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Abstract Imputing data is a critical issue for machine learning practitioners, including in the life 
sciences domain, where missing clinical data is a typical situation and the reliability of the imputation 
is of great importance. Currently, there is no canonical approach for imputation of clinical data and 
widely used algorithms introduce variance in the downstream classification. Here we propose novel 
imputation methods based on determinantal point processes (DPP) that enhance popular tech-
niques such as the multivariate imputation by chained equations and MissForest. Their advantages 
are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the 
downstream classification and providing deterministic and reliable imputations that remove the vari-
ance from the classification results. We experimentally demonstrate the advantages of our methods 
by performing extensive imputations on synthetic and real clinical data. We also perform quantum 
hardware experiments by applying the quantum circuits for DPP sampling since such quantum algo-
rithms provide a computational advantage with respect to classical ones. We demonstrate compet-
itive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum 
processor. Our classical and quantum methods improve the effectiveness and robustness of clinical 
data prediction modeling by providing better and more reliable data imputations. These improve-
ments can add significant value in settings demanding high precision, such as in pharmaceutical 
drug trials where our approach can provide higher confidence in the predictions made.

eLife assessment
The methods presented in this work provide modest yet consistent accuracy improvements for data 
classification tasks where certain data are missing. The authors also present a way to use quantum 
computers for this task. The methodology and results for the classical (non-quantum) case are solid, 
although evidence for the practical quantum advantage via their approach in 'next generation' 
quantum computers remains incomplete. The results are valuable and should interest data scien-
tists, life scientists and anyone working in quantum computing.

Introduction
Missing data is a recurring problem in machine learning and in particular for clinical datasets, where 
it is common that numerous feature values are not present for reasons including incomplete data 
collection and discrepancies in data formats and data corruption (Luo, 2022; Emmanuel et  al., 
2021; Pedersen et al., 2017; Myers, 2000). Machine learning is routinely used in life science and 
clinical research for prediction tasks, such as diagnostics (Qin et al., 2019) and prognostics (Booth 
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et al., 2021), as well as estimation tasks, such as biomarker proxies (Wang et al., 2017) and digital 
biomarkers (Rendleman et al., 2019). Beyond the research setting, machine learning is becoming 
more commonplace as regulated Software as a Medical Device, where machine learning models are 
influencing – or making – clinical decisions that affect patient care.

Machine learning algorithms typically require complete datasets and missing values can signifi-
cantly affect the quality of the machine learning models trained on such data. This is in large part due 
to the fact that there can be different underlying reasons for the missingness: for example, feature 
values can be missing completely at random (MCAR), missing at random (MAR), and missing not at 
random (MNAR), each one with their own characteristics.

Despite its importance for clinical trials, there is no canonical approach for dealing with missingness 
and finding appropriate, effective and reproducible methods remains a challenge. A common way 
to deal with missing clinical data is to exclude subjects that do not have the complete set of feature 
values present. A drawback of this approach is that excluding subjects can in fact introduce significant 
biases in the final model. For example, it can result in the model being trained to be more effective 
for the type of subjects that are likely to have complete data than for those that do not. Moreover, the 
effectiveness and reliability of clinical trials are reduced when subjects with missing feature values are 
excluded from the clinical trial.

Data imputation is an alternative to the complete dataset approach, where subjects with missing 
feature values are not excluded. Instead, missing values are imputed to create a complete dataset 
that is then used for a classification task as shown in Figure 1. There are different ways to achieve this, 
including ‘filling’ missing values with zeros, or with the mean value of the feature across all subjects 
that have such a value present. These methods provide consistent imputation results, but there are 
important caveats for using such simple methods since they ignore possible correlations between 
features and can make the dataset appear more homogeneous than it really is. More advanced data 
imputation methods have been proposed in the literature: iterative methods include the multivariate 
imputation by chained equations (MICE) (Groothuis-Oudshoorn, 2011) and MissForest (Stekhoven 
and Bühlmann, 2012) algorithms, and deep learning methods include GAIN (generative adversarial 
imputation nets) Yoon and Jordon, 2018 and MIWAE (missing data importance-weighted autoen-
coder) (Mattei and Frellsen, 2019). Recent results Shadbahr et al., 2022 have shown that for clin-
ical data two iterative imputation methods, MiceRanger, which uses predictive mean matching, and 
MissForest, which uses Random Forests to predict the missing values of each feature using the other 
features, provide the best results and have been used here as a baseline.

Several metrics are routinely used to quantify the quality of data imputation: point-wise discrep-
ancy measures include root mean square error, mean absolute error, and coefficient of determination 
(‍R2‍). Feature-wise discrepancy measures include Kullback–Leibler divergence, two-sample Kolmogor-
ov–Smirnov statistic or (2-)Wasserstein distance. Ultimately, the quality and reliability of imputations 
can be measured by the performance of a downstream predictor, which is usually the area under the 
receiver operating curve (AUC) for a classification task. In practical terms, the performance of the 

Figure 1. Example of overall workflow for patient management through clinical data imputation and downstream classification.

https://doi.org/10.7554/eLife.89947
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downstream classifier is usually of highest importance for clinical datasets: for example, in one of our 
datasets, the classifier denominates a binary outcome of a critical care unit stay (e.g., survival) for each 
patient. Accordingly, we have used AUC for the classification task here on different holdout sets (see 
Figure 2) to assess the performance of our novel methods.

In order to increase the resulting AUC, we combine the MissForest and MiceRanger imputation 
methods with determinantal sampling, based on determinantal point processes (DPP) (Dereziński 
and Mahoney, 2021; Kulezsa and Taskar, 2011), which favors samples that are diverse and thus 
reduces the variance of the training of each decision tree that in turn provides more accurate models. 
In essence, determinantal sampling picks subsets of data according to a distribution that gives more 
weight to subsets of data that contain diverse data points. More precisely, each subset of data points 
is picked according to the volume encapsulated by these data points. The determinantal distribution 
increases the attention given to uncommon or out-of-the-ordinary data points rather than biasing 
the learning process towards the more commonly found data, which can improve the overall predic-
tion accuracy in particular for unbalanced datasets as is often the case for clinical data (Derezińsk 
and Mahoney). Determinantal sampling for regression and classification tasks with full data has been 
proposed previously for linear regressors (Dereziński et al., 2018) and for Random Forest training 
for a financial data classification use case where it outperformed the standard Random Forest model 
(Thakkar et al., 2023). However, an inherent feature of standard Random Forest and determinantal 
sampling algorithms is randomness that produces data imputations that vary from one run of the algo-
rithm to the next. This is often undesirable since the downstream classification performance can also 
be affected, which motivated us to apply a deterministic version of determinantal sampling (Schreurs 
and Suykens, 2021) within the Random Forests of the imputation methods to provide more robust 
and reliable imputations.

