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Abstract Membrane contact sites (MCSs) are junctures that perform important roles including 
coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes 
are coupled with modifications in the membrane lipid composition. However, it has been still unclear 
whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that 
deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–
plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacu-
olar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid 
precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar 
division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the 
vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exog-
enous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole 
division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the 
metabolism of sphingolipids.

eLife assessment
This manuscript presents valuable findings that contribute to our understanding of how sphingo-
lipids and membrane contact sites, formed by the tethering protein family tricalbins, are involved 
in regulating vacuolar morphology in S. cerevisiae. The evidence supporting the authors' claims is 
largely solid. While the reported correlation between sphingolipid levels and vacuole homeostasis 
is interesting and intriguing, more work is needed to thoroughly substantiate the proposed mech-
anism. This study will be of interest to cell biologists focusing on intracellular organization and lipid 
metabolism.

Introduction
Cellular organelles are formed by membranes with unique lipid compositions, morphology, and func-
tions. The vacuole of budding yeast is an organelle that shares many similarities with mammalian 
lysosomes and plant vacuoles. Vacuoles possess degradative and storage capacities, and are essential 
for maintaining cellular homeostasis, including maintaining pH or ion homeostasis, cellular detoxi-
fication, and responses to osmotic shock and nutrient environments. Vacuoles are liable to change 
their morphology (size, volume, and number) through cycles of fusion and fission, to adapt to the 
intra- and extracellular environments or upon vacuole inheritance to daughter cells. The steady-state 
morphology of the vacuole is maintained by a balance of constitutive vacuolar fusion and fission 
processes (Baars et al., 2007; Li and Kane, 2009).
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The homotypic vacuolar membrane fusion process occurs in four stages: priming, tethering, 
docking, and fusion (Wickner and Haas, 2000; Ostrowicz et al., 2008; Wickner, 2010; Qiu, 2012). 
Each stage is defined as follows. ‘Priming’ In the priming reaction, inactive fusion factors that are 
still assembled from previous fusion events are recycled. The yeast N-ethylmaleimide-sensitive factor 
(NSF), Sec18p, is activated by ATP and releases the NSF attachment protein (SNAP), Sec17p, from 
the SNAP receptor (SNARE) complex, thereby activating the SNARE molecule (Wickner and Haas, 
2000; Ostrowicz et al., 2008; Müller et al., 2002). ‘Tethering’ The HOPS/Class C Vps complex and 
the Rab-GTPase Ypt7p mediate the reversible contact of opposing vacuoles (Ostrowicz et al., 2008; 
Ho and Stroupe, 2016). ‘Docking’ The coupling of three Q-SNAREs (Vam3p, Vam7p, and Vti1p) with 
an opposing R-SNARE (Nyv1p) to form a trans-SNARE complex between the two corresponding vacu-
oles. ‘Fusion’ The final stage in which the lipid bilayer fuses and the contents of the lumen are mixed 
(Wickner, 2010; Müller et al., 2002). For stable vacuolar fusion, several factors are required such as 
vacuolar acidification by V-ATPase proton pump activity (Baars et al., 2007; Ungermann et al., 1999; 
Peters et al., 2001; Desfougères et al., 2016), ions (Starai et al., 2005), and ion transporters (Qiu 
and Fratti, 2010).

Furthermore, vacuolar fission is required for proper vacuolar inheritance during mitosis and acute 
response to osmotic shock in yeast, however the molecular mechanism of fission is not fully under-
stood, and limited knowledge is available. Vacuolar fission is performed in two steps that require 
proteins and lipids (Zieger and Mayer, 2012). The first step is the contraction and invagination of 
the vacuolar membrane through the involvement of Vps1p, a dynamin-like GTPase (Peters et al., 
2004) and V-ATPase, which drives the proton gradient (Baars et al., 2007). Next, vacuolar fission is 
promoted by Vac14p, Vac7p, and Fab1p (Weisman, 2006), which are required for the generation of 
PtdIns[3,5]P2, and Atg18p, an effector of Fab1p and a sensor of PtdIns[3,5]P2 levels (Efe et al., 2005; 
Efe et al., 2007). Recently, it has also been shown that vacuolar fission is associated with nutrient 
status and responds to endoplasmic reticulum (ER) stress via target of rapamycin complex 1 (TORC1) 
targets (Michaillat et al., 2012; Stauffer and Powers, 2015). Moreover, it has been proposed that 
vacuolar fusion and fission dynamics are regulated by the Yck3p-Env7p kinase cascade, which main-
tains an equilibrium between fusion and fission activities (Manandhar et al., 2020).

Organelles construct a dynamic network by associating with each other through membrane contact 
sites (MCSs), which play an important role in lipid transport and metabolism (Wu et al., 2018; Prinz 
et  al., 2020). Lipids (phosphatidic acid (PA), diacylglycerol, ergosterol, and phosphatidylinositol 
(PtdIns) phosphate (PtdInsP)) and lipid raft domains have been shown to be important as fusion and 
fission effectors and discussed in a variety of recent reviews (Li and Kane, 2009; Efe et al., 2005; 
Wickner and Rizo, 2017; Starr and Fratti, 2019; Ungermann and Kümmel, 2019; Hurst and Fratti, 
2020). However, it remains unclear if MCS-mediated lipid metabolism controls the morphology of 
the vacuole. Vacuoles have contact sites with other organelles. The MCS where the nuclear ER meets 
the vacuole is called the nucleus–vacuole junction (NVJ), and the ER-localized Nvj1p and vacuole-
membrane-localized Vac8p act as tethers to form the NVJ (Pan et al., 2000). Vacuoles also form MCS 
with mitochondria called vacuole and mitochondria patches (vCLAMP). vCLAMP is mediated by the 
soluble (cytosol-localized) HOPS complex subunit Vps39p, the vacuole-localized small Rab-GTPase 
Ypt7p, and by an unknown mitochondrial factor (Elbaz-Alon et al., 2014; Hönscher et al., 2014). The 
translocase of the mitochondrial outer membrane (TOM) subunit Tom40p has been identified as a 
direct binding partner of Vps39p, suggesting a mechanism for the formation of vCLAMP by the Ypt7p-
Vps39p-Tom40p tether (González Montoro et al., 2018). Although it has been suggested that MCSs 
with vacuoles are involved in the transport of lipids such as sterols and precursors of sphingolipids 
that are involved in vacuolar morphology (Murley et al., 2015; Murley et al., 2017; Reinisch and 
Prinz, 2021; Girik et al., 2022), the roles of those MCS-mediated lipid metabolisms in the regulation 
of vacuole morphology are not understood.

