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Abstract Color is an important visual feature that informs behavior, and the retinal basis for 
color vision has been studied across various vertebrate species. While many studies have inves-
tigated how color information is processed in visual brain areas of primate species, we have 
limited understanding of how it is organized beyond the retina in other species, including most 
dichromatic mammals. In this study, we systematically characterized how color is represented in 
the primary visual cortex (V1) of mice. Using large- scale neuronal recordings and a luminance and 
color noise stimulus, we found that more than a third of neurons in mouse V1 are color- opponent 
in their receptive field center, while the receptive field surround predominantly captures lumi-
nance contrast. Furthermore, we found that color- opponency is especially pronounced in poste-
rior V1 that encodes the sky, matching the statistics of natural scenes experienced by mice. 
Using unsupervised clustering, we demonstrate that the asymmetry in color representations 
across cortex can be explained by an uneven distribution of green- On/UV- Off color- opponent 
response types that are represented in the upper visual field. Finally, a simple model with natural 
scene- inspired parametric stimuli shows that green- On/UV- Off color- opponent response types 
may enhance the detection of ‘predatory’-like dark UV- objects in noisy daylight scenes. The 
results from this study highlight the relevance of color processing in the mouse visual system 
and contribute to our understanding of how color information is organized in the visual hierarchy 
across species.

eLife assessment
Franke et al. explore and characterize color response properties of neurons in mouse primary visual 
cortex (V1), revealing specific color opponent encoding strategies across the visual field. The paper 
provides evidence for the existence of color opponency in a subset of neurons within V1 and shows 
that these color opponent neurons are more numerous in the upper visual field. Support for the 
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main conclusions is convincing and the dataset that forms the basis of the paper is impressive. The 
paper will make an important contribution to understanding how color is coded in mouse V1.

Introduction
Color is an important property of the visual world informing behavior. The retinal basis for color vision 
has been studied in many vertebrate species, including zebrafish, mice, and primates (reviewed in 
Baden and Osorio, 2019): Signals from different photoreceptor types which are sensitive to different 
wavelengths are compared by retinal circuits, thereby creating color- opponent cell types. In primate 
species, it is well studied how color- opponent signals from the retina are processed in downstream 
brain areas (Livingstone and Hubel, 1984; Wiesel and Hubel, 1966; Gegenfurtner et al., 1996; 
Tanigawa et al., 2010; Chatterjee and Callaway, 2003). In most other species, however, we know 
relatively little about how color information is processed beyond the retina. Thus, our understanding 
of color processing along the visual hierarchy across species remains limited, highlighting the need for 
further research to uncover general rules governing this fundamental aspect of vision.

Here, we systematically studied how color is represented in the primary visual cortex (V1) of mice. 
Like most mammals, mice are dichromatic and have two cone photoreceptor types, expressing ultra-
violet (UV)- and green- sensitive S- and M- opsin (Szél et  al., 1992), respectively. In addition, they 
have one type of rod photoreceptor which is green- sensitive. Importantly, UV- and green- sensitive 
cone photoreceptors predominantly sample the upper and lower visual field, respectively, through 
an uneven opsin distribution across the retina (Szél et  al., 1992; Baden et  al., 2013). Behavioral 
studies have demonstrated that mice can discriminate different colors (Jacobs et al., 2004), at least 
in the upper visual field (Denman et al., 2018). However, a thorough understanding of the neuronal 
correlates underlying this behavior is still missing.

At the level of the mouse retina, a large body of literature has identified mechanisms underlying 
color- opponent responses, including cone- type selective (Stabio et al., 2018; Nadal- Nicolás et al., 
2020; Haverkamp et al., 2005) or cone- type unselective wiring (Chang et al., 2013) and rod- cone 
opponency (Joesch and Meister, 2016; Szatko et al., 2020; Khani and Gollisch, 2021). The latter is 
widespread across many neuron types located in the ventral retina sampling the sky, where rod and 
cone photoreceptors exhibit the strongest difference in spectral sensitivity, and requires the integra-
tion across center and surround components of receptive fields (RFs). In visual areas downstream to 
the retina, the frequency of color- opponency has remained controversial. Some studies have reported 
very low numbers of color- opponent neurons in mouse dLGN (Denman et al., 2017) and V1 (Tan 
et al., 2015), while two more recent studies identified pronounced cone- and rod- cone- dependent 
color- opponency (Mouland et al., 2021; Rhim and Nauhaus, 2023).

In this study, we systematically characterized color and luminance center- surround RF properties of 
mouse V1 neurons across different light levels using large- scale neuronal recordings and a luminance 
and color noise stimulus. This revealed that more than a third of neurons in mouse V1 are highly 
sensitive to color features of the visual input in their RF center, while the RF surround predominantly 
captures luminance contrast. Color- opponency in the RF center was strongest for photopic light levels 
largely activating cone photoreceptors and greatly decreased for mesopic light levels, suggesting 
that the observed color- opponency in V1 is at least partially mediated by the comparison of cone 
photoreceptor signals. We further showed that color- opponency is especially pronounced in posterior 
V1 which encodes the sky, in line with previous work in the retina (Szatko et al., 2020), and matching 
the statistics of mouse natural scenes (Qiu et al., 2021; Abballe and Asari, 2022). Using unsuper-
vised clustering we demonstrated that the asymmetry in color representations across cortex can be 
explained by an uneven distribution of green- On/UV- Off color- opponent response types that almost 
exclusively represented the upper visual field. Finally, by implementing a simple model with natural 
scene inspired parametric stimuli, we showed that green- On/UV- Off color- opponent response types 
may enhance the detection of ‘predatory’-like dark UV- objects in noisy daylight scenes.

The results of our study support the hypothesis that neurons in the visual cortex asymmetrically 
represent information across the visual field, facilitating specific visual tasks such as the robust detec-
tion of aerial predators in noisy natural scenes.

https://doi.org/10.7554/eLife.89996
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Results
Characterizing color and luminance center-surround RFs of mouse V1 
neurons
To study the neuronal representation of color in mouse V1, we characterized center (i.e. classical) 
and surround (i.e. extra- classical) RFs of excitatory V1 neurons in awake, head- fixed mice in response 
to a luminance and color noise stimulus (Figure 1a). The noise stimulus consisted of a center spot 
(37.5 degrees visual angle in diameter) and a surround annulus (approx. 120×90 degrees visual angle 
without the center spot) that simultaneously flickered in UV and green based on 5 Hz binary random 
sequences (Figure 1b), thereby capturing chromatic, temporal, as well as one spatial dimension of the 
neurons’ RFs. Neuronal responses to such relatively simple, parametric stimuli are easy to interpret 
and allow to systematically quantify chromatic RF properties of visual neurons in the mouse (Szatko 
et al., 2020) and zebrafish retina (Zimmermann et al., 2018), as well as in primate V1 (Chatterjee 
and Callaway, 2003). We presented visual stimuli to awake, head- fixed mice positioned on a tread-
mill while at the same time recording the population calcium activity within L2/3 of V1 using two- 
photon imaging (700×700 µm2 recordings at 15 Hz). Visual stimulation was performed in the photopic 
light regime that predominantly activates cone photoreceptors. We back- projected visual stimuli on 
a Teflon screen using a custom projector with UV and green LEDs that allow differential activation 
of mouse cone photoreceptors (Franke et  al., 2019; Franke et  al., 2022). Functional recordings 
were obtained from posterior and anterior V1 (Figure 1c), encoding the upper and lower visual field 
(Schuett et al., 2002), respectively.

