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Abstract Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and 
other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and 
was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds 
of different codons are known, and indeed rare codons are translated slowly. We re-examined this 
5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addi-
tion, they are depleted for downstream Start codons (which are fast), with both effects contributing 
to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly 
conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When 
a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because 
evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly 
enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct 
experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, 
and that substituting faster synonymous codons improves expression. Direct experiment shows that 
slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that 
for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expecta-
tion of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive conse-
quence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve 
translation.

eLife assessment
This is an important contribution to the origins and translational consequences of the relatively low 
rate of translation elongation in the first ∼30-50 codons of genes in most organisms. The authors 
provide convincing evidence that the prevalence of rare codons in the first ~40 codons in yeast 
is due to the relatively recent evolution of these coding sequences, or of lower purifying selection 
operating on them, and that a preponderance of codons encoded by rare tRNAs near the N-ter-
minus is not associated with higher translational efficiency in the manner proposed by the "trans-
lational ramp" hypothesis. The work is incomplete in that the results of reporter assays may have 
been confounded by alterations of mRNA sequence or structure that could have influenced their 
translation or mRNA stability; that the work cannot fully account for a greater enrichment of slowly 
translated codons in N-terminal vs. C-terminal regions; and that the work does not resolve whether 
translation elongation through N-terminal coding is truly slow.
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Introduction
(Tuller et al., 2010) were interested in the idea that a slow translational ramp at the beginning of a 
gene might queue ribosomes in an orderly way, thereby preventing ribosome traffic jams and colli-
sions. However, at that time, translation speeds for the 61 sense codons were not known from direct 
measurement. Therefore, as a proxy for codon translation speed, Tuller et al. devised a proxy speed 
measurement based on the tRNA-adaptation index (tAI), a measure of the abundance of each tRNA. 
The assumption is that codons recognized by more abundant tRNAs would be translated faster. Using 
this proxy, Tuller et al. found that in yeast and other eukaryotes, the first 30–100 codons are enriched 
for codons for which tRNAs are rare (generally, rare codons), and are presumably translated slowly. 
The size of the effect is small (about a 3% difference, Figure 2C of Tuller et al., 2010), but is statisti-
cally highly significant.

At the time of the work of Tuller et al. ribosome profiling had recently been developed (Ingolia 
et al., 2009), and early ribosome profiling showed a high density of ribosomes near the 5’ end of the 
mRNA, consistent with slow translation in this region, and the rare codons found by Tuller et al. could 
have contributed to this. However, later work showed that this 5’ high density of ribosomes was an 
artifact of the way cycloheximide was used to arrest translation in the original protocol (Weinberg 
et al., 2016). With newer protocols for ribosome profiling, which use cycloheximide only at later steps, 
the region of 5’ high ribosome density largely, but not entirely, disappears (Weinberg et al., 2016) 
(see Discussion).

Since then, many workers have used ribosome profiling to directly measure the speed of translation 
of individual codons (cited below). With such data in hand, we revisited the issues addressed by Tuller 
et al., 2010. On the one hand, our analyses confirm that the 5’ regions of genes are typically slightly 
enriched for rare codons, and these encodings likely slow translation. On the other hand, various 
aspects of the data led us to an alternative hypothesis, namely that the 5’ ends were turning over 
relatively rapidly in evolution; that these 5’ ends were, therefore, relatively young; and that selection 
had not yet succeeded in removing all the rare, slow codons initially present in the de novo 5’ ends. 
We did a direct experimental test of the effects of slow or fast initial translation. Opposite to Tuller 
et al., we found that encoding slow initial translation resulted in lower protein production than fast 
initial translation. This continued to be true even when we placed ribosome collision sites inside the 
reporter gene. Thus a slow initial translation ramp, though present, neither improves gene expression 
nor prevents ribosome collisions.

It is natural to assume that the enrichment of slow codons near 5’ ends is a product of selection. 
However, as elegantly argued by Gould and Lewontin, 1979 in their classic paper ‘The Spandrels of 
San Marco and the Panglossian Paradigm: A Critique of the Adaptionist Programme,’ not all biolog-
ical phenomena are adaptive, or even a direct product of selection. They argued from the example 
of a ‘spandrel:’ in architecture, a triangular space created when an arch supports a lintel. There is no 
architectural role for spandrels as such; they are the indirect and inevitable result of the juxtaposition 
of two other functional architectural elements. We argue that the slightly slow initial translation of 
eukaryotic genes may likewise be a spandrel, a non-adaptive consequence of something else, the 
instability of 5’ ends in evolution.

Results
Calculations of encoded translation speed imply slow initial translation
Tuller et al., 2010 used codon-specific tRNA abundance as a proxy to estimate the speed of trans-
lation of codons. Since then, analysis of ribosome profiling data has yielded direct measurements of 
the translation speed of individual codons (Weinberg et al., 2016; Dao Duc and Song, 2018; Gardin 
et al., 2014; Gritsenko et al., 2015; Lareau et al., 2014; Sharma et al., 2019; Tunney et al., 2018; 
Wang et al., 2017). Accordingly, we have repeated some of the work of Tuller et al. but using the 
Ribosome Residence Time (RRT, Methods and materials, Supplementary file 1; Gardin et al., 2014) 
of each of the 61 sense codons as a measure of translation speed. We refer to ‘encoded translation 
speed’ to specify that we are focusing purely on the effects of different codons on translation speed, 
and not on other factors that might differentially affect translation speed at different regions of the 
mRNA, such as secondary structure.

https://doi.org/10.7554/eLife.89656
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Using the RRT, encoded translation speeds were calculated in sliding windows across all coding 
ORFs from S. cerevisiae. The start codon was omitted because it is constant across genes and is an 
unusually ‘fast’ codon. Consistent with Tuller et al. we find that the first 30–100 codons had lower 
calculated translation speeds than the rest of the gene (Figure 1). We focused our analyses on the 
first 40 codons for comparability to Tuller et al.; we call this the ‘Slow Initial Translation’ region, or SIT. 
Although the tendency towards slow translation near the beginning of the gene is very highly statisti-
cally significant, the size of the effect is small. When we compare the first 40 codons of a gene to the 
rest of the same gene, we find that the average difference in encoded translation speed is about 1.2% 
(similar to Tuller et al., 2010), with a p-value <0.001. For comparison, codons can vary in translation 
speed by about threefold (Supplementary file 1), or perhaps as much as sixfold (Weinberg et al., 
2016, their Table S2).

