(
1 − P(0|Nm, x̄i,βi)

)2

  
(10)

from which we defined the predicted variance of occupancy

 
Var(oi) =

⟨
o2

i

⟩
−

⟨
oi
⟩2

  (11)

The success of our predictions was assessed using the relative error.

 
ε =

∣∣∣∣
Obs. − Pred.

Obs.

∣∣∣∣
  

(12)

Using the definition of occupancy from the sampling form of the gamma distribution, we derived 
the expected richness of a community as

 
⟨S⟩ =

Stotal∑
i=1

⟨oi⟩
  

(13a)

 
= 1

M

M∑
m=1

Sobs∑
i=1

(1 − P(0|Nm, x̄i,βi))
  

(13b)
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= Stotal −

1
M

M∑
m=1

Stotal∑
i=1

P(0|Nm, x̄i,βi)
  

(13c)

where  Stotal  is the total number of observed community members. Similarly, we derived the expected 
value of Shannon’s diversity (Magurran, 2004).

 
⟨H⟩ = 1

M

M∑
m=1

⟨Hm⟩
  

(14a)

 
= − 1

M

M∑
m=1

Sobs∑
i=1

⟨
x ln

[
x
]

|Nm, x̄i,βi
⟩
  

(14b)

 
= − 1

M

M∑
m=1

Stotal∑
i=1

ˆ Nm

0

n
′

Nm
ln

[
n
′

Nm

]
· P(n

′
|Nm, x̄i,βi)dn

′

  
(14c)

In physics parlance, these predictions neglect interactions between community members, also 
known as mean- field predictions. We then calculated the mean- field prediction of Equation 13a from 
empirical data. However, there is no known analytic solution for the integral inside the sum of Equa-
tion 14a. To calculate  ⟨H⟩ , we performed numerical integration on each integral for each taxon in each 
sample at a given coarse- grained resolution using the quad() function from SciPy.

To predict the variance of each measure we derived the expected value of the second moment, 
assuming independence among community members. We derived the second moments of richness 
and diversity.

 

⟨
S2
⟩

=

⟨(Stotal∑
i

oi

)2⟩

  
(15a)

 
= 1

M

M∑
m

(Stotal∑
i

oi,m

)2

  
(15b)

 

= 1
M

M∑
m

∑
i,j

oi,moj,m

ˆ
dnP(n|N, x̄i,βi)δN,Nm

� �� �
=1   

(15c)

 
=
ˆ

dnP(n|N, x̄i,βi)
∑

i,j

1
M

M∑
m

δN,Nm oi,moj,m
  

(15d)

 
=

Stotal∑
i=1

ˆ
dnP(n|N, x̄i,βi)o2

i δN,Nm +
∑
i̸=j

ˆ
dnP(n|N, x̄i,βi)oiojδN,Nm

  
(15e)

 
=

Stotal∑
i=1

⟨
o2

i |Nm, x̄i,βi

⟩
+
∑
i̸=j

⟨
oi|Nm, x̄i,βi

⟩ ⟨
oj|Nm, x̄j,βj

⟩
  

(15f)

where  δi,j  is the Kronecker delta.
By performing an analogous series of operations, we obtained the expected value of the second 

moment for diversity.

 

⟨
H2

⟩
=

⟨(Stotal∑
i

xi ln
[
xi
])2⟩

  
(16a)

 
= 1

M

M∑
m

(Stotal∑
i

xi ln
[
xi
])2

  
(16b)

 
= 1

M

M∑
m

∑
i,j

(
xi ln

[
xi
]) (

xj ln
[
xj
])

·
ˆ

dnP(n|N, x̄i,βi)δN,Nm

  
(16c)
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= 1

M

M∑
m
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(x ln

[
x
]
)2|Nm, x̄i,βi

⟩

  
(16f)

 
+ 1

M
∑
i̸=j

M∑
m

⟨
x ln

[
x
]

|Nm, x̄i,βi
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Where the expected value of the second moment of the diversity term is defined as 

 

⟨
(x ln

[
x
]
)2|Nm, x̄s,βs

⟩
=
ˆ Nm

0

(
n
′

Nm
ln

[
n
′

Nm

])2

 
  ·P(n

′
|Nm, x̄s,βs)dn

′

 . From which we obtained the 

expected value of the variance

 
Var(S) =

⟨
S2
⟩
−

⟨
S
⟩2

  (17a)

 
Var(H) =

⟨
H2

⟩
−

⟨
H
⟩2

  (17b)

We predicted the mean and variance of richness and diversity separately at each coarse- grained 
scale. Specifically, we coarse- grained the empirical data, estimate  ̄xs  and  βs  for each coarse- grained 
community member, and use these estimates to obtain a prediction for each measure of biodiversity.