In this study, we found that tether proteins of MCS formation are involved in the regulation of 
vacuolar morphology. We show that the deletion of tricalbins, tethers of the MCS between the ER 
and the plasma membrane (PM) (Manford et al., 2012) and between the ER and the Golgi apparatus 
(Ikeda et al., 2020), affects vacuolar division. Phytosphingosine (PHS), a precursor of ceramide, accu-
mulated in the tricalbin-deleted strain and was revealed as the underlying cause that triggers vacuolar 
fission. Moreover, deletion of key tethering proteins at the NVJ recovered vacuolar morphology of 
cells subjected to high exogenous PHS and tricalbin-deleted cells, indicating that the NVJ is required 

https://doi.org/10.7554/eLife.89938
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for PHS-induced vacuolar fission. In summary, we propose that vacuolar morphology is regulated by 
MCSs through regulation of sphingolipid metabolic pathways.

Results
Deletion of tricalbins causes vacuole fragmentation
Tricalbins (Tcb1p, Tcb2p, and Tcb3p) are ER membrane tethering proteins that connect the cortical 
ER with the PM (Toulmay and Prinz, 2012), and contribute to PI4P turnover (Manford et al., 2012), 
sterol flux and transport (Quon et al., 2018) and maintain other lipid homeostasis (Jorgensen et al., 
2020). It is also suggested that tricalbins create ER membrane curvature to maintain PM integrity 
(Hoffmann et al., 2019; Collado et al., 2019). Tricalbins also localize to the ER–Golgi contacts and 
are responsible for the non-vesicular transport of ceramide from ER to Golgi apparatus (Ikeda et al., 
2020). However, their role in other organelle morphology and function remains unknown. Interest-
ingly, the NVJ1 gene, which encodes a major component of the NVJ, showed a negative synthetic 
interaction with the absence of all three tricalbins (tcb1Δ2Δ3Δ) (Hoffmann et al., 2019). Moreover, 
HOPS subunit Vam6p and Rab-GTPase Ypt7p, which are both involved in vacuolar fusion, also showed 
negative synthetic interaction with tcb1Δ2Δ3Δ (Hoffmann et al., 2019). Based on the findings, we 
assumed that tricalbins may be involved in the regulation of vacuolar morphology or function linked 
with the NVJ. To investigate the role of tricalbins in vacuole morphology, we analyzed the number of 
vacuoles per cell by a fluorescent probe FM4-64 that selectively stains yeast vacuolar membranes. We 
observed that compared to wild type cells, the tcb1Δ2Δ3Δ strain showed a phenotype characterized 
by a decreased percentage of cells with one vacuole and an increased percentage of cells with two or 
more vacuoles (Figure 1A). We refer to this phenotype as vacuolar fragmentation. In addition, analysis 
with single and double deletion strains revealed that single deletion of TCB1 or TCB3 already exhib-
ited strong vacuole fragmentation (Figure 1B). These results indicate that tricalbins are important to 
maintain vacuole morphology.

We next examined whether deletion of tricalbins affects vacuolar acidification. As homotypic 
vacuole–vacuole membrane fusion requires the vacuolar H+-ATPase (V-ATPase) (Desfougères et al., 
2016; Nelson and Nelson, 1990; Coonrod et al., 2013), tricalbins could be indirectly involved in 
maintaining vacuole morphology through V-ATPase. Therefore, we addressed whether tricalbin 
mutant strains could grow in alkaline media, because V-ATPase-deficient mutants can grow in acidic 
media but fail to grow in alkaline media (Nelson and Nelson, 1990). As a negative control, we used 
vma3Δ mutant cells in which one of the VO subunits of V-ATPase had been deleted. The vma3Δ mutant 
cells grew in acidic medium (pH 5.0), but failed to grow in alkaline medium (pH 7.5) (Figure  1—
figure supplement 1A). In contrast, all tricalbin mutant strains grew like wild type in both conditions, 
suggesting that the V-ATPase in these mutants remains functionally normal. Thus, these results suggest 
that vacuole fragmentation caused by tricalbin deletion is not due to a loss of function of V-ATPase.

Furthermore, we investigated the effects of tricalbin deletion on delivery of a vacuolar protease, 
carboxypeptidase S (Cps1p) that is sorted into the vacuole lumen upon endosome–vacuole fusion. 
Deletion of HOPS complex components that mediate endosome–vacuole fusion results in vacuole 
fragmentation (Seeley et  al., 2002). To test the possibility that vacuole fragmentation in tricalbin 
mutant cells is caused by a defect of endosome–vacuole fusion, we analyzed the localization of GFP-
Cps1p in tricalbin mutant cells. Cps1p, a vacuole-localized hydrolytic enzyme, is transported to the 
vacuole after sorting into multivesicular bodies by ESCRT (endosomal sorting complex required for 
transport) recognition (Katzmann et al., 2001). In strains with loss of ESCRT function, such as disrup-
tion of VPS4, one of the class E VPS (vacuolar protein sorting) genes, GFP-Cps1p is known to localize 
to the limiting membrane rather than the lumen of the vacuole (Babst et al., 1997; Stuchell-Brereton 
et al., 2007). In both WT and tcb3Δ cells, GFP-Cps1p was observed in the vacuole lumen in contrast 
to vps4Δ cells (Figure  1—figure supplement 1B), suggesting that the tricalbin mutant exhibits a 
normal delivery of vacuolar proteins via endosomes to the vacuole. In addition, the fact that tricalbin 
deletion does not affect the maturation of CPY, a vacuolar hydrolase carboxypeptidase Y (Ikeda et al., 
2020), indicates that the vacuolar degradation ability as well as protein delivery to the vacuole is 
normal. Taken together, tricalbins are required for maintaining vacuole morphology, but not due to an 
indirect action through vacuolar acidification or endosome–vacuole fusion.