Figure 1. Color noise stimulus identifies center- surround receptive field properties of mouse primary visual cortex (V1) neurons. (a) Schematic illustrating 
experimental setup: Awake, head- fixed mice on a treadmill were presented with a center- surround color noise stimulus while recording the population 
calcium activity in L2/3 neurons of V1 using two- photon imaging. Stimuli were back- projected on a Teflon screen by a DLP- based projector equipped 
with a ultraviolet (UV) (390 nm) and green (460 nm) LED, allowing to differentially activate mouse cone photoreceptors. (b) Schematic drawing illustrating 
stimulus paradigm: UV and green center spot (UVC /GreenC) and surround annulus (UVS /GreenS) flickered independently at 5 Hz according to binary 
random sequences. Top images depict example stimulus frames. See also Figure 1—figure supplement 1. (c) Left side shows a schematic of V1 with 
a posterior and anterior recording field, and the recorded neurons of the posterior field overlaid on top of the mean projection of the recording. Right 
side shows the activity of n=150 neurons of this recording in response to the stimulus sequence shown in (b). (d) Event- triggered averages (ETAs) of six 
example neurons, shown for the four stimulus conditions. Gray: Original ETA. Black: Reconstruction using principal component analysis (PCA). See also 
Figure 1—figure supplement 2. Cells are grouped based on their ETA properties and include luminance- sensitive, color selective, and color- opponent 
neurons. Black dotted lines indicate time of response.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Verification of stimulus paradigm.

Figure supplement 2. Event- triggered averages (ETAs) and quality control.

Figure supplement 3. Reconstruction of event- triggered averages (ETAs) using sparse principal component analysis (PCA).

https://doi.org/10.7554/eLife.89996
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To record from many V1 neurons simultaneously, we used a center stimulus size of 37.5 degrees 
visual angle in diameter, which is slightly larger than the center RFs we estimated for single V1 neurons 
(26.2±4.6 degrees visual angle in diameter) using a sparse noise paradigm (Jones and Palmer, 1987). 
The disadvantage of this approach is that the stimulus is only roughly centered on the neurons’ center 
RFs. To reduce the impact of potential stimulus misalignment on our results, we used the following 
steps and controls. First, for each recording, we positioned the monitor such that the population RF 
across all neurons, estimated using a short sparse noise stimulus, lies within the center of the stim-
ulus field of view. Second, we confirmed that this procedure results in good stimulus alignment at 
the level of individual neurons by using a longer sparse noise stimulus for a subset of experiments 
(Figure 1—figure supplement 1a, b). Specifically, we found that for the majority of tested neurons 
(83%), more than two- thirds of their center RF overlapped with the center spot of the color noise 
stimulus (Figure 1—figure supplement 1b). Finally, we excluded neurons from analysis, which did not 
show significant center responses (n=1937 neurons excluded from n=5248; Figure 1—figure supple-
ment 2d, e), which may be caused by misalignment of the stimulus. Together, this suggests that the 
center spot and the surround annulus of the noise stimulus predominantly drive center (i.e. classical 
RF) and surround (i.e. extra- classical RF), respectively, of the recorded V1 neurons.

For analysis of the neurons’ stimulus preference, we first deconvolved the calcium traces (Figure 1—
figure supplement 2a) to account for the slow kinetics of the calcium sensor (e.g. Pachitariu et al., 
2018) and then used the deconvolved noise responses of each neuron to estimate an ‘event- triggered 
average’ (ETAs) for the four stimulus conditions - center (C) and surround (S) for both UV and green 
(GreenC, UVC, GreenS, UVC). Specifically, deconvolved neuronal responses were reverse- correlated 
with the stimulus trace and the raw ETAs were then transformed into a lower dimensional represen-
tation using principal component analysis (PCA; Figure  1d and Figure  1—figure supplement 3). 
In other words, the ETA was obtained by summing the stimulus sequences that elicit an event (i.e. 
response), weighted by the amplitude of the response. Consequently, the absolute amplitude of the 
ETA correlated with the calcium amplitude and the ETA amplitudes of different stimulus conditions 
were comparable. Note that the deconvolution of raw calcium responses changes the kinetics of the 
ETAs, but not the neurons’ stimulus selectivity (Figure 1—figure supplement 2b, c).

Using this approach, we obtained ETAs of n=3331 excitatory V1 neurons (n=6 recording fields, 
n=3 mice) with diverse center- surround stimulus preferences (Figure 1d, Figure 1—figure supple-
ment 1c). This included neurons sensitive to luminance contrast that did not discriminate between 
stimulus color (cells 1 and 2 in Figure 1d) and color selective cells only responding to one color of 
the stimulus (cells 3 and 4). In addition, some neurons exhibited color- opponency in the center (cells 
5 and 6) or surround, meaning that a neuron prefers a stimulus of opposite polarity in the UV and 
green channel (e.g. UV- On and green- Off). To validate our experimental approach, we confirmed that 
the noise stimulus recovers well- described RF properties of mouse V1 neurons. First, the majority of 
neurons showed negatively correlated center and surround ETAs for both the UV and green chan-
nels (Figure  1—figure supplement 1d), meaning that a neuron preferring an increment of light 
in the center (‘On’) favors a light decrement in the surround (‘Off’) and vice versa. This finding is 
consistent with On- Off center- surround antagonism of neurons in early visual areas, and has been 
described in both the mouse retina (e.g. Franke et al., 2017) and mouse thalamus (e.g. Grubb and 
Thompson, 2003). Second, neurons recorded in posterior and anterior V1 preferred UV and green 
stimuli (Figure 1—figure supplement 1e, f), respectively, in line with the distribution of cone opsins 
across the retina (Szél et al., 1992; Baden et al., 2013) and previous cortical work (Rhim et al., 2017; 
Franke et al., 2022; Aihara et al., 2017). This asymmetry in color preference was less pronounced 
for the surround (Figure 1—figure supplement 1e, f), as has been reported for retinal neurons in 
mice (Szatko et al., 2020). Taken together, these results show that our experimental paradigm using 
a parametric luminance and color noise stimulus accurately captures known center- surround RF prop-
erties of cortical neurons in mice.

Color contrast is represented by the RF center in a large number of 
mouse V1 neurons
To systematically study how color is represented by the population of mouse V1 neurons, we mapped 
each cell’s center and surround ETA into a two- dimensional space depicting neuronal sensitivity for 
luminance and color contrast (Figure 2a). For each neuron, we extracted ETA peak amplitudes relative 

https://doi.org/10.7554/eLife.89996
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to baseline for all four stimulus conditions, with positive and negative peak amplitudes for On and Off 
stimulus preference, respectively. In this space, neurons sensitive to luminance contrast responding 
with the same polarity (i.e. On versus Off) to either color of the stimulus fall along the diagonal (cell 
1 in Figure 2a) and color- opponent neurons scatter along the off- diagonal (cell 2). In addition, the 
neuronal selectivity for UV and green stimuli is indicated by the relative distance to the x- and y- axis 
(cell 3), respectively. We found that most V1 neurons were sensitive to luminance contrast and fell in 
the upper right or lower left quadrant along the diagonal, both for the center and surround compo-
nent of V1 RFs (Figure 2b). Nevertheless, a substantial fraction of neurons (33.1%) preferred color- 
opponent stimuli and scattered along the off- diagonal in the upper left and lower right quadrants, 
especially for the RF center. We quantified the fraction of variance explained by the luminance versus 
the color axis across the neuronal population by performing PCA on the center and surround contrast 
space, respectively (Qiu et al., 2021). The luminance axis captured the major part of the variance of 
stimulus sensitivity for the RF surround (82%), while it explained less of the variance for the RF center 

Figure 2. Strong neuronal representation of color in mouse primary visual cortex. (a) Top left panel shows schematic drawing illustrating the green and 
ultraviolet (UV) contrast space used in the other panels and Figures 3–5. Amplitudes below and above zero indicates an Off and On cell, respectively. 
Achromatic On and Off cells will scatter in the lower left and upper right quadrants along the diagonal (‘luminance contrast‘), while color- opponent cells 
will fall within the upper left and lower right quadrants along the off- diagonal (‘color contrast‘). Blue and green shading indicates stronger responses 
to UV and green stimuli, respectively. The three other panels show event- triggered averages (ETAs) of three example neurons (top) with the peak 
amplitudes (‘contrast‘) of their center (dot) and surround responses (triangle) indicated in the bottom. (b) Density plot of peak amplitudes of center (top) 
and surround (bottom) ETAs across all neurons (n=3331 cells, n=6 recording fields, n=3 mice). Red lines correspond to axes of principal components 
(PCs) obtained from a principal component analysis (PCA) on the center or surround data, with percentage of variance explained along the polarity 
and color axis indicated. For reproducibility across animals, see Figure 2—figure supplement 1. The percentages of variance explained by color (off- 
diagonal) and luminance axis (diagonal) correlate with the number of neurons located in the color (top left and bottom right) and luminance contrast 
quadrants (top right and bottom left), respectively. Scale bars indicate the number of neurons in the 2D histogram. (c) Decoding discriminability of 
stimulus luminance (top) and stimulus color (bottom) based on center (black) and surround (gray) responses of different numbers of neurons. Decoding 
was performed using a support vector machine (SVM). Lines indicate the mean of 10- fold cross- validation (shown as dots). For luminance contrast, 
decoding discriminability was significantly different between center and surround for n=50 and n=100 neurons (t- test for unpaired data, p- value was 
adjusted for multiple comparisons using Bonferroni correction). For color contrast, decoding discriminability was significantly different between center 
and surround for all numbers of neurons tested, except n=1 neuron. Dotted horizontal lines indicate decoding accuracy in % for 60%, 80%, 90%, and 
99%, with a change level of 50% corresponding to 0 bits.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Consistency across mice.

