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Abstract Numerous intracellular bacterial pathogens interfere with macrophage function, 
including macrophage polarization, to establish a niche and persist. However, the spatiotemporal 
dynamics of macrophage polarization during infection within host remain to be investigated. Here, 
we implement a model of persistent Salmonella Typhimurium infection in zebrafish, which allows 
visualization of polarized macrophages and bacteria in real time at high resolution. While macro-
phages polarize toward M1-like phenotype to control early infection, during later stages, Salmonella 
persists inside non-inflammatory clustered macrophages. Transcriptomic profiling of macrophages 
showed a highly dynamic signature during infection characterized by a switch from pro-inflammatory 
to anti-inflammatory/pro-regenerative status and revealed a shift in adhesion program. In agree-
ment with this specific adhesion signature, macrophage trajectory tracking identifies motionless 
macrophages as a permissive niche for persistent Salmonella. Our results demonstrate that zebrafish 
model provides a unique platform to explore, in a whole organism, the versatile nature of macro-
phage functional programs during bacterial acute and persistent infections.

Editor's evaluation
This useful study introduces the development of Salmonella infection model in zebrafish embryos as 
an important model to study the interaction between macrophages and Salmonella during in vivo 
infection. Overall, the data presented are convincing and provide an inventory of genes mediating 
macrophage cell-cell adhesion and interactions that are useful for dissecting tissue macrophage 
responses and heterogeneity during intracellular bacterial infection. This is important to characterise 
the infection outcome and the dynamics of the immune response. The work will be of interest to 
microbiologists.

Introduction
The outcome of bacterial infections is the result of complex dynamic interactions between the 
pathogen and the host’s cellular and humoral actors of innate immunity. Deciphering this complexity 
is necessary to predict infection outcomes and guide therapeutic strategies. The development of 
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tractable systems in which bacteria and cellular actors can be tracked at high spatiotemporal resolu-
tion in a whole living animal is essential to assess the dynamic of host–pathogen interactions.

Salmonella enterica, a Gram-negative facultative intracellular pathogen, comprises more than 
2000 non-typhoidal and typhoidal serovars inducing a variety of conditions ranging from benign 
gastroenteritis to severe systemic infection (Gogoi et  al., 2019). Every year typhoidal serovars 
infect 20 millions of people and cause more than 200,000 of deaths (Crump et al., 2004). In some 
cases, Salmonella establishes a chronic infection that results in asymptomatic carriers hosting the 
environmental reservoir for further infections (Monack, 2012; Ruby et al., 2012; Gal-Mor, 2019). 
Salmonella resides within the draining lymph nodes and systemic tissues such as the spleen, where 
the bacteria survive mainly inside macrophages and have to deal with this hostile environment 
(Eisele et al., 2013; Garai et al., 2012; Ehrhardt et al., 2023). Capitalizing on different virulence 
factors, Salmonella can replicate within macrophages inside modified vacuoles called phagosomes 
and escape the host’s defenses (LaRock et al., 2015). In addition, as reported for several intra-
cellular bacterial pathogens, Salmonella uses strategies to interfere with macrophage polarization 
(Thiriot et al., 2020).

Macrophages are among the most plastic immune cells that adapt their phenotype and function 
according to their microenvironment by a process called polarization. In vivo, they form a continuum of 
activation states whose two extremes are the pro-inflammatory M1 macrophages, that have a bacte-
ricidal activity, and the anti-inflammatory M2 macrophages that promote the resolution of inflamma-
tion and healing (Ginhoux et al., 2016). During the first hours of infection, most bacteria, including 
Salmonella enterica serovar Typhimurium (S. Typhimurium), induce macrophage polarization toward 
the pro-inflammatory and microbicidal M1 phenotype (Jenner and Young, 2005; Nau et al., 2002). 
In contrast, persisting bacteria, like Mycobacterium tuberculosis, Brucella abortus, or S. Typhimurium, 
may preferentially reside inside healing/anti-inflammatory M2 macrophages (Eisele et  al., 2013; 
Thiriot et al., 2020; Xavier et al., 2013). In a mouse model of S. Typhimurium long-term infection, 
bacteria were shown to persist mainly in M2 macrophages (Eisele et al., 2013; Pham et al., 2020). In 
contrast, another in vivo study showed that S. Typhimurium reside in inducible nitric oxide synthase 
(iNOS)-expressing macrophages that clustered within splenic granulomas 42 days post-infection in 
mice (Goldberg et al., 2018). Although iNOS is a known marker of M1 macrophages, the exact polar-
ization status of these macrophages remained undetermined. In addition, intracellular replication of 
S. Typhimurium was shown to vary according to macrophage polarization, with a greater replication in 
M2 macrophages (Saliba et al., 2016). To date, however, the dynamics of interactions between patho-
genic bacteria and polarized macrophages between early invasion and late survival remain poorly 
understood at the organism level.

Perfectly suited to live observation of immune cells and pathogens in vivo, the transparent zebrafish 
embryo has emerged as a powerful vertebrate model to study host–pathogen interactions at the 
cellular and whole organism level (Torraca and Mostowy, 2018). This model allows macrophage 
plasticity and reprogramming to be monitored using dedicated fluorescent reporters to simultane-
ously tract macrophages and visualize their activation state. Using a non-infected wound model, we 
previously showed that macrophages first express pro-inflammatory cytokines (M1-like polarization) 
before switching to a new state expressing both M1 and M2 makers during the wound healing process 
(Nguyen-Chi et al., 2015). Yet, the dynamics of macrophage polarization in the context of S. Typh-
imurium infection has not been addressed in zebrafish.

Here, we establish the first larval zebrafish model of S. Typhimurium persistent infection. Using 
intravital imaging, we show that during early stages of infection, both neutrophils and macrophages 
are mobilized to the infection site to engulf bacteria and that macrophages respond by a strong 
M1-like activation. In later stages of infection, bacteria survive inside non-inflammatory macrophages 
which accumulate in large clusters and provide a niche for persistent bacteria inside the host. Finally, 
a comprehensive analysis of the transcriptional profiles of macrophages reveals a highly dynamic tran-
scriptional signature of distinct macrophage subsets during early and late phases of infection, showing 
changes in inflammatory response and in expression of adhesion molecules upon persistent infection, 
which correlate with a decrease of macrophage motility. This new model provides a unique oppor-
tunity to explore the dynamics of interactions between persistent pathogenic bacteria and polarized 
macrophages in a four-dimentional living system.

https://doi.org/10.7554/eLife.89828
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Results
Salmonella hindbrain ventricle infection in zebrafish leads to different 
outcomes, from systemic to persistent infection
Previous studies on S. Typhimurium-infected zebrafish larva, based on intravenous or subcutaneous 
injection or immersion, have been linked to a rapid disease progression with acute symptoms and 
high production of pro-inflammatory cytokines, leading to larval mortality (Stockhammer et al., 2009; 
van der Sar et al., 2003). To develop a model of persistent bacterial infection using S. Typhimurium 
(hereafter named Salmonella), we chose to inject in a closed compartment, the hindbrain ventricle 
(HBV) (Figure 1A), which allows direct visualization of immune cell recruitment in a confined space. 
To allow direct observation of bacterial burden, a GFP-expressing Salmonella ATCC14028s strain was 
constructed (Sal-GFP). We injected 2  days post-fertilization (dpf) zebrafish embryos with different 
doses of Sal-GFP in the HBV, or with phosphate buffered saline (PBS) as control (Figure  1B) and 
monitored larval survival from 0 to 4 days post-infection (dpi). Increasing injection doses of Salmonella 
resulted in increased larval mortality. When less than 500 colony-forming units (CFU) of Sal-GFP were 
injected, all zebrafish larvae survived the infection (Figure 1C). On the other hand, HBV injection of 
1000–2000 CFU of Sal-GFP led to 50% of larvae survival at 4 dpi (Figure 1D).

To evaluate the bacterial burden in infected hosts, the number of CFU was counted every day from 
0 to 4 dpi after HBV injection of Sal-GFP (Figure 1E). Before processing for CFU counting, infected 
larvae and their controls were imaged individually by fluorescence microscopy. No CFU were detected 
in the PBS-injected larvae (Figure 1—figure supplement 1A). After injecting 1000–2000 CFU, bacteria 
efficiently proliferated in 47% of infected larvae, from 1 to 4 dpi (50,000–200,000 CFU, Figure 1E, 
G). Those larvae developed a systemic infection with Salmonella proliferation in the HBV and other 
tissues, including notochord, heart, and circulating blood (Figure 1F) and usually died between 2 
and 4 dpi. Among the 53% of infected larvae that survived the infection at 4 dpi, 40% harbored 
live bacteria (10–2000 CFU), while 36% were bacteria free (Figure 1E, G). When injecting less than 
500 CFU, no larva exhibited bacterial hyper-proliferation (Figure 1—figure supplement 1B) and 75% 
showed evidence of Salmonella persistence at 4 dpi (10–1000 CFU, Figure 1—figure supplement 
1B). Importantly, alive infected larvae still harbored persistent bacteria at 14 dpi (Figure 1—figure 
supplement 1C).

Altogether, these results show that Salmonella infection in HBV leads to different outcomes, that we 
classified as: (1) High Proliferation, indicating a high bacterial burden with systemic infection leading 
to death; (2) Infected, indicating surviving larvae with persisting bacteria; and (iii) Cleared, indicating 
that larvae completely recovered with no more detectable bacteria (Figure 1G).

Throughout the remainder of this study, an optimized infection dose of 1000–1500  CFU was 
injected into the HBV of 2 dpf embryos and we further focused (unless otherwise stated) on the 
so-called ‘infected’ cohort with established persistent infection.

The global host inflammatory response to Salmonella HBV infection
To investigate the global host immune response to Salmonella infection in the zebrafish model, the 
relative expression of several immune-related genes was examined by qRT-PCR within whole larvae 
from 3 hpi to 4 dpi after Salmonella challenge (Figure 2 and Figure 2—figure supplement 1). At 3 
hpi, infected larvae showed elevated levels of expression of pro-inflammatory cytokines: interleu-
kin-1 beta (il-1b), tumor necrosis factor a and b (tnfa and tnfb, two orthologs of mammalian TNF), 
interleukin-8 (il-8), and of the inflammation marker matrix metalloproteinase 9 (mmp9) (Figure 2A), 
consistent with previous findings in zebrafish models of systemic Salmonella infection (Stockhammer 
et al., 2009). Subsequently, pro-inflammatory gene expression (il-1b, tnfb, il-8, and mmp9) signifi-
cantly decreased at 1 dpi and raised from 2 hpi to 4 dpi to reach similar levels to those detected at 
3 hpi. At 4 dpi, tnfa expression was still up-regulated in infected larvae compared to PBS controls 
(Figure 2—figure supplement 1). Salmonella infection induced ccl38a.4 gene, encoding CCL2, a key 
chemokine of macrophage migration that binds the CCR2 receptor (Cambier et al., 2014) at 4 hpi 
but has no effect on cxcr4b and sdf1 (cxcl12a), suggesting a role of the Ccl2/Ccr2 axis in macrophage 
mobilization to the infection site (Figure 2A and Figure 2—figure supplement 1). The up-regulation 
of the macrophage-specific marker mfap4 during the time course of infection highlighted an overall 
macrophage response (Figure 2A). In contrast, we found that the other frequently used macrophage-
specific marker mpeg1 was down-regulated early after Salmonella infection (Figure 2A), as previously 

https://doi.org/10.7554/eLife.89828
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Figure 1. Zebrafish is a pertinent model for persistent Salmonella infection. (A) Schematic illustration of 2 dpf 
zebrafish embryo infected in the hindbrain ventricle (HBV) with Sal-GFP, a GFP-expressing strain. (B) Representative 
fluorescent images of HBV-injected larvae with either PBS or 1000 CFU of Sal-GFP shortly after microinjection. 
White arrow: bacteria in the HBV. Dots outline the larva. Asterisk: auto-fluorescence of the yolk. Scale bar: 200 μm. 