Although on average genes are translated slowly near their 5’ ends, there is variability. Figure 1—
figure supplement 1 shows the distribution of initial encoded translation speed for all yeast ORFs. 
About 57% of genes have a slow initial translation (SIT) region, while the remainder have fast initial 
translation (FIT).

Rare (slow) codons are enriched within the first 40 codons
Rare codons tend to be slow codons, and vice versa (Gardin et al., 2014; Figure 2—figure supple-
ment 1). But the correlation is not perfect—other things being equal, A/T-rich codons tend to be 
faster than G/C-rich codons, and codons with a third position wobble base tend to be faster than 
codons with the cognate base (Gardin et al., 2014). To better understand why gene beginnings are 
more slowly translated, we examined the relative usage of each of the 61 sense codons in the first 40 
codons after but not including the initiator ATG (Figure 2).

For almost all amino acids, with isoleucine (ATC, ATA, ATT) being the only clear exception, we 
saw relative enrichment of the rarest and generally slowest codons. In particular, there were notable 
enrichments of the three rarest, slowest arginine codons (CGA, CGC, CGG) (likely because of their use 
in N-terminal signal sequences, see below) and the slow, rare codons for proline (CCC, CCG), leucine 
(CTC), glycine (GGG), and cysteine (TGC) (Figure 2A). These enrichments can explain most of the 
slow initial translation.

Figure 1. Calculation of translation speed confirms slow initial translation (SIT). Translation speeds were calculated 
using ribosome residence time (RRT) (Gardin et al., 2014; Supplementary file 1 for RRT values) as a measure 
of codon-specific translation speed over S. cerevisiae open reading frames (ORFs). The horizontal line indicates 
average inverse RRT across all ORFs. The average speed in the first 40 amino acids is about 1.1% slower than in the 
rest of the gene (p < 0.001).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Distribution of translation speeds at 5’ and 3’ ends.

https://doi.org/10.7554/eLife.89656
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Figure 2. Codon usage in the slow initial translation (SIT) region. (A). Relative codon usage in the SIT versus the rest of the gene. The Y-axis shows 
codon usage in the first 40 amino acids (omitting ATG) divided by its usage in the rest of the gene. The 61 sense codons are grouped by amino acid. 
Within each group, codons are ordered from least to most frequent left to right. Red arrows show the seven slowest codons by ribosome residence time 
(RRT), purple arrows show the seven rarest codons by total usage, and Figure 2—figure supplement 1 shows the correlation between codon usage 
and translation speed. Blue shows Start and alternative Start codons (ATG, TTG, ATT, ATA). Ratios above 1 show enrichment in the first 40 amino acids. 
Typically, the rarest codons are enriched. (B). Absolute usage of each leucine codon in the SIT. The absolute usage frequency of each leucine codon is 
shown globally, and for the first 40 amino acids. Rare codons are still rare in the SIT, just not as rare as elsewhere. The same pattern holds for the other 
amino acids.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Codon speed and codon usage are correlated.

https://doi.org/10.7554/eLife.89656
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In addition, in the first 40 codons after but not including the initiator ATG, we saw notable deple-
tion of the canonical Start codon ATG (by nearly 50%), and the alternative Start codons ATT and TTG 
(Eisenberg et al., 2020; Figure 2A) by lesser but still significant amounts. These three codons are 
very fast (Supplementary file 1), and the depletion of these fast codons would make the average 
translation speed slower. Possibly Start codons are depleted to reduce the possibility of translation 
initiating at the wrong place. We recalculated translation speeds after assigning ATG a neutral speed 
(Supplementary file 2). This reduced the difference in translation speed between the SIT and the rest 
of the gene by about 15% of the difference. Since the three most commonly used alternative Start 
codons are ATT, TTG, and ATA (Eisenberg et al., 2020), we also neutralized these by assigning them 
a neutral RRT (1.0189), in addition to neutralizing ATG. After neutralization of all four codons, the 
difference in translation speed between the SIT and the rest of the gene was reduced by about 40%, 
a significant change (Supplementary file 2). Even so, the remaining slow initial translation was highly 
significant. Thus, the depletion of Start codons contributes significantly to slow initial translation, but 
enrichment for rare, slow codons contributes even more.

(ATG and alternative Start codons are also depleted in the other two reading frames, but these 
depletions have indirect effects on the in-frame codons, such that there are roughly off-setting effects 
on translation speed. For instance, the depletion of TGG (Trp) (Figure 2) is likely partly due to deple-
tion of xxA TGG, but since TGG is a slow codon, this depletion increases 5’ translation speed.)

Rare codons are rare in the first 40 codons, just not as rare as 
elsewhere
Although the proportion of rare, slow codons in the SITs is relatively higher than in the body of genes, 
in absolute terms rare codons are still rare compared to more common synonymous codons (e.g. 
Figure 2B, Leu codons). That is, rare, slow codons are still strongly disfavored in the SIT, though they 
are less strongly disfavored than elsewhere. This was true for all rare codons.

Why are there relatively more rare, slow codons at 5’ ends?
Our analysis is consistent with that of Tuller et al. to the extent that we find a slight relative enrichment 
of rare, slow codons near the 5’ ends of coding regions. Tuller et al. interpret the slow translation ramp 
as an adaptation—they believe there is a selection for slow codons near the 5’ end to enhance the 
efficiency of translation. But there are other possibilities.

The Young Spandrel hypothesis
We noticed (see below) that the N-termini of yeast genes are often poorly conserved, and otherwise 
highly homologous genes often vary at the N-termini between different closely related species. This 
suggests a different idea: N-termini are unstable and variable in evolution. They form de novo from 
new DNA sequence, and so all codons may initially occur at similar frequencies. De novo formation of 
a N-terminus could occur from use of a new Start codon (Bazykin and Kochetov, 2011; Kochetov, 
2008). Since these N-termini are, on average, younger than the remainder of the gene, selection 
has worked on them for a shorter time. Therefore, selection against rare, slow codons may be less 
complete, and N-termini, due to their relative youth, may still retain some extra rare codons.