Figure supplement 2. Neuronal representation of color in the mouse retina.

https://doi.org/10.7554/eLife.89996
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(67%). As a result, one- third (33%) of the variance within the tested stimulus sensitivity space of the 
RF center was explained by the color axis. Please note that the percentages of variance explained 
by color and luminance axis correlate with the number of neurons located in the color (top left and 
bottom right) and luminance contrast quadrants (top right and bottom left), respectively. Our results 
were consistent for a more conservative quality threshold, which only considered the best 25% of 
neurons (Figure 1—figure supplement 2e, f). In addition, the above results obtained by pooling data 
across animals were consistent within all three mice tested (Figure 2—figure supplement 1a). There-
fore, all the following analyses were based on data pooled across animals.

We confirmed and quantified the pronounced color- opponency in mouse V1 we observed based 
on the neurons’ preferred stimuli (i.e. ETAs) using an independent decoding analysis. For that, we 
trained a nonlinear support vector machine (SVM) to decode stimulus luminance (On versus Off) or 
color (UV versus green) based on the recorded and deconvolved neuronal activity. Decoding was 
performed using 10- fold cross- validation and decoding accuracy (in %) was transformed into mutual 
information (in bits). The discriminability of luminance contrast rapidly increased with the number of 
neurons used by the SVM decoder, and saturated close to perfect discriminability (>0.92 bits, i.e. 
>99% accuracy) when including more than 1000 neurons (Figure 2c). Interestingly, decoding perfor-
mance was similar for center and surround stimuli, indicating that V1 responses are as informative 
about luminance contrast in the center as in the surround. We next trained a decoder to discriminate 
stimulus color. The decoding performance was lower for stimulus color compared to stimulus lumi-
nance (Figure 2c), consistent with the finding described above that V1 neurons are more sensitive to 
luminance than color contrast. In addition, discriminability of stimulus color was significantly better for 
stimuli presented in the RF center compared to stimuli shown in the RF surround, thereby verifying 
our ETA results. Together, our results demonstrate that for photopic light levels, neurons in mouse 
visual cortex strongly encode color features of the visual input in their RF center, while the RF surround 
predominantly captures luminance contrast.

Next, we tested to what extent the strong representation of color by the center component of 
V1 RFs was inherited by color- opponency present in the center RF of retinal output neurons (Szatko 
et al., 2020; Khani and Gollisch, 2021). We tested this by using a publicly available dataset of retinal 
ganglion cell responses to a center and surround color flicker stimulus (Szatko et al., 2020), similar 
to the one used here, but with center and surround stimulus sizes adjusted to the smaller RF sizes 
of retinal neurons. We embedded each cell’s center and surround ETA into the luminance and color 
contrast space described above (Figure 2—figure supplement 2). We found that at the level of the 
retinal output, the color axis explained only 12% of the variance in the tested sensitivity space for the 
RF center (10 degrees visual angle), which is much lower than what we observed for V1 center RFs 
(37.5 degrees visual angle). The low fraction of center color- opponent retinal ganglion cells is in line 
with a recent study that characterized RF properties of these neurons using natural movies recorded in 
the mouse’s natural environment (Hoefling et al., 2022). Collectively, these findings suggest that the 
pronounced center color- opponency in V1 neurons cannot be solely attributed to the color- opponency 
present in the RF center of retinal ganglion cells. It likely depends on the activation of both the center 
and surround of retinal neurons, as well as a potential remapping of retinal center and surround RFs 
in downstream processing stages.

The neuronal representation of color in mouse V1 decreases with lower 
ambient light levels
Previous studies have reported varying numbers of color- opponent neurons in mouse visual areas, 
ranging from very few in mouse dLGN (Denman et al., 2017) and V1 (Tan et al., 2015) to a large 
number in the thalamus (Mouland et al., 2021), visual cortex (Rhim and Nauhaus, 2023), and the 
retina (Szatko et al., 2020). In part, this discrepancy regarding the role of color for visual processing 
in mice is likely due to the fact that different studies have used different light levels, resulting in 
varying activations of rod and cone photoreceptors that are both involved in chromatic processing. 
To systematically study how ambient light levels affect the neuronal representation of color in mouse 
visual cortex, we repeated our experiments with the noise stimulus performed in photopic conditions 
(approx. 15,000 photoisomerizations (P*) per cone and second) in high (approx. 400 P* per cone and 
second) and low mesopic light conditions (approx. 50 P* per cone and second). The high mesopic 
light condition is expected to equally activate rod and cone photoreceptors, while the low mesopic 

https://doi.org/10.7554/eLife.89996
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condition largely drives rod photoreceptors, with only a small cone contribution. Indeed, decreasing 
ambient light levels resulted in a reduction of UV sensitivity in posterior V1 neurons (Figure 3a), indic-
ative for a gradual activation shift from UV- sensitive cones to rods, which are green sensitive. The 
neuronal representation of color greatly decreased when reducing ambient light levels: Both the frac-
tion of ETA variance explained by the color axis (Figure  3b) and the decoding discriminability of 
stimulus color dropped significantly (Figure 3d). The drop in decoding discriminability was not due 
to lower signal- to- noise levels for the mesopic light levels, as the decoding of stimulus luminance was 
not significantly higher for the photopic condition compared to the mesopic conditions (Figure 3c). 
Across all light levels tested, the RF surround of V1 neurons was less informative about stimulus color, 
resulting in 40–60% lower discriminability in the surround compared to the center (Figure 3d). Inter-
estingly, even for the lowest light level, where only a small fraction of ETA variance was explained by 
stimulus color (Figure 3b), V1 neurons reliably encoded color information (Figure 3d). This suggests 
that weak cone activation in low mesopic light levels is sufficient to extract color features from the 
visual input. In summary, our results demonstrate that the neuronal representation of color in mouse 