Through deterministic determinantal sampling, we address two challenges in data imputation: first, 
we provide improved data imputation methods that can increase the performance of the downstream 
classifier; and second, we remove the variance of the common stochastic and multiple imputation 
methods, thus ensuring reproducibility, easier integration in machine learning workflows, and compli-
ance with healthcare regulations. While these improvements are of particular relevance for clinical 
data, our algorithms can also be advantageous for other imputation tasks where improving down-
stream classification and removing variance is of importance.

In order to demonstrate this improvement, we apply our methods to two classification datasets: 
a synthetic dataset and a public clinical dataset where the predicted outcome is the survival of the 
patient.

In addition, we explore the potential of quantum computing to speed up these novel imputa-
tion methods: we provide a quantum circuit implementation of the determinantal sampling algorithm 

Figure 2. Imputation and downstream classification procedure to benchmark the imputation method’s performance. First, the imputer is trained on the 
whole observed dataset X as shown in step (a). In step (b), the imputed data is split into three consecutive folds (holdout sets H1, H2, and H3), then a 
classifier is trained on each combination of two holdout sets (development sets D1, D2, and D3) and the area under the receiver operating curve (AUC) 
is calculated for each holdout set.

https://doi.org/10.7554/eLife.89947
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that offers a computational advantage compared to its classical counterpart. The best classical algo-
rithms for determinantal sampling take in practice cubic time in the number of features to provide a 
sample (Dereziński and Mahoney, 2021). In contrast, the quantum algorithm we present here, based 
on theoretical analysis in Kerenidis and Prakash, 2022, has running time that scales linearly with 
the number of features. We measure running time as the depth of the necessary quantum circuits, 
given that the quantum processing units that are being developed currently offer the possibility of 
performing parallel operations on disjoint qubits.

This suggests that with the advent of next-generation quantum computers with more and better 
qubits, one could also expect a computational speedup in performing determinantal sampling using 
a quantum computer. Here, we demonstrate competitive results with up to 10 qubits for small-scale 
imputation tasks on a state-of-the-art IBM quantum processor.

This work combines classical (Dereziński and Mahoney, 2021) and quantum (Kerenidis and 
Prakash, 2022) DPP algorithms with widely used data imputation methods, resulting in novel data 
imputation algorithms that can improve performance on classical computers while also having the 
potential of a quantum speedup in the future.

Results
In ‘Methods’, we provide a detailed description of our four imputation methods, DPP-MICE, DPP-
MissForest, detDPP-MICE, and detDPP-MissForest. All of them are based on iterative imputation 
methods that use the observed values of every column to predict the missing values. The model 
used to fill missing values in each column is the Random Forest classifier. Our imputation methods 
replace the standard Random Forest used by the original miceRanger and MissForest imputers by the 
DPP-Random Forest model, for our first two imputers, and the detDPP-Random Forest for the latter 
two. The DPP-Random Forest model subsamples the data for each decision tree using determinantal 
sampling instead of uniform sampling, while the detDPP-Random Forest model deterministically picks 
for each decision tree the subset of data that has the maximum probability according to the determi-
nantal distribution. We also demonstrate a computationally advantageous way to perform the deter-
minantal sampling on quantum computers.

In order to benchmark the different imputation methods, we used two types of datasets with a 
categorical outcome variable. First, a synthetic dataset, created using the scikit-learn method make_
classification. It consists of 2000 rows with 25 informative features. This is useful to study the impu-
tation quality where features have equal importance. Second, the MIMIC-III dataset (Johnson et al., 
2016): the Medical Information Mart for Intensive Care (MIMIC) dataset, which is a freely available 
clinical database. It is comprised of data for patients who stayed in critical care units at the Beth Israel 
Deaconess Medical Center between 2001 and 2012. It contains the data of 7214 patients with 14 
features.

We also applied two types of missingness on these datasets: MCAR, where the missingness distri-
bution is independent of any observed or unobserved variable, and MNAR, where the missingness 
distribution depends on the outcome variable. We expect similar results to hold for the MAR case as 
well, but it was not considered in this work.

We present the numerical results in terms of the AUC of the downstream classification task in 
Table 1 and provide graphs of the results in Tables 2 and 3. Each experiment was run 10 times with 
different random seeds to get the variance of the results.

Overall, DPP-MICE and DPP-MissForest provide improved results compared to their classical base-
line MICE and MissForest. This is the case for both the synthetic and the MIMIC datasets and for both 
MCAR and MNAR missingness. Even more interestingly, the detDPP-MICE and detDPP-MissForest 
collapse the variance of the imputed data to 0 and moreover lead in most cases to even higher AUC 
than the expectation of the previous methods.

DPP-MICE and detDPP-MICE outperform MICE
We present the performance results of MICE-based methods in terms of the AUC of the downstream 
classification task using an XGBoost classifier, which has been shown to be the strongest classifier 
for such datasets (Shadbahr et al., 2022). We used the default parameters of the classifier since our 
focus is comparing the different imputation methods. In each case, the original dataset with induced 

https://doi.org/10.7554/eLife.89947
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missing values is imputed using MICE, DPP-MICE, or detDPP-MICE, then it is divided into threefolds 
of development/holdout sets. The downstream classifier is then trained on each development set and 
its performance is measured by the AUC for the corresponding holdout set. The results are shown in 
Table 1 and in the figures in Table 2.

The imputation procedure is performed for a total of 10 iterations over all the columns and for each 
column, a (DPP) Random Forest regressor is trained using 10 trees. For each Random Forest training, 
the dataset is divided into batches of 150 points each and DPPs are used to sample from every batch.

The results show that across the 12 in total dataset experiments DPP-MICE outperforms MICE 
on expectation in 10 of them, while detDPP-MICE provides a single deterministic imputation, which 
outperforms the expected result from MICE in all 12 datasets and from DPP-MICE 11 out of 12 times.

DPP-MissForest and detDPP-MissForest outperform MissForest
Here we present the performance results of MissForest-based methods in terms of the AUC of the 
downstream classification task using again an XGBoost classifier. In each case, the original dataset 
with induced missing values is imputed using MissForest, DPP-MissForest, or detDPP-MissForest, 
then it is divided into threefolds of development/holdout sets. The downstream classifier is again then 
trained on each development set and its performance is measured by the AUC for the corresponding 

Table 1. AUC results for the SYNTH and MIMIC-III datasets, with MCAR and MNAR missingness, 
three holdout sets, and six different imputation methods.
Values are expressed as mean ± SD of 10 values for each experiment. DPP-MICE and detDPP-MICE 
are in bold when outperforming MICE and the underlined one is the best of the three. DPP-
MissForest and detDPP-MissForest are in bold when outperforming MissForest and the underlined 
one is the best of the three.