Figure 1 continued on next page
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described during Salmonella and Mycobacterium marinum infections in zebrafish (Benard et  al., 
2015). Then, the kinetics of expression of anti-inflammatory genes revealed a down-regulation of 
mannose receptor, C type 1b (mrc1b) early after Salmonella infection. Intriguingly, relative levels of 
mrc1b expression increased from 3 hpi to 4 dpi. Furthermore, Negative Regulator of Reactive Oxygen 
Species (referred to as nrros), regulator of reactive oxygen species and of TGF-b in mammals (Liu 
et al., 2013; Ma et al., 2019; Noubade et al., 2014; Qin et al., 2018), showed kinetic of expression 
similar to mrc1b during Salmonella infection.

Taken together these results highlight a specific immune response triggered by Salmonella, and 
define two main phases: an early pro-inflammatory phase characterized by the induction of pro-
inflammatory markers and down-regulation of anti-inflammatory markers, and a late phase (between 
3 and 4 dpi) characterized by de novo up-regulation of pro-inflammatory gene expression concomi-
tant with the increased expression of anti-inflammatory genes (Figure 2B). Based on these results, we 
decided to further focus our study on deciphering the immune response to Salmonella infection both 
during the early phase, few hours post-infection, and during the late phase at 4 dpi.

Early phase of Salmonella HBV infection induces strong macrophage 
and neutrophil responses
Among immune cells, macrophages are a niche for Salmonella infection in mammals (Gogoi et al., 
2019; Garai et al., 2012) and in zebrafish (Stockhammer et al., 2009; van der Sar et al., 2003). 
To investigate the role of macrophages in the control of Salmonella infection, macrophage reporter 
embryos, Tg(mfap4:mCherry-F) were injected in the HBV with Sal-GFP or PBS and the global macro-
phage population was imaged by fluorescence microscopy from 3 hpi to 4 dpi (Figure 3A). We noticed 
that Salmonella infection led to an increase in the global macrophage population that persisted over 
days compared to PBS-injected larvae, suggesting that Salmonella infection triggers myelopoiesis 
(Figure 3A, B). At 3 hpi macrophages were specifically recruited to the HBV of infected embryos. In 
addition, at 4 dpi, an intense macrophage accumulation persisted in the brain of infected embryos, in 
line with the development of a Salmonella persistent localized infection. To test whether Salmonella 
persistence depends on the infection site, we injected either Sal-GFP or PBS in the otic vesicle of 2 
dpf macrophage reporter embryos, Tg(mfap4:mCherry-F) (Figure 3—figure supplement 1A). At 4 
dpi, intravital confocal imaging revealed macrophage recruitment to the infected otic vesicle and the 
presence of bacteria, confirming the intrinsic capacity of Salmonella to persist within the host for a 
long time (Figure 3—figure supplement 1B).

To obtain a 4D (space + time) description of macrophage interactions with Salmonella, we used a 
light sheet fluorescence microscopy (LSFM) system, convenient to study the 3D architecture of cells 
over a large field of view and long periods of time with minimal side effects. Tg(mfap4:mCherry-F) 
larvae were infected with Sal-GFP and imaged. The resulting video sequences revealed the macro-
phage recruitment within 2 hpi (Figure 3C and Video 1) and immediate Salmonella internalization 
(Figure 3C, arrowheads, Figure 3D and Video 2).

To investigate the role of macrophages in the control of Salmonella infection, we ablated macro-
phages using Tg(mpeg1:Gal4/UAS:nfsB-mCherry) embryos and metronidazole (MTZ) treatment 

Survival curves of injected embryos with either PBS or different doses of Sal-GFP, that is (C) <500 CFU or (D) 
1000–2000 CFU. One representative of three replicates (n = 24 larvae per condition). Log rank test, ***p < 0.001. 
(E) CFU counts per embryos infected with a range of 1000–2000 CFU of Sal-GFP at 1, 2, 3, and 4 dpi. Pool of four 
independent experiments (n1 dpi = 25, n2 dpi = 20, n3 dpi = 20, n4 dpi = 25 larvae). Kruskal–Wallis test (unpaired, non-
parametric): not significant. (F) Representative fluorescent images of Sal-GFP-infected larvae. Bacteria are in green. 
Dots outline the larva. Asterisk: auto-fluorescence of the yolk. Scale bar: 200 μm. (G) Schematic representation of 
the different infection outcomes, High Proliferation, Infected, and Cleared, induced by injection of 1000–2000 CFU 
of Sal-GFP. From 0 to 4 dpi, 47% of the infected larvae developed a systemic infection where the bacteria 
displayed highly proliferation leading to larval death (High Proliferation). At 4 dpi, among the surviving larvae, 24% 
still exhibited a systemic infection, while 36% recovered from the infection with no detectable CFU (Cleared) and 
40% contained persistent bacteria (Infected).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Salmonella localized infection leads to persistence in zebrafish embryos.

Figure 1 continued

https://doi.org/10.7554/eLife.89828
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(Nguyen-Chi et al., 2020; Figure 3—figure supplement 2A, B). MTZ (added at 48 hr post-fertilization 
(hpf)) specifically ablated 71% of macrophages in transgenic larvae after 24 hr of treatment (Figure 3—
figure supplement 2, D). DMSO treatment on transgenic larvae (NTR+MTZ−) and MTZ treatment 
on WT embryos (NTR−MTZ+) were used as controls (Figure 3—figure supplement 2C–H and not 
shown). PBS injection had no effect on the mortality of embryos from the different groups, confirming 
the absence of toxicity of MTZ treatment (Figure 3—figure supplement 2E). After infection with 
a sublethal dose of 500  CFU of Sal-GFP, MTZ-mediated macrophage depletion increased larval 
mortality up to 54% at 4 dpi while control group showed 4% mortality (Figure 3—figure supplement 
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Figure 2. The global host inflammatory response to Salmonella infection. (A) RT-qPCR analysis of il1b, tnfb, il8, mmp9, ccr2, ccl38a.4, mpeg1, mfap4, 
mrc1b, and nrros, mRNA expression infected versus non-infected, normalized with ef1a. Larvae were either PBS- or Sal-GFP injected and RNA samples 
were extracted from whole larvae at 3 hpi, 1, 2, 3 and 4 dpi. After infection, larvae displaying ‘high proliferation’ of bacteria or bacteria ‘cleared’ were 
excluded from the analysis. Data are presented as relative expression in the infected larvae compared with the relevant PBS-injected controls (2−ΔΔCp). 
Values are the means ± standard error of the mean (SEM) of eight replicates (n = 8 larvae per time point). Kruskal–Wallis test (unpaired, non-parametric). 
*p < 0.05; **p < 0.01; ***p < 0.001 show significant differences compared to 3 hpi. (B) Diagram of global host inflammatory response to Salmonella 
infection.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Expression of tnfa, cxcr4b, cxcl12a mRNA during Salmonella infection.

https://doi.org/10.7554/eLife.89828
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Figure 3 continued on next page

https://doi.org/10.7554/eLife.89828


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease

Leiba et al. eLife 2024;13:e89828. DOI: https://doi.org/10.7554/eLife.89828 � 8 of 33

2F). MTZ-mediated macrophage depletion also strongly impacted bacterial clearance with develop-
ment of a systemic infection, as shown by fluorescence microscopy and quantification of bacterial 
burden (Figure 3—figure supplement 2G, H). Altogether, these data show that macrophages are 
instrumental to control Salmonella infection in HBV.

Neutrophils are also innate immune players in the defense against Salmonella in various models 
(Cheminay et  al., 2004; Hall et  al., 2012). To 
investigate their role in our model, we infected 
Tg(mpx:GFP) neutrophil reporter embryos with 
DsRed-fluorescent Salmonella (Sal-DsRed). The 
fluorescence analysis of global neutrophil popula-
tions showed an increase within 2 dpi, in line with 
the reported Salmonella-induced granulopoiesis 
(Hall et al., 2012) (data not shown). Time-lapse 
imaging was used to visualize early neutrophil–
bacteria interactions (Figure  3E and Video  3): 
while neutrophils were absent from PBS-injected 
HBV, they were immediately recruited in the 

Mann–Whitney test, two-tailed, *p < 0.05, **p < 0.01). (C) Representative maximum projections of fluorescent images extracted from 4D sequences 
using light sheet fluorescence microscopy starting 35 min post-infection during 2 hr, showing recruitment of macrophages (red) to the infection site 
(Salmonella, green). Scale bar: 30 μm. (D) 3D reconstruction of a macrophage phagocytosing Salmonella at 3 hpi. Scale bar: 5 μm. (E, F) Tg(mpx:GFP) 
larvae were injected with PBS or Sal-DsRed in HBV. (E) Representative maximum projections of fluorescent images extracted from 4D sequences using 
confocal microscopy at 2 hpi during 13 hr, showing recruitment of neutrophils (green) to the infection site (Salmonella, red). Scale bar: 35 μm. (F) 3D 
reconstruction of a neutrophil phagocytosing Salmonella at 2 hpi. Scale bar: 5 μm. (G, H) Tg(mfap4:mCherry-F/mpx:GFP) larvae were injected with 
either PBS or Sal-E2Crimson in HBV. (G) Representative maximum projections extracted from 4D sequences using confocal microscopy from 3 to 14 
hpi showing recruitment of both neutrophils (green) and macrophages (red) to the infection sites. Asterisk: auto-fluorescence. Scale bar: 50 μm. (H) 
Quantification of the total volume of recruited cells (mfap4+ or mpx+ cells) from 3 to 16 hpi. Data of three replicates pooled (mean volume/larva ± SEM, 
n = 11 from 3 to 4 hpi, n = 15 from 5 to 14 hpi, n = 4 from 15 to 16 hpi per condition, Mann–Whitney test, two-tailed, significance of Sal versus PBS 
conditions *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Macrophage response upon Salmonella injection in the otic vesicle.

Figure supplement 2. Macrophages are essential to control Salmonella infection in zebrafish.