Figure 3. Reduced representation of color contrast in mouse primary visual cortex (V1) for lower ambient light levels. (a) Distribution of spectral contrast 
of center event- triggered averages (ETAs) of all neurons recorded in posterior V1, for photopic (top, n=1616 cells, n=3 recording fields, n=3 mice), high 
mesopic (middle, n=1485 cells, n=3 recording fields, n=3 mice), and low mesopic (bottom, n=1295 cells, n=3 recording fields, n=3 mice) ambient light 
levels. Black dotted lines indicate mean of distribution. Spectral contrast significantly differed across all combinations of light levels (t- test for unpaired 
data, p- value was adjusted for multiple comparisons using Bonferroni correction). The triangle on the right indicates ultraviolet (UV) sensitivity of the 
neurons, which is decreasing with lower ambient light levels. (b) Density plot of peak amplitudes of center (left) and surround (right) ETAs. Red lines 
correspond to axes of principal components (PCs) obtained from a principal component analysis (PCA) on the center or surround data, with percentage 
of variance explained along the polarity and color axis indicated. Top row shows high mesopic (n=3522 cells, n=6 recording fields, n=3 mice) and 
bottom row low mesopic (n=2705 cells, n=6 recording fields, n=3 mice) light levels. The percentages of variance explained by color (off- diagonal) and 
luminance axis (diagonal) correlate with the number of neurons located in the color (top left and bottom right) and luminance contrast quadrants (top 
right and bottom left), respectively. Scale bars indicate the number of neurons in the 2D histogram. (c) Discriminability (in bits) of luminance contrast (On 
versus Off) for the center across the three light levels tested, obtained from training support vector machine (SVM) decoders based on recorded noise 
responses of V1 neurons. Right plot shows the discriminability of luminance contrast for n=500 neurons for center and surround. Dots show decoding 
performance of 10 train/test trial splits. For n=500 neurons, decoding discriminability of the center was not significantly different across light levels (t- test 
for unpaired data, p- value was adjusted for multiple comparisons using Bonferroni correction). The surround discriminability was significantly lower 
than the center for the photopic condition. Dotted horizontal lines indicate decoding accuracy in % for 60%, 80%, 90%, and 99%, with a change level 
of 50% corresponding to 0 bits. (d) Like (c), but showing discriminability of color contrast (green versus UV). Decoding discriminability was significantly 
different between center and surround for all three light levels. In addition, discriminability for the center was significantly different between photopic 
and mesopic conditions, but not between the two mesopic conditions (t- test for unpaired data, p- value was adjusted for multiple comparisons using 
Bonferroni correction). Dotted horizontal lines indicate decoding accuracy in % for 60%, 80%, 90%, and 99%, with a change level of 50% corresponding 
to 0 bits.

https://doi.org/10.7554/eLife.89996
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visual cortex greatly depends on ambient light levels, and is strongest for photopic light levels that 
predominantly drive cone photoreceptors.

Cortical representation of color changes across the visual field
Chromatic and achromatic features present in natural scenes systematically vary across the visual 
field, with notable differences between regions below and above the horizon (Nilsson et al., 2022; 
Qiu et al., 2021). Recently, it has been demonstrated that color contrast in scenes from the mouse’s 
natural environment is enriched in the upper visual field (Figure 4a; Qiu et al., 2021; Abballe and 
Asari, 2022). To encode the sensory input efficiently, these scene statistics should ideally be reflected 
in the neuronal representations, as has been observed at the level of the mouse retina (Szatko et al., 
2020; Khani and Gollisch, 2021). To study how the representation of color changes across the visual 
field in mouse V1, we separately analyzed the neurons recorded in posterior and anterior V1, which 
encode visual information from the upper and lower visual field, respectively. We focused this analysis 
on the RF center because V1 surround RFs were on average predominantly explained by luminance 
contrast (Figure 2). We found that the color axis explained twice as much ETA variance in posterior 
compared to anterior V1 (Figure 4b): It captured 39% of the variance in the upper visual field and only 
19% of the variance in the lower visual field. This finding was consistent across animals (Figure 2—
figure supplement 1b). In line with this, the discriminability of stimulus color was significantly higher 
when using the responses of posterior V1 neurons for decoding (Figure 4c). Together, this revealed a 
stronger cortical representation of color in posterior than anterior mouse visual cortex, which might 
be an adaptation to efficiently encode the enriched color contrast in the upper visual field of mouse 
natural scenes (Qiu et al., 2021).

Figure 4. Cortical representation of color changes across visual space. (a) Natural scene captured in the natural environment of mice using a custom- 
built camera adjusted to the mouse’s spectral sensitivity (Qiu et al., 2021). Dashed line indicates the horizon and separates the scene into lower and 
upper visual field. Previous studies Qiu et al., 2021; Abballe and Asari, 2022 have reported higher color contrast in the upper compared to the 
lower visual field. (b) Density plot of peak amplitudes of center event- triggered averages (ETAs) across neurons recorded in posterior (top) and anterior 
primary visual cortex (V1) (bottom). Red lines correspond to axes of principal components (PCs) obtained from a principal component analysis (PCA), 
with percentage of variance explained along the polarity and color axis indicated. For reproducibility across animals, see Figure 2—figure supplement 
1. The percentages of variance explained by color (off- diagonal) and luminance axis (diagonal) correlate with the number of neurons located in the color 
(top left and bottom right) and luminance contrast quadrants (top right and bottom left), respectively. Scale bars indicate the number of neurons in the 
2D histogram. (c) Discriminability (in bits) of color contrast (ultraviolet [UV] or green) for neurons recorded in posterior (blue) and anterior V1 (green), 
obtained from training support vector machine (SVM) decoders based on recorded noise responses of V1 neurons. The decoding discriminability was 
significantly different between anterior and posterior neurons (t- test for unpaired data, p- value was adjusted for multiple comparisons using Bonferroni 
correction). Dotted horizontal lines indicate decoding accuracy in % for 60%, 80%, 90%, and 99%, with a change level of 50% corresponding to 0 bits.
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Asymmetric distribution of color response types explains higher color 
sensitivity in posterior V1
Next, we investigated the mechanism underlying this asymmetry in color encoding across mouse 
visual cortex. In the mouse retina, different retinal ganglion cell types are differentially distributed 
across the retina and, therefore, asymmetrically sample the visual space (reviewed in Baden et al., 
2020). For example, W3 cells that have been linked to aerial predator detection exhibit the highest 
density in the ventral retina looking at the sky (Zhang et al., 2012). Similarly, we hypothesized that 
the difference in decoding performance of stimulus color in posterior and anterior V1 might be due 
to an asymmetric distribution of functional neuron types sensitive to color versus luminance contrast. 
To test this, we clustered the ETAs of all neurons into ‘functional response types’ and quantified the 
distribution of the identified response types across cortical position. Specifically, we used the features 
extracted from the ETAs by PCA (Figure 1—figure supplement 3) and clustered the feature weights 
into 17 response types using a Gaussian mixture model (GMM; Figure  5a and Figure  5—figure 
supplement 1). We used 17 components for the GMM because this resulted in the best model on 
held- out test data (Figure 5—figure supplement 1a), although the performance was relatively flat for 
a wide range of components. The mean assignment accuracy of generated ground- truth labels was 
89.2% (±6%) and all response types were present in all mice (Figure 5—figure supplement 1b, c), 
indicating that the response types are well separated and robust. The response types greatly differed 
with respect to functional properties, such as color- opponency, response polarity, and surround antag-
onism (Figure 5a), and, therefore, covered distinct sub- spaces of the color and luminance sensitivity 
space (Figure 5—figure supplement 1d). Approximately half of the response types were sensitive 
to luminance contrast (types 1–8) and exhibited different response polarities and surround strengths. 
The other half consisted of types with a strong selectivity for UV or green center stimuli (types 9–13) 
and color- opponency in the center (types 14–17).

We next investigated the distribution of individual response types across anterior and posterior 
V1 by computing a cortical distribution index (Figure 5b). This index was –1 and 1 if all cells of one 
response type were located in posterior and anterior V1, respectively, and 0 if the respective response 
type was evenly distributed across cortex. We found that approximately half of the response types 
were equally distributed in mouse V1 (distribution index from –0.3 to 0.3), including mostly response 
types sensitive to luminance contrast. Interestingly, response types with green- Off/UV- On color- 
opponency were also uniformly spread across the anterior- posterior axis of mouse V1, suggesting 
that a neuronal substrate supporting color vision exists in both the upper and lower visual field. 
Response types enriched in anterior V1 (distribution index >0.3) fell along the luminance contrast 
axis but showed a preference for green center stimuli, consistent with the higher green sensitivity of 
cone photoreceptors sampling the ground (Baden et al., 2013). Similarly, as expected from the high 
density of UV- sensitive cone photoreceptors in the ventral retina (Baden et al., 2013), one response 
type strongly enriched in the posterior cortex (distribution index <0.3) preferred UV in the RF center. 
To our surprise, response types with a green- On/UV- Off color- opponency were almost exclusively 
confined to posterior V1. As a result of this, the color axis explained 73% of ETA variance for the 
response types enriched in posterior cortex, while it explained only 17% for the anterior- enriched 
response types. We confirmed the higher sensitivity for color versus luminance contrast of posterior 
response types by showing that their decoding discriminability of color was significantly better than 
that for anterior response types (Figure 5d). Together, these results demonstrate that the asymmetry 
in neuronal color tuning across cortical position we report in mice can be explained by an uneven 
distribution of color- opponent response types.