https://doi.org/10.7554/eLife.89938
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Figure 1. Deletion of tricalbin proteins causes vacuole fragmentation. (A, B) Cells (FKY2577 and FKY2927 in A; 
FKY2577, FKY2909, FKY3819, FKY2924, FKY3023, FKY3820, and FKY3008 in B) were grown overnight at 25°C in 
YPD. Then vacuoles were stained with FM4-64 and imaged by fluorescence microscopy. Scale bar, 5 mm. The 
number of vacuoles per cell was counted and categorized into one of three groups. The data represent mean 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.89938
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Tricalbins negatively regulate vacuole fission in a parallel pathway with 
TORC1
The number and size of vacuoles within a cell are regulated by coordinated cycles of vacuolar 
fission and fusion. To address whether vacuole fragmentation in the tricalbin mutant is caused by 
facilitation of vacuole fission or an impaired homotypic vacuole fusion, we examined the effect of 
hypotonic stress on vacuole fragmentation in tcb1Δ2Δ3Δ mutant cells, because low-osmotic stimuli 
such as water promote homotypic vacuole fusion to maintain cytoplasmic osmolarity (Dove et al., 
2009). We observed that addition of water to tcb1Δ2Δ3Δ cells partially restored vacuole fragmen-
tation, suggesting that vacuolar fusion machinery is functional in tcb1Δ2Δ3Δ cells (Figure 1C). This 
result suggests that loss of tricalbins alters fusion–fission dynamics by primarily affecting the fission 
machinery rather than fusion.

As the TORC1 is a positive regulator of vacuole fission in response to hyperosmotic shock and 
ER stress (Michaillat et  al., 2012; Stauffer and Powers, 2015), we next examined if rapamycin, 
which is an inhibitor of TORC1, affects the vacuole fragmentation in tcb1Δ2Δ3Δ cells. As shown in 
Figure 1C, we observed that the vacuole fragmentation in tcb1Δ2Δ3Δ cells was suppressed by rapa-
mycin, suggesting that TORC1 may be required for tricalbin deletion-induced vacuolar fragmentation. 
We attempted to characterize further the relationship between tricalbin and TORC1, and showed that 
tcb1Δ2Δ3Δ cells had no significant effect on phosphorylation levels of Sch9p, a major downstream 
effector of TORC1 (Figure 1D). These results suggest that deletion of tricalbins does not activate 
TORC1. Therefore, we conclude that tricalbins and TORC1 act in parallel and opposite ways to regu-
late vacuole fission (Figure 1E).

The transmembrane domain of Tcb3 contributes to mediating protein 
interactions between the tricalbin family to maintain vacuolar 
morphology
Tcb3p possesses an N-terminal transmembrane (TM) domain, a central synaptotagmin-like mitochon-
drial lipid-binding protein (SMP) domain, and multiple C-terminal Ca2+-dependent lipid-binding (C2) 
domains (Figure 2A). To identify which domain of Tcb3p is essential for regulating vacuole fission, 
we replaced the C-terminal sequence of the endogenous TCB3 gene with a GFP-binding protein 

± standard error (SE) of three independent experiments, each based on more than 100 cells. *p < 0.05, **p < 
0.01, and ***p < 0.001 by Student’s t-test compared with wild-type (WT). (C) Cells (FKY2577 and FKY2927) were 
grown overnight at 25°C in YPD. Cells were then incubated in sterile distilled water (SDW) for more than 45 min 
or YPD with 200 nM of rapamycin (Rap) for 2 hr. Vacuoles were stained with FM4-64 and imaged by fluorescence 
microscopy. Scale bar, 5 mm. The number of vacuoles per cell was counted and categorized into one of three 
groups. The data represent mean ± SE of more than three independent experiments, each based on more than 
90 cells. *p < 0.05, **p < 0.01 by Student’s t-test compared with none treated cells. (A–C) Significant differences 
analysis between the pairwise combination of groups was performed using two-way analysis of variance (ANOVA). 
(D) Cells (FKY2577 and FKY2927) transformed with pRS416-SCH9-5HA were cultured in YPD, treated with 200 nM 
rapamycin (control) or untreated. The extracts from cells expressing Sch9-5HA were reacted with 2-nitro-5-
thiocyanobenzoic acid and analyzed by immunoblotting using anti-HA. Phosphorylated Sch9 relative to the total 
Sch9 was calculated and shown in comparison to untreated WT cells. The data represent mean ± SE of three 
independent experiments. n.s., not significant by Student’s t-test. (E) Illustration shows that tricalbin proteins 
negatively regulate the vacuole fission in a target of rapamycin complex 1 (TORC1)-independent manner.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Excel file of numerical data represented as a graph in Figure 1A.

Source data 2. Excel file of numerical data represented as a graph in Figure 1B.

Source data 3. Excel file of numerical data represented as two graphs in Figure 1C.

Source data 4. Excel file of numerical data represented as a graph in Figure 1D.

Source data 5. Original file for the Western blot analysis in Figure 1D.

Source data 6. JPEG containing Figure 1D and original scans of the relevant Western blot analysis with 
highlighted bands and sample labels.

Figure supplement 1. Vacuolar acidification and Cps1p delivery are not affected by tricalbin deletion.