Dataset Missingness Set MICE
DPP-
MICE

detDPP-
MICE MissForest

DPP-
MissForest

detDPP-
MissForest

SYNTH

MCAR

H1
0.8318 ± 
0.0113

0.835 ± 
0.0083 0.8352

0.8525 ± 
0.0044

0.8552 ± 
0.0049 0.8582

H2
0.8316 ± 
0.008

0.8369 ± 
0.0128 0.84

0.8465 ± 
0.0057 0.849 ± 0.003 0.8491

H3
0.8205 ± 
0.0127

0.8266 ± 
0.0096 0.8272

0.8436 ± 
0.0031

0.8452 ± 
0.0048 0.855

MNAR

H1
0.8903 ± 
0.0046

0.8915 ± 
0.007 0.8934

0.7133 ± 
0.0063 0.7171 ± 0.01 0.7185

H2
0.8755 ± 
0.01

0.8745 ± 
0.0072 0.8955

0.7052 ± 
0.0036

0.7124 ± 
0.0078 0.7167

H3
0.9003 ± 
0.0059

0.9005 ± 
0.006 0.9041

0.769 ± 
0.0103

0.7773 ± 
0.0129 0.7905

MIMIC

MCAR

H1
0.7621 ± 
0.0046

0.7628 ± 
0.0049 0.7641

0.7687 ± 
0.0012

0.77 ± 
0.0013 0.771

H2
0.7541 ± 
0.0037

0.7532 ± 
0.0047 0.7619

0.7649 ± 
0.0019

0.777 ± 
0.0019 0.7707

H3
0.7365 ± 
0.0055

0.7394 ± 
0.0052 0.7471 0.7485 ± 0.001

0.7507 ± 
0.0017 0.7515

MNAR

H1
0.77 ± 
0.0026

0.7717 ± 
0.0036 0.7722

0.6616 ± 
0.0065 0.6715 ± 0.07 0.6760

H2
0.777 ± 
0.0064

0.7818 ± 
0.0029 0.7812

0.6748 ± 
0.0045

0.6778 ± 
0.0048 0.6798

H3
0.7324 ± 
0.0047

0.7363 ± 
0.0031 0.7403

0.6368 ± 
0.0034 0.64 ± 0.004 0.6419

AUC = area under the receiver operating curve; MCAR = missing completely at random; MNAR = missing not at 
random.

https://doi.org/10.7554/eLife.89947


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Kazdaghli et al. eLife 2023;12:RP89947. DOI: https://​doi.​org/​10.​7554/​eLife.​89947 � 6 of 17

holdout set. The results are shown in Table 1 and in the figures in Table 3. The specifics of the Random 
Forest training are the same as in the case of MICE.

The results show that across all experiments DPP-MissForest outperforms MissForest in all 12 
of them, while detDPP-MissForest provides a single deterministic imputation that outperforms the 
expected result from MissForest in all 12 datasets and from DPP-MissForest in 11 out of 12 times.

Quantum hardware implementation of DPP-MissForest results in 
competitive downstream classification
As we describe in ‘Methods’, quantum computers can in principle be used to offer a computational 
advantage in determinantal sampling. In order to better understand the state of the art of current 
quantum hardware, we used a currently available quantum computer to perform determinantal 
sampling within a DPP-MissForest imputation method for scaled-down versions of the synthetic and 
MIMIC datasets.

•	 Reduced synthetic dataset: 100 points and three features, created using the sklearn method 
make_classification.

•	 Reduced MIMIC dataset: 200 points and three features. The three features were chosen from 
the original dataset features based on low degree of missingness and their predictiveness of the 
downstream classifier, and they were ‘Oxygen saturation std’, ‘Oxygen saturation mean’, and 
‘Diastolic blood pressure mean’.

For the purposes of our experiments, we used the ‘ibm_hanoi’ 27-qubit quantum processor shown 
in Figure 3. We implemented quantum circuits with up to 10 qubits. We also performed quantum 
simulations using the qiskit noiseless simulator. The decision trees of the DPP-Random Forests used 
by the imputation models are trained using batches of decreasing sizes (see Table 4). For example, 

Table 2. AUC results on the different holdout sets after imputation using MICE, DPP-MICE, and detDPP-MICE.
In the case of MICE and DPP-MICE, the boxplots correspond to 10 AUC values for 10 iterations of the same imputation and 
classification algorithms, depicting the lower and upper quartiles as well as the median of these 10 values. The AUC values are the 
same for every iteration of the detDPP-MICE algorithm.

MCAR MNAR

SYNTH

‍ ‍ ‍ ‍

MIMIC

‍ ‍ ‍ ‍

AUC = area under the receiver operating curve; MCAR = missing completely at random; MNAR = missing not at random.

https://doi.org/10.7554/eLife.89947
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for the algorithm with batch size equal to 10, the algorithm first samples 2 out of the 10 data points 
to use for the first decision tree, then from the remaining 8 data points it picks another 2 for the 
second tree, then 2 from the remaining 6, and last 2 from the remaining 4. In other words, we train 
four different trees, and each time we use a quantum circuit with number of qubits equal to 10, 8, 6, 
and 4, to perform the respective determinantal sampling.

In the figures of Table 5 and in Table 6, we provide for the different dataset experiments the AUC 
for MissForest, the simulated results of the quantum version of DPP-MissForest, and the actual hard-
ware experimental results of running the quantum version of DPP-MissForest. Even for these very small 
datasets, when simulating the quantum version of DPP-MissForest, we demonstrate an increase in the 
AUC compared to the MissForest algorithm. This further highlights the potential advantages of deter-
minantal sampling within imputation methods. Of note, running our algorithms on current hardware 

introduces variance in the downstream classifier. 
Importantly, this variance is due to noise in the 
hardware rather than inherent to the algorithm.

Our quantum hardware results are competitive 
with standard methods and in many cases close to 
the values expected from the simulation. In some 
cases, we observed a clear deterioration of the 
AUC due to the noise and errors in the quantum 
hardware. The results are closer to the simulations 
when using MCAR missingness with larger batch 
sizes that use more trees both for synthetic and 
the MIMIC datasets. As explained above, even 
though the algorithm with batch size 10 means 

Table 4. Data matrix sizes used by the quantum 
determinantal point processes (DPP) circuits to 
train each tree.
The number of rows corresponds to the number 
of data points and is equal to the number of 
qubits of every circuit.