We next speculated about the computational role of the green- On/UV- Off color- opponent response 
types largely present in posterior V1. As most predators are expected to approach the mouse from 
above, color- opponency in the upper visual field could well support threat detection. Especially for 
visual scenes with inhomogeneous illumination (e.g. in the forest), which result in large intensity fluc-
tuations at the photoreceptor array, color- opponent RF structures may result in a more reliable signal 
(discussed in Maximov, 2000; Kelber et al., 2003). To test this prediction, we used parametric stimuli 
inspired by noisy natural scenes, containing only noise, or a dark ellipse of varying size, angle, and 
position on top of noise (Figure 5e). The dark object had a higher contrast in the UV than green 
channel, as it has been shown that objects in the sky (Qiu et al., 2021), underwater (Cronin and Bok, 
2016; Losey et al., 1999), or in the snow (Tyler et al., 2014) are often more visible in the UV than 
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Figure 5. Asymmetric distribution of color response types explains higher color sensitivity in posterior primary visual cortex (V1). (a) Clustering result 
of the Gaussian mixture model with n=17 clusters (see Figure 5—figure supplement 1 for details). Model input corresponded to the weights of 
the principal components used for reconstructing event- triggered averages (ETAs). Left panel shows ETAs of all cells, respectively, sorted by cluster 
assignment. Right panel shows mean ETA of each cluster (s.d. shading in gray). Clusters are sorted based on broad response categories, which are 
indicated on the right. (b) Left shows distribution of cells assigned to three different clusters (color) in a posterior and anterior recording field of 
one example animal. Gray dots show cells assigned to other clusters. Distribution index for each cluster is indicated below. Right shows the mean 
distribution index per cluster, with different marker shapes indicating the indices for individual animals. Zero indicates an even distribution across 
anterior and posterior V1 and values above and below zero indicate that cells are enriched in anterior and posterior V1, respectively. Dotted horizontal 
lines at –0.33/0.33 indicate twice as many cells in posterior than anterior cortex and vice versa. (c) Histograms of peak amplitudes of center ETAs for 
clusters that are evenly distributed across V1 (left, distribution index >–0.33 and <0.33), enriched in anterior V1 (middle, distribution index) and enriched 
in posterior V1 (right). Cluster means and s.d. are indicated in color. Dotted lines correspond to axes of PCs obtained from a principal component 
analysis (PCA), with percentage of variance explained along the luminance and color axis indicated. The percentages of variance explained by color 
(off- diagonal) and luminance axis (diagonal) correlate with the number of neurons located in the color (top left and bottom right) and luminance contrast 
quadrants (top right and bottom left), respectively. Scale bars indicate the number of neurons in the 2D histogram. (d) Discriminability (in bits) of 
stimulus color contrast based on response types enriched in anterior (black) and posterior (gray) V1. Dots show decoding performance across 10 train/
test trial splits. Decoding discriminability was significantly different between anterior- and posterior- enriched types for all numbers of neurons tested 
(t- test for unpaired data, p- value was adjusted for multiple comparisons using Bonferroni correction). Dotted horizontal lines indicate decoding accuracy 
in % for 60%, 80%, and 90%, with a change level of 50% corresponding to 0 bits. (e) Noise images with or without a ‘predator‘-like dark object in the 
UV channel were convolved with simulated center receptive fields (RFs), depicting the mean amplitudes of the green and UV center ETA per response 
type (shown for types 4 and 14). The resulting activity maps were summed and thresholded to simulate responses to n=1000 noise and object scenes. (f) 
Discriminability (in bits) of the presence of a ‘predator’-like dark object in the UV channel per response type. Error bars show s.d. across 10 train/test trial 
splits.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Unsupervised clustering of spike- triggered averages.
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the green wavelength range. For each response type, we first simulated responses to these scenes 
based on the type’s luminance and color contrast sensitivity of the RF center using a simple linear- 
nonlinear model (Figure 5e). We found that all UV- Off types responded to the predator- like object, 
but the green- On/UV- Off response types did so more selectively, without also responding to the noise 
scenes. This selectivity arises because driving color- opponent neurons requires the mean intensity of 
the UV and green channels within the RF to have opposite polarity, a condition less likely to occur in 
noisy scenes compared to when the mean intensity is lower than the background. We then used the 
simulated responses to train an SVM decoder to discriminate between object and noise- only scenes. 
While all Off- center response types sensitive to luminance contrast could decode the dark object, the 
two best performing types corresponded to the green- On/UV- Off response types enriched in poste-
rior V1 (Figure 5f). Interestingly, the reason for their good performance was the absence of responses 
to the noise scenes, rather than strong responses to the object scenes per se (Figure 5e). Our results 
suggest that functional neuron types in mouse V1 with distinct color properties unevenly sample 
different parts of the visual scene, and might thereby serve a distinct role in driving visually guided 
behavior like predator detection.

Discussion
Here, we found that a large fraction of neurons in mouse visual cortex encode color features of the 
visual input in their RF center. Color- opponency was strongest for photopic light levels and especially 
pronounced in posterior V1 encoding the sky. This asymmetry in color processing across visual space 
was due to an inhomogeneous distribution of color- opponent response types, with green- On/UV- Off 
response types predominantly being present in posterior V1. Using a simple model and natural scene 
inspired parametric stimuli, we showed that this type of color- opponency may enhance the detection 
of aerial predators in noisy daylight scenes.

Neuronal correlates of color vision in mice
In most species, color vision is mediated by comparing signals from different cone photoreceptor 
types sensitive to different wavelengths (reviewed in Baden and Osorio, 2019). This includes circuits 
with cone- type selective wiring present in many vertebrate species and circuits with random and cone 
type- unselective wiring like red- green opponency in primates. Recently, it has been demonstrated 
that there is extensive rod- cone opponency in mice, comparing signals from UV- sensitive cones in the 
ventral retina to rod signals (Szatko et al., 2020; Joesch and Meister, 2016; Rhim and Nauhaus, 
2023; Khani and Gollisch, 2021). In the retina, this mechanism relies on integrating information 
from cone signals in the RF center with rod signals in the RF surround (Szatko et al., 2020; Khani 
and Gollisch, 2021; Joesch and Meister, 2016). Interestingly, there is also evidence for rod- cone 
opponency in monochromatic humans (Reitner et al., 1991), suggesting that a neuronal circuit to 
compare rod and cone signals exists in other mammals as well. At this point, it is still unclear to what 
extent behavioral color discrimination in mice (Denman et al., 2018; Jacobs et al., 2004) is driven by 
rod- cone versus cone- cone comparisons.

Here, we found that the neuronal representation of color in mouse visual cortex is most prominent 
for photopic light levels and decreases for mesopic conditions, indicating that color- opponency in 
mouse V1 is at least partially mediated by the comparison of cone signals and not purely by cone- rod 
comparisons. Our result is consistent with a recent study reporting pronounced cone- mediated color- 
opponency in mouse dLGN (Mouland et al., 2021). In our experimental paradigm, dissecting the rela-
tive contribution of rods and M- cones in color- opponency of mouse V1 neurons was not possible, due 
to the highly overlapping wavelength sensitivity profiles of mouse M- opsin and Rhodopsin. However, 
it is very likely that rods contribute to the prominent color- opponent neuronal responses we observed 
in mouse V1. This is especially true for posterior V1 receiving input from the ventral retina where cone- 
cone comparisons are challenging due to the co- expression of S- opsin in M- cones (Szél et al., 1992; 
Baden et al., 2013). The involvement of rods in generating color- opponent responses is supported 
by retinal data (Szatko et al., 2020; Khani and Gollisch, 2021; Joesch and Meister, 2016) and a 
recent study performed in mouse visual cortex showing that color- opponency in posterior V1 is best 
explained by a model that compares S- opsin with Rhodopsin (Rhim and Nauhaus, 2023). Surprisingly, 
we found that the mouse visual system still extracts color information for relatively low light levels 
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present during early dusk and dawn, potentially by comparing rod to remaining cone signals. Future 
studies will tell whether color- opponency under dim light, as observed here for low mesopic condi-
tions, require a specific neuronal pathway amplifying the relatively weak cone signals to encode color 
features present in the environment.