Figure 3 continued

Video 1. Salmonella early-infection induces a strong 
macrophage response. Tg(mfap4:mCherry-F) larvae 
were infected with Sal-GFP in hindbrain ventricle. 
Time-lapse videos of labeled macrophages were 
acquired using light sheet microscopy at 35 min post-
infection during 2 hr and image series were collected 
every 1 min. One representative movie (maximum 
projections) is presented, showing the recruitment of 
macrophages (mfap4+ cells, red) to the infection site 
(Salmonella, green). Time is indicated in the top left 
corner. Scale bar: 30 μm.

https://elifesciences.org/articles/89828/figures#video1

Video 2. Macrophages are able to phagocytose 
Salmonella during early stages of infection. 
Tg(mfap4:mCherry-F) larvae were infected with Sal-
GFP-int in hindbrain ventricle and imaged by confocal 
microscopy at 3 hpi. This movie is a 3D reconstruction 
animation created from representative fluorescent 
confocal images using Imaris software and shows a 
single macrophage (red) that have phagocytosed 
Salmonella (green) at 3 hpi. Scale bar: 5 μm.

https://elifesciences.org/articles/89828/figures#video2

https://doi.org/10.7554/eLife.89828
https://elifesciences.org/articles/89828/figures#video1
https://elifesciences.org/articles/89828/figures#video2
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infected HBV and participated to bacterial clear-
ance through phagocytosis. Subsequently, after 3 
hpi, the number of neutrophils decreased at the 
infection site (Figure 3E, F).

To assess the relative contribution of both 
macrophages and neutrophils to control Salmo-
nella infection, Tg(mfap4:mCherry-F/mpx:GFP) 
embryos were infected in the HBV with E2Crimson 
fluorescent Salmonella (Sal-E2Crimson) and 
imaged from 3 to 14 hpi (Figure 3G and Video 4). 
Because counting individual leukocytes that stack 
together at the infection site is not reliable, we 
measured the total of volume of both macro-
phages (mfap4+ cells) and neutrophils (mpx+ cells) 
using 3D reconstructions. Total volume analysis 
showed that macrophages and neutrophils were 
both strongly recruited to the infection site in 
the first hours of infection compared to controls 
and that their mobilization slightly diminished 
over time post-infection with similar kinetics 
(Figure 3G, H).

Altogether, we concluded that both macro-
phages and neutrophils actively participate to the 
immediate innate immune response to Salmonella 
infection in the HBV, characterized by myelopoi-
esis, granulopoiesis, leukocyte recruitment to the 
infection site, and phagocytosis of bacteria.

Salmonella HBV infection induces hyper-accumulation of macrophages 
harboring persistent bacteria at late stage of infection

To image long-term Salmonella infection, we 
used a Salmonella strain harboring a stable chro-
mosomal version of the GFP gene (Sal-GFP-int). 
Macrophage reporter embryos Tg(mfap4:mCher-
ry-F) were infected with Sal-GFP-int and imaged 
at 4 dpi using intravital confocal microscopy. 
Infected larvae displayed a massive accumula-
tion of macrophages in the HBV, with clusters 
associated with persisting fluorescent Salmo-
nella (Figure 4A, shown with arrows). 3D recon-
struction of mfap4-positive cell volumes from 
confocal images revealed that Salmonella resided 
mainly inside some macrophages and only few 
Salmonella outside macrophages were observed 
(Figure 4B). Similar experiments with neutrophil 
reporter embryos, Tg(mpx:GFP), showed that 
although persisting bacteria could be observed, 
few neutrophils were present in the HBV at 4 dpi, 
but they were not clustered and did not contain 
persistent Salmonella (Figure 4C, D).

To simultaneously visualize the relative posi-
tion of both macrophages and neutrophils at 
the infection site with persistent Salmonella, 
Tg(mfap4:mCherry-F/mpx:GFP) embryos were 
infected with Sal-E2Crimson and imaged at 4 dpi 

Video 3. Salmonella early infection induces a strong 
neutrophil response. Tg(mpx:GFP) larvae were injected 
with PBS or Sal-DsRed in hindbrain ventricle. Time-
lapse videos of labeled neutrophils were acquired by 
confocal microscopy at 2 hpi during 13 hr and image 
series were collected every 3 min. Two representative 
movies (maximum projections) of PBS-injected larva 
(left panel) and Salmonella-infected larva (right panel) 
are presented, showing the recruitment of neutrophils 
(mpx+ cells, green) to the infection site (Salmonella, 
red). Time is indicated in the top left corner of each 
panel. Scale bar: 30 μm.

https://elifesciences.org/articles/89828/figures#video3

Video 4. Both macrophages and neutrophils 
are recruited early upon Salmonella infection. 
Tg(mfap4:mCherry-F/mpx:GFP) larvae were injected 
with either PBS or Sal-E2Crimson in hindbrain ventricle. 
Time-lapse videos of labeled cells were acquired by 
confocal microscopy at 3 hpi during 12 hr and image 
series were collected every 1 hr. Two representative 
movies (maximum projections) of PBS-injected larva 
(left panel) and Salmonella-infected larva (right panel) 
are presented, showing recruitment of both neutrophils 
(green) and macrophages (red) to the infection site 
(Salmonella, magenta). Time is indicated in the top left 
corner of each panel. Scale bar: 30 μm.

https://elifesciences.org/articles/89828/figures#video4

https://doi.org/10.7554/eLife.89828
https://elifesciences.org/articles/89828/figures#video3
https://elifesciences.org/articles/89828/figures#video4
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Figure 4. Salmonella hindbrain ventricle (HBV) infection induces hyper-accumulation of macrophages harboring 
persistent bacteria at late time point of infection. (A) Tg(mfap4:mCherry-F) larvae were injected with either PBS or 
Sal-GFP-int in HBV. Representative maximum projections of fluorescent confocal images, showing accumulation 
of macrophages (red) that co-localize with persistent Salmonella (green) at 4 dpi. Scale bar: 50 μm. (B) 3D 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.89828
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(Figure 4E and Video 5). Quantification of the total volume of recruited macrophages (mfap4+ cells) 
and neutrophils (mpx+ cells) in HBV confirmed an important macrophage recruitment, which was five 
time stronger at 4 dpi than at 16 hpi (Figures 3H and 4F). In contrast, neutrophils were similarly 
recruited at 4 dpi compared to 16 hpi. Importantly, this experiment confirmed that neutrophils do not 
co-localize with persistent Salmonella at late stages of infection (Figure 4G). In contrast, bacteria were 
primarily associated with macrophages at 4 dpi (Figure 4G).

Moreover, we quantified the proportion of macrophages harboring bacteria, revealing that the 
frequencies of infected macrophages within the recruited macrophage population ranged from 20% 
to 30% in the early stages to around 60% during the late stages (4 dpi) (Figure 5A). Intracellular bacte-
rial levels of infected leukocytes were also compared between these two stages (Figure 5B). At 5 hpi, 
the volumes of E2Crimson-positive events (E2Crimson+) were lower than that at 4 dpi (Figure 5C). The 
size distribution analysis of E2Crimson+ events indicated a higher representation of smaller sizes (0.5–
1.5 and 1.5–10 μm3) at 5 hpi compared to 4 dpi, a stage during which very large E2Crimson+ events 
were observed (100–1000 μm3, with some exceeding 1000 μm3) (Figure 5D). This analysis supports 
an elevated number of bacteria within macrophages during persistent stages and that intracellular 
bacteria are predominantly observed as clusters rather than as single cells.

Altogether, these findings show that at later stages of infection, Salmonella infection triggers a 
massive macrophage recruitment in the HBV with formation of large macrophage clusters containing 

numerous persistent bacteria.

During Salmonella infection, 
macrophages first acquire a M1-
like phenotype and polarize 
toward non-inflammatory 
phenotype at later stages
The initial macrophage response to Salmo-
nella infection was previously shown to be pro-
inflammatory in mouse and zebrafish models 
(Eisele et al., 2013; Pham et al., 2020; Hall et al., 
2013; Ordas et al., 2011; Sheppe et al., 2018). 
We thus hypothesized that zebrafish macrophages 
polarize toward M1-like phenotype upon Salmo-
nella infection. The pro-inflammatory cytokine 
TNFa is a known marker for M1-like macrophage 
in various species including zebrafish (Nguyen-Chi 
et al., 2015). First, the transgenic line Tg(tnfa:G-
FP-F) was used to track Tnfa producing cells by 
expression of a farnesylated GFP (GFP-F) during 
acute infection. Embryos were infected with Sal-
DsRed and imaged every 5 min from 1 to 10 hpi. 
Time-lapse videos showed that GFP-F expression 
was induced at the infection site and labeled cells 

reconstruction of persistent Salmonella residing inside a macrophage at 4 dpi. Scale bar: 5 μm. (C) Tg(mpx:GFP) 
larvae injected with either PBS or Sal-DsRed in HBV. Representative maximum projections of fluorescent confocal 
images showing that Salmonella (red) do not co-localize with neutrophils (green) at 4 dpi. Scale bar: 50 μm. (D) 
3D reconstruction of neutrophils and persistent Salmonella at 4 dpi. Scale bar: 30 μm. (E–G) Tg(mfap4:mCherry-F/
mpx:GFP) larvae were injected with either PBS or Sal-E2Crimson in HBV. (E) Representative maximum projections 
of fluorescent confocal images showing macrophage clusters (red), persistent Salmonella (magenta) and 
neutrophils (green) at 4 dpi. Scale bar: 50 μm. (F) Quantification of the total volume of recruited cells (mfap4+ or 
mpx+ cells) at 4 dpi. Data of three replicates pooled (mean volume/larva ± SEM, nSal = 20, nPBS = 8, Mann–Whitney 
test, two-tailed, *p < 0.05, ****p < 0.0001). (G) 3D reconstruction of the HBV (middle panel) showing macrophage 
clusters (red) in which Salmonella (gray) persist, surrounded by neutrophils (green) at 4 dpi. Right and left panels 
are zooms of regions boxed by dotted lines. Scale bar: 30 μm. Scale bar zooms: 10 μm.

Figure 4 continued

Video 5. Salmonella late infection induces hyper-
accumulation of macrophages harboring persistent 
bacteria. Tg(mfap4:mCherry-F/mpx:GFP) larvae were 
injected with either PBS or Sal-E2Crimson in hindbrain 
ventricle and imaged by confocal microscopy at 4 dpi. 
This movie is a 3D reconstruction animation created 
from representative fluorescent confocal images using 
Imaris software and shows neutrophils (mpx+ cells, 
green) and a cluster of macrophages (mfap4+ cells, red) 
containing persistent Salmonella (white) at 4 dpi. Scale 
bar: 100 μm.

https://elifesciences.org/articles/89828/figures#video5

https://doi.org/10.7554/eLife.89828
https://elifesciences.org/articles/89828/figures#video5
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Figure 5. Salmonella persistence leads to a higher proportion of macrophages containing bacteria. Tg(mfap4:mCherry-F/tnfa:GFP-F) and 
Tg(mfap4:mCherry-F/mpx:GFP) larvae were injected with PBS or Sal-E2Crimson in HBV. (A) Quantification of the percentage of infected macrophages 
in Sal-infected larvae at indicated time post-infection. Data of three replicates pooled (mean percentage/larva ± SEM, n3–14 hpi = 15 embryos and n4 dpi = 
43 embryos). (B) 3D reconstruction confirming the intramacrophagic and intraneutrophilic localization of a bacterial aggregate at 3 hpi and 4 dpi. Scale 
bar: 20 μm. (C) Size of intracellular E2Crimson+ events (in μm3), quantified following 3D reconstruction. Median volume, n5 hpi = 506, n4 dpi = 990, Mann–
Whitney test, two-tailed, ***p < 0.001. (D) Size repartition of E2Crimson+ events (10 embryos were imaged at each time point).