Batch size Tree 1 Tree 2 Tree 3 Tree 4

7 (7,2) (5,2) - -

8 (8,2) (6,2) (4,2) -

10 (10,2) (8,2) (6,2) (4,2)

Table 3. AUC results on the different holdout sets after imputation using MissForest, DPP-MissForest, and detDPP-MissForest.
In the case of MissForest and DPP-MissForest, the boxplots correspond to 10 AUC values for 10 iterations of the same imputation 
and classification algorithm, depicting the lower and upper quartiles as well as the median of these 10 values. The AUC values are 
always the same for every iteration of the detDPP-MissForest algorithm.

MCAR MNAR

SYNTH

‍ ‍ ‍ ‍

MIMIC

‍ ‍ ‍ ‍

AUC = area under the receiver operating curve; MCAR = missing completely at random; MNAR = missing not at random.

https://doi.org/10.7554/eLife.89947
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Figure 3. IBM Hanoi 27-qubit quantum processor.

Table 5. Hardware results using the IBM quantum processor, depicting AUC results of the downstream classifier task after imputing 
missing values using DPP-MissForest.
In the case of MissForest and the quantum hardware DPP-MissForest implementations, the boxplots correspond to 10 AUC values 
for 10 iterations of the same imputation and classification algorithm, depicting the lower and upper quartiles as well as the median of 
these 10 values. The AUC values are the same for every iteration of the quantum DPP-MissForest algorithm using the simulator.

Batch size: 7
Number of trees: 2

Batch size: 8
Number of trees: 3

Batch size: 10
Number of trees: 4

MCAR 
SYNTH

‍ ‍ ‍ ‍ ‍ ‍

MCAR 
MIMIC

‍ ‍ ‍ ‍ ‍ ‍

MNAR 
SYNTH

‍ ‍ ‍ ‍ ‍ ‍

MNAR 
MIMIC

‍ ‍ ‍ ‍ ‍ ‍

AUC = area under the receiver operating curve; MCAR = missing completely at random; MNAR = missing not at random.

https://doi.org/10.7554/eLife.89947
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using a quantum circuit with 10 qubits, the fact that we use four trees overall with a decreasing 
number of data points each time, and thus a decreasing number of qubits (namely, 10, 8, 6, and 4), 
results in an overall more reliable imputation.

Discussion
Missing data is a critical issue for machine learning practitioners as complete datasets are usually 
required for training machine learning algorithms. To achieve complete datasets, missing values are 
usually imputed. In the case of clinical data, missing values and imputation can be a potential source of 
bias and can considerably influence the robustness and interpretability of results. Nevertheless, there 
is no canonical way to deal with missing data, which makes improvements in data imputation methods 
an attractive and impactful approach to increase the effectiveness and reliability of clinical trials. In this 
proof-of-concept study, we assessed the downstream consequences of implementing such improve-
ments focussing on MCAR and MNAR to assess the usefulness of our approach. MNAR and MCAR 
represent two extreme cases of missingness with importance for clinical data imputation applications.

Determinantal point processing methods increase the diversity of the data picked to train the 
models, showcasing also that data gathering and preprocessing are important to remove biases 
related to over-representation of particular data types. This is more important when dealing with 
unbalanced datasets, as is the case often with clinical data. Determinantal sampling is an important 
tool not only for Random Forest models, but also for linear regression, where data diversity results in 
more robust and fair models (Dereziński et al., 2018). Moreover, such sampling methods based on 
DPP are computationally intensive and quantum computers are expected to be useful in this case: 
quantum computers offer an asymptotic speedup for performing this sampling, and it is expected that 
next-generation quantum computers will provide a speedup in practice.

We show that, as expected, the quantum version of detDPP-MissForest does not introduce any 
variance in the downstream classifier when simulated in the absence of hardware noise. While the AUC 
improvements achieved in our experiments may seem modest, it is the consistency of improvements 
we observed in our simulation results coupled with removal of variance that makes our approach 
attractive for clinical data applications where these characteristics are extremely desirable. When 
implemented on quantum hardware, we observed variance that is caused by the noise in the hardware 

Table 6. Numerical quantum hardware results showing the AUC results of the downstream classifier 
task on reduced datasets.
Values are represented according to mean ± SD format given 10 values for each experiment.

Dataset Missingness
Batch 
size Trees MissForest

detDPP-MissForest 
(simulator)

detDPP-MissForest 
(hardware)

SYNTH

MCAR

7 2 0.868 ± 0.0302 0.9026 0.8598 ± 0.021

8 3 0.8667 ± 0.0342 0.9256 0.8923 ± 0.027

10 4 0.8725 ± 0.0275 0.9028 0.8902 ± 0.024

MNAR

7 2 0.7122 ± 0.0264 0.78 0.7149 ± 0.02

8 3 0.7153 ± 0.022 0.729 0.7036 ± 0.0167

10 4 0.7258 ± 0.0157 0.7868 0.7082 ± 0.036

MIMIC

MCAR

7 2 0.7127 ± 0.038 0.7522 0.7117 ± 0.0315

8 3 0.7136 ± 0.03 0.7728 0.7448 ± 0.0258

10 4 0.6968 ± 0.03 0.7327 0.7262 ± 0.0299

MNAR

7 2 0.7697 ± 0.0133 0.7794 0.7742 ± 0.0108

8 3 0.7713 ± 0.0112 0.7943 0.767 ± 0.0125

10 4 0.7712 ± 0.0116 0.7922 0.7675 ± .01545

AUC = area under the receiver operating curve; MCAR = missing completely at random; MNAR = missing not at 
random.

https://doi.org/10.7554/eLife.89947
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itself. More precisely, the output of the quantum circuit is not a sample from the precise determi-
nantal distribution but from a noisy version of it, and this noise depends on the particular quantum 
circuit implemented and the quality of the hardware. Thus when attempting to compute the highest 
probability element using samples from the quantum circuit on current hardware, the result is not 
deterministic. Importantly, unlike for standard MissForest, this variance is not inherent in the algorithm 
and is expected to reduce considerably with the advent of better quality quantum computers. The 
quantum circuits needed to efficiently perform determinantal sampling require a number of qubits 
equal to the batch size used for each decision tree within the Random Forest training and the depth 
of the quantum circuit is roughly proportional to the number of features. As an example, if we would 
like to perform the quantum version of the determinantal imputation methods we used for MIMIC-III, 
then we would need a quantum computer with 150 qubits (the batch size) that can be reliably used 
to perform a quantum circuit of depth around 400 (the depth is given by ‍4d log n‍, where ‍n = 150‍ is 
the batch size and ‍d = 14‍ is the number of features; Kerenidis and Prakash, 2022). While quantum 
hardware with a few hundred qubits that can perform computations of a few hundred steps are not 
available right now, it seems quite possible that they will be available in the not so far future. In the 
meantime, further optimization could also help reduce the quantum resources needed for such impu-
tation methods.