Figure 1 continued

https://doi.org/10.7554/eLife.89938
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Figure 2. Effects of domain deletion on vacuole morphology. (A) Diagram of domain organization of Tcb3 protein. TM, transmembrane domain; SMP, 
synaptotagmin-like mitochondrial lipid-binding protein; C2, calcium-dependent lipid-binding domain; GBP, GFP-binding protein. (B) Cells (FKY2577 
(i), FKY2924 (ii), FKY3903 (iii), FKY3904 (iv), FKY3905 (v), and FKY4754 (vi)) were grown overnight at 25°C in YPD. Then vacuoles were stained with FM4-64 
and imaged by fluorescence microscopy. The number of vacuoles per cell was counted and categorized into one of three groups. The data represent 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.89938
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(GBP). This way, we created three strains expressing either full-length Tcb3-GBP; Tcb3(Full)-GBP, 
Tcb3-GBP lacking C2 domains; Tcb3(TM-SMP)-GBP or Tcb3-GBP lacking both SMP and C2 domains; 
Tcb3(TM)-GBP. Vacuole morphology in cells expressing Tcb3(Full)-GBP (Figure  2B (iii)) was almost 
similar to that in WT cells (Figure 2B (i)), indicating that the addition of GBP has no effect on vacuole 
morphology. Remarkably, vacuoles remained non-fragmented even in cells expressing Tcb3(TM)-GBP, 
which lacked most of the C-terminal region (Figure 2B (v)), as well as Tcb3(TM-SMP)-GBP (Figure 2B 
(iv)). In an attempt to address the question of why the TM domain of Tcb3p is sufficient to suppress 
vacuolar division, we found that cells expressing Tcb3(TM)-GBP and lacking Tcb1p and Tcb2p 
(Figure 2B (vi)) are even more fragmented than tcb1Δ2Δ in Figure 1B, and similar to tcb3Δ (Figure 1B 
and Figure 2B (ii)). These results suggest that the TM domain of Tcb3p requires Tcb1p and Tcb2p to 
suppress vacuole fission. Tcb2p has been reported to interact with either Tcb1p or Tcb3p through their 
C-terminal domain (Creutz et al., 2004), and some of the protein interactome analyses have reported 
that Tcb1p, Tcb2p, and Tcb3p interact with each other (Tarassov et al., 2008; Michaelis et al., 2023). 
In this study, we have also confirmed that Tcb3 shows physical interaction with both Tcb1 and Tcb2 
by the coimmunoprecipitation assay (Figure 2—figure supplement 1). In addition, according to the 
structural simulation by AlphaFold2, each TM domain of Tcb1p, Tcb2p, and Tcb3p formed alpha-
helical structure, which is known to be typical for membrane proteins (Figure 2C). It is likely that 
Tcb1p and Tcb2p directly interact with Tcb3p by their TM domains. Interestingly, the complex of these 
three TM domains was constructed with Tcb3p between Tcb1p and Tcb2p in most cases (Figure 2D). 
Together these data suggest that the TM domain of Tcb3p contributes sufficiently to the maintenance 
of vacuolar morphology by mediating the tricalbin complex formation (Figure 2E).

Accumulated PHS in tricalbin-deleted cells causes vacuole 
fragmentation
To understand how the deletion of tricalbins leads to vacuole fragmentation, we examined the involve-
ment of lipids. Previous reports showed that levels of acylceramides, which are made by adding another 
acyl chain to ceramides, increased in tcb1Δ2Δ3Δ cells (Ikeda et al., 2020), and levels of long-chain 
bases (LCBs) increased in Δtether cells lacking six ER–PM tethering proteins (Omnus et al., 2016). 
Here, we measured lipids in tcb1Δ2Δ3Δ cells by in vivo labeling with [3H] dihydrosphingosine (DHS), 
which is a precursor of PHS, and observed significant increases in ceramide species, phosphatidyletha-
nolamine, PHS, phosphatidylinositol, complex sphingolipids such as inositolphosphorylceramide (IPC) 
and mannosyl-inositolphosphorylceramide (MIPC) and LCB-1P (DHS-1P/PHS-1P) levels (Figure 3A).

We first evaluated whether the increases in certain lipids are the cause of vacuolar fragmentation 
in tcb1Δ2Δ3Δ. Our analysis showed that vacuoles are fragmented in lag1Δlac1Δ cells, which lack both 
enzymes for LCBs (DHS and PHS) conversion into ceramides (Figure 3B). Loss of ceramide synthases 
could cause an increase in PHS levels. Therefore, we tested if exogenously added PHS induces vacu-
olar fragmentation in WT cells. As shown in Figure 3C, exogenous addition of PHS-induced vacu-
olar fragmentation. PHS is converted into ceramide by the ceramide synthase Lag1p, which is the 
main enzyme synthesizing phytoceramide (Megyeri et al., 2019). Thus, we next examined whether 

mean ± standard error (SE) of three independent experiments, each based on more than 90 cells. *p < 0.05 and **p < 0.01 by Student’s t-test compared 
with Tcb1 Tcb2 Tcb3 (i). Significant differences analysis between the pairwise combination of groups was performed using two-way analysis of variance 
(ANOVA). (C) The modeled structures of the Tcb1p, Tcb2p, and Tcb3p proteins. The ribbons and arrows in the models indicate alpha-helices and beta-
sheets, respectively. (D) TM domain complex in Tcb1p (red), Tcb2p (green), and Tcb3p (blue). The rank ‘X’ indicates the order in which the complexes are 
most likely to form. (E) Illustrations show that TM domain of Tcb3 contributes to mediating protein interactions between the tricalbin family to maintain 
vacuolar morphology.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Excel file of numerical data represented as a graph in Figure 2B.

Figure supplement 1. Coimmunoprecipitation assay between Tcb3-HA and Tcb1-GFP or Tcb2-GFP.

Figure supplement 1—source data 1. Original file for the Western blot analysis in Figure 2—figure supplement 1 (anti-HA).

Figure supplement 1—source data 2. Original file for the Western blot analysis in Figure 2—figure supplement 1 (anti-GFP).

Figure supplement 1—source data 3. JPEG containing Figure 2—figure supplement 1 and original scans of the relevant Western blot analysis (anti-
HA and anti-GFP) with highlighted bands and sample labels.

Figure 2 continued

https://doi.org/10.7554/eLife.89938
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Figure 3. Accumulated phytosphingosine (PHS) in tcb1Δ2Δ3Δ causes vacuole fragmentation. (A) Cells (FKY2577 and FKY2927) were grown at 25°C, and 
labeled with [3H]DHS for 3 hr. Labeled lipids were applied to thin-layer chromatography (TLC) plates using solvent system (chloroform-methanol-4.2N 
ammonium hydroxide (9:7:2, vol/vol/vol)). Incorporation of [3H]DHS into each lipid was quantified and the percentage of the total radioactivity (%) in 
WT cells was determined. Data represent mean ± standard error (SE) of four independent experiments. **p < 0.01 by Student’s t-test. (B–D, F) Cells 
(FKY5687 and FKY5688 in B; FKY3340 and YKC121-59 in C; FKY36, FKY37, FKY33, and FKY38 in D; FKY2927 in F) were grown overnight at 25°C in YPD. 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.89938
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PHS-induced vacuolar fragmentation occurs in lag1Δ cells. Our analysis showed that vacuolar frag-
mentation in lag1Δ cells treated with PHS was comparable to that for WT cells (Figure 3C). These 
results suggest that the increases in ceramide and subsequent product IPC/MIPC are not the cause of 
vacuolar fragmentation, but rather its precursors induce vacuolar fragmentation.