In this idea, in contrast to Tuller et al. the slight excess of rare codons near N-termini is not adap-
tive; it is not at all a product of selection. Instead, in the words of Gould and Lewontin, 1979, it is a 
spandrel. It is a non-adaptive by-product of something else, in this case, the evolutionary instability of 
N-termini. This idea is explored below.

Poor 5’ conservation is a feature of many yeast genes
We picked example genes for illustration. We used protein-protein BLAST at NCBI to blast several 
query genes against species of the subphylum Saccharomycotina (but having subtracted out all of 
Saccharomyces). Figure 3 shows that for these examples, the middle portions of the proteins are 
highly conserved, but the N-termini are not. We suggest that these non-conserved N-terminal regions 
are young in evolution, and therefore likely contain an excess of rare codons.

In the next section, we ask whether the findings of Figure 3 can be generalized to proteins of S. 
cerevisiae.

https://doi.org/10.7554/eLife.89656
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Method of scoring N-terminal conservation, and rationale for using 
Saccharomycotina
We investigated N-terminal protein conservation using a quantitative approach. We ran local protein-
protein BLAST for all S. cerevisiae genes against sequences of the Saccharomycotina subphylum, 
omitting Saccharomyces cerevisiae. Saccharomycotina was chosen because almost every gene from 
S. cerevisiae has a recognizable, conserved homolog in almost every species in Saccharomycotina, 
and yet the evolutionary distances are long enough that there is considerable sequence variability. We 
excluded species of Saccharomyces as they are too closely related to S. cerevisiae, and they are very 
numerous in sequence collections, and would overwhelm results from the other members of Saccha-
romycotina. However, we believe that this choice of subphylum does not greatly affect the final result.

Figure 3. The N-termini of proteins can vary in evolution. BLAST of four example S. cerevisiae proteins against proteins in the subphylum 
‘Saccharomycotina’ (taxid: 147537) (excluding Saccharomyces, taxid 4930) was performed. Top hits are shown. Red regions indicate homology with an 
alignment score >200, while white indicates no detected homology (BLAST default parameters). Even though all hits have high to moderate homology 
towards the center of the protein, many have little or no homology at the N-terminus.

https://doi.org/10.7554/eLife.89656
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Conservation at the N-terminus was calculated as the weighted proportion of yeast species with 
sequence matches (a match by default BLAST parameters) beginning in the first 40 amino acids. The 
lowest conservation score is 0 (no hits in the first 40 amino acids), whereas the highest conservation 
score is 40 indicating that every species had a match (default BLAST parameters) starting at the 
first amino acid (Supplementary file 3 and 4). The length of genes is negatively correlated with the 
conservation score, especially at the N-terminus (rho = –0.47; p <0.001), but also for the rest of the 
gene (rho = −0.37, p<0.001)—that is, short genes tend to be more conserved.

N-termini are variable and poorly conserved
We measured protein conservation across more than 3000 S. cerevisiae proteins with orthologues 
among 822 closely related yeasts from Saccharomycotina. For each protein, we developed a conser-
vation score for the first 40 amino acids to represent the N-termini, an equivalent conservation score 
for the middle 40 amino acids, and an equivalent conservation score for the C-terminal 40 amino acids 
(Methods and materials; Supplementary file 3 and 4).

Strikingly, the N-termini of S. cerevisiae orthologs had conservation scores that were much lower, 
and very differently distributed than the middle of the same orthologs (Figure 4). The first 40 amino 
acids had a flat distribution of protein conservation scores, indicating high levels of variability amongst 
these orthologs. That is, many of the orthologs had no detectable homology with the first 40 amino 
acids of the cerevisiae protein.

In contrast, the middle 40 amino acids were highly conserved, with conservations scores peaking 
at 40, the highest possible score. It Is evident that for the middle 40 amino acids, a large fraction of 
orthologs had a region of high homology to the S. cerevisiae protein, whereas this was not true for 
the N-termini. Finally, the last 40 amino acids had conservation scores similar to those of the first 40 
amino acids, though a bit higher (more conserved) see Figure 4—figure supplement 1 for a compar-
ison. These results suggest both ends of the gene ‘breathe,’ gaining and losing new sequences during 
evolution, whilst the middles stay constant. Thus the ends of genes are younger than their middles. 
At their first formation, they would likely have contained some rare codons, which selection may not 
yet have had time to remove.

The 3’ ends of genes also have slightly slow translation
As shown in Figure 4C, the C-termini of proteins have poor conservation, like the N-termini. There-
fore, the Spandrel hypothesis predicts slow translation at 3’ ends. We calculated translation speeds at 
3’ ends, and again found slightly slow translation (Figure 5). This was not statistically significant over 
the last 40 codons, but it was significant over the last 100 codons (Figure 5) and the last 120 codons 
(Supplementary file 2). Like the 5’ end, there was a slightly increased relative frequency of rare 
codons (Figure 5—figure supplement 1), but unlike the 5’ end, ATG was not depleted (Figure 5—
figure supplement 1).

There may be at least three reasons why translation at 3’ ends is not as slow as at 5’ ends. First, at 3’ 
ends, Start codons and alternative-Start codons (which are fast) are not depleted (because at 3’ ends, 
there is no issue of generating incorrect translation initiation sites), and this retention of fast codons 
tends to make 3’ ends faster than 5’ ends.

Second, there are two sets of genes, mitochondrial genes, and ER (Endoplasmic Reticulum) genes, 
that have especially slow 5’ translation. Tuller et al. characterized several functional groups of genes 
for the amplitude and length of their slow initial translation ramp. The group with the greatest ampli-
tude was the group of 282 genes for ‘Mitochondrial organization.’ This group is dominated by genes 
for proteins imported into mitochondria. We believe this especially slow translation is due to N-ter-
minal signal sequences. Mitochondrial import depends on an N-terminal signal sequence. A typical 
mitochondrial signal sequence has an average of 25 residues, is highly enriched for arginine, and has 
relatively little sequence conservation (e.g. cluster I of Fukasawa et al., 2015). Since four of the 10 
slowest codons are for arginine, and since little sequence conservation is required in a mitochondrial 
signal sequence, these signal sequences seem good candidates for regions that could vary rapidly in 
evolution, and have slow initial translation (thanks largely to rare, slow Arg codons). Indeed, we found 
that for a set of 467 mitochondrial proteins (Williams et al., 2014) initial translation was about 2.3% 
slower than in the rest of the genes, versus only 1.04% slower for genes with no mitochondrial or ER 
signal sequence (Supplementary file 2 and Figure 5—figure supplement 2). We had similar findings, 

https://doi.org/10.7554/eLife.89656
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Figure 4. Conservation of S. cerevisiae proteins over the N-terminal, Middle, and C-terminal 40 amino acids. 
S. cerevisiae proteins were blasted against proteins of Saccharomycotina (excluding cerevisiae). ‘Conservation 
Scores’ (Methods and materials) were calculated for the N-terminal, Middle, and C-terminal 40 amino acids of the 
S. cerevisiae proteins. Scores range from 0 (no conservation) to 40 (perfect conservation). The frequency of each 
conservation score (3964 S. cerevisiae proteins) was plotted.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of conservation scores at the N- and C-termini.