While our DPP-based imputation methods can run classically on small datasets such as MIMIC-III, 
they are computationally intensive and are hard to parallelize due to the sequential nature of the 
algorithm. This results in less and less efficient imputation for larger datasets where DPP sampling 
is applied to bigger batches. For example, when a DPP-MICE imputation is run on a dataset of 200 
features and batches of size 400, then the training is expected to take multiple hours on a single 
GPU. The quantum DPP algorithm therefore could provide a way to speed up the hardest part of the 
imputer using a next-generation quantum computer. For instance, if ‍d = 200‍, and batch size is 400, the 
number of qubits will be 400 and the depth of the quantum circuit would be ≈ 6400, whereas it would 
take ‍∼ 8 ∗ 106‍ classical steps for DPP sampling. These are of course simply illustrative calculations 
and will require more detailed analysis as these machines become available and will need to include 
parameters such as clock speeds and error correction overheads. Only then can it be experimentally 
proven that this theoretical asymptotic speedup can translate to a practical speedup for this particular 
algorithm.

In summary, here we propose novel data imputation methods that, first, improve the widely used 
iterative imputation methods – MiceRanger and MissForest – as measured by the AUC of a down-
stream classifier; second, remove the variance of the imputation methods, thus ensuring reproduc-
ibility and simpler integration into machine learning workflows; and third, become even more efficient 
when run on quantum computers. Based on our results, we anticipate an impact of our algorithms on 
the reliability of models in high-precision value settings, including in pharmaceutical drug trials where 
they can provide higher confidence in the predictions made by eradicating the stochastic variance 
due to multiple imputations. In addition, tasks that are currently overwhelmed by the challenges of 
missingness become more tractable through the approaches introduced here, which is a common 
problem with real-world-evidence investigations, where detDPP-MICE and detDPP-MissForest can 
yield improved performance in the face of missingness.

Methods
Determinantal point processes (DPPs)
Given a set of items ‍Y = {y1, . . . , yN}‍, a point process ‍P ‍ is a probability distribution over all subsets of 
the set ‍Y ‍. It is called a determinantal point process (DPP) if, for any subset ‍Y ‍ drawn from ‍Y ‍ according 
to ‍P ‍, we have

	﻿‍ P(T ⊆ Y) = det(KT,T),‍� (1)

where ‍K ‍ is a real symmetric ‍N × N ‍ matrix, and ‍KT,T ‍ is its submatrix whose rows and columns are 
indexed by ‍T ‍. The matrix ‍K ‍ is called the marginal kernel of ‍Y ‍.

For an ‍n × d‍ data matrix ‍A‍ and ‍L = AAT ‍, we define the ‍L‍-ensemble ‍DPPL(L)‍ as the distribution 
where the probability of sampling ‍T ‍ is

https://doi.org/10.7554/eLife.89947
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	﻿‍
P({T}) =

det(LT,T)
det(I + L)

∝ Vol2({ai : i ∈ T}),
‍�

(2)

where ‍Vol({ai : i ∈ T})‍ is the volume of the parallelepiped spanned by the rows of ‍A‍ indexed by ‍T ‍.
According to this distribution, the probability of sampling points that are similar and thus form a 

smaller volume is reduced in favor of samples that are more diverse.
An ‍L‍-ensemble is a determinantal point process if ‍K = L(I + L)−1

‍.

Stochastic ‍k‍-DPPs
The distribution ‍k − DPPL(L)‍ is defined as an ‍L‍-ensemble which is constrained to subsets of size 
‍|T| = k‍.

Different algorithms have been proposed in the literature to sample from ‍k − DPPs‍, namely Kulesza 
and Taskar, 2012, where sampling ‍d‍ rows from an ‍N × d‍ matrix takes ‍O(Nd2)‍ time. There have been 
improvements over this initial proposal as in Mahoney et al., 2019, where there is a preprocessing 
cost of ‍O(Nd2)‍ and each DPP sample requires ‍O(d3)‍ arithmetic operations.

Deterministic ‍k‍-DPPs
Stochastic DPP sampling may be efficient in practice; however, deterministic algorithms are important 
for different use cases since they are more interpretable, are less prone to errors, and have no failure 
probability, which is especially relevant for clinical data (El Shawi et al., 2019).

We use a deterministic version of DPP sampling as proposed in Schreurs and Suykens, 2021 
(see Algorithm 1), which is a greedy maximum volume approach. For each deterministic ‍k − DPP‍ 
sample, elements with the highest probability are added iteratively. The complexity of the algorithm 
for selecting deterministically ‍d‍ rows from an ‍N × d‍ matrix is ‍O(N2d)‍ for the preprocessing step and 

‍O(Nd3)‍ for the sampling step.

Figure 4. The sampling and training procedure for the DPP-Random Forest algorithm: the dataset is divided into batches of similar size, the DPP 
sampling algorithm is then applied to every batch in parallel, and the subsequent samples are then combined to form larger datasets used to train the 
decision trees. Since the batches are fixed, DPP sampling can be easily parallelized, either classically or quantumly. DPP, determinantal point processes.

https://doi.org/10.7554/eLife.89947
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Algorithm 1 Deterministic k-DPP algorithm

Input:‍N × N ‍ Kernel matrix ‍K ≻ 0‍, sample size ‍k‍.
Initialization:‍T ← ∅‍
‍V ∈ Rn×k‍: first ‍k‍ eigenvectors of ‍K ‍.
‍P = VV⊺‍

‍
p0(i) =

∥∥∥VTei

∥∥∥
2

, i = 1, . . . , k
‍

‍p ← p0‍ and‍i = 0‍
while: ‍i ≤ k‍ do
        ‍ti ∈ arg max p‍
         ‍T ← T ∪

{
ti
}

‍
        ‍p(j) = p0(j) − PT

T jP
†
T T PT j, j = 1 . . . n‍

         ‍i ← i + 1‍
end while
Output:‍T ‍.

DPP-Random Forest and detDPP-Random Forest
The Random Forest is a widely used ensemble learning model for classification and regression prob-
lems. It trains a number of decision trees on different samples from the dataset, and the final prediction 
of the Random Forest is the average of the decision trees for regression tasks or the class predicted 
by the most decision trees for classification tasks.

The samples used to train each tree are drawn uniformly with replacement from the original dataset 
(bootstrapping). The DPP-Random Forest algorithm (see Figure 4) replaces the uniform sampling with 
DPP sampling without replacement.

The running time of the standard Random Forest training on an ‍N × d‍ matrix is ‍̃O(Nd)‍, whereas 
the DPP-Random Forest algorithm takes ‍̃O(Nd2 + d3)‍ steps to run. This shows that while for small ‍d‍ 
the classical DPP-enhanced algorithms can still be efficient, they quickly become inefficient for larger 
feature spaces.