Because our lipid analysis showed a strong increase in LCB-1P in tcb1Δ2Δ3Δ cells, phosphorylation 
of PHS may be involved in PHS induced vacuolar fragmentation. Although exogenously added LCBs 
move slowly from the PM to the ER if they are not phosphorylated, efficient utilization of exogenously 
added LCBs in sphingolipid synthesis requires a series of phosphorylation and dephosphorylation 
steps for LCBs (Funato et al., 2003). The major yeast LCB phosphate phosphatase Lcb3p dephos-
phorylates LCB-1P (DHS-1P/PHS-1P) to yield DHS/PHS (Qie et al., 1997), while Lcb4p and Lcb5p 
catalyze the reverse reaction producing DHS-1P/PHS-1P (Nagiec et al., 1998). Lcb3p, Lcb4p, and 
Lcb5p are localized to the ER, PM, or Golgi (Funato et  al., 2003; Mao et  al., 1999; Hait et  al., 
2002; Iwaki et al., 2007). We examined the ability of exogenous PHS to fragment vacuoles in cells 
lacking these processing factors. Our results showed that PHS-induced vacuolar fragmentation was 
completely blocked in the lcb3Δ cells in which PHS-1P is not dephosphorylated (Figure 3D), suggesting 
that PHS-induced vacuolar fragmentation requires the reaction of dephosphorylation of PHS-1P by 
Lcb3p. On the other hand, we observed that vacuoles were still fragmented in lcb4Δ lcb5Δ and lcb3Δ 
lcb4Δ lcb5Δ cells (Figure  3D). These results suggest that elevated levels of non-phosphorylated 
PHS induces vacuolar fragmentation (Figure 3E). Additionally, we tested whether overexpression of 
Rsb1p, which has been reported as a translocase that exports LCBs from the inner to the outer leaflet 
of the PM (Kihara and Igarashi, 2002), rescues vacuole fragmentation in tcb1Δ2Δ3Δ cells. As shown 
in Figure 3F, we observed that Rsb1p overexpression results in decreased vacuole fragmentation. 
Collectively, these results support the model in which vacuole fragmentation in tricalbin-deleted cells 
is caused by increased levels of PHS.

The NVJ is required for PHS- or tcb3Δ-induced vacuole fragmentation
To characterize further the relationship between PHS and vacuole morphology, we asked whether 
PHS delivered from the ER to the vacuole induces vacuole fragmentation. We hypothesized that 
if PHS is transported to the vacuole by either the vesicular transport pathway through the Golgi 
apparatus or the non-vesicular transport pathway via inter-organellar MCS triggers vacuole fission, 
then blockage of the transport could rescue the PHS-induced vacuole fragmentation. Accordingly, 
we used two types of mutant strains, one blocking vesicular transport and the other blocking the 
NVJ. In a temperature-sensitive sec18-20 mutant, vesicular transport is abolished at the restrictive 
temperature of 30°C or higher, but even at the permissive temperature of 25°C, vesicular transport 
is partially impaired (Funato and Riezman, 2001). As shown in Figure 4A (left), under the condition 
without exogenous PHS, some vacuoles in sec18-20 mutant cells became fragmented when shifted to 
the non-permissive temperature of 30°C. We also observed that vacuoles in sec18-20 mutant at 30°C 
underwent fragmentation after addition of PHS to the same extent as at the permissive temperature 

PHS was added at 160 µM (C) or 80 µM (D) for 2 hr. Vacuoles were stained with FM4-64 and imaged by fluorescence microscopy. The number of vacuoles 
per cell was counted and categorized into one of three groups. The data represent mean ± SE of three independent experiments, each based on more 
than 100 cells. *p < 0.05, **p < 0.01, and ***p < 0.001 by Student’s t-test compared with WT (B, D) or empty cells (F). Significant differences analysis 
between the pairwise combination of groups was performed using two-way analysis of variance (ANOVA). (E) Illustration showing intracellular utilization 
pathway of exogenous PHS.

The online version of this article includes the following source data for figure 3:

Source data 1. Original file for the thin-layer chromatography (TLC) analysis in Figure 3A.

Source data 2. JPEG containing Figure 3A and original scans of the relevant thin-layer chromatography (TLC) analysis with highlighted bands and 
sample labels.

Source data 3. Excel file of numerical data represented as a graph in Figure 3A.

Source data 4. Excel file of numerical data represented as a graph in Figure 3B.

Source data 5. Excel file of numerical data represented as two graphs in Figure 3C.

Source data 6. Excel file of numerical data represented as two graphs in Figure 3D.

Source data 7. Excel file of numerical data represented as a graph in Figure 3F.

Figure 3 continued

https://doi.org/10.7554/eLife.89938
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Figure 4. Nucleus–vacuole junction (NVJ) is required for phytosphingosine (PHS)-induced vacuole fragmentation. (A–C) Cells (FKY2929 in A; FKY3868 
and FKY5560 in B; FKY6187, FKY6189, FKY6190, FKY6188, and FKY6409 in C) were grown overnight at 25°C in YPD. PHS was added at 40 µM for 2 hr at 
30°C (A) and 25°C (A, B). Vacuoles were stained with FM4-64 and imaged by fluorescence microscopy. The number of vacuoles per cell was counted 
and categorized into one of three groups. The data represent mean ± standard error (SE) of three independent experiments, each based on more than 
100 cells. *p < 0.05, **p < 0.01, and ***p < 0.001 by Student’s t-test. Significant differences analysis between the pairwise combination of groups was 
performed using two-way analysis of variance (ANOVA). (D) Membrane contact sites regulate vacuole morphology via sphingolipid metabolism. See the 
main text for details.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Excel file of numerical data represented as two graphs in Figure 4A.