It is worth noting why the above functions constitute predictions. To obtain values that we can 
compare with empirical data we estimated the mean and variance of relative abundance across sites 
for each community member at a given scale. These parameters were used to obtain the expected 
value of a community- level measure (e.g. richness) using a function. These functions were derived 
under the assumption that a given probability distribution (i.e. the gamma) provided an appropriate 
description of the distribution of relative abundances across sites. We then compared the expected 
value of a community- level measure to the mean value from empirical data and assessed the similarity 
between the two values.

Fine vs. coarse-grained relationship slope inference
In order to predict the relationship between the measures within a coarse- grained group and that 
among all remaining groups, we calculated a vector of predicted richness or diversity estimates for all 
sites using Equation 3a or Equation 4a within a given coarse- grained group and 3b or Equation 4b 
among the remaining groups. This ‘leave- one- out’ procedure was originally implemented by Madi et 
al., where the authors examined the slope of fine vs. coarse- grained measures of diversity as a sliding 
window across taxonomic ranks with both the fine and coarse scales increasing with each rank (e.g. 
genus:family, family: order, etc.) (Madi et al., 2020). To maintain consistency, we used the same defini-
tion for our predictions. We also extended the definition to the case of phylogenetic coarse- graining, 
where we compared fine and coarse scales using different phylogenetic distances while retaining the 
same ratio (e.g. 0.1:0.3, 0.3:0.5, etc.). Slopes were estimated using ordinary least squares regression 
with SciPy. Throughout the manuscript the success of a prediction was evaluated by calculating its 
relative error as follows: we only inferred the slope if a fine- grained group had at least five members. 
We only examined the slopes of a given coarse- grained threshold if at least three slopes could be 
inferred.

Simulating communities of correlated gamma-distributed AFDs
Correlated gamma- distributed AFDs were simulated by performing inverse transform sampling. For 
each environment with  M   sites, an  M × Sobs  matrix  Z   was generated from the standard Gaussian 
distribution using the empirical  Sobs × Sobs  correlation matrix calculated from relative abundances. The 
cumulative distribution  U = Φ(Z)Gaus.  was calculated and a matrix of the abundances of community 
members across sites was obtained using the point percentile function of the gamma distribution and 

https://doi.org/10.7554/eLife.89650
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the empirical distribution of mean relative abundances and the squared inverse coefficient of varia-
tion of abundances:  ̄x = x̄1, x̄2, · · · , x̄Sobs ,  β = β1,β2, · · · ,βSobs . To simulate the process of sampling, each 
community of the resulting  M × Sobs  matrix of true relative abundances  X = Φ(U)−1

Gamma  was sampled 
using a multinomial distribution with the empirical distribution of total read counts.
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Appendix 1
Supporting information: Investigating macroecological patterns in 
coarse-grained microbial communities using the stochastic logistic 
model of growth
UNTB richness predictions
Below we rederive a prediction for richness using the form of the UNTB used by Madi et al., as a 
point of comparison to the SLM predictions derived in the main manuscript (Madi et  al., 2020; 
Alonso and McKane, 2004). When the size of a metacommunity tends towards an asymptotic 
limit, the stationary distribution for community members of relative abundance  x  approaches the 
following continuous distribution (Vallade and Houchmandzadeh, 2003).

 
P(x|θ)dx = θ

x
(1 − x)θ−1dx

  
(S1)

where  θ  is Hubbell’s biodiversity parameter (also known as Fisher’s  α  Fisher et al., 1943).
Using this distribution, we can obtain an expression for the expected number of community 

members with  n  sampled individuals out of a total sample size of  N  .