https://doi.org/10.7554/eLife.89656
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but to a lesser extent, for proteins with an ER signal sequence, which is also rich in basic residues 
(Figure 5—figure supplement 2). In this case, Pechmann et al., 2014 have argued that a cluster of 
rare, slow codons 35–40 codons from the N-terminus provide a translational pause that allows the 
Signal Recognition Particle time to recognize the signal sequence. Both kinds of explanations could 
be true.

Third, as an adaptation argument, 5’ ends could sometimes be selected for poor translation to 
produce an appropriately small amount of protein, and this would sometimes favor rare codons (see 
below).

(Cope et al., 2018) had similar findings for N-terminal signal peptides of E. coli, which are enriched 
in translationally inefficient codons. Like us, they suggested selection for codon usage was relatively 
weak (or evolutionarily brief) at 5’ ends, and they cited the ‘Spandrel’ idea of Gould and Lewontin, 
1979: that is, the inefficient codons might have arisen for a non-adaptive reason, and persisted 
because of weak (or brief) selection.

5’ translation speeds positively correlate with 5’ conservation scores
If the ‘Young Spandrel’ hypothesis is true, and slow 5’ translation is partly caused by evolutionary 
instability of 5’ ends, then there should be a correlation between encoded slow translation, and poor 
N-terminal conservation. Our model predicts the least conserved N-termini to have the slowest trans-
lation (i.e. rarest codons), and, vice versa, the termini with the slowest translation should have the 
lowest conservation. To test this, we ranked all genes by the conservation scores of their first 40 amino 
acids. We then divided this ranked list into thirds. For each of the thirds (i.e. the bottom, middle, and 
top conservation scores) we plotted the average relative initial translation speeds.

As shown in Figure 6A, the genes with the most poorly conserved N-termini also had the slowest 
initial translation, while the genes with the most conserved N-termini had the fastest initial translation, 
supporting the Spandrel hypothesis, and opposite to the Ramp hypothesis.

Figure 5. Translation speed at 3’ ends. Translation speeds at the 3’ ends of genes were calculated using ribosome residence time (RRT) (Gardin et al., 
2014; Supplementary file 1 for RRT values). The average speed over the last 40 amino acids is about 0.1% slower than in the rest of the gene, not 
statistically significant. The average speed over the last 100 amino acids is about 0.19% slower, which is significantly different (p=0.028).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Codon characteristics at the beginnings and ends of yeast genes.

Figure supplement 2. Mitochondrial and ER signal sequences.

https://doi.org/10.7554/eLife.89656
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Figure 6. Slow initial translation is correlated with poor N-terminal conservation. (A) Proteins were grouped by their N-terminal conservation scores 
(top, middle, and bottom thirds), and then the relative initial translation rate was plotted for each group. More conserved N-termini have a faster 
initial translation. (B) Proteins were grouped by their initial translation rate (Slow, SIT; Medium, MIT, or Fast, FIT), and then the N-terminal conservation 
scores were plotted for each group. Genes with faster initial translation have more conserved N-termini. Relative Initial Translation Speed is the log2 of 
(average ribosome residence time, RRT of the first 40 amino acids divided by the average RRT of the rest of the same gene) (Methods and materials).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Slow 3’ translation is correlated with poor C-terminal conservation.

https://doi.org/10.7554/eLife.89656
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We also looked at the correlation in the other direction (Figure 6B). We ranked genes by their rela-
tive initial translation speed, and divided the ranked list into thirds, then plotted N-terminal conserva-
tion scores. Again the effects are correlated: genes with the slowest initial translation have the lowest 
N-terminal conservation scores. Thus, overall, there is a strong correlation between N-terminal insta-
bility (i.e. newness in evolution, low conservation scores) and slow initial translation (i.e. the presence 
of slow/rare codons).

These correlations (i.e. between poor conservation and slow translation; and between slow transla-
tion and poor conservation) were also seen at the 3’ ends of genes (Figure 6—figure supplement 1).

The Ramp hypothesis is inconsistent with observations of ribosome 
density and gene expression
In the Tuller ‘Ramp’ hypothesis, in which the purpose of the slow translational ramp is to queue 
ribosomes and prevent collisions, genes with the highest ribosome occupancy would be in the most 
danger of ribosome collisions, and would, therefore, presumably have pronounced SITs. SITs might not 
be necessary on genes with low ribosome density, since there would not be much danger of collision 
in any case. To test this, we used information from Arava et al., 2003, which measured the density of 
ribosomes on all S. cerevisiae mRNAs (Arava et al., 2003; Figure 7). We ranked genes by ribosome 
density, then grouped them in thirds. Opposite to the expectation from the Tuller et al. ‘Ramp’ theory, 
the genes with the highest ribosome densities had the fastest initial translation, whereas the genes 
with the lowest ribosome densities had the slowest initial translation (Figure 7C). While these findings 
are opposite to the expectation of the ‘Ramp’ theory, they are consistent with the spandrel theory, 
because genes with high ribosome density would be subject to more intense selection against slow 
codons, thus leading to faster 5’ ends. Furthermore, analysis of Conservation Scores on the same 

Figure 7. Genes with high levels of expression, and high ribosome densities, generally have rapidly-translated N-termini, and high N-terminal 
conservation scores. (A and B) Genes were grouped by expression level (bottom, middle, and top)(except that genes with fewer than 10 read-counts 
were omitted to reduce noise) (Lipson et al., 2009). In A, the initial translation rate is shown; in B, the conservation scores are shown. The correlation 
between speed and transcript abundance fails for the bottom third of genes; possibly these are genes expressed at high levels under other conditions 
(e.g. meiosis and sporulation). (C and D) Genes were grouped by ribosome density (Arava et al., 2003) as a measure of intensity of translation. In C, 
the initial translation rate is shown; in D, the conservation scores are shown. High ribosome density correlates with high initial translation speed and high 
conservation score.

https://doi.org/10.7554/eLife.89656
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genes showed that the genes with the lowest ribosome densities also had the lowest Conservation 
Scores (Figure 7D), as predicted by the Spandrel hypothesis.