Determinantal sampling for regression and classification tasks with full data has been proposed 
previously for linear regressors (Michał Dereziński and Hsu 2018) and for Random Forest training for 
a financial data classification use case where it outperformed the standard Random Forest model 
(Thakkar et al., 2023).

Figure 5. Deterministic determinantal point processes (DPP) sampling procedure for training decision trees. At each step, a decision tree is trained 
usingthe sample that corresponds to the highest determinantal probability, and which is then removed from the original batch before continuing to the 
next decision tree.

https://doi.org/10.7554/eLife.89947
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We can also use the deterministic version of DPP sampling for the Random Forest algorithm. 
This requires removing the sample used at each step (which is the one with the highest probability 
according to the determinantal distribution) in order to create a smaller dataset from which to sample 
for the next decision tree (see Figure 5). We call this new model detDPP-Random Forest.

Let us note that the distributions of the in-bag DPP samples, which are biased toward diversity, and 
the out-of-bag (OOB) samples, which reflect the original dataset’s distribution, may be different. This 
could lead to an inaccurate calculation of the OOB error that can be in fact overestimated (Janitza 
and Hornung, 2018). In the DPP-Random Forest case, the batches are stratified and according to 
the output variable that follows the same distribution as the original dataset. Thus, sampling from 
different batches could bridge the gap between the in-bag and the OOB distributions. We leave these 
considerations for future work.

Quantum methods for DPPs
Quantum machine learning has been a rapidly developing field and many applications have been 
explored, including with biomedical data, both using quantum algorithms to speedup linear algebraic 
procedures and through quantum neural networks (Cerezo et  al., 2022; Biamonte et  al., 2017; 
Landman et al., 2022; Cherrat et al., 2022).

In Kerenidis and Prakash, 2022, it was shown that there exist quantum algorithms for performing 
the determinantal sampling with better computational complexity than the best known classical 
methods. We describe below the quantum circuits that are needed for performing this quantum algo-
rithm on quantum hardware with different connectivity characteristics and provide a resource analysis 
for the number of qubits, the number of gates, and the depth of the quantum circuit.

First, we introduce an important component of the quantum DPP circuit, which is the Clifford 
loader. Given an input state ‍x ∈ Rn‍, it performs the following operation:

	﻿‍
C(x) =

n∑
i=1

xiZi−1XIn−i

‍�

In other words, it encodes the vector ‍x‍ as a sum of the mutually anti-commuting operators gener-
ating the Clifford algebra.

Figure 6. Types of data loaders. Each line corresponds to a qubit. Each vertical line connecting two qubits corresponds to a reconfigurable beam 
splitter (RBS) gate. We also use ‍X, Z, CZ ‍ gates. The depth of the first two loaders is linear, and the last one is logarithmic on the number of qubits.

Table 7. Summary of the characteristics of the different quantum determinantal point processes 
(DPP) circuits.
NN = nearest neighbor connectivity.

Clifford loader Hardware connectivity Depth # of RBS gates

Diagonal NN 2nd 2nd

Semi-diagonal NN nd 2nd

Parallel All-to-all 4d log(n) 2nd

https://doi.org/10.7554/eLife.89947
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For implementing this operation with an efficient quantum circuit, we use standard one- and two-
qubit gates, such as the X, Z, CZ gates as well as a parameterized two-qubit gate called the reconfig-
urable beam splitter (RBS) gate, which does the following operation:

	﻿‍

RBS(θ) =




1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1




‍�

(3)

We provide in Figure 6 three different versions of the Clifford loader that take advantage of the 
specific connectivity of the quantum hardware, for example, grid connectivity for superconducting 
qubits or all-to-all connectivity for trapped-ion qubits. These constructions are optimal (up to constant 
factor) on the number of two-qubit gates. We provide the exact resource analysis in Table 7.

We can now use the Clifford loaders described above to perform ‍k − DPP‍ sampling, as described 
(Kerenidis and Prakash, 2022).

Given an orthogonal matrix ‍A = (a1, ..., ad)‍, we can apply the qDPP circuit shown in Figure 7, which 
is just a sequential application of ‍d‍ Clifford loaders, one for each column of the matrix, to the ‍|0

n⟩‍ 
state, and that leads to the following result:

	﻿‍ |A⟩ = C(ad) · · · C(a2)C(a1)|0n⟩ =
∑

|S|=d det(AS)|eS⟩‍�

Directly measuring at the end of the circuit provides a sample from the correct determinantal 
distribution.

Both the classical and the quantum algorithms require a preprocessing step with a similar complexity 
(see Table 8), and the improvement using the quantum method achieves a quadratic to cubic speedup 

Figure 7. Quantum determinant sampling circuit for an orthogonal matrix ‍A = (a1, ..., ad)‍. It uses the Clifford 
loader, which is a unitary quantum operator: ‍C(x) =

∑n
i=1 xiZi−1XIn−i, for x ∈ Rn

‍.

Table 8. Complexity comparison of d-DPP sampling algorithms, both classical (Mahoney et al., 
2019) and quantum (Kerenidis and Prakash, 2022).
The problem considered is DPP sampling of ‍d‍ rows from an ‍n × d‍ matrix, where ‍n = O(d)‍. For the 
quantum case, we provide both the depth and the size of the circuits.

Classical Quantum

Preprocessing ‍O(d3)‍ ‍O(d3)‍

Sampling ‍̃O(d3)‍ ‍

Õ(d) depth

Õ(d2) gates‍

DPP = determinantal point processes.

https://doi.org/10.7554/eLife.89947
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in the sampling step. This speedup holds for ‍n = O(d)‍. This is the case for our current implementation 
of DPP sampling from smaller batches (see Figure  4). In addition, the quantum DPP algorithm is 
efficient in terms of the number of measurements required since one measurement is equivalent to 
generating one DPP sample.

Quantum versions of the imputation methods
It is easy to define now a quantum version of the DPP-MICE and DPP-MissForest algorithms, where 
we use the quantum circuit described above to sample from the corresponding DPP. We can also 
define a variant of the deterministic algorithms, though here we need to pay attention to the fact that 
the quantum circuit enables to sample from the determinantal distribution but does not efficiently 
give us a classical description of the entire distribution. Hence, one can instead sample many times 
from the quantum circuit and output the most frequent element. This provides a sample with less 
variance but it only becomes deterministic in the limit of infinite measurements. In the experiments 
we performed, we used 1000 shots and the samples from the quantum circuits were indeed most 
of the time the highest probability elements. Of course in the worst case, there exist distributions 
where, for example, the highest and second highest elements are exponentially close to each other, 
in which case the quantum algorithm would need an exponential number of samples to output the 
highest element with high probability. Note though that the quantum imputation algorithm will still 
have a good performance even with few samples (any high-probability element provides the needed 
diversity of the inputs), though it will not be deterministic.