https://doi.org/10.7554/eLife.89828
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harbored a myeloid morphology, suggesting that 
they are macrophages (Figure 6—figure supple-
ment 1A and Video 6). To investigate the dynamic 
of macrophage polarization during Salmonella 
infection in vivo, we used the double transgenic 
line Tg(mfap4:mCherry-F/tnfa:GFP-F) in which all 
macrophages express a farnesylated mCherry and 
cells producing Tnfa, express GFP-F (Nguyen-Chi 
et  al., 2015). Tg(mfap4:mCherry-F/tnfa:GFP-F) 
larvae were infected with Sal-E2Crimson and 
imaged at early time and at 4 dpi (Figure 6 and 
Video 7). Quantification of volumes of mfap4- and 
tnfa-positive cells, every hour from 4 to 15 hpi, 
showed that Salmonella infection induced a strong 
tnfa response increasing over time, unlike PBS-
injected controls in which only few tnfa-positive 
cells were observed (Figure 6A–C and Figure 6—
figure supplement 1A). During the first hours of 
infection, a maximum of 80% of mfap4-positive 
cells became also tnfa-positive (mfap4+tnfa+ cells) 
corresponding to M1-like activated macrophages 
(Figure 6B). Interestingly, both macrophages with 
and without bacteria expressed tnfa (Figure 6C). 
These results show that in the early phase of 
Salmonella infection, most of the macrophages 

polarize toward M1 like, including both infected and bystander macrophages.
To check macrophage polarization in persistently infected zebrafish, we analyzed infected 

Tg(mfap4:mCherry-F/tnfa:GFP-F) larvae at 4 dpi (Figure 6D). Macrophage volume analysis revealed 
that few tnfa-positive macrophages (mfap4+tnfa+ cells) were still present at the infection site (less than 
10%), but that the vast majority of accumulated macrophages were tnfa-negative (Figure 6D–F and 
Figure 6—figure supplement 1B, C). In agreement with the finding that the vast majority of accumu-
lated macrophages at 4 dpi were not expressing tnfa, persistent Salmonella were found within tnfa-
negative macrophages at late stages of infection (Figure 6E).

These results reveal that recruited macrophages switch their phenotype from M1-like states toward 
non-M1 states during the time course of Salmonella infection and that Salmonella survives in non-M1 
macrophages at late stages of infection.

Macrophages display dynamic transcriptional profiles upon Salmonella 
infection
To interrogate the molecular basis of macrophage activation during Salmonella infection, we compared 
the transcriptomic profiles of ‘activated’ macrophages in infected host versus ‘inactivated’ macro-
phages in non-infected condition at 4 hpi and 4 dpi. First, we confirmed that Fluorescence-Activated 
Cell Sorting (FACS) from Tg(mfap4:mCherry-F) allowed enrichment in macrophage population, as 
shown by RT-qPCR analysis of mfap4 mRNA (Figure 7—figure supplement 1). Second we designed 
the following experimental setup: Tg(mfap4:mCherry-F/tnfa:GFP-F) larvae were either infected with 
Salmonella (Sal-INF) or not infected (Non-INF) (Figure 7A). FACS analysis on whole larvae in Non-
INF condition revealed that a large majority of mfap4+ cells (mCherry+) were tnfa− (GFP−) both at 4 
hpi and 4 dpi (100% and 90.4% ± 4, respectively) (Figure 7—figure supplement 2). These expected 
populations were referred to as ‘inactivated’ macrophages. FACS analysis in Sal-INF condition at 4 hpi 
revealed that the majority (92.5% ± 6) of mfap4+ cells (mCherry+) were tnfa+ (GFP+), while the majority 
(80.9% ± 4) were tnfa− (GFP−) at 4 dpi (Figure 7—figure supplement 2). Therefore, mfap4+ tnfa+ cells 
at 4 hpi, which represent the main macrophage population of early infection phase, were referred to 
as ‘M1-activated’. In contrast the main macrophage population at 4 dpi consists of mfap4+ tnfa− cells 
that were referred to as ‘non-M1-activated’.

Video 6. Salmonella early infection induces a strong 
activation of tumor necrosis factor a (tnfa) -expressing 
cells. Tg(tnfa:GFP-F) larvae were injected with PBS or 
Sal-DsRed in the HBV. Time-lapse videos of labeled 
cells were acquired using light sheet microscopy at 
3 hpi during 8 hr and image series were collected 
every 5 min. Two representative movies (maximum 
projections) of PBS-injected larva (left panel) and 
Salmonella-infected larva (right panel) are presented, 
showing recruitment of tnfa+ cells (green) to the 
infection site (Salmonella, red). Time is indicated in the 
top left corner of each panel. Scale bar: 30 μm.

https://elifesciences.org/articles/89828/figures#video6

https://doi.org/10.7554/eLife.89828
https://elifesciences.org/articles/89828/figures#video6
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Figure 6. Macrophages polarize toward a pro-inflammatory M1-like phenotype upon Salmonella infection at early stage but not at late stage. (A–F) 
Tg(mfap4:mCherry-F/tnfa:GFP-F) larvae were injected with PBS or Sal-E2Crimson in HBV. (A) Representative maximum projections of fluorescent 
confocal images extracted from a 4D sequence, showing recruitment of macrophages (mfap4+ cells, red) and M1-like activation (mfap4+-tnfa+ cells, 
yellow) to Salmonella (magenta) from 4 to 15 hpi. Asterisk: auto-fluorescence. Scale bar: 50 μm. (B) Quantification of the percentage of M1 macrophages 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.89828
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Global gene expression analysis on these different populations was performed by RNA sequencing 
(Figure 7A). The principal component analysis showed that each biological sample formed distinct 
clusters according to the 4 hpi and 4 dpi experimental conditions (Figure 7B). All were pure myeloid 
populations as all sorted populations expressed considerable levels of several key macrophage markers 
such as mfap4, mpeg1.2, marco, csf1ra, and lygl1, but neither muscle marker (smyhc2), lymphocyte 
markers (lck, rag2, and cd79b), neutrophil marker (mpx) nor other cell type markers (Figure 7C and 
Figure 7—figure supplement 3). In addition, only the cells sorted as mfap4+ tnfa+ from the Sal-INF 
condition at 4 hpi expressed tnfa (Figure 7C). To compare the functional differences between ‘inac-
tivated’ and ‘activated’ macrophages, we performed a differentially expressed gene (DEG) analysis 
between Non-INF and Sal-INF conditions at 4 hpi and 4 dpi (adjusted p value (p-adj) <0.05|log2(Fold 
Change (FC)) ≥1). Salmonella infection induced massive changes of gene expression in macrophages 
at 4 hpi (Figure 7D, Figure 7—source data 1) and M1-activated macrophages harbored specific gene 
expression signature with 3173 up-regulated and 2847 down-regulated genes, whereas at 4 dpi, only 
104 up-regulated and 440 down-regulated genes were specific to the non-M1 signature (Figure 7E, F 
and Figure 7—source data 1). These results reveal that macrophages display a highly dynamic signa-
ture during the time course of infection.

At 4 hpi, M1-activated macrophages were characterized by a specific up-regulation of pro-
inflammatory genes including those involved 
in the TNF pathway (tnfa, traf4b, traf7, traf1b, 
tnfrsf1b, tnfrsf9b, tnfaip2, and tnfaip3), pro-
inflammatory cytokines (il12a and il12bb), chemo-
taxis (ccl38a.5, ccl38a.4, ccl19, cxcl18b, and 
cxcl20), complement (c3a.1, c3a.3, c3a.4, and 
c3a.6), innate immune sensing of pathogens and 
antimicrobial responses (tlr5, stat1a, stat2, mxc, 
irf9, crfb17, card11, card9, and hif1ab), and matrix 
metalloproteinases (mmp9, mmp14a, mmp14b, 
mmp11b, mmp13b, mmp30, and mmp23bb) 
(Figure 6F). Interestingly, il10 and il6, that were 
described for their dual role during inflammation 
(Mocellin et  al., 2003; Scheller et  al., 2011), 
were also up-regulated, while known markers of 
M2 and anti-inflammation such as mrc1b, tgm2l, 
tgfbr2, klf2, klf4, irf2, and mertka were down-
regulated. Up-regulated genes at 4 hpi were 
classified according the gene ontology (GO) 
terms and the KEGG pathways (Figure 7—figure 
supplement 4B, Figure 7—source data 1). Top 
ranking GO terms enriched in macrophages at 
4 hpi were ‘inflammatory response’, ‘neutrophil 
migration’, ‘macrophage migration’, and ‘defense 
response to gram negative bacterium’. Enriched 
KEGG pathways were ‘Protein processing in 
endoplasmic reticulum’, ‘phagosome’, and ‘cyto-
kine–cytokine receptor interactions’ (Figure  7G, 

at indicated time post-infection. Data of two replicates pooled (mean percentage/larva ± SEM, n = 12 per condition). (C) Zoom of fluorescent confocal 
images in A. Scale bar: 20 μm, arrow: infected tnfa+ macrophages and arrowhead tnfa+ bystander macrophages. (D) Representative maximum 
projections of fluorescent confocal images of PBS-injected and Sal-E2Crimson-infected larvae at 4 dpi (upper panels). Scale bar: 50 μm. Zooms of 
regions boxed by dotted lines (bottom panels). Scale bar zoom: 10 μm. (E) 3D reconstruction of macrophage clusters (red) containing persistent 
Salmonella (gray), surrounded by few tnfa+ macrophages (green) at 4 dpi. Scale bar: 10 μm. (F) Quantification of the percentage of M1 macrophages at 4 
dpi. Data of four replicates pooled (mean percentage/larva ± SEM, 4 dpi, nSal = 23 larvae, nPBS = 20, one sample Wilcoxon test, ****p < 0.0001).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Salmonella early infection induces a strong activation of tumor necrosis factor (TNF)-expressing cells.

Figure 6 continued

Video 7. Macrophages polarize toward a pro-
inflammatory M1-like phenotype upon Salmonella 
early infection. Tg(mfap4:mCherry-F/tnfa:GFP-F) larvae 
were injected with PBS or Sal-E2Crimson in the HBV. 
Time-lapse videos of labeled macrophages were 
acquired using confocal microscopy at 3 hpi during 
12 hr and image series were collected every 1 hr. Two 
representative movies (maximum projections) of PBS-
injected larva (left panel) and Salmonella-infected larva 
(right panel) are presented, showing recruitment of 
macrophages (mfap4+ cells, red) and M1-like activation 
(mfap4+-tnfa+ cells, yellow) to Salmonella (magenta). 
Time is indicated in the top left corner of each panel. 
Scale bar: 30 μm.

https://elifesciences.org/articles/89828/figures#video7

https://doi.org/10.7554/eLife.89828
https://elifesciences.org/articles/89828/figures#video7
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Figure 7. RNAseq analysis reveals macrophage transcriptome switch during Salmonella infection. (A) Schematic diagram of macrophage RNA-
sequencing experimental design. Tg(mfap4:mCherry-F/tnfa:GFP-F) larvae were either infected with Salmonella (Sal-INF) or non-infected (Non-INF). 
Fluorescence-Activated Cell Sorting (FACS) was used to isolate mfap4+-tnfa− cells (mCherry+ GFP−) and mfap4+-tnfa+ cells (mCherry+ GFP+) at 4 hpi and 
4 dpi. (B) Principal component analysis (PCA) score plot of mfap4+-tnfa− cells in Non-INF condition (n = 4) and mfap4+-tnfa+ cells in Sal-INF condition (n 
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Figure 7—source data 1). Together, these results confirm the pro-inflammatory signature of tnfa+ 
macrophages at 4 hpi.