Similarly, in the ‘Ramp’ hypothesis, ribosome collisions on highly-expressed genes would presum-
ably have more serious consequences for the cell than collisions on poorly-expressed genes, and so 
highly-expressed genes ought to have the most pronounced SITs. To test this, we used transcriptomic 
information from Lipson et al., 2009, which measured the number of mRNA transcripts for S. cerevi-
siae genes (Lipson et al., 2009). Again, we ranked genes by expression, then grouped them by thirds. 
Exactly contrary to the ‘Ramp’ hypothesis, we found that genes with the highest expression had the 
fastest initial translation (Figure 7A). In this analysis, the middle and bottom genes are not significantly 
different from each other; possibly some of the poorly expressed genes are inducible genes that 
would be highly expressed under some other condition (e.g. the sporulation genes, the GAL genes). 
In addition, the most highly expressed genes had the highest conservation scores, consistent with the 
Spandrel hypothesis (Figure 7B).

Experimentally, encoded slow initial translation does not increase gene 
expression; the opposite is true
Tuller et al. hypothesized that slow initial translation was adaptive, and improved the efficiency of 
translation and gene expression by minimizing ribosome collisions. However, in the Spandrel hypoth-
esis, slow initial translation is not generated by selection and is not adaptive. It might not have any 
effect on gene expression, but, if anything, slow translation might reduce gene expression. While 
informatics is wonderful, it is always nice to do an experiment, and in this section, we present direct 
experimental results regarding the effect of encoded slow, medium, and fast initial translation on gene 
expression.

We used a gene expression reporter based on EKD1024 (Brule et al., 2016) (Methods and mate-
rials). In this construct, GFP is the reporter, but for accuracy it is normalized against a divergently tran-
scribed red fluorescent protein (Figure 8—figure supplement 1). Thus, GFP expression is reported 
as a GFP/RFP ratio. Although the reporter is GFP, the N-terminal region of this particular protein is 

Figure 8. Slow initial translation inhibits gene expression. Left three bars. A synthetic GFP was constructed 
with a leader amino acid sequence that had little effect on GFP. The leader sequence was recoded to give slow 
(SIT), medium (MIT), or fast (FIT) translation speed over the first 41 amino acids, without changing the amino 
acid sequence—i.e., the SIT, MIT, and FIT had identical amino acid sequences, but different average ribosome 
residence times (RRTs). Each construct (SIT, MIT, FIT) was integrated in a single copy at the ADE2 locus, and 25 
independently-transformed strains were picked, and GFP fluorescence was measured for each, and the RFP-
normalized mean was plotted. Numerical values were: SIT, 1.66; MIT, 1.80, FIT, 2.29. GFP was normalized to RFP 
expressed from the same reporter molecule, but RFP fluorescence hardly changed amongst the transformants, 
and non-normalized GFP would have given very similar results. Slower initial translation reduced gene expression. 
Right three bars. As above, a Putative ribosome collision site (PCS) (CGA-CGG) was inserted between the leader 
and the GFP. Again, slower initial translation reduced gene expression. Values were: SIT:PCS, 0.69, MIT:PCS, 0.74, 
FIT:PCS, 0.99.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Structure of the GFP reporters.

https://doi.org/10.7554/eLife.89656
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derived from yeast HIS3, not GFP, and likely has little if any effect on the fluorescence of the GFP fused 
downstream (Dean and Grayhack, 2012; Gamble et al., 2016; Pédelacq et al., 2006). We used 
synonymous slow, medium, or fast codons to recode some of the codons in the first 41 amino acids 
of this GFP reporter to generate three reporters with slow, medium, or fast translation over the first 
41 amino acids. We emphasize that the amino acid sequences of the three constructs were identical. 
The slow, medium, and fast average RRT values over the first 41 codons were 1.20, 1.04, and 0.93, 
respectively. That is, this SIT is slower than most natural SITs, and this FIT is faster than most natural 
FITs, but the difference is moderate.

As shown in Figure 8 (left three bars), the SIT did not improve expression of GFP, contrary to Tuller 
et al. In fact, the GFP with the SIT was expressed at only 71% of the level of the GFP with the FIT. It 
was surprising to us that the difference was this large—again, recoding was limited to codons within 
the first 41, and the protein sequences were identical.

Another possibility is that a SIT can protect against ribosome collisions when there is a site down-
stream that induces ribosome collisions. Sites thought to induce ribosome collisions include rare Arg-
Arg codon pairs (Dao Duc and Song, 2018; Tesina et  al., 2020). We, therefore, introduced the 
codon pair CGA-CGG (replacing Asn-Asp, AAT-GAT) downstream of the first 41 amino acids, but still 
upstream of important GFP residues. Indeed, this single CGA-CGG codon pair, potentially inciting 
ribosome collisions, caused a large reduction--about 50%--in the expression of GFP (Figure 8, right 
three bars). The reduction was about the same in the SIT, MIT, and FIT constructs. In this case, with 
putative collision sites, the GFP with the SIT was expressed at only 67% of the level of the equivalent 
GFP with the FIT. That is, this SIT (a fairly extreme SIT) did not at all protect against the putative ribo-
some collisions—if anything, it made things slightly worse. This result suggests there is no benefit to 
‘queuing’ ribosomes, if queuing even occurs. Instead, the fastest-translating gene once again gave 
the highest expression, and the highest relative expression, despite the collision site.

Discussion
Tuller et al. found that the 5’ ends of genes are translated slowly because of the codons used at 5’ 
ends, and posited that this was a selective advantage because it somehow increased the efficiency 
of translation. However, this theory predicts positive correlations between slow initial translation and 
high gene expression, and slow initial translation and high overall (that is, on the whole gene) ribo-
some density. In fact, by informatic analysis of existing data, we find the correlations are opposite to 
those predicted by the ‘Ramp’ model. Most importantly, an experiment in which codon usage at 5’ 
ends was changed shows that faster 5’ codons cause higher gene expression, exactly opposite to the 
prediction of the ‘Ramp’ hypothesis. We believe no ramp is needed.