Availability of data and code
The code for the different DPP imputation methods is publicly available at github.com/AstraZeneca/​
dpp_imp, (copy archived at AstraZeneca, 2023). The synthetic dataset can be generated using the 
make_classification method from scikit-learn. The MIMIC-III dataset (Johnson et  al., 2016) is also 
publicly available.

Acknowledgements
This work is a collaboration between QC Ware and AstraZeneca. We acknowledge the use of IBM 
Quantum services for this work. The views expressed are those of the authors and do not reflect the 
official policy or position of IBM or the IBM Quantum team.

Additional information

Competing interests
Jens Kieckbusch, Philip Teare: are employees of AstraZeneca. The authors declares that no other 
competing interests exist. The other authors declare that no competing interests exist.

Funding
No external funding was received for this work.

Author contributions
Skander Kazdaghli, Conceptualization, Data curation, Software, Visualization, Methodology, Writing – 
original draft, Writing – review and editing; Iordanis Kerenidis, Conceptualization, Supervision, Meth-
odology, Writing – original draft, Project administration, Writing – review and editing; Jens Kieckbusch, 
Supervision, Validation, Writing – original draft, Project administration, Writing – review and editing; 
Philip Teare, Validation, Visualization, Methodology, Writing – original draft, Project administration, 
Writing – review and editing

Author ORCIDs
Skander Kazdaghli ‍ ‍ http://orcid.org/0009-0005-9044-0919

Peer review material
Reviewer #1 (Public Review): https://doi.org/10.7554/eLife.89947.3.sa1

https://doi.org/10.7554/eLife.89947
https://github.com/AstraZeneca/dpp_imp/
https://github.com/AstraZeneca/dpp_imp/
http://orcid.org/0009-0005-9044-0919
https://doi.org/10.7554/eLife.89947.3.sa1


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Kazdaghli et al. eLife 2023;12:RP89947. DOI: https://​doi.​org/​10.​7554/​eLife.​89947 � 16 of 17

Additional files
Supplementary files
•  MDAR checklist 

Data availability
The synthetic dataset can be generated using the make classification method from scikit-learn. The 
MIMIC-III dataset is publicly available at https://mimic.mit.edu/.

References
AstraZeneca. 2023. Dpp_Imp. swh:1:rev:baa623a46174c477c9556112340e9fe5db66955b. Software Heriatge. 

https://archive.softwareheritage.org/swh:1:dir:5031d4e6c0a99b3b9a81d08c78156f845843a0f8;origin=https://​
github.com/AstraZeneca/dpp_imp;visit=swh:1:snp:a9428e4d43c15096b5339492546ec926513006c4;anchor=​
swh:1:rev:baa623a46174c477c9556112340e9fe5db66955b

Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S. 2017. Quantum machine learning. Nature 
549:195–202. DOI: https://doi.org/10.1038/nature23474, PMID: 28905917

Booth AL, Abels E, McCaffrey P. 2021. Development of a prognostic model for mortality in COVID-19 infection 
using machine learning. Modern Pathology 34:522–531. DOI: https://doi.org/10.1038/s41379-020-00700-x, 
PMID: 33067522

Cerezo M, Verdon G, Huang H-Y, Cincio L, Coles PJ. 2022. Challenges and opportunities in quantum machine 
learning. Nature Computational Science 2:567–576. DOI: https://doi.org/10.1038/s43588-022-00311-3, PMID: 
38177473

Cherrat EA, Kerenidis I, Mathur N, Landman J, Strahm M, Li YY. 2022. Quantum Vision Transformers. arXiv. 
https://arxiv.org/abs/2209.08167

Dereziński M, Warmuth MK, Hsu D. 2018. Leveraged Volume Sampling for Linear Regression. arXiv. https://arxiv.​
org/abs/1802.06749

Dereziński M, Mahoney MW. 2021. Determinantal point processes in randomized numerical linear algebra. 
Notices of the American Mathematical Society 68:34–45. DOI: https://doi.org/10.1090/noti2202

El Shawi R, Sherif Y, Al-Mallah M, Sakr S. 2019. Interpretability in HealthCare A Comparative Study of Local 
Machine Learning Interpretability Techniques. 2019 IEEE 32nd International Symposium on Computer-Based 
Medical Systems (CBMS). . DOI: https://doi.org/10.1109/CBMS.2019.00065

Emmanuel T, Maupong T, Mpoeleng D, Semong T, Mphago B, Tabona O. 2021. A survey on missing data in 
machine learning. Journal of Big Data 8:140. DOI: https://doi.org/10.1186/s40537-021-00516-9, PMID: 
34722113

Groothuis-Oudshoorn K. 2011. Mice: multivariate imputation by chained equations in r. Journal of Statistical 
Software 45:1–67. DOI: https://doi.org/10.18637/jss.v045.i03

Janitza S, Hornung R. 2018. On the overestimation of random forest’s out-of-bag error. PLOS ONE 13:e0201904. 
DOI: https://doi.org/10.1371/journal.pone.0201904, PMID: 30080866

Johnson AEW, Pollard TJ, Shen L, Lehman LWH, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. 
2016. MIMIC-III, a freely accessible critical care database. Scientific Data 3:160035. DOI: https://doi.org/10.​
1038/sdata.2016.35, PMID: 27219127

Kerenidis I, Prakash A. 2022. Quantum Machine Learning with Subspace States. arXiv. https://arxiv.org/abs/​
2202.00054

Kulesza A, Taskar B. 2012. Determinantal point processes for machine learning. Foundations and Trends in 
Machine Learning 5:123–286. DOI: https://doi.org/10.1561/2200000044

Kulezsa A, Taskar B. 2011. K-dpps: fixed-size determinantal point processes. ICML’11: Proceedings of the 28th 
International Conference on International Conference on Machine Learning. Cited by: Improved clinical data 
imputation via classical and quantum determinantal point processes. .

Landman J, Mathur N, Li YY, Strahm M, Kazdaghli S, Prakash A, Kerenidis I. 2022. Quantum methods for neural 
networks and application to medical image classification. Quantum 6:881. DOI: https://doi.org/10.22331/q-​
2022-12-22-881

Luo Y. 2022. Evaluating the state of the art in missing data imputation for clinical data. Briefings in Bioinformatics 
23:bbab489. DOI: https://doi.org/10.1093/bib/bbab489, PMID: 34882223

Mahoney MW, Dereziński M, Clarkson KL, Warmuth MK. 2019. Minimax experimental design: bridging the gap 
between statistical and worst-case approaches to least squares regression. Conference on Learning Theory. .