In contrast non-M1-activated macrophages at 4 dpi specifically up-regulated genes involved in 
anti-inflammation and M2 markers in mammalian systems (c1qtnf6b, cxcl13, dgat1a, cfhl2 [ortholog of 
F13B in human], phgdh, f5, kmo, and ppp1r14aa), retinoic acid pathway (rdh10a, rdh12, and ugt1a), 
bacterial defense (npsn, c9, hamp, and nos2b), regeneration (wt1b), tissue protection and develop-
ment (cx47.1, lta, and ecm1b), and extracellular matrix remodeling (mmp25b) (Figure 7F, Figure 7—
source data 1). Interestingly, some pro-inflammatory genes, like saa, cxcl11.1, s100b, ptgs2a, itgb3b, 
illr4 (CLEC orthologous), and pppr2r2bb were up-regulated at both times points but with a higher 
fold change at 4 hpi than 4 dpi, while others like noxo1a, lsp1, plat, lpar1, selm, elf3, and irf6 were 
up-regulated at 4 hpi and down-regulated at 4 dpi. In contrast, genes involved in anti-inflammatory 
response and tissue regeneration (prg4a, cxcl19, cd59, and clic2) were down-regulated at 4 hpi and 
up-regulated at 4 dpi (Figure 7—figure supplement 4A). Of note, some markers of microglia (apoeb, 
ccl34b.1, and csf1rb) were down-regulated at both time points, suggesting a re-differentiation of this 
cell population upon HBV infection. KEGG pathways analysis performed on DEGs at 4 dpi revealed the 
absence of a pro-inflammatory signature and that the most significantly enriched pathways were ‘tight 
junction’ and ‘cell adhesion’ (Figure 7G, Figure 7—source data 1), suggesting profound changes in 
their polarization status and cell-adhesion program. Surprisingly, the most significantly enriched GO 
terms in up-regulated genes included ‘Astrocyte’, ‘Myelination’, ‘Oligodendrocyte’, and ‘Myelin main-
tenance’ (Figure 7—figure supplement 1C, Figure 7—source data 1). Macrophages may express 
genes supporting astrocyte and oligodendrocyte function in the injured microenvironment of the 
infected HBV or these up-regulated genes may reflect the presence of internalized transcripts after 
efferocytosis in the infected area, as previously observed in other biological context (Lantz et al., 
2020).

We confirmed the specific expression profile for one candidate gene via an alternative approach. 
Wilms Tumor 1b (wt1b) delineates a pro-regenerative macrophage subset and was shown to be 
required for heart and fin regeneration in zebrafish (Sanz-Morejón et al., 2019). We checked the 
expression of wt1b in macrophages by crossing Tg(wt1b:GFP) line with Tg(mfap4:mCherryF) line 
to track simultaneously wt1b-expressing cells and macrophages. Double transgenic embryos were 
infected and imaged at 4 hpi and 4 dpi. Confocal microscopy analysis showed that, while macro-
phages did not express wt1b at 4 hr after infection, they strongly expressed wt1b 4 days after infec-
tion. Large clusters of wt1b-positive macrophages harboring persistent bacteria were also observed 
(Figure 8). These data reveal phenotypical distinct macrophage signatures during early and persistent 

= 4) at 4 hpi and of mfap4+-tnfa− cells in Non-INF condition (n = 3) and mfap4+-tnfa− cells in Sal-INF condition (n = 4) at 4 dpi. (C) Normalized expression 
of several marker genes of muscle cells, lymphocytes, neutrophils, and macrophages in the different sorted macrophage populations. (D) Volcano plot 
showing differentially expressed genes (DEGs) between Non-INF and Sal-INF conditions at 4 hpi and 4 dpi. Adjusted p value (p-adj) <0.05 was used as 
the threshold to judge the significance of the difference in gene expression. Red plots: up-regulated genes; blue plots: down-regulated genes; gray 
plots: unchanged genes. (E) Heatmap of DEGs between macrophage populations across infection (p-adj <0.05|Log2(FC) ≥1). Selected top DEGs from 
each population are shown. Color coding, decreased expression: blue, no expression: white, high expression: red. (F) Venn diagram showing unique and 
intersecting up- or down-regulated genes (indicated as Up and Down, respectively) upon infection from macrophage transcriptome at 4 hpi and 4 dpi. 
The numbers of up- and down-regulated genes are indicated in bold in each unique and overlapping sector of the Venn diagram. The most noteworthy 
genes of each unique sector of the Venn diagram are indicated (p-adj <0.05|(Log2(FC) ≥1 or ≤1)). (G) Chart representation of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways enriched in up-regulated genes (p-adj <0.05|Log2(FC) ≥1) at 4 hpi (upper panel) and all DEGs at 4 dpi (lower 
panel) (p-adj <0.05). Graph shows the fold enrichment, red color: lowest enrichment false discovery rate (FDR) and blue color: highest enrichment FDR.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. List of all the differentially expressed genes upon Salmonella infection and analysis.

Source data 2. List of selected differentially expressed genes upon Salmonella infection.

Figure supplement 1. mfap4 mRNA expression in mCherry-F+ or mCherry-F− sorted cells.

Figure supplement 2. Macrophage populations were sorted by Fluorescence-Activated Cell Sorting (FACS) before transcriptomic analysis.

Figure supplement 3. Normalized expression of marker genes confirms the purity of sorted macrophage populations.

Figure supplement 4. RNAseq analysis shows dynamic transcriptional profiles of macrophages upon Salmonella infection.

Figure 7 continued
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infection stages that can be identified in situ and highlight the pro-regenerative state of late non-M1-
activated macrophages.

Altogether, these data suggest that macrophages skew their phenotype from acute to persistent 
infection, switching from a pro-inflammatory phenotype to an anti-inflammatory/pro-regenerative 
phenotype with a unique cell-adhesion signature.

Salmonella persistence in the host is accompanied with macrophages 
harboring low motility
Our transcriptomic analysis data revealed that many genes related to cell adhesion were differen-
tially regulated in Salmonella infection compared to control and that this cell-adhesion signature was 
not the same during acute and persistent infections (Figure 9A). These genes encompassed cell–
cell-adhesion molecules, likes cadherins (cdh1, cdh2, cdh11, cdh17, and cdh18), occludins (oclna, 
oclnb, cldnk, and cln19) and tight junction proteins (tjp1a, tjp3, tjp2a, and tjp2b), extracellular matrix-
adhesion proteins (itgb1a, itgb1b, itgb4, itga6a, and cd44a), regulators of cell adhesion (pxna, ptk2ba, 
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Figure 8. Salmonella persistence induces large clusters of pro-regenerative wt1b-expressing macrophages. (A–D) Tg(mfap4:mCherry-F/wt1b:GFP-F) 
larvae were injected with PBS or Sal-E2Crimson in the HBV. (A) Representative maximum projections of fluorescent confocal images showing 
macrophages (mfap4+ cells, red) and wt1b-expressing cells (wt1b+ cells, green) after Salmonella infection at (A) 4 hpi and at (B) 4 dpi. Asterisk: auto-
fluorescence. Scale bar: 30 μm. Big clusters of wt1b-expressing macrophages (mfap4+-wt1b+ cells, yellow) were observed at 4 dpi. (C, D) Zoom of two 
representative fluorescent confocal images showing large clusters of wt1b-expressing macrophages (mfap4+-wt1b+ cells, yellow) at 4 dpi. Scale bar: 
10 μm, arrow: mfap4+-wt1b+ macrophage.
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Figure 9. Salmonella persistence induces drastic changes in cell adhesion-related gene expression and motility in macrophages. (A) Heatmap of 
differentially expressed genes (DEGs) involved in cell adhesion, between macrophage populations across infection (p-adj <0.05). Selected DEGs from 
each population are indicated. Color coding, decreased expression: blue, no expression: white, high expression: red. (B–D) Tg(mfap4:mCherry-F) 
larvae were injected with PBS or Sal-E2Crimson in HBV and time-lapse videos of labeled macrophages were acquired during 2 hr at 1 hpi or 4 dpi. (B) 

Figure 9 continued on next page
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and ptk2ab), and regulators of cytoskeleton remodeling (rac1a, rock2b, and rhoua) and most of them 
are down-regulated at 4 dpi (Figure 9A). This shift in adhesion program of activated macrophages 
during the establishment of persistent infection suggests profound changes in their interaction with 
their environment and their migratory properties. Indeed, macrophage function relies on the estab-
lishment of contact with neighboring cells and stable attachments to their substrate, allowing trans-
migration through tissues, positioning, and signaling. Cadherins were shown to regulate macrophage 
functions (To et al., 2022; Van den Bossche et al., 2015) and integrins and small GTPases are also 
important for macrophage migration (Aflaki et al., 2011; Paterson and Lämmermann, 2022). To 
test whether the changes in expression of cell adhesion and cytoskeletal regulators were mirrored by 
changes in macrophage adhesion associated motility, we generated a double transgenic line, Tg(m-
fap4:Gal4/UAS:nfsB-mCherry), in which mfap4 promoter drives indirectly the expression of NTR fused 
with mCherry specifically in macrophages. In these larvae, macrophages are strongly and mosaically 
labeled by red fluorescence allowing an accurate tracking of individual macrophages. Larvae were 
infected with Sal-E2Crimson and imaged using confocal microscopy during 2 hr at 1 hpi and at 4 dpi. 
Analysis of macrophage trajectories at the injection site revealed that macrophage motility at 1 hpi 
was enhanced in infected larvae, with long-distance migration compared to PBS control (Figure 9B 
and Videos 8, 9). In contrast, macrophage motility at the injection site at 4 dpi in infected larvae was 
decreased compared to PBS control, with very 

Migration of macrophages in response to PBS or Sal-E2Crimson at 1 hpi or 4 dpi. Representative trajectory plots of individual macrophage movement 
tracks are shown, with the initial position in the center of the graph. Number of macrophage tracks are indicated. (C) Quantification of the individual 
macrophage velocity from PBS-injected or Sal-infected larvae at 1 hpi and 4 dpi. Data of four replicates per time point pooled (mean velocity/
macrophage ± SEM, at 1 hpi: nPBS = 76, nSal = 195; at 4 dpi: nPBS = 93, nSal = 162; t-test, two-tailed, significance of Sal versus PBS conditions, ****p < 
0.0001, *p < 0.05). (D) Quantification of the individual bystander macrophage or infected macrophage velocity from PBS-injected or Sal-infected larvae 
at 1 hpi and 4 dpi. Data of two replicates per time point pooled (mean velocity/macrophage ± SEM, at 1 hpi: nPBS = 76, nbystander-MΦ = 92; ninfected-MΦ = 33; at 
4 dpi: nPBS = 93, nbystander-MΦ = 67; ninfected-MΦ = 17; analysis of variance (ANOVA) Kuskal–Wallis’ test with Dunns’ post-test, ****p < 0.0001, **p < 0.01, *p < 
0.05, ns: not significant).