Source data 2. Excel file of numerical data represented as two graphs in Figure 4B.

Figure 4 continued on next page

https://doi.org/10.7554/eLife.89938
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of 25°C (Figure 4A, right), suggesting that vesicle-mediated transport is not required for PHS-induced 
vacuolar fragmentation. To test the role of NVJ-mediated membrane contact for PHS-induced vacu-
olar fragmentation we employed a quadruple ΔNVJ mutant (nvj1Δ nvj2Δ nvj3Δ mdm1Δ) that was 
used in a previous study in which complete loss of the NVJ was observed (Henne et al., 2015), but 
thus has a different background to other strains of this study. When PHS was added to the ΔNVJ 
mutant, we observed a significant suppression of vacuole fragmentation compared to WT (Figure 4B). 
Finally, to investigate the requirement for NVJ in tricalbin deletion-induced vacuolar fragmentation, 
we constructed the tcb3Δ nvj1Δ and tcb3Δ nvj1Δ nvj2Δ nvj3Δ mdm1Δ mutants. TCB3 single disruption 
sufficiently induced vacuolar fragmentation (Figure 1B), whereas as expected, the fragmentation was 
partially suppressed by loss of only NVJ1 and completely suppressed by loss of all NVJ factors (NVJ1, 
NVJ2, NVJ3, and MDM1) (Figure 4C). Taken together, we conclude from these findings that vacuole 
fission caused by accumulated PHS in tricalbin-deleted cells requires contact between ER and vacuole 
at the NVJ, possibly as a way to transport PHS to the vacuole.

NVJ and PHS accumulation mediate hyperosmotic shock-induced 
vacuole fission
Besides PHS-induced vacuolar fission, it is generally well known that vacuolar division can be triggered 
as an acute response to osmotic shock. We made an interesting observation under hyperosmotic 
conditions (0.2 M NaCl), wherein the loss of NVJ led to complete suppression of vacuolar division 
(Figure  5A). This finding suggests a significant role for NVJ in vacuolar fission as a hyperosmotic 
response. To test the involvement of PHS accumulation in this process, we analyzed the effect of 
hyperosmolarity on PHS levels. Analysis of PHS under hyperosmotic shock conditions (0.2 M NaCl), 
in which vacuolar fragments were observed, showed an increase in PHS of about 10% (Figure 5B). 
Furthermore, when the NaCl concentration was increased to 0.8 M, PHS levels increased up to 30%. 
While NaCl treatment increased PHS, both ceramide and IPC decreased. There are at least two 
possible reasons why NaCl increases PHS and decreases ceramide and IPC. The first is the possibility 
that NaCl dissociates subunits of ceramide synthase (Lag1p, Lac1p, and Lip1p) or IPC synthase (Aur1p 
and Kei1p). The second possibility is that NaCl suppresses the expression of ceramide synthase or IPC 
synthase, as can be inferred from the previous report (Manzanares-Estreder et al., 2017). Alterna-
tively, we cannot exclude the possibility that the difference in PHS levels detected with [3H]DHS in this 
study is due to differences in the activity of Sur2p hydroxylase that catalysis the conversion of DHS 
to PHS (Haak et al., 1997). Finally, NaCl-induced vacuolar fragmentation, like that caused by PHS 
treatment, was also suppressed by PHS export from the cell by Rsb1p overexpression (Figure 5C). 
These results suggest that hyperosmotic shock-induced vacuole fission is also mediated by PHS accu-
mulation and NVJ.

Discussion
In the present study, we found that the accumulation of PHS triggers the fission of vacuoles. Our 
results suggest that MCSs are involved in this process in two steps. First, the intracellular amount 
of PHS is modulated by tricalbin-tethered MCSs between the ER and PM or Golgi (Figure 4D, left). 
Second, the accumulated PHS in the tricalbin-deleted cells induces vacuole fission via most likely the 
NVJ (Figure 4D, right). Thus, we propose that MCSs regulate vacuole morphology via sphingolipid 
metabolism. Fundamental questions that arise from our data concern the accumulation of PHS in the 
tricalbin deletion strain and the mechanism of PHS-induced vacuole fission. Possible mechanisms for 
elevated PHS levels in tricalbin-deleted cells are the following. MCS deficiency between ER and PM 
has been shown to reduce the activity of Sac1p, a PtdIns4P phosphatase (Manford et al., 2012). 
Sac1p disruption strain decreases the levels of complex sphingolipids such as IPC and MIPC, while 
it increases the levels of their precursors, ceramide, LCB, and LCB-1P (Brice et  al., 2009). This is 

Source data 3. Excel file of numerical data represented as two graphs in Figure 4C.

Figure supplement 1. Cells (FKY3340, YKC145-21, and YKC149-61) were grown overnight at 25°C in YPD.

Figure supplement 1—source data 1. Excel file of numerical data represented as two graphs in Figure 4—figure supplement 1.

Figure 4 continued

https://doi.org/10.7554/eLife.89938
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Figure 5. Nucleus–vacuole junction (NVJ) and phytosphingosine (PHS) accumulation mediate hyperosmotic shock-induced vacuole fission. (A) Cells 
(FKY6187 and FKY6140) were grown overnight at 25°C in YPD, incubated with 80 µM of PHS or 0.2 M of NaCl for 2 hr. Vacuoles were stained with 
FM4-64 and imaged by fluorescence microscopy. The number of vacuoles per cell was counted and categorized into one of three groups. (B) Cells 
(FKY2577) were grown at 25°C then labeled with [3H]DHS and incubated with 0.2 or 0.8 M of NaCl for 2 hr. Labeled lipids were applied to thin-layer 
chromatography (TLC) plates using solvent system (chloroform-methanol-4.2N ammonium hydroxide (9:7:2, vol/vol/vol)). Incorporation of [3H]DHS into 
each lipid was quantified and the percentage of the total radioactivity (%) in WT cells was determined. Data represent mean ± standard error (SE) of four 
independent experiments. (C) Cells (FKY2577) were grown overnight at 25°C in SD, then incubated with 0.2 M of NaCl for 2 hr. Vacuoles were stained 
with FM4-64 and imaged by fluorescence microscopy. The number of vacuoles per cell was counted and categorized into one of three groups. (A–
C) The data represent mean ± SE of three independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001 by Student’s t-test. Significant differences 
analysis between the pairwise combination of groups was performed using two-way analysis of variance (ANOVA).