The results from our study, together with recent findings across the visual hierarchy of mice 
(Mouland et al., 2021; Rhim and Nauhaus, 2023; Szatko et al., 2020; Khani and Gollisch, 2021), 
demonstrate a pronounced neuronal representation of color in mouse visual brain areas that is medi-
ated by both cone- cone and cone- rod comparisons. While this highlights the relevance of color infor-
mation in mouse vision, it remains unclear as to how mice use color vision to inform natural behaviors. 
Two behavioral studies using parametric stimuli and relatively simple behavioral paradigms have 
shown that mice can discriminate different colors (Jacobs et al., 2004; Denman et al., 2018), at least 
in their central and upper visual field (Denman et al., 2018). Here, we found that green- Off/UV- On 
color- opponency was equally distributed across cortex, suggesting that there is a neuronal substrate 
for color vision in mice across the entire visual field. In contrast, green- On/UV- Off color- opponency 
was confined to posterior V1, where it might aid the detection of aerial predators present in cluttered 
and noisy daylight scenes, such as in the forest. Testing this hypothesis and further elucidating the 
role of color vision in mouse natural behaviors will require combining more unrestrained behavioral 
paradigms with ecologically relevant stimuli.

Limitations of the stimulus and analysis paradigm
To study color processing in the mouse V1, we employed a parametric center- surround color flicker 
stimulus, similar to those used in previous studies (Chatterjee and Callaway, 2003; Zimmermann 
et al., 2018; Szatko et al., 2020). The advantage of this relatively simple approach is that it allows for 
clear interpretation of neuronal responses using linear methods, such as the spike- triggered average 
method (Schwartz et al., 2006). However, a limitation of the linear ETA approach employed here is 
its potential inadequacy in capturing the stimulus selectivity of nonlinear neurons. Our linear anal-
ysis provides preliminary insights into color representations in the mouse visual cortex, which future 
studies could enhance with nonlinear methods to achieve a more comprehensive understanding. 
Additionally, the ETA method may be less effective for neurons that respond to both On and Off 
stimuli with similar amplitudes. Although we cannot rule out that our analysis may have been biased 
against On- Off neurons, the observation that over 62% of neurons exhibited a significant ETA for their 
RF center suggests that we captured a substantial proportion of V1 neurons.

For an ETA analysis, the stimulus should ideally be aligned to the center RF of each neuron, which 
requires detailed RF mapping of individual neurons. As this procedure is relatively time consuming 
and low throughput, we instead used a center stimulus that was slightly larger than RFs of single 
neurons, and was centered on the mean RF across a population of V1 neurons. To reduce the impact 
of potential stimulus misalignment on the single cell level on our results, we used different experi-
mental steps and controls, such as confirming that the RF center of most recorded neurons greatly 
overlaps with the center noise stimulus. The fact that response types identified using an automated 
clustering approach were consistent across animals suggests that stimulus alignment did not signifi-
cantly contribute to the neurons’ visual responses. Nevertheless, we cannot exclude that the stimulus 
was misaligned for a subset of the recorded neurons used for analysis. Stimulus misalignment might 
have contributed to single cells not having surround ETAs, due to simultaneous activation of antago-
nistic center and surround RF components by the surround stimulus.

Asymmetric processing of color information across the visual field
The spatial arrangements of sensory neurons are ordered in a way that encodes particular character-
istics of the surrounding environment. One classical example in the visual system is that the density of 
all retinal output neurons increases and their dendritic arbor size decreases toward retinal locations 
with higher sampling frequency, such as the fovea in primates and the area centralis in carnivores 
(discussed in Peichl, 2005). More recent research has uncovered how the visual circuits in certain 
species are customized to suit the statistics of the visual information they receive, including the distri-
bution of spatial, temporal, and spectral information, as well as the specific requirements of their 
behavior (discussed in Baden et al., 2020). For example, a study in zebrafish larvae showed that UV 
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cones in one particular retinal location are specifically tuned for UV- bright objects, thereby supporting 
prey capture in their upper frontal visual field (Yoshimatsu et al., 2020).

Here, we found that there is a pronounced asymmetry in how color is represented across visual 
space in mouse V1. A similar asymmetry in color processing was reported at the level of the mouse 
retina (Szatko et al., 2020; Khani and Gollisch, 2021) and dLGN (Mouland et al., 2021), and has 
been linked to an inhomogeneous distribution of color contrast across natural scenes from the mouse’s 
environment (Qiu et al., 2021; Abballe and Asari, 2022). Specifically, it has been speculated that the 
higher color contrast present in the upper visual field of natural scenes captured in the natural habitat 
of mice might have driven superior color- opponency in the ventral retina (Qiu et al., 2021), thereby 
supporting color discrimination in the sky (Denman et al., 2018). Our results extend these previous 
studies by demonstrating that the asymmetry across visual cortex can be explained by the asymmetric 
distribution of response types with distinct color tuning in their RF center, and by linking them to a 
neuronal computation relevant for the upper visual field, namely the detection of aerial predators.

At the level of the mouse retina, color- opponency is largely mediated by center- surround interac-
tions (Szatko et al., 2020; Khani and Gollisch, 2021; Joesch and Meister, 2016), with only a few 
neurons exhibiting color- opponency in their centers (Hoefling et al., 2022). Consistent with this, we 
found that the pronounced representation of color by the center component of V1 RFs was not solely 
inherited from the color- opponency present in the RF centers of retinal output neurons. Similarly, 
a recent study concluded that the extensive and sophisticated color processing in the mouse LGN 
cannot be fully explained by the proposed retinal opponency mechanisms (Mouland et al., 2021). 
However, we compared properties of the center components of retinal (3–10 degrees visual angle) 
and V1 RFs (10–25 degrees visual angle), which differ in size. Therefore, the integration of center and 
surround retinal signals might still contribute to the color- opponency observed in downstream visual 
areas, such as the mouse V1, as observed in this study. Generally, comparing ex vivo retinal data with 
in vivo cortical data is challenging, not only due to differences in RF size but also due to varying levels 
of adaptation.

Strategies of color processing across animal species: distributed versus 
specialized code
In primates, physiological and anatomical evidence suggest that a small number of distinct retinal 
cell types transmit color information to downstream visual areas (reviewed in Thoreson and Dacey, 
2019), where the neuronal representation of color remains partially segregated from the represen-
tation of other visual features like form (Livingstone and Hubel, 1988; Zeki, 1978, but see Garg 
et al., 2019). For example, color- sensitive neurons in primary and secondary visual cortex are enriched 
in the so- called ‘blob’ (Hubel and Livingstone, 1987) and ‘inter- stripe’ regions (DeYoe and Van 
Essen, 1985), respectively. Interestingly, in other vertebrate species, color processing is distributed 
across many neuron types and cannot easily be separated from the processing of other visual features. 
In zebrafish, birds, Drosophila, and mice, a large number of retinal output types encode informa-
tion about stimulus color (Seifert et al., 2023; Zhou et al., 2020; Szatko et al., 2020; Khani and 
Gollisch, 2021), in addition to each type’s preferred feature like direction of motion. In addition, there 
is evidence for distributed processing of color in visual areas downstream to the retina in zebrafish 
(Guggiana Nilo et al., 2021), mice (Rhim and Nauhaus, 2023; Mouland et al., 2021), Drosophila 
(Longden et al., 2023), and tree shrew (Johnson et al., 2010). Our results demonstrate a prominent 
neuronal representation of color in mouse V1, which is distributed across many neurons and multiple 
response types.