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Neutrophils remain motile during the establishment of Salmonella persistent infection.

Figure 9 continued

Video 8. Highly motile macrophages are recruited 
during Salmonella early infection. Tg(mfap4:mCherry-F) 
larvae were injected with PBS or Sal-E2Crimson in 
HBV. Time-lapse videos of labeled macrophages were 
acquired by confocal microscopy during 2 hr at 1 hpi 
and image series were collected every 2 min. Two 
representative movies (maximum projections) of PBS-
injected larva (left panel) and Salmonella-infected larva 
(right panel) are presented, showing in different colors 
individual macrophage trajectory tracks (mfap4+ cells, 
red). Time is indicated in the top left corner of each 
panel. Scale bar: 30 μm.

https://elifesciences.org/articles/89828/figures#video8

Video 9. The motility of macrophages is decreased 
Salmonella-injected larvae compared to PBS-injected 
larvae during persistent infection. Tg(mfap4:mCherry-F) 
larvae were injected with PBS or Sal-E2Crimson in 
HBV. Time-lapse videos of labeled macrophages 
were acquired confocal microscopy during 2 hr at 
4 dpi and image series were collected every 2 min. 
Two representative movies (maximum projections) of 
PBS-injected larva (left panel) and Salmonella-infected 
larva (right panel) are shown, showing in different colors 
individual macrophage trajectory tracks (mfap4+ cells, 
red). Time is indicated in the top left corner of each 
panel. Scale bar: 30 μm.

https://elifesciences.org/articles/89828/figures#video9

https://doi.org/10.7554/eLife.89828
https://elifesciences.org/articles/89828/figures#video8
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short trajectories. In addition, macrophage migration speed was significantly enhanced at 1 hpi in 
the infected larvae compared to the control condition, whereas at 4 dpi, this speed was reduced 
compared to the control condition (Figure  9C). To compare the motility of uninfected bystander 
macrophages versus infected macrophages, a similar analysis was performed on macrophages with 
and without intracellular bacteria. At 1 hpi, bystander macrophages exhibited heightened velocity 
during acute infection, while infected macrophages maintained a speed comparable to the control 
group (Figure 9D). In contrast, during persistent infection (4 dpi), both bystander and infected macro-
phages exhibited reduced velocity compared to unstimulated macrophages (Figure 9D). To evaluate 
the motility of another leukocyte population, we measured neutrophil velocity. At 1 hpi, neutrophil 
speed was increased by the infection while at 4 dpi, it was unchanged compared to control (Figure 9—
figure supplement 1). Importantly, neutrophil velocity was higher than that of macrophages in each 
condition. These observation underscores the dynamic cellular characteristics exhibited by leuko-
cytes, including macrophages, influenced by their infection status, and the stage of the infection. 
These data also demonstrate that, during persistent infection, clusters of motionless macrophages are 
formed while they provide a niche for Salmonella to survive.

Discussion
While some pathogens transiently infect an organism, others can survive inside the host for a long 
period of time or even for life. Salmonella can persist inside macrophages for long term (Monack, 
2012; Gal-Mor, 2019) and this persistence has been proposed to depend on macrophage polariza-
tion status (Eisele et al., 2013). Here, we describe the first model of Salmonella persistence in trans-
parent zebrafish that allows the detailed analysis of the dynamic interactions between Salmonella and 
polarized macrophages during early and late phases of infection in a whole organism.

In other zebrafish infection models with Salmonella, acute symptoms – hyper-proliferation of the 
bacteria, larval mortality – presumably prevent the establishment of a long-term infection (Stock-
hammer et al., 2009; van der Sar et al., 2003). Unlike these studies, we injected Salmonella in a 
closed compartment, the larval HBV. This mode of infection led to diverse outcomes, including acute 
infection, clearance, and persistence. Indeed, in 47% of the larvae, Salmonella replicated intensively, 
leading to the rapid larval death. In surviving larvae, the bacteria were either cleared or survived inside 
the host, possibly up to 14 dpi. These bacteria that survive for an extended period of time within the 
tissues were called ‘persistent Salmonella’. These ‘persistent bacteria’ should not be confused with 
‘Persisters’, which refers to bacteria that persist for prolonged periods despite antibiotic treatment 
(Fisher et al., 2017), even though they may share some common features. These diverse outcomes 
of infected zebrafish could be explained by multiple factors, including stochastic cell-to-cell differ-
ences in genetically identical bacteria or the complexity of immune cell population. Indeed, in in vitro 
systems, heterogeneous activity of the bacteria creates phenotypically diverse bacterial subpopula-
tions which shape different cellular environments and potentiate adaptation to a new niche (Saliba 
et al., 2016; Avraham et al., 2015).

We focused our in vivo study on embryos infected with persistent Salmonella up to 4 dpi. During 
the course of infection, the infected host displayed two main phases characterized by distinct inflam-
matory status: an early pro-inflammatory phase and a late phase characterized by both pro- and 
anti-inflammatory signals. We analyzed the interaction of Salmonella with innate immune cells during 
both phases. Similar to previous work (Masud et al., 2019), during early infection, both neutrophils 
and macrophages engulfed the bacteria. Macrophages played a crucial role in bacterial clearance, 
as shown by the increased bacterial burden upon macrophage depletion. Exploiting the imaging 
possibilities of this system, we visualized macrophage activation thanks to tnfa expression in real 
time in response to Salmonella infection and showed that engulfing macrophages and bystanders 
polarized toward M1-like phenotypes. This pro-inflammatory response from the host was rapid and 
robust as more than 90% of the macrophages activated as M1 like within the first hours. Besides, we 
assessed the full transcriptome of zebrafish macrophages during early infection and we demonstrated 
that macrophages adopted a pro-inflammatory program characterized by the up-regulation of genes 
involved in inflammation, cytokine–cytokine receptor, and phagosome pathways. These results are 
consistent with our initial analysis on whole larvae and are reminiscent to previous studies using whole 
Salmonella-infected larvae where genes encoding matrix metalloproteinases, pro-inflammatory cyto-
kines, and chemokine pathways are up-regulated (Stockhammer et al., 2009; Ordas et al., 2011). 

https://doi.org/10.7554/eLife.89828
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There are also similarities with the activation program detected in human macrophages infected with 
different pathogens including Salmonella (Nau et al., 2002), which may represent an evolutionarily 
conserved program for host defense.

During the persistent phase, high-resolution intravital imaging showed that Salmonella mainly local-
ized inside macrophages that were organized in large clusters. In contrast, although some neutrophils 
were detected in the HBV, they were poorly recruited, not clustered and did not harbor persistent 
bacteria. Importantly, most of the mobilized macrophages did not express tnfa in late stages of 
infection; we could not observe infected macrophages expressing tnfa. Transcriptomic profiling of 
these non-inflammatory macrophages during bacterial persistence revealed an anti-inflammatory and 
regenerative profile characterized (1) by the attenuation of pro-inflammatory genes and (2) by the 
up-regulation of genes involved in anti-inflammation, tissue maintenance, development, and regen-
eration. This included the expression of wt1b an important pro-regenerative gene that defines a pro-
regenerative macrophage subtype in zebrafish (Sanz-Morejón et al., 2019). Surprisingly, neuronal 
function-related genes, involved in myelination or expressed in astrocytes and oligodendrocytes were 
also up-regulated. This should not result from cell contamination given the macrophage specificity 
of the RNAseq datasets, which did not recover other cell type markers. We therefore propose two 
possible scenarios. In the first scenario, the brain damages caused by the persistent infection may 
trigger a regenerative response involving pro-regenerative macrophages, which participate to the 
regeneration of axons and the restoration of their function by remyelination and maintenance of 
myelin homeostasis (McNamara et al., 2023; Rawji et al., 2016; Tsarouchas et al., 2018). Alterna-
tively, during persistent infection, macrophages may perform efferocytosis of damaged or dying cells 
and internalize transcripts originating from them. The internalization of apoptotic RNAs by macro-
phages during efferocytosis has been demonstrated in the context of murine macrophages co-cul-
tured with apoptotic human T cells (Lantz et al., 2020). Both scenarios suggest that the macrophages 
interact tightly with their microenvironment during persistent infection. It is important to emphasize 
that the dynamic variations in macrophage transcriptomes between acute and persistent infections 
may indicate disparities in proliferation, death, and polarization, altering the composition of macro-
phage populations over time. However, it might also denote a phenotypic switch from M1- to M2-like 
polarization within individual macrophages over time. In the future, a more comprehensive analysis 
at single-cell level of resolution will better discriminate phenotypically distinct populations of macro-
phages at play in this model.

Our data indicate that Non-M1 macrophages which have limited bactericidal activity, can be used 
by Salmonella as a niche to sustain persistent infections in their hosts. Salmonella persistence was 
previously associated with M2 macrophages in a mouse model of long-term infection (Eisele et al., 
2013; Goldberg et al., 2018). Molecularly, M2-permissive macrophage polarization in granulomas 
is partially dependent on SteE, an effector of the Salmonella pathogenicity island-2 type III secre-
tion system (SPI2 T3SS), while the host cytokine TNF limits M2 polarization (Pham et al., 2020). In 
infected cultured macrophages, SteE regulates STAT3, reorienting macrophage polarization toward 
M2 phenotypes (Gibbs et al., 2020; Panagi et al., 2020). Another study revealed that macrophages 
harboring Salmonella Typhimurium during persistent stages express high levels of the inducible nitric 
oxide synthase (known as iNOS or NOS2) (Goldberg et al., 2018). Interestingly, we also observed 
an up-regulation of nos2b in zebrafish macrophages 4 days after Salmonella infection. Furthermore, 
non-growing, antibiotic-tolerant bacteria, also called persisters, were shown to translocate SPI2 
T3SS effectors, including SteE, into the macrophage to reprogram it into a non-inflammatory macro-
phage (Stapels et al., 2018). Our data are in line with these studies, emphasizing the potential of the 
zebrafish model for the study of persistent infections. However, further investigations are still needed 
to identify the bacterial factors involved in macrophage reprogramming in our system.