Figure 5 continued on next page

https://doi.org/10.7554/eLife.89938
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probably due to the loss of function of Sac1p, which reduces the level of PtdIns used for IPC synthesis, 
thereby impairing IPC synthesis, and resulting in the accumulation of precursors such as the substrate 
ceramide. This model is also consistent with the results of accumulated PtdIns4P and reduced IPC 
synthesis in Δtether cells (Omnus et al., 2016). As tricalbins are required for ceramide non-vesicular 
transport from the ER to the Golgi (Ikeda et al., 2020), it is also possible that impaired ceramide 
non-vesicular transport due to tricalbin deficiency causes ceramide and its precursor, LCB, to accu-
mulate in the ER. Another possibility is that MCS facilitate PHS diffusion between the ER and the 
PM, which might be coordinated with the LCB export from the PM by Rsb1p. The loss of tricalbins 
partially disrupts the ER–PM tether, possibly resulting in low efficiency of PHS ejection by Rsb1p. 
This is supported by the result that overexpression of Rsb1p suppressed vacuolar fragmentation in 
tricalbin-deleted cells (Figure 3F).

Previous studies have observed that myriocin treatment results in vacuolar fragmentation (Fröhlich 
et al., 2015; Hepowit et al., 2023). Myriocin treatment itself causes not only the depletion of PHS but 
of complex sphingolipids such as IPC. This suggests that normal sphingolipid metabolism is important 
for vacuolar morphology. The reason for this is unclear, but perhaps there is some mechanism by 
which sphingolipid depletion affects, for example, the recruitment of proteins required for vacuolar 
membrane fusion. In contrast, our new findings show that PHS increase causes vacuole fragmenta-
tion. Taken together, there may be multiple mechanisms controlling vacuole morphology by both 
increasing and decreasing PHS.

Based on the fact that both PHS- and tricalbin deletion-induced vacuolar fragmentations were 
partially suppressed by the lack of NVJ (Figure 4B, C), it is possible that the trigger for vacuolar 
fragmentation is NVJ-mediated transport of PHS into the vacuole. Recently, it has been reported 
that sphingoid bases are transferred between ER and vacuole via the NVJ, and that Mdm1p, a key 
tethering protein for the formation of the NVJ, may play an additional role in LCB transfer (Girik 
et al., 2022). The study applied an experimental method that tracks LCBs released in the vacuole 
and showed that Mdm1p is necessary for LCBs leakage into the ER. However, assuming that Mdm1p 
transports LCBs along its concentration gradient we consider that under normal conditions, LCBs is 
transported from the ER (as the organelle of PHS synthesis) to the vacuole. Perhaps, Mdm1p may be 
responsible for pulling out and passing LCBs. However, we cannot rule out the possibility that the 
repression of vacuolar fragmentation in the absence of NVJ is not due to inhibition of PHS transfer, but 
rather to changes in the lipid composition of the vacuolar membrane caused by the lack of supply of 
other substances capable of triggering vacuolar fragmentation other than PHS, like sterols and lipids 
such as PtdIns[3,5]P2 and its precursors. Further analysis in this regard is warranted.

How accumulated PHS triggers vacuolar fragmentation remains undetermined. Fab1p, a target 
of TORC1, is responsible for the production of PtdIns[3,5]P2, which is a well-established inducer of 
vacuolar fragmentation. Fab1p exhibits co-localization with the TORC1-activating EGO complex, and 
its activity is controlled by Ivy1p (Malia et al., 2018) and TORC1 (Chen et al., 2021). PtdIns[3,5]P2 
was shown to regulate vacuole fission employing Vps1p and Atg18p as executioners (Gopaldass 
et al., 2017) while also promoting TORC1 activity in a positive feedback loop (Jin et al., 2014). In 
this context, we found that PHS-induced vacuolar fragmentation can be suppressed by the loss of 
Fab1p and its regulatory binding partner Vac14p (Figure 4—figure supplement 1). This observation 
suggests that PHS-induced vacuolar fragmentation would employ known factors such as Fab1p or 
Vac14p as the executioners.

The following possibilities still remain, although less likely than the above. Sphingosine, as a 
bioactive lipid, has been reported to exert effects on enzyme activity in humans and yeast (Hannun 

The online version of this article includes the following source data for figure 5:

Source data 1. Excel file of numerical data represented as three graphs in Figure 5A.

Source data 2. Original file for the thin-layer chromatography (TLC) analysis in Figure 5B.

Source data 3. JPEG containing Figure 5B and original scans of the relevant thin-layer chromatography (TLC) analysis with highlighted bands and 
sample labels.

Source data 4. Excel file of numerical data represented as two graphs in Figure 5B.

Source data 5. Excel file of numerical data represented as two graphs in Figure 5C.