Mattei P, Frellsen J. 2019. MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets. arXiv. 
https://arxiv.org/abs/1812.02633

Myers WR. 2000. Handling missing data in clinical trials: An overview. Drug Information Journal 34:525–533. 
DOI: https://doi.org/10.1177/009286150003400221

Pedersen AB, Mikkelsen EM, Cronin-Fenton D, Kristensen NR, Pham TM, Pedersen L, Petersen I. 2017. Missing 
data and multiple imputation in clinical epidemiological research. Clinical Epidemiology 9:157–166. DOI: 
https://doi.org/10.2147/CLEP.S129785, PMID: 28352203

Qin J, Chen L, Liu Y, Liu C, Feng C, Chen B. 2019. A machine learning methodology for diagnosing chronic 
kidney disease. IEEE Access 8:20991–21002. DOI: https://doi.org/10.1109/ACCESS.2019.2963053

https://doi.org/10.7554/eLife.89947
https://mimic.mit.edu/
https://archive.softwareheritage.org/swh:1:dir:5031d4e6c0a99b3b9a81d08c78156f845843a0f8;origin=https://github.com/AstraZeneca/dpp_imp;visit=swh:1:snp:a9428e4d43c15096b5339492546ec926513006c4;anchor=swh:1:rev:baa623a46174c477c9556112340e9fe5db66955b
https://archive.softwareheritage.org/swh:1:dir:5031d4e6c0a99b3b9a81d08c78156f845843a0f8;origin=https://github.com/AstraZeneca/dpp_imp;visit=swh:1:snp:a9428e4d43c15096b5339492546ec926513006c4;anchor=swh:1:rev:baa623a46174c477c9556112340e9fe5db66955b
https://archive.softwareheritage.org/swh:1:dir:5031d4e6c0a99b3b9a81d08c78156f845843a0f8;origin=https://github.com/AstraZeneca/dpp_imp;visit=swh:1:snp:a9428e4d43c15096b5339492546ec926513006c4;anchor=swh:1:rev:baa623a46174c477c9556112340e9fe5db66955b
https://doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
https://doi.org/10.1038/s41379-020-00700-x
http://www.ncbi.nlm.nih.gov/pubmed/33067522
https://doi.org/10.1038/s43588-022-00311-3
http://www.ncbi.nlm.nih.gov/pubmed/38177473
https://arxiv.org/abs/2209.08167
https://arxiv.org/abs/1802.06749
https://arxiv.org/abs/1802.06749
https://doi.org/10.1090/noti2202
https://doi.org/10.1109/CBMS.2019.00065
https://doi.org/10.1186/s40537-021-00516-9
http://www.ncbi.nlm.nih.gov/pubmed/34722113
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1371/journal.pone.0201904
http://www.ncbi.nlm.nih.gov/pubmed/30080866
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127
https://arxiv.org/abs/2202.00054
https://arxiv.org/abs/2202.00054
https://doi.org/10.1561/2200000044
https://doi.org/10.22331/q-2022-12-22-881
https://doi.org/10.22331/q-2022-12-22-881
https://doi.org/10.1093/bib/bbab489
http://www.ncbi.nlm.nih.gov/pubmed/34882223
https://arxiv.org/abs/1812.02633
https://doi.org/10.1177/009286150003400221
https://doi.org/10.2147/CLEP.S129785
http://www.ncbi.nlm.nih.gov/pubmed/28352203
https://doi.org/10.1109/ACCESS.2019.2963053


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Kazdaghli et al. eLife 2023;12:RP89947. DOI: https://​doi.​org/​10.​7554/​eLife.​89947 � 17 of 17

Rendleman MC, Buatti JM, Braun TA, Smith BJ, Nwakama C, Beichel RR, Brown B, Casavant TL. 2019. Machine 
learning with the TCGA-HNSC dataset: improving usability by addressing inconsistency, sparsity, and high-
dimensionality. BMC Bioinformatics 20:339. DOI: https://doi.org/10.1186/s12859-019-2929-8, PMID: 31208324

Schreurs MFJ, Suykens JAK. 2021. Towards deterministic diverse subset sampling. Artificial Intelligence and 
Machine Learning 137–151. DOI: https://doi.org/10.1007/978-3-030-65154-1

Shadbahr T, Roberts M, Stanczuk J, Gilbey J, Teare P, Dittmer S, Thorpe M. 2022. Classification of Datasets with 
Imputed Missing Values: Does Imputation Quality Matter. arXiv. https://arxiv.org/abs/2206.08478

Stekhoven DJ, Bühlmann P. 2012. MissForest--non-parametric missing value imputation for mixed-type data. 
Bioinformatics 28:112–118. DOI: https://doi.org/10.1093/bioinformatics/btr597, PMID: 22039212

Thakkar S, Mathur N, Kazdaghli S, Kerenidis I, Martins AJF, Brito SGA. 2023. Improved Financial Forecasting via 
Quantum Machine Learning. arXiv. https://arxiv.org/abs/2306.12965

Wang Z, Li L, Glicksberg BS, Israel A, Dudley JT, Ma’ayan A. 2017. Predicting age by mining electronic medical 
records with deep learning characterizes differences between chronological and physiological age. Journal of 
Biomedical Informatics 76:59–68. DOI: https://doi.org/10.1016/j.jbi.2017.11.003, PMID: 29113935

Yoon J, Jordon J. 2018. GAIN: missing data imputation using generative adversarial nets. Proceedings of the 
35th International Conference on Machine Learning. Cited by: Improved clinical data imputation via classical 
and quantum determinantal point processes. .

https://doi.org/10.7554/eLife.89947
https://doi.org/10.1186/s12859-019-2929-8
http://www.ncbi.nlm.nih.gov/pubmed/31208324
https://doi.org/10.1007/978-3-030-65154-1
https://arxiv.org/abs/2206.08478
https://doi.org/10.1093/bioinformatics/btr597
http://www.ncbi.nlm.nih.gov/pubmed/22039212
https://arxiv.org/abs/2306.12965
https://doi.org/10.1016/j.jbi.2017.11.003
http://www.ncbi.nlm.nih.gov/pubmed/29113935

	Improved clinical data imputation via classical and quantum determinantal point processes
	eLife assessment
	Introduction
	Results
	DPP-MICE and detDPP-MICE outperform MICE
	DPP-MissForest and detDPP-MissForest outperform MissForest
	Quantum hardware implementation of DPP-MissForest results in competitive downstream classification

	Discussion
	Methods
	Determinantal point processes (DPPs)
	Stochastic ﻿‍￼‍﻿-DPPs
	Deterministic ﻿‍￼‍﻿-DPPs

	DPP-Random Forest and detDPP-Random Forest
	Quantum methods for DPPs
	Quantum versions of the imputation methods

	Availability of data and code

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References