Tuller et al. showed that a region of slow translation is encoded, using slowly-translated codons, 
and it is specifically this idea of encoded slow translation that we are addressing. This encoded slow 
translation is a small effect—translation is slowed by 1% to 3%. However, in addition to ‘encoded’ 
slow translation, there is evidence for slow translation at 5’ ends by other, unknown mechanisms, with 
apparently much larger amplitudes, perhaps greater than 50%. Ribosome profiling experiments show 
an increased density of ribosome footprints near the 5’ end, independent of encoding (Weinberg 
et al., 2016), which could be due to slow translation. It is now known that the very high 5’ density of 
footprints in early ribosome profiling studies was due to the use of cycloheximide as a first step to stop 
translation. Addition of cycloheximide to growing cells allowed ribosomes to initiate at Start codons, 
but did not allow elongation, hence there was a pile-up of ribosomes near the 5’ end. More recently, 
flash-freezing, rather than cycloheximide, has been used as the first step in stopping translation. 
However, even in these studies, there is about a 50% increase in ribosome density near 5’ ends (Wein-
berg et al., 2016). And yet, even in these flash-freezing protocols, cycloheximide is still used at a later 
step to prevent elongation when extracts are thawed, and this cycloheximide usage could again result 
in an artifactual increase in ribosome density at 5’ ends. Alternatively, the increased density of ribo-
somes at 5’ ends could mean that some proportion of ribosomes fall off the mRNA as they progress 
(Weinberg et al., 2016). Consistent with the latter idea, ribosome profiling studies show a general 
trend towards lower ribosome densities at more 3’ positions in translating mRNAs (Weinberg et al., 
their Figure S7), and studies using other experimental approaches have shown a general decrease in 
ribosome number or density as one progresses along a gene (Bonderoff and Lloyd, 2010; Verma 
et al., 2019). A different idea was proposed by Shah et al., 2013 in a theory paper, which suggested 

https://doi.org/10.7554/eLife.89656
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this apparent slow translation could be an informatic artifact caused by rapid translational initiation 
(and, therefore, high ribosome density) on short genes. But none of these ideas addresses the fact 
found by Tuller that the 5’ ends of genes are enriched in rare, slow codons.

We considered that an increased density of ribosomes at the 5’ end could be because some genes 
have additional ATG Start codons, sometimes upstream and sometimes downstream of the anno-
tated Start, and translation of short open reading frames from these additional Start codons could 
contribute to ribosome density at the 5’ end. Using the program ‘Frameshift Detector’ (Yurovsky 
et al., 2022) and ribosome profiling data, we quantitated the fraction of out-of-frame ribosomes both 
globally, and within the first 150 nucleotides of genes. We found the global proportion of out-of-
frame ribosomes is about 13%, and the proportion of out-of-frame ribosomes in the first 150 nucle-
otides is about 14.5%. Although this increased 5’ out-of-frame ribosome presence of about 1.5% is 
highly significant (p~10–28), it is not nearly big enough to explain the observed 5’ increase in ribosome 
density (Weinberg et al., 2016, their Figure 1C).

In any case, by direct experiment, we find that encoding a slower 5’ end using slow synonymous 
codons reduces gene expression. In particular, even when a ribosome collision site was placed down-
stream, the effect of the collision site was not at all ameliorated by encoded slow translation upstream 
of the collision site. This seems strong evidence against the idea that slow initial translation is a defense 
against collisions. The basis of the idea that slow initial translation could possibly be a defense against 
collisions is not clear to us. Regions of slow translation would not affect the gaps between ribosomes, 
if measured as times, and especially not if measured at a constant finish line, such as a putative colli-
sion site.

An issue in the GFP reporter experiment is that the mRNA sequences are necessarily different, and 
so there are different mRNA structures. We achieved fast and slow sequences by recoding with synon-
ymous codons, so amino acids are identical, so there are no issues of, e.g., co-translational protein 
folding, or amino acid interaction with the ribosome exit tunnel. But of course, the RNA structures are 
at least slightly different, and RNA structures at the 5’ end are known to affect translation initiation 
(Weinberg et al., 2016; Burkhardt et al., 2017; Cuperus et al., 2017; Gu et al., 2010; Hall et al., 
1982; Kudla et al., 2009; Nackley et al., 2006). Generally, more open mRNA structures are more 
favorable both for translation initiation and for translation speed. To fully disentangle these effects is 
difficult. But whether the increased gene expression we see for the fast encoding is being generated 
mainly by fast translation, or by efficient initiation, in neither case is there an argument that slow trans-
lation is efficient, or that it protects against collisions.

The observation that 5’ ends have low conservation, likely because of instability in evolution, 
provides a completely different explanation for the enrichment of slow codons at 5’ ends. In this 
‘Spandrel’ hypothesis, N-termini frequently change in evolution, gathering new 5’ sequences de novo. 
These would contain all codons at similar frequencies—i.e., ‘rare’ codons would not be especially rare. 
Although rare codons would eventually be removed by selection, the fact that N-termini are relatively 
young means that this process might not be complete for all genes, and so some rare, slow codons 
still remain. These explain the initial region of encoded slow translation. This hypothesis is highly 
consistent with the observed correlations between slow initial translation and low gene expression; 
and slow initial translation and low ribosome density, and with the results of gene expression experi-
ments. It is also consistent with the region of slightly slow translation we observe at 3’ ends.

We have looked at the conservation of N-termini only in S. cerevisiae. However, Tuller et al. found 
that there is a region of encoded slow initial translation in genes of a wide variety of eukaryotes. We 
speculate that in these other cases, too, slow initial translation is a spandrel partly due to depletion of 
fast Start and alternative Start codons, and partly deriving from the turnover of 5’ ends. This in turn 
has implications for protein structure and evolution; for the interpretation of evolutionary sequence 
clocks; and for the rates of selection against rare codons. We note that Bricout et al., 2023 have also 
recently found that N- and C-termini of proteins evolve faster than the middles.