An efficient immune response requires the interplay of a cocktail of cell-adhesion molecules and 
immune cells (Cui et  al., 2018; Friedl and Weigelin, 2008). Macrophages express various cell-
adhesion proteins including integrin b1 (itgb1) that is crucial for cell movements and protrusiveness 
during surveillance (Paterson and Lämmermann, 2022). Tight junctions are important for particle 
uptake and exchange (Blank et al., 2011) and RAC proteins were shown to be necessary for macro-
phage basic motility and migration (Rosowski et al., 2016; Wheeler et al., 2006). We demonstrated 
a shift in macrophage adhesion program during persistent stages with several cell adhesion-related 
genes that were down-regulated, including itgb1, rac2, and tight junction-related genes. This shift 

https://doi.org/10.7554/eLife.89828
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in adhesion program was accompanied with a decrease in macrophage motility. The observation 
that macrophages remained stationary while neutrophil exhibited normal mobility implies that cell 
density within tissue does not appear to affect the motility of leukocytes in persistent infection stages. 
Chemokines also play a pivotal role in macrophage chemotaxis, and alterations in these signaling 
pathways may contribute to the lower motility of macrophages during persistent infection stages. 
Previous studies have established the involvement of Ccl2 and its receptor Ccr2 in guiding macro-
phages toward bacterial pathogens in mice and zebrafish (Cambier et al., 2014). Here, both ccr2 and 
ccl2 orthologs, ccl38a.4, were up-regulated at 4 hpi, yet their expression reverted to baseline levels by 
4 dpi. In contrast, Salmonella infection had no impact on the expression of cxcr4b and sdf1 (cxcl12a), 
representing another crucial chemoattractant signal. Based on our transcriptomic analysis, cxcr3 and 
cxcl11 are regulated in response to Salmonella infection. Therefore, our data suggest a dynamic shift 
in major chemotaxis signals between the acute and persistent stages of Salmonella infection that may 
contribute to the regulation of macrophage motility. Because these motionless macrophages appear 
non-inflammatory and contain persistent bacteria, they may constitute a permissive environment for 
bacterial survival. Of interest, the Salmonella SPI2 T3SS effector SseI, which is involved in long-term 
infection in mice, has been previously found to modulate the migration of cultured macrophages 
(McLaughlin et al., 2009). Subversion of macrophage motility has been also previously observed with 
another pathogen, M. marinum, which uses the ESX-1/RD1 secretion system to enhance macrophage 
recruitment to nascent granulomas and favor granulomas formation (Davis and Ramakrishnan, 2009).

Granulomas are a key pathological feature of some intracellular bacterial infections; they do contain 
a high proportion of macrophages. Salmonella enterica can cause granuloma formation in different 
animal species (Work et al., 2019), including mice (Goldberg et al., 2018) and humans (Muniraj et al., 
2015; Narechania et al., 2015; Nasrallah and Nassar, 1978). The complex cellular structure of gran-
uloma is thought to be important for bacterial persistence. Recently, using single-cell transcriptomics, 
Pham et al. identified diverse macrophage populations within Salmonella Typhimurium-induced gran-
ulomas (Pham et al., 2023). In the present study, Salmonella persisted within aggregates of tnfa-
negative macrophages that remind early granulomas. Mycobacterial granulomas are characterized 
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by epithelioid macrophages expressing tight junction proteins, E-cadherin (CDH1) and ZO-1 (tjp1) 
(Cronan et al., 2021; Pagán and Ramakrishnan, 2018). Interestingly, in the context of persistent 
Salmonella infection, we showed that tnfa-negative macrophages down-regulated the expression of 
several tight junction-related genes during persistence, such as cdh1 and tjp1a. This is similar to what 
has been observed in Salmonella-induced granulomas in mice where macrophages weakly express 
E-cadherin or ZO-1 (Goldberg et al., 2018) and suggests that these structures are non-epithelioid 
granulomas initiated by an innate immune mechanism.

In conclusion, the zebrafish larva proves to be an extraordinary platform for the analysis of Salmo-
nella persistent infection and the understanding of long-term interactions with host cells inside a 
whole living animal. The highly dynamic changes of macrophage gene expression between early infec-
tion and persistent phases confirm the highly versatile nature of macrophage-Salmonella interactions 
and suggest that macrophage polarization and motility switch plays an important role in the establish-
ment of a secure niche for Salmonella (Figure 10).

Materials and methods

Fish husbandry
Fish (Danio rerio) maintenance, staging and husbandry were performed as described (Nguyen-Chi 
et al., 2014) with golden, AB strains and transgenic lines. Tg(mfap4:mCherry-F)ump6tg (Phan et al., 
2018) referred to as Tg(mfap4:mCherry-F) and Tg(mfap4:Gal4VP16)ump10TG referred to as Tg(m-
fap4:Gal4) were used to visualize macrophages. Tg(mpx:eGFP)ill4 referred to as Tg(mpx:eGFP) 
(Renshaw et al., 2006) was used to visualize neutrophils. Tg(tnfa:GFP-F)ump5Tg referred to as Tg(t-
nfa:GFP-F) was used to visualize cell expressing tnfa (Nguyen-Chi et al., 2015). Tg(mfap4:mCherry-F) 
crossed with tg(tnfa:GFP-F) were used to visualize activated M1 macrophages. Tg(mpeg1:Gal4)gl25 
(Ellett et al., 2011) and Tg(UAS-E1b:nfsB-mCherry)i149 (Davison et al., 2007) were used to ablate 
macrophages. Tg(wt1b:GFP)li1Tg were used to visualize wt1b-expressing cells (Bollig et al., 2009). 
Embryos were obtained from pairs of adult fishes by natural spawning and raised at 28°C in tank 
water. Embryos and larvae were staged according to Kimmel et al., 1995 and used for experiments 
from 0 hpf to 17 dpf. Larvae were anaesthetized in zebrafish water supplemented with 200 μg/ml 
tricaine (ethyl 3-aminobenzoate methanesulfonate, MS-222 Sigma #A5040) before any manipulation 
(infection or imaging) and if necessary were replaced in their medium at 28°C.

Salmonella strains
Salmonella strains were grown overnight in Luria-Bertani (LB) medium at 37°C with 100 µg/ml ampi-
cillin, 10 µg/ml tetracycline, or 25 µg/ml kanamycin when required. Salmonella enterica serovar Typh-
imurium ATCC14028s (here called Salmonella) was used as the original parental Salmonella strain. 
Salmonella carrying plasmid pRZT3::dsRED (van der Sar et al., 2003), pE2-Crimson (Clontech), and 
pFPV25.1 (Valdivia and Falkow, 1996), that express red fluorescent protein (dsRED), far-red fluores-
cent protein (E2Crimson), and green fluorescent protein (GFP), respectively, were used for microinjec-
tion in zebrafish embryos (see below). To create a Salmonella strain expressing chromosomal copies 
of GFP, the rpsM::gfp fusion from strain SM022 (Vazquez-Torres et al., 1999) was transferred by P22 
transduction of the rpsM::gfp fusion, linked to kanamycin resistance gene into the original parental 
Salmonella strain ATCC14028s through selection for kanamycin resistance.

Salmonella injections
Salmonella strains were grown to exponential phase and recovered by centrifugation, washed twice 
and resuspended in PBS at an OD600 of 5 or 2.5 (depending on the required dose) with phenol red. 
Infection was carried out by microinjection of 1.5 nl of bacterial suspensions in the Hindbrain Ventricule 
(HBV) of dechorionated and anesthetized 2 dpf embryos. Two different doses of Salmonella were used 
for microinjection in zebrafish embryos: low (<500 CFU) and high (1000–2000 CFU). The inoculum 
dose was checked by counting the CFU containing in 1.5 nl of the bacterial suspension. For larva 
survival analysis, a minimum of 30 larvae were infected per replicate and three replicates were done 
for each experiment.

https://doi.org/10.7554/eLife.89828


 Research article﻿﻿﻿﻿﻿﻿ Microbiology and Infectious Disease

Leiba et al. eLife 2024;13:e89828. DOI: https://doi.org/10.7554/eLife.89828 � 25 of 33

Quantification of bacterial load by CFU counts
A minimum of five larvae per time points were anesthetized in zebrafish water supplemented with 
200 μg/ml tricaine and then each embryo was crushed in 1% Triton X-100-PBS in an Eppendorf tube 
using a pestle (MG Scientific #T409-12). After 10 min incubation at room temperature, dilutions of 
total lysates were plated on LB agar plates containing appropriate antibiotics. CFU were counted after 
an overnight incubation of the plates at 37°C. Larvae used for CFU counts were randomly chosen 
among surviving larvae.

Macrophage ablation
For macrophage depletion, we used Tg(mpeg1:Gal4/UAS:nfsB-mCherry) embryos expressing nfsB-
mCherry under the indirect control of mpeg1 promoter. nfsB-mCherry encodes an Escherichia coli 
nitroreductase (NTR) fusionned to mCherry protein that converts Metronidazole (MTZ) into a toxic 
agent that kills the cells. Tg(mpeg1:Gal4/UAS:nfsB-mCherry) embryos were incubated in zebrafish 
water containing 10 mM MTZ (Sigma-Aldrich) and 0.1% DMSO at 48 hpf and 24 hr before injection 
with Salmonella or PBS. Treatment with 0.1% DMSO was used as a control. Depletion efficiently was 
assessed by imaging using the MVX10 Olympus microscope just before HBV injection. Effects of 
macrophage depletion on embryo survival and bacterial load during infection were analyzed at 1, 2, 
3, and 4 dpi.

Generation of the macrophage reporter line, Tg(Mfap4:Gal4VP16)
The Gal4VP16 ORF was amplified by PCR and used to replace the mCherry ORF downstream of the 
Mfap4 promoter in the transgenesis vector used in Phan et al., 2018 to generate the Tg(zMfap4:m-
Cherry-F)ump6TG insertion. The resulting plasmid, Tol2zMfap4:Gal4VP16 was co-injected with the 
ISce-I meganuclease in fertilized Tg(mpx:gal4/UAS:nfsB-mcherry) eggs. The offspring with red fluo-
rescent macrophages and no fluorescent neutrophils were raised and screened for transmission of the 
Tg(Mfap4:Gal4VP16) insertion to its offspring.

Imaging of live zebrafish larvae
Larvae were anesthetized in 200 μg/ml tricaine, positioned on 35 mm glass-bottomed dishes (WillCo-
dish), immobilized in 1% low-melting-point agarose and covered with 2 ml of embryo water supple-
mented with 160  μg/ml tricaine. Epi-fluorescence microscopy was performed by using an MVX10 
Olympus MacroView microscope that was equipped with MVPLAPO ×1 objective and XC50 camera. 
Confocal microscopy was performed using an ANDOR CSU-W1 confocal spinning disk on an inverted 
NIKON microscope (Ti Eclipse) with ANDOR Neo sCMOS camera (×20 air/NA 0.75 objective). Image 
stacks for time-lapse acquisitions were performed at 28°C. The 4D files generated by the time-lapse 
acquisitions were processed using ImageJ as described below. Three-dimensional reconstructions 
were performed on the four-dimension files for time-lapse acquisitions or on three-dimension files 
using Imaris (Bitplan AG, Zurich, Switzerland). In Figure 3C and in Figure 6—figure supplement 1, 
a custom-made LSFM developed at ICFO was used (Bernardello et al., 2022). For the described 
LSFM experiments, we made use of two illumination air objectives (Nikon ×4/NA 0.13), one water-
immersion detection objective (Olympus ×20/NA 0.5), a sCMOS camera (Hamamatsu Orca Flash4.v2), 
and a 200-mm tube lens (Thorlabs), obtaining an overall magnification of ×22.2. For LSFM imaging, 
zebrafish embryos were embedded within a fluorinated ethylene propylene (FEP) tube (ID 2 mm, OD 
3 mm) containing 0.2% low melting agarose (LMP) agarose with the addition of 160 μg/ml tricaine. 
The inner walls of the FEP tube would have been previously coated with a 3% methyl cellulose layer 
to avoid tail adhesion. After plugging with 1.5% LMP agarose the bottom end of the FEP tube, it was 
inserted into the LSFM imaging chamber and mounted vertically and upside-down. The temperature-
controlled chamber was then filled with 15 ml of embryo water supplemented with 160 μg/ml tricaine.