What might be the benefit of such a distributed code of color processing? It is important to note 
that chromatic signals may not only be used for color discrimination per se, but instead different spec-
tral channels might facilitate the extraction of specific features from the environment. For example, 
it has been shown that the UV wavelength range aids the detection of objects like prey, predators, 
and food (reviewed in Cronin and Bok, 2016) by increasing their contrast, as recently shown for leaf 
surface contrasts in forest environments (Tedore and Nilsson, 2019). Indeed, it is hypothesized that 
different photoreceptor types sensitive to distinct wavelength bands did not evolve to support color 
discrimination, but instead to reduce lighting noise in the natural environment of early vertebrates 
(discussed in Maximov, 2000; Kelber et al., 2003). In line with this idea, our analysis suggests that 
green- On/UV- Off color- opponency might facilitate the detection of predatory- like dark objects in the 
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UV channel by reducing the neurons’ activation to noise, rather than increasing the neurons’ activa-
tion to the object. If chromatic signals are predominantly used to boost contrast of specific aspects 
of the environment, it might make sense to widely distribute chromatic tuning and color- opponency 
across visual neurons. Further experiments and analysis will uncover the computational relevance of 
the pronounced and distributed color representations observed in mice and other vertebrate species.

Materials and methods
Neurophysiological experiments
All procedures were approved by the Institutional Animal Care and Use Committee of Baylor College 
of Medicine (animal protocol number: AN- 4703). Owing to the explanatory nature of our study, we did 
not use randomization and blinding. No statistical methods were used to predetermine sample size.

Mice of either sex (Mus musculus, n=9; 2–5 months of age) expressing GCaMP6s in excitatory 
neurons via Slc17a7- Cre and Ai162 transgenic lines (stock number 023527 and 031562, respectively; 
The Jackson Laboratory) were anesthetized and a 4 mm craniotomy was made over the visual cortex 
of the right hemisphere as described previously (Reimer et  al., 2014; Froudarakis et  al., 2014). 
For functional recordings, awake mice were head- mounted above a cylindrical treadmill and calcium 
imaging was performed using a Ti- Sapphire laser tuned to 920 nm and a two- photon microscope 
equipped with resonant scanners (Thorlabs) and a ×25 objective (MRD77220, Nikon). Laser power 
after the objective was kept below 60  mW. The rostro- caudal treadmill movement was measured 
using a rotary optical encoder with a resolution of 8000 pulses per revolution. We used light diffusing 
from the laser through the pupil to capture eye movements and pupil size. Images of the pupil were 
reflected through a hot mirror and captured with a GigE CMOS camera (Genie Nano C1920M; Tele-
dyne Dalsa) at 20 fps at a 1920×1200 pixel resolution. The contour of the pupil for each frame was 
extracted using DeepLabCut (Mathis et al., 2018) and the center and major radius of a fitted ellipse 
were used as the position and dilation of the pupil.

For image acquisition, we used ScanImage. To identify V1 boundaries, we used pixelwise responses 
to drifting bar stimuli of a 2400×2400 µm2 scan at 200 µm depth from cortical surface (Garrett et al., 
2014), recorded using a large field of view mesoscope (Sofroniew et al., 2016). Functional imaging 
was performed using 512×512 pixel scans (700×700 µm2) recorded at approx. 15 Hz and positioned 
within L2/3 (depth 200 µm) in posterior or anterior V1. Imaging data were motion- corrected, auto-
matically segmented, and deconvolved using the CNMF algorithm (Pnevmatikakis et  al., 2016); 
cells were further selected by a classifier trained to detect somata based on the segmented masks. 
This resulted in approx. 500–1200 selected soma masks per scan depending on response quality and 
blood vessel pattern.

To achieve photopic stimulation of the mouse visual system, we dilated the pupil pharmacologi-
cally with atropine eye drops (Franke et al., 2022). Specifically, atropine was applied to the left eye 
of the animal facing the screen for visual stimulation. Functional recordings started after the pupil was 
dilated. Pharmacological pupil dilation lasted >2 hr, thereby ensuring a constant pupil size during all 
functional recordings.

Visual stimulation
Visual stimuli were presented to the left eye of the mouse on a 42×26 cm2 light- transmitting Teflon 
screen (McMaster- Carr) positioned 12 cm from the animal, covering approx. 120×90 degrees visual 
angle. Light was back- projected onto the screen by a DLP- based projector (EKB Technologies Ltd; 
Franke et al., 2019) with UV (395 nm) and green (460 nm) LEDs that differentially activated mouse 
S- and M- opsin. LEDs were synchronized with the microscope’s scan retrace.

Light intensity (estimated as photoisomerization rate, P* per second per cone) was calibrated using 
a spectrometer (USB2000+, Ocean Optics) to result in equal activation rates for mouse M- and S- opsin 
(for details, see Franke et al., 2019). In brief, the spectrometer output was divided by the integra-
tion time to obtain counts/s and then converted into electrical power (in nW) using the calibration 
data (in µJ/count) provided by Ocean Optics. To obtain the estimated photoisomerization rate per 
photoreceptor type, we first converted electrical power into energy flux (in eV/s) and then calculated 
the photon flux (in photons/s) using the photon energy (in eV). The photon flux density (in photons/s/
µm2) was then computed and converted into photoisomerization rate using the effective activation 
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of mouse cone photoreceptors by the LEDs and the light collection area of cone outer segments. In 
addition, we considered both the wavelength- specific transmission of the mouse optical apparatus 
(Henriksson et al., 2010) and the ratio between pupil size and retinal area (Schmucker and Schaeffel, 
2004). Please see the calibration iPython notebook provided online for further details.

We used three different light levels, ranging from photopic levels primarily activating cone photo-
receptors to low mesopic levels that predominantly drive rod photoreceptors. For a mean pupil 
size across recordings within one light level and a maximal stimulus intensity (255 pixel values), this 
resulted in 50 P*, 400 P*, and 15,000 P* for low mesopic, high mesopic, and photopic light levels, 
respectively. Please note that the difference between photopic and high mesopic light levels is higher 
than between high and low photopic light levels.

Prior to functional recordings, the screen was positioned such that the population RF across all 
neurons, estimated using an achromatic sparse noise paradigm, was within the center of the screen. 
Screen position was fixed and kept constant across recordings of the same neurons. We used Psych-
toolbox in MATLAB for stimulus presentation and showed the following light stimuli.

Center-surround luminance and color noise
We used a center (diameter: 37.5 degrees visual angle) and surround (full screen except the center) 
binary noise stimulus of UV and green LED to characterize center and surround chromatic properties 
of mouse V1 neurons. For that, the intensity of UV and green center and surround spots was deter-
mined independently by a binary and balanced 25 min random sequence updated at 5 Hz. A similar 
stimulus was recently used in recordings of the mouse retina (Szatko et al., 2020). The center size 
of 37.5 degrees visual angle in diameter is larger than the mean center RF size of mouse V1 neurons 
(26.2±4.6 degrees visual angle in diameter). This allowed to record from a large neuron population, 
despite some variability in RF center location. We verified that the center RF of the majority of neurons 
lies within the center spot of the noise stimulus using a sparse noise stimulus for spatial RF mapping 
(Figure 1—figure supplement 1a, b).

Sparse noise
To map the spatial RFs of V1 neurons, we used a sparse noise paradigm. UV and green bright (pixel 
value 255) and dark (pixel value 0) dots of approx. 12 degrees visual angle were presented on a gray 
background (pixel value 127) in randomized order. Dots were presented for 8 and 5 positions along 
the horizontal and vertical axis of the screen, respectively, excluding screen margins. Each presenta-
tion lasted 200 ms and each condition (e.g. UV- bright dot at position x=1 and y=1) was repeated 50 
times.

Preprocessing of neural responses and behavioral data
Neuronal calcium responses were deconvolved using constrained non- negative calcium deconvo-
lution (Pnevmatikakis et  al., 2016) to obtain estimated spike trains. For the decoding paradigm, 
we subsequently extracted the accumulated activity of each neuron between 50 ms after stimulus 
onset and offset using a Hamming window. Behavioral traces (treadmill velocity and pupil size) were 
synchronized to the recorded neuronal response traces, but not used for further processing - i.e., we 
did not distinguish between arousal states of the animal.