It was surprising to us that recoding just the first 41 codons of the GFP fusion protein from slow to 
fast increased the level of GFP expression by so much—about 30%. These 41 codons were originally 
derived from the yeast HIS3 gene, and this increase in expression is roughly the proportional increase 
expected based on fully recoding the HIS3 gene to preferred codons (Presnyak et al., 2015). Because 
this recoding from slow to fast tends to replace G/C-rich codons with A/T-rich codons, recoding from 
slow to fast may decrease the stability of RNA structures near the 5’ end, and increase the accessibility 
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 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology | Computational and Systems Biology

Sejour et al. eLife 2023;12:RP89656. DOI: https://doi.org/10.7554/eLife.89656 � 15 of 20

of the cap. Decreased stability of mRNA structures could be responsible for the increase in gene 
expression, consistent with studies in both yeast (Weinberg et al., 2016; Cuperus et al., 2017) and 
E. coli (Kudla et al., 2009).

Finally, again, in ‘The Spandrels of San Marco...,’ (Gould and Lewontin, 1979) warned that not all 
biological phenomena are adaptive, and it is a mistake to assume that any particular characteristic of 
an organism must necessarily have been generated by natural selection. We believe the encoded slow 
initial translation of eukaryotic genes may be an example of this.

Materials and methods
Statistical calculations of relative initial rate of translation
Bioinformatics were performed on protein-coding open reading frames (ORFs) of Saccharomyces 
cerevisiae downloaded from the Saccharomyces Genome Database (SGD) website, as last modified 
on April 22, 2021. Protein-coding ORFs annotated as dubious or pseudogenes were not included 
in analyses. All statistics were performed using The R Project for Statistical Computing. Translation 
speed was measured using the ribosome residence time (RRT) which is a metric of the occupancy of 
ribosomes on each sense codon within the A-site (Gardin et al., 2014). The RRT values we used are 
shown in Supplementary file 1; these are modified from the original RRT results of Gardin et al. by 
inclusion of the ribosome profiling data of Jan et al., 2014.

Relative initial translation speed
(Tuller et al., 2010) focused on a ‘ramp’ of translation speed, where the first part of the gene has 
slow translation relative to the rest of the gene. The ramp thus refers to a rate. To quantitate this slow 
relative ramp for each gene, we calculated the average RRT for an initial window of the gene (e.g. 40 
amino acids, see below), then divided by the average RRT of the rest of the gene. Thus, genes with a 
‘slow ramp’ have a ratio of less than 1. We then took log2 of this ratio; genes with a slow ramp yield a 
negative number, and the more negative the number, the steeper the ramp.

For each gene, the relative initial translation speed (RIT) (explained above) was calculated across 
windows of the first 30, 40, 50... and 100 codons, with all windows being statistically significant for 
slow translation. For these RIT calculations, the first (start) codon was omitted since all protein-coding 
genes in this dataset except Q0075 start with ATG, and ATG is one of the fastest codons, which would 
skew the RIT. Similarly, the last (stop) codon was omitted.
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Windows of the first 30, 40, 50... and 100 codons each had statistically significant depletion in 
translation speed compared to the body of genes. We chose to focus on the first 40 codons. All genes 
shorter than 303 nucleotides (translated into 100 amino acids) were omitted from all analyses. For all 
RIT analyses, 328 out of 6022 ORFs were omitted leaving a dataset of 5694 ORFs.

Data
mRNA transcript readings, which we used as a proxy for gene expression, was acquired from Lipson 
et al., 2009. Genes with a read count of less than 10 were omitted due to concerns about noise. Ribo-
some density measurements were acquired from Arava et al., 2003. These values were calculated 
as the number of ribosomes, detected on an mRNA, divided by the nucleotide length of the gene 
(including the stop codon).

Protein BLAST setup and diagnostics
S. cerevisiae proteins were downloaded from the SGD (last modified on April 22, 2021). Proteins 
derived from ORFs annotated as dubious or pseudogene were omitted from analyses. The Saccharo-
mycotina (Taxonomy ID: 147537) protein sequences were downloaded from NCBI using the links here.

We downloaded and compiled the source databases from DDBJ, EMBL, Genbank, RefSeq, PIR, 
and UniProtKB. Duplicate sequences were deleted. To perform local BLAST, we downloaded the 
NCBI BLAST software (version 2.13.0+) and used RStudio as a wrapper to operate the software; all 
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default BLAST parameters were selected, except that the number of alignments was changed to the 
maximum value of 1000000000. Local protein BLAST of every S. cerevisiae protein (5694 proteins, 
see above) was performed against all genomes of the subphylum Saccharomycotina, but omitting 
all species in the genus Saccharomyces (net, 822 genomes). We eliminated submissions of duplicate 
species by limiting our database to the highest bit-scores from sequence hits derived from each 
unique species. We were only interested in sequences that had high homology with queried S. cere-
visiae proteins, so all hits with bit-scores lower than 50 were omitted.

We wanted to compare conservation at the beginning of proteins with conservation at the middle 
and end of those same proteins. For this purpose, we split each S. cerevisiae protein into two halves 
(start to middle; middle to end), then blasted each half against all genomes in the subphylum 
Saccharomycotina (omitting Saccharomyces). We then calculated a ‘conservation score’ (see below) 
for the first 40 amino acids of the protein, and, identically, for the first 40 amino acids of the second 
half of the protein. (We describe the first 40 amino acids of the second half of the protein as the 
‘middle,’ but in fact, the region is displaced 20 amino acids C-terminal from the exact middle.) In 
a parallel way, a conservation score is calculated for the last 40 amino acids of each protein. For 
example, the length of Swi5 is 709 amino acids, and therefore BLASTs of the first half spanned from 
1:354, and BLASTs for the second half spanned from 355:709. Conservation scores were calculated 
for residues 1:40 (beginning) (from the BLASTs of the first half of the protein), and 355:394 (middle) 
and 670:709 (end) (from BLASTs of the second half of the protein). In total, BLAST of the first half of 
all queried S. cerevisiae proteins yielded a total of 477,749 high homology (minimum of bit-score of 
50) sequence matches across 816 unique Saccharomycotina species, whereas BLAST of the second 
half of each protein yielded a total of 487,022 high homology matches across 812 unique Saccha-
romycotina species.