Visualization of interaction between Salmonella, macrophages, and 
neutrophils
The 3D and 4D files generated by confocal microscopy were processed using ImageJ. First, stacks of 
images from multiple time points were concatenated and then brightness and contrast were adjusted 
for better visualization with the same brightness and contrast per channel for every infected and PBS-
control larva in each experiment. To generate the figure panels, stacks of images were compressed 
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into maximum intensity projections and cropped. For visualization of bacteria localization related to 
macrophages and neutrophils, surfaces tool of Imaris software was used to reconstruct the 3D surfaces 
of leukocytes and bacteria.

Quantification of total leukocyte population, quantification of recruited 
neutrophils and macrophages, and intracellular bacterial aggregates
To quantify total leukocyte populations, transgenic reporters were tricaine-anesthetized and whole 
larvae were imaged using MVX10 Olympus microscope. Total numbers of fluorescent leukocytes were 
counted by computation using Fiji (ImageJ software) as following: (1) leukocytes (Leukocyte Units, LU) 
were detected using ‘Find Maxima’ function, (2) maxima were automatically counted using run (‘ROI 
Manager…’), roi-Manager (‘Add’), and (3) roiManager (‘Measure’) functions. To quantify recruited 
leukocyte populations in the HBV, only the infection sites of reporter larvae were imaged using Spin-
ning disk Nikon Ti Andor CSU-W1 microscope. ImageJ was used to concatenate stacks of images 
containing multiple time points and to adjust and set the same brightness and contrast per channel 
for every infected and PBS-control larva in each experiment. ‘Surfaces’ tool of Imaris was used to 
reconstruct in 3D cell surfaces. Total volumes of immune cells were then extracted for relative quanti-
fication and expressed as mean volume (µm3) with standard error of the mean. For the quantification 
of the percentage of M1 macrophages, the ratio of the total volume of mfap4+-tnfa+ cells among 
mfap4+ cells was calculated. To quantify intracellular bacterial aggregates in the HBV, ‘Surfaces’ tool 
of Imaris was used to reconstruct in 3D surfaces based on E2Crimson fluorescence. Only intracel-
lular E2Crimson-positive events were analyzed. Volumes of each E2Crimson-positive event were then 
extracted.

Leukocyte tracking and motility analysis
Macrophages and neutrophils were tracked in every time step using Manual Tracking ImageJ PlugIn. 
Velocity was extracted directly from manual tracking data table. Directionality graphs were obtained 
by Chemotaxis and Migration Tool PlugIn using the X–Y position of each macrophage extracted from 
manual tracking data table.

RNA preparation on whole larva and quantitative RT-PCR analysis
For quantitative RT-PCR analysis, 2 dpf larvae were either injected in the HBV with Sal-GFP or with 
PBS as described above. To determine the relative expression of il1b, tnfb, tnfa, il8, ccr2, ccl38a.4, 
mmp9, mrc1b, nrros, mfap4, mpeg1, cxcr4b, and cxcl12a, total RNA from infected larvae or controls 
(pools of eight larvae each) was prepared at 3 hpi, 1 dpi, 2 dpi, 3 dpi, and 4 dpi using Macherey-Nagel 
Nucleospin RNA Kit (# 740955.250). RNAs were reverse transcribed using OligodT and M-MLV reverse 
transcriptase (# 28025-013) according to the manufacturer’s recommendations. Quantitative RT-PCR 
were performed using LC480 and SYBER Green (Meridian BIOSCIENCE, SensiFAST SYBR # BIO-
98050) according to the manufacturer’s recommendations and analyzed using LC480 software. The 
final results are displayed as the fold change of target gene expression in infected condition relative 
to PBS-control condition, normalized to ef1a as reference gene (mean values from eight independent 
experiments with standard error of mean) with the formula 2−ΔΔCT. Results for tnfa, cxcr4b, and cxcl12a 
are presented as relative target gene expression in PBS or in infected condition, normalized to ef1a as 
reference gene (2−ΔCT). The primers used are listed below.

Gene Primers Sequences 5′–3′

ef1a
Forward
Reverse

​TTCT​​GTTA​​CCTG​​GCAA​​AGGG​
​TTCA​​GTTT​​GTCC​​AACA​​CCCA​

il1b
Forward
Reverse

​TGGA​​CTTC​​GCAG​​CACA​​AAAT​G
​CGAA​​GAAG​​GTCA​​GAAA​​CCCA​

tnfa
Forward
Reverse

​TTCA​​CGCT​​CCAT​​AAGA​​CCCA​
​CCGT​​AGGA​​TTCA​​GAAA​​AGCG​

tnfb
Forward
Reverse

​CGAA​​GAAG​​GTCA​​GAAA​​CCCA​
​GTTG​​GAAT​​GCCT​​GATC​​CACA​

 Continued on next page
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Gene Primers Sequences 5′–3′

il8
Forward
Reverse

​CCTG​​GCAT​​TTCT​​GACC​​ATCA​T
​GATC​​TCCT​​GTCC​​AGTT​​GTCA​T

mmp9
Forward
Reverse

​CTCA​​GAGA​​GACA​​GTTC​​TGGG​
​CCTT​​TACA​​TCAA​​GTCT​​CCAG​

ccr2
Forward
Reverse

​TGGC​​AACG​​CAAA​​GGCT​​TTCA​​GTGA​
​TCAG​​CTAG​​GGCT​​AGGT​​TGAA​​GAG

ccl38a.4
Forward
Reverse

GCAT​CTTC​ATCG​CCTG​TC
​GCAT​​CCAC​​CAGA​​TTCA​​TCAG​

mrc1b
Forward
Reverse

​CGCC​​AAAG​​TGAT​​GAGC​​CCAA​​CT
​GCAG​​GAAG​​CGAT​​GTTG​​TGAC​​CTT

nrros
Forward
Reverse

​CTGT​​CCGT​​CGTG​​CTCA​​GTCA​
GAGC​TGAC​GACC​GCTG​CAC

mfap4.2
Forward
Reverse

GGAG​GATG​GACG​GTGA​TTC
​TCCT​​CCAG​​ATCC​​ACTC​​TCAG​C

mpeg1.1
Forward
Reverse

​GTGA​​AAGA​​GGGT​​TCTG​​TTAC​A
​GCCG​​TAAT​​CAAG​​TACG​​AGTT​

cxcr4b
Forward
Reverse

​GCAC​​CACA​​AGTC​​CATT​​GCCA​
​GCTG​​TGAG​​AGGA​​GGGC​​GGTT​

cxcl12a
Forward
Reverse

​GCAC​​ACCT​​CCTT​​GTTG​​TTCT​​TC
TCCA​CAGT​CAAC​ACAG​TCC

Transcriptomic analysis on FACS-sorted macrophages
Double transgenic larvae, Tg(mfap4:mCherry-F; tnfa:GFP-F), were either non-infected (uninfected 
groups) or infected with non-labeled Salmonella at 48 hpf (infected groups), as described above. 
Cell dissociation from pools of 300 larvae were performed at 4 hpi and 4 dpi. Because Salmonella 
induces different outcomes in zebrafish larvae at late time points (4 dpi), it may result in different 
transcriptomic profiles of macrophages. We thus anticipated that bulk RNA sequencing would not 
provide meaningful biological signals and would be difficult to interpret. Therefore, we selectively 
focused on the ‘infected’ cohort, which displays persistent infection at 4 dpi, and only larvae harboring 
macrophage clusters in the brain were kept. Cell dissociation, FACS sorting, and RNA preparation 
were performed as described in Begon-Pescia et al., 2022. A total of 15 samples were processed 
for transcriptome analysis using cDNA sequencing. The four experimental groups are: ‘uninfected/4 
hpi’, ‘Salmonella infected/4 hpi’, ‘uninfected/4 dpi’, and ‘Salmonella infected/4 dpi’. Experimental 
groups were obtained from four replicates, except for the condition ‘uninfected/4 dpi’ which was 
obtained from three replicates. The 15 samples were sent to Montpellier GenomiX plateform (MGX, 
Institut de Genomique Fonctionnelle, Montpellier, France) for library preparation and sequencing. 
RNA-seq libraries were generated from 5 ng of RNA with the SMART-Seq v4 Ultra Low Input RNA 
Kit from Takara Bio (#634889) and the DNA Prep Kit from Illumina (#20060060) and were clustered 
and sequenced using an Illumina NovaSeq 6000 instrument, a flow cell SP and NovaSeq Xp Workflow 
according to the manufacturer’s instructions, with a read length of 100 nucleotides. Image analysis 
and base calling were done using the Illumina NovaSeq Control Software and Illumina RTA software. 
Demultiplexing and trimming were performed using Illumina’s conversion software (bcl2fastq 2.20). 
The quality of the raw data was assessed using FastQC (v11.9) from the Babraham Institute and the 
Illumina software SAV (Sequencing Analysis Viewer). FastqScreen (v0.15) was used to identify potential 
contamination. The RNAseq data were mapped on the zebrafish genome (version GRCz11) and gene 
counting was performed with Featurecounts v2.0.3. Sequencing depth of all samples was between 
53 and 87 million reads. All reads were aligned to the GRCz11 version of the zebrafish genome using 
TopHat2 v2.1.1 (using Bowtie v2.3.5.1) software, and Samtools (v1.9) was used to sort and index the 
alignment files. Subsequently, normalization and differential gene expression analysis was performed 
using DESeq2 and edgeR methods. After comparison of the two methods, DESeq2 method (Love 
et al., 2014) was kept. P values were adjusted using Benjamini and Hochberg, 1995 corrections for 
controlling false-positive rate (False Discovery Rate_FDR, also called p-adjusted (p-adj)) and results 
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were considered statistically significant when p-adj <0.05. Analysis was performed based on the log2 
fold change (FC). Gene Ontology analysis of DEGs and KEGG pathways enrichment analysis were 
performed with ShinyGO 0.76 (Ge et al., 2020) with criteria of p -adj<0.05 up-regulatedǀlog2(FC) >0 or 
≥1 and down-regulatedǀlog2(FC) <0 or ≤1. Purity of the different sorted macrophage populations was 
confirmed by absence of expression of several marker genes of various cell types (Farnsworth et al., 
2020; Metikala et al., 2021).

Statistical analysis
Studies were designed to generate experimental groups of approximatively equal size, using random-
ization and blinded analysis. The sample size estimation and the power of the statistical test were 
computed using GPower. A preliminary analysis was used to determine the necessary sample size N 
of a test given α < 0.05, power = 1 − β > 0.80 (where α is the probability of incorrectly rejecting H0 
when it is in fact true and β is the probability of incorrectly retaining H0 when it is in fact false). Then 
the effect size was determined. Groups include the number of independent values, and the statis-
tical analysis was done using these independent values. No inclusion/exclusion criteria of data were 
applied. The number of independent experiments (biological replicates) is indicated in the figure 
legends when applicable. The level of probability p < 0.05 constitutes the threshold for statistical 
significance for determining whether groups differ. GraphPad Prism 7 Software (San Diego, CA, USA) 
was used to construct graphs and analyze data in all figures. Specific statistical tests were used to 
evaluate the significance of differences between groups (the test and p value is indicated in the figure 
legend).
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Data availability
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are openly available from the public repository Zenodo at https://zenodo.org/records/10409519.
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