RF mapping based on the center-surround color noise stimulus
We used the responses to the 5 Hz center- surround noise stimulus of UV and green LED to compute 
temporal ETAs of V1 neurons. Specifically, we upsampled both stimulus and responses to 30  Hz, 
normalized each upsampled response trace by its sum and then multiplied the stimulus matrix with the 
response matrix for each neuron. Per cell, this resulted in a temporal ETA for center (C) and surround (S) 
in response to UV and green flicker, respectively (GreenC, UVC, GreenS, UVC). For each of the four stim-
ulus conditions, kernel quality was measured by comparing the variance of the ETA with the variance 
of the baseline, defined as the first 500 ms of the ETA. Only cells with at least 10 times more variance 
of the kernel compared to baseline for UV or green center ETA were considered for further analysis.

Sparse noise spatial RF mapping and overlap index
We estimated spatial ETAs of V1 neurons in response to the sparse noise stimulus by multiplying 
the stimulus matrix with the response matrix of each neuron (Schwartz et al., 2006). For that, we 
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averaged across On and Off and UV and green stimuli, thereby obtaining a two- dimensional (8×5 
pixels) spatial ETA per neuron. To assess ETA quality, we generated response predictions by multi-
plying the flattened ETA of each neuron with the flattened stimulus frames and compared the predic-
tions to the recorded responses by estimating the linear correlation coefficient. For analysis, we only 
included cells where correlation >0.25. For these cells, we upsampled and peak- normalized the spatial 
ETAs (resulting in 40×25 pixels), and then estimated the overlap with the center spot of the noise stim-
ulus using a contour threshold of 0.25. Specifically, we calculated the ratio of pixels >0.25 with respect 
to the peak of the ETA inside and outside the area of the noise center spot.

PCA for ETA reconstruction
To increase the signal- to- noise ratio of the ETAs, we converted them into lower dimensional represen-
tations using sparse PCA (Figure 1—figure supplement 3). Specifically, we concatenated the ETAs of 
the four stimulus conditions and used the resulting matrix with dimensions neurons × time to perform 
sparse PCA using the package  sklearn.decomposition.SparsePCA  in Python. We used sparse PCA 
because each principal component (PC) then captured one of the four stimulus conditions (Figure 1—
figure supplement 3b), thereby making the PCs interpretable. We tested different numbers of PCs 
(n=2 to n=12 components) and evaluated the quality of the PCA reconstructions by computing the 
mean squared error (mse) between the original ETA and the one reconstructed based on the PCs. 
We decided to use eight PCs because (i) reconstruction mse dropped only slightly with more PCs 
(Figure 1—figure supplement 3a) and (ii) additional PCs captured variance outside the time window 
of expected stimulus sensitivity, e.g., after the response time.

Spectral contrast
For estimating the chromatic preference of the recorded neurons, we used spectral contrast (SC). It is 
estimated as Michelson contrast ranging from –1 to 1 for a neuron responding solely to UV and green 
contrast, respectively. We define SC as

 
SC =

rgreen − rUV
rgreen + rUV   

where rgreen and rUV correspond to the amplitude of UV and green ETA to estimate the neurons’ chro-
matic preference.

Luminance and color contrast sensitivity space
To represent each neuron in a two- dimensional luminance and color contrast space, we extracted ETA 
peak amplitudes relative to baseline for all four stimulus conditions, with positive and negative peak 
amplitudes for On and Off cells, respectively. Peak amplitudes of green and UV ETA were then used as 
x and y coordinates, respectively, in the two- dimensional contrast spaces for center and surround. To 
obtain the fraction of variance explained by the luminance and color axis within the contrast space for 
center and surround RF components, we performed PCA on the two- dimensional matrix with dimen-
sions  cells × x − y . The relative weights of the resulting PCs were used as a measure of fraction vari-
ance explained. A similar method was recently used to quantify chromatic and achromatic contrasts in 
mouse natural scenes (Qiu et al., 2021).

Decoding analysis
We used an SVM classifier with a radial basis function kernel to estimate decoding accuracy between 
the neuronal representations of two stimulus classes - either On or Off (stimulus luminance) and UV or 
green (stimulus color). We used varying numbers of neurons for decoding and built separate decoders 
for stimulus luminance and stimulus color. Specifically, we split the data into 10 equally sized trial 
blocks, trained the decoder on 90% of the data, tested its accuracy on the remaining 10% of the data, 
and computed the mean accuracy across n=10 different training/test trial splits. Finally, we converted 
the decoding accuracy into discriminability, the mutual information between the true class and its 
estimate using

 
MI

(
c, ĉ

)
=
∑

i

∑
j

pijlog2
pij

pi : · p: j   
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where pij is the probability of observing the true class i and predicted class j and  pi :  and  p: j  denote 
the respective marginal probabilities.

Retinal data
We used an available dataset from Szatko et al., 2020, to test how color is represented in the lumi-
nance and color contrast space at the level of the retinal output. This dataset consisted of UV and 
green center and surround ETAs of n=3215 retinal ganglion cells (n=88 recording fields, n=18 mice), 
obtained from responses to a center (10 degrees visual angle) and surround (30×30 degrees visual 
angle without the center) luminance and color noise stimulus. We estimated the ETAs and embedded 
each neuron in the sensitivity space as described above.

Functional clustering using GMM
For clustering of center and surround ETAs into distinct response types, we used a GMM 
( sklearn.mixture.GaussianMixture  package). We used the weights of the PCs extracted from the ETAs 
as input to the GMM (Figure 1—figure supplement 3). To test how many GMM components (i.e. 
response types) best explain the data, we built GMMs with varying numbers of components and cross- 
validated the models’ log likelihood on 10% of left- out test data, using 10 different test/train trial splits 
(Figure 5—figure supplement 1a). We picked the model with n=17 components for further analysis 
because this resulted in the highest log likelihood. However, please note that the models’ perfor-
mance was relatively ETAble across a wide range of components. To test the assignment accuracy 
of the final model, we used the mean and covariance matrix of each GMM component to generate 
data with ground- truth labels and compared those to the GMM- predicted labels (Figure 5—figure 
supplement 1b), as described previously (Tolias et al., 2007). Assignment accuracy ranged between 
75% and 98%, with a mean ± s.d. of 89% ± 6%. Most response types were evenly distributed across 
mice and all response types were present in all mice (Figure 5—figure supplement 1c), suggesting 
that clustering was not predominantly driven by inter- experimental variations.

Cortical distribution index
For estimating the distribution of response types across cortical position, we used the cortical distri-
bution index. It was estimated as Michelson contrast ranging from –1 to 1 for a response type solely 
present in posterior and anterior V1, respectively. We define the distribution index as

 
DistributionIndex =

nanterior − nposterior
nanterior + nposterior   

where nanterior and nposterior correspond to the fraction of neurons in anterior and posterior V1 assigned 
to a specific response type.

Decoding of noise and object scenes
For decoding noise versus object scenes based on simulated responses, we used natural scene 
inspired parametric stimuli. Specifically, we generated images with independent Perlin noise Perlin, 
1985 in each color channel using the Perlin- noise package for Python. Then, for the object images, 
we added a dark ellipse of varying size, position, and angle to the UV color channels. We adjusted the 
contrast of all images with a dark object to match the contrast of noise images, such that the distribu-
tion of image contrasts did not differ between noise and object images. We then simulated responses 
to 1000 object and noise scenes that were used by an SVM decoder to decode stimulus class (object 
or noise) as described above. For simulating responses, we modeled each response type to have a 
square RF with 10 degrees visual angle in diameter, with the luminance and color contrast sensitivity of 
the response type’s RF center. Then, we created response maps by convolving the simulated RFs with 
the scenes and summed up all positive values to result in one response value per scene and response 
type.

Statistical analysis
We used the t- test for two independent samples to test whether the decoding performance of 10 
test/train trial splits differ between (i) center and surround, (ii) photopic and mesopic light levels, 
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(iii) anterior and posterior V1, and (iv) anterior and posterior response types. For all these tests, the 
p- value was adjusted for multiple comparisons using the Bonferroni correction.
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