With respect to the above procedure, we note that we are relying on the BLAST algorithm to find 
regions of homology. Homology would be somewhat more easily found in the middle of sequences 
than at the ends because of seeding issues. It is for this reason that we divided proteins in half, and 
used a BLAST with the second half of the protein to find homologies with the first 40 amino acids of 
the second half. That is, in this procedure, for the middle homologies, the algorithm is being asked to 
find homologies at the end of a sequence, exactly as is the case for the first 40 and last 40 amino acids. 
We also used the alternative approach of finding homologies in the last 40 amino acids of the first half 
of the protein, with essentially identical results (Figure 4—figure supplement 1).

Calculations of protein conservation scores and ratios
The general idea of the ‘Conservation Score’ is that it represents the lengths of the regions of BLAST 
homology between the S. cerevisiae query and the Saccharomycotina subjects in the beginning, 
middle, and end 40-aminoacid windows. Each S. cerevisiae query sequence was separated into two 
equal halves, and then BLASTs were done on both halves against all of Saccharomycotina (omitting 
all submissions from the Saccharomyces genus). For all subject proteins with high homology over any 
region (i.e. a bit-score greater than 50), one finds the pair-wise regions of homology with a BLAST 
‘Alignment Score’ of 200 or more (red colored regions in the BLAST website ‘Graphic Summary’). The 
length of the high-homology region in the window of interest (but not the actual number of amino 
acid sequence matches within that region) contributes to the Conservation Score. That is, amino acids 
have to be within a region of homology found by BLAST in order to contribute to the score; even 
though all proteins begin with ‘M,’ these only contribute to the conservation score if they are within 
a region of BLAST homology. The Conservation Score is the sum of (the length of the homology in 
the window, multiplied by the proportion of qualified subject proteins with that length of homology). 
Example Conservation Scores are shown in Supplementary file 3, and an example Conservation 
Score is calculated in Supplementary file 4. We only considered conservation scores from proteins 
that had homology with at least 40 unique species in Saccharomycotina. We also omitted proteins that 
were shorter than 100 amino acids. As shown in Supplementary file 3, conservation scores ranged 
from 0, meaning no BLAST homology region within the window of 40 amino acids for any quali-
fying homolog in Saccharomycotina, up to a maximum of 40, meaning that all qualifying homologs in 
Saccharomycotina had matches starting at the first amino acid. In total, protein conservation analyses 
used 3964 S. cerevisiae proteins with high homology hits for BLAST done on the first and second half 
of proteins (Figure 4).

https://doi.org/10.7554/eLife.89656
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Design of the fluorescent reporter gene constructs
We created a reporter gene based on reporter plasmid EKD1024 (Brule et al., 2016). Briefly, a bidi-
rectional galactose promoter simultaneously induces the expression of GFP and RFP in the presence 
of galactose, and we integrated the reporter into the yeast genome at the ADE2 locus. We recoded 
GFP to give the first 41 codons of GFP a slow initial translation speed (SIT), medium initial translation 
speed (MIT), or fast initial translation speed (FIT), while maintaining the same amino acid sequence 
(Figure 8—figure supplement 1, sequences in Supplementary file 5). We also designed three more 
constructs (Figure 8—figure supplement 1, sequences in Supplementary file 5) with a SIT, MIT, or 
FIT upstream of one of the slowest and rarest codon pairs, CGA-CGG (replacing AAT-GAT, Asn-Asp), 
which is known to greatly attenuate gene expression in living yeast (Gamble et al., 2016). Other rare 
codon pairs (CGA-CGA and CGA-CCG) have been shown to promote ribosome stalling (Tesina et al., 
2020) so in Figure 8, right, CGA-CGG operates as a putative ribosome collision site (PCS). Instead 
of a PCS, the constructs in Figure 8, left, had AAT-GAT (Asn Asp), a frequent codon pair with above 
average translation speed. The Relative Initial Translation Speed scores of the constructs were: SIT 
was 0.208; MIT was –0.0004; FIT was –0.166; SIT + PCS was 0.198; MIT + PCS was –0.0109; and FIT 
+ PCS was –0.177. (Note that the RIT scores of the constructs with the PCS change because the PCS 
makes the translation speed of the body of the gene slower; that is, the change is due to a change in 
the denominator.)

Yeast strains
The constructs were transformed into BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0). The reporter 
expresses MET15 allowing selection. Transformants were selected for Met+ on HULA plates (0.075 g/L 
Histidine; 0.075 g/L Uracil; 0.25 g/L Leucine; 0.075 g/L Adenine; 20 g/L D-Glucose; 5 g/L Ammonium 
Sulfate; 1.7 g/L Yeast Nitrogen Base). The reporter gene integrates into the ADE2 locus, and thus 
successful transformants are ade2-delete which becomes red when grown on YPD plates; this was 
used as a secondary biological marker to confirm successful transformants. About 30 Met+, Ade-, red 
transformants were chosen for each recoded GFP construct. These transformants were pre-screened 
using a flow cytometer for absolute levels of galactose-induced green and red fluorescence; out 
of all the individual colonies initially chosen (~180), about 5 were rejected because their absolute 
levels of both GFP and RFP fluorescence were about twice as high as for other strains. We believe 
these rejected transformants contained two copies of the reporter construct. For each construct, 25 
Met+, Ade-, red transformants were chosen for analysis. Strains are available upon request to BF, and 
sequences of SIT, MIT, and FIT constructs are available in Supplementary file 5.

Flow cytometry analysis
The strains were inoculated in liquid HULA media, with 2% galactose, until mid-log phase (around 
10–14 hr) containing around 3×10^7 cells/mL. The strains were sonicated to separate cells and the 
strains were stored on ice (typically around an hour) until data collection. An LSR Fortessa Flow Cytom-
eter was used to measure GFP levels (All Events FITC-A Mean) and RFP levels (All Events PE-Texas 
Red-A Mean) across 75,000 events. As a control, a strain lacking a fluorescent reporter was used. For 
all samples, GFP levels were normalized by RFP levels. All samples (25 per experiment) were included 
in the analysis with no exclusions.

Statistical tests
None of our analyses made assumptions regarding the normality of the data. As such, we only 
performed nonparametric statistics. Wilcoxon signed-rank tests were done for relevant pairwise anal-
yses; when necessary, p-values were corrected for multiple comparisons using the Holm–Bonferroni 
method. Spearman correlations were used. We used the Kolmogorov–Smirnov goodness of fit test to 
confirm that the three distributions were significantly different (p<0.001) for Figure 4.
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