Figure 5 continued

https://doi.org/10.7554/eLife.89938
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et al., 1986; Chang et al., 2001; Yabuki et al., 2019), and it is possible that PHS may induce 
vacuolar fragmentation through established signaling pathways. Yabuki et al., 2019 reported that 
LCB accumulation activates a signaling pathway that includes major yeast regulatory kinases such 
as Pkh1/2p, Pkc1p, and TORC1, which may be a candidate to promote vacuolar fragmentation. 
On the other hand, it was shown that membrane division is mediated by certain proteins that 
contain amphipathic helices (AHs) and interact with lipid cofactors such as PtdIns[4,5]P2, PA, and 
cardiolipin (Zhukovsky et  al., 2019). Thus, PHS may possess a similar regulatory function as a 
lipid cofactor for the activity of fission-inducing proteins. If PHS-induced vacuole fragmentation is 
not due to signaling, another possible model is that PHS accumulation in the vacuolar membrane 
causes physical changes in the membrane structure that result in membrane fragmentation. The 
accumulation of sphingosine in the GARP mutant vps53Δ, in which retrograde transport from the 
endosome to the Golgi is blocked, caused vacuolar fragmentation (Fröhlich et  al., 2015), and 
thus also supports this model. Sphingosine stabilizes (rigidifies) the gel domains in the membrane, 
leading to a structural defect between the phase separation of ‘more rigid’ and ‘less rigid’ domains 
(Contreras et al., 2006). This structural defect may result in high membrane permeability. Sphin-
gosine also forms small and unstable channels (compared to the channels formed by ceramide) 
in the membrane (Siskind et  al., 2005). Sphingosine channels are not large enough to release 
proteins but are believed to induce a permeability transition. Other studies have suggested that 
sphingosine induces non-lamellar structures by interacting with negatively charged lipids such as 
PA (Jiménez-Rojo et al., 2014). PHS alone or in concert with negatively charged lipids such as 
PtdIns[3,5]P2 may be actively involved in the fission process by inducing structural changes in the 
vacuolar membrane.

Finally, additional results provided further insight into the more general aspects of PHS involve-
ment in the vacuole fission process. Lipid analysis under hyperosmotic shock condition (0.2 or 0.8 M 
of NaCl) showed an increase in PHS level (Figure  5B). NaCl-induced vacuolar fragmentation was 
also suppressed by Rsb1p-mediated PHS export (Figure 5C), as was NVJ loss (Figure 5A). In addi-
tion to the hyperosmotic shock-induced PHS accumulation, we have previously shown that treatment 
with tunicamycin, which is ER stress inducer, increased the PHS level by about 20% (Yabuki et al., 
2019). Tunicamycin treatment has been shown to induce vacuole fission (Stauffer and Powers, 2015). 
Collectively, we propose that the NVJ and PHS play a general regulatory role in vacuolar morphology.

Materials and methods
Yeast strains
All strains of Saccharomyces cerevisiae used for this work are listed in Supplementary file 1.

Plasmids
All plasmids used for this work are listed in Supplementary file 2.

Culture conditions
Yeast cells were grown either in rich YPD medium (2% glucose, 1% yeast extract, 2% peptone) or in 
synthetic minimal SD medium (2% glucose, 0.15% yeast nitrogen base, 0.5% ammonium sulfate, bases 
as nutritional requirements) and supplemented with the appropriate amino acids.

FM4-64 stain and fluorescence microscopy
Yeast cells were cultured in YPD medium at 25°C for 15 hr to achieve OD600 = 0.5. The cells were 
collected and suspended in the same medium to achieve OD600 = 20. 20  mM FM4-64 (N-(3-
triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl) hexatrienyl) pyridinium) dissolved in DMSO 
(dimethyl sulfoxide) was added (a final concentration of 20 μM) while shielded from light. The cells 
were incubated with FM4-64 for 15  min at 25°C and then the cells were washed twice with YPD 
medium. Cells were suspended to achieve OD600 = 10 in the same YPD medium or YPD containing 
reagents (such as rapamycin or PHS), and incubated at 25°C for 2 hr under light shielding to label the 
vacuoles. After incubation, cells were collected and observed with a fluorescence microscope.

https://doi.org/10.7554/eLife.89938


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology

Hanaoka, Nishikawa, Ikeda et al. eLife 2023;12:RP89938. DOI: https://​doi.​org/​10.​7554/​eLife.​89938 � 15 of 20

Western blotting
To analyze Sch9 phosphorylation, protein extracts from cells expressing SCH9-5HA were treated with 
2-nitro-5-thiocyanobenzoic acid overnight, resolved by sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS–PAGE), immunoblotted, and visualized using rat anti-HA monoclonal antibody 
(12158167001; Roche) and anti-rat IgG antibody (A9037; Sigma-Aldrich) produced in goat. Bands 
were quantified using ImageJ to determine the relative amounts of phosphorylated Sch9.

Coimmunoprecipitation
Coimmunoprecipitation experiment was performed as described in Rodriguez-Gallardo et al., 2020 
and Rodriguez-Gallardo et al., 2022. The ER-enriched fraction was solubilized by treatment with 1% 
digitonin for 1 hr at 4°C, treated with blocked agarose beads (chromotek) then immunoprecipitated 
with GFP-Trap agarose beads (chromotek). The immunoprecipitated GFP protein complexes were 
separated by SDS–PAGE and analyzed by immunoblot using rat anti-HA antibody (12158167001; 
Roche), anti-rat IgG antibody (A9037; Sigma-Aldrich), mouse anti-GFP antibody (11814460001, 
Roche), and anti-mouse IgG (A4416; Sigma-Aldrich).

Lipid labeling with [3H]DHS
In vivo labeling of lipids with [3H]DHS was carried out as described (Ikeda et  al., 2021). Radiola-
beled lipids were extracted with chloroform–methanol–water (10:10:3, vol/vol/vol), and analyzed by 
thin-layer chromatography using a solvent system (chloroform-methanol-4.2N ammonium hydroxide 
(9:7:2, vol/vol/vol)). Radiolabeled lipids were visualized and quantified on an FLA-7000 system.

Protein complex modeling
The modeled Tcb1p, Tcb2p, and Tcb3p structures were obtained from AlphaFold2 Protein Struc-
ture Database (https://alphafold.ebi.ac.uk/). Based on the modeled structures, the amino acids of TM 
regions were predicted as 79–171 for Tcb1p, 79–162 for Tcb2p, and 189–268 for Tcb3p. The protein 
complex structures of the TM regions in Tcb1p, Tcb2p, and Tcb3p were modeled by AlphaFold2 
program version 2.3.2. (Jumper et al., 2021) worked on the AlphaFold Colab web space (Mirdita 
et  al., 2022; https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/​
AlphaFold.ipynb#scrollTo=pc5-mbsX9PZC). The figures were drawn using PyMOL software provided 
by Schrödinger, Inc (https://pymol.org/2/).

Data and materials availability statement
All data that supporting the findings of this study are included in the article as source data files. The 
materials used in this study are listed in supplementary files and are available from the corresponding 
author.
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