 
S(n|N, m, θ) = θ

ˆ 1

0
P(n|N, m, x) (1 − x)θ−1

x
dx

  
(S2)

where  P(n; N, m, x)  is the probability of sampling  n  individuals of relative abundance  x  given a total 
sample size  N  

 
P(n|N, m, x) =

(
N
n

)
Γ(n + γx)
Γ(γx)

Γ(N + γ(1 − x) − n)
Γ(γ(1 − x))

Γ(γ)
Γ(γ + N)  

(S3)

where 
 
γ = m(N − 1)

1 − m  
. The function Equation S2 is known as the migration- limited zero- sum 

multinomial distribution (ZSM) (Alonso and McKane, 2004). As  m → 1 , Equation S2 approaches a 
limiting form known as the metacommunity zero- sum multinomial distribution (mZSM). The process 
of sampling community members under the mZSM can be represented as a binomial distribution.

 
S(n|N, θ) = θ

ˆ 1

0
xN(1 − x)N−n (1 − x)θ−1

x
dx

  
(S4)

Similar to our analysis using the SLM, the binomial can be approximated as a Poisson distribution.

 
S(n|N, θ) = θ

ˆ 1

0
e−xN (xN)n

n!
(1 − x)θ−1

x
dx

  
(S5)

The resulting integral can be obtained by using the change of variable  y = xN   and rearranging 
terms, then approximating the upper limit of integration as infinity (since  N ≫ 1 ).

 
S(n|N, θ) = θ

ˆ 1

0
e−y (y)n

n!

(
1 − y

N

)θ−1 N
y

dy
N   

(S6a)

 

= θ

n

ˆ 1

0
e−y yn−1

(n − 1)!� �� �
Gamma distribution

(
1 − y

N

)θ−1
dy

  

(S6b)

 

≈ θ

n

ˆ ∞

0
e−y yn−1

(n − 1)!� �� �
Gamma distribution

(
1 − y

N

)θ−1
dy

  (S6c)

 
= θ

n

⟨(
1 − Y

N

)θ−1
⟩

  (S6d)
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By rearranging terms, we obtain a gamma distribution with shape parameter  n  and rate parameter 
1. Because we integrated over a product with a gamma distribution, the variable  Y   is a gamma- 
distributed random variable. We can then expand term in the integral using a Taylor series around 

 Y = n  and by noticing that  
⟨
Y
⟩

= n  and 
 

⟨
Y2

⟩
= n2 + n

 
 under a gamma distribution.

 
S(n|N, θ) = θ

n

(
1 − n

N

)θ−1
+ 1

2
θ(θ − 1)(θ − 2)

N2

(
1 − n

N

)θ−3
+ O

(
N−3

)
  

(S7)

We can then predict the richness of a community by summing the abundances from 1 to  N  .

 
S(N, θ) =

N∑
n=1

S(n|N, θ)
  

(S8)

This quantity represents the total observed richness of a sample from a panmictic infinite 
metacommunity after accounting for sampling. Predictions of mean richness over  M   sites can then 
be calculated as

 

⟨
S(θ)

⟩
= 1

M

M∑
m=1

S(Nm, θ)
  

(S9)

Simulating fine vs. coarse-grained richness slopes under the UNTB
We followed the procedure in Madi et al., to obtain fine vs. coarse- grained slopes for richness so that 
they could be compared to predictions obtained from the SLM (Madi et al., 2020). We simulated 
SADs according to the mZSM model outlined above using the rmzsm() function from the R package 
sads v0.4.2. We simulated 100 SADs using the empirical distribution of total read counts and the 
total number of observed OTUs. We set the biodiversity parameter  θ = 50  for all environments. The 
SADs returned by rmzsm() contain no zeros, meaning that values of richness are identical for all UNTB 
SADs. In order to introduce zeros so that richness estimates could vary, we followed the procedure 
used in Madi et al., where each simulated SAD was rarefied to 5000 individuals. We repeated this 
rarefaction procedure on the empirical SADs. We then performed taxonomic and phylogenetic 
coarse- graining and fine vs. coarse- grained slope inference using the procedure described in the 
Materials and methods.
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