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Abstract SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic.
To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced
the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody
titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) af sequences and
mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-
sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were
reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs.
Among them, we could determine 78 S epitopes, most of which were conserved in variants of
concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimula-
tion were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S anti-
body titers (designated as ‘sustainers’), but not in ‘decliners’. Even before vaccination, S-reactive
CD4* T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic
microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clono-
types dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that
highly responding S-reactive T cells were established by vaccination from rare clonotypes. These
results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute
to the longevity of anti-S antibody titers.

elLife assessment

This important study by Lu et al aimed to determine the key factors of T cell responses associated
with durable antibody responses following the initial two shots of COVID-19 mRNA vaccinations.
By comparing the SARS-CoV-2 spike protein (S)-specific T cell subsets between ‘Ab sustainers’ and
‘Ab decliners’ that were present post-vaccination, the authors concluded that S-specific CD4* T
cells in 'Ab sustainers’ were enriched with Tth cells. There is solid evidence as the authors applied
multiple methods and approaches to address the key questions, and the presented data are
robust.
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Introduction

The pandemic COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has expanded worldwide (Hu et al., 2021). Many types of vaccines have been developed or
in basic and clinical phases to combat infection and deterioration of COVID-19 (Creech et al., 2021,
Krammer, 2020). Among them, messenger ribonucleic acid (mMRNA) vaccines, BNT162b2/Comirnaty
and mRNA-1273/Spikevax, have been approved with over 90% efficacy at 2 months post-2nd dose
vaccination (Baden et al., 2021, Polack et al., 2020), and widely used. Pathogen-specific antibodies
are one of the most efficient components to prevent infection. Yet, mRNA vaccine-induced serum anti-
body titer is known to be waning over 6 months (Levin et al., 2021; Pegu et al., 2021). Accordingly,
the effectiveness of the vaccines decreases over time, and thus multiple doses and repeated boosters
are necessary (Andrews et al., 2022).

The production and sustainability of spike (S)-specific antibody could be related to multiple factors,
especially in the case of humans (Collier et al., 2021; Levin et al., 2021). Among them, the char-
acteristics of SARS-CoV-2-specific T cells are critically involved in the affinity and longevity of the
antibodies (Crotty, 2019, Nelson et al., 2022; Terahara et al., 2022). Elucidation of the key factors
of T cell responses that contribute to the durable immune responses induced by vaccination would
provide valuable information for the vaccine development in the future. However, the relationship
between antibody sustainability and the types of antigen-specific T cells has not been investigated in
a clonotype resolution.

Recent studies reported that S-reactive T cells pre-existed before exposure to SARS-CoV-2
(Grifoni et al., 2020; Le Bert et al., 2020; Mateus et al., 2020; Meckiff et al., 2020; Sekine et al.,
2020). Common cold human coronaviruses (HCoVs) including strains 229E, NL63, OC43, and HKU1
are considered major cross-reactive antigens that primed these pre-existing T cells (Becerra-Artiles
etal., 2022; Low et al., 2021; Loyal et al., 2021, Mateus et al., 2020), while bacterial cross-reactive
antigens were also reported (Bartolo et al., 2022; Lu et al., 2021). However, the functional relevance
of cross-reactive T cells during infection or vaccination is still in debate.

In this study, both humoral and cellular immune responses were evaluated at 3, 6, and 24 weeks
after BNT162b2/Comirnaty vaccination. S-specific T cells before and after vaccination were analyzed
on clonotype level using single-cell-based T cell receptor (TCR) and RNA sequencing to determine
their characteristics and epitopes in antibody sustainers and decliners. These analyses suggest the
importance of early acquisition of S-specific Tth cells in the longevity of antibodies.

Results

SARS-CoV-2 mRNA vaccine elicits transient humoral immunity

Blood samples were collected from a total of 43 individuals (Table 1) who had no SARS-CoV-2 infec-
tion history when they received two doses of SARS-CoV-2 mRNA vaccine BNT162b2. Samples were
taken before and after the vaccination (Figure 1A). Consistent with the previous report (Polack et al.,
2020), most participants exhibited more severe side effects after 2nd dose of vaccination than 1st

Table 1. Demographic data of the participants.

Percentage (number)

Total number 100% (43)
Age group

20-39 39.5% (17)
40-49 30.2% (13)
50-59 25.6% (11)
60-69 4.7% (2)
Sex

Male 60.5% (26)
Female 39.5% (17)
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Figure 1. SARS-CoV-2 mRNA vaccine elicits transient humoral immunity. (A) Vaccination and sampling timeline of blood donors in this study. (B) Anti-S
IgG titer of serum samples was determined by ELISA. Mean = SEM (left) and individual data (right) are shown. *, p<0.05 vs. Pre, 3 weeks, 24 weeks,
respectively. (C) Neutralization activity (ID50) of serum samples was determined by pseudo-virus assay. Mean = SEM (left) and individual data (right) are

shown. *, p<0.05 vs 3 weeks, 24 weeks, respectively. Wks, weeks.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Humoral immune response of BNT162b2 vaccinees.

dose locally (Table 2) and systemically (Table 3). At 3 weeks, anti-S I1gG antibody titer increased
in most participants. At 6 weeks, anti-S antibody titer was at its peak. S antibody titer gradually
decreased over 24 weeks (Figure 1B). The antibody titer was reduced by 56.8% on average. Donors
of different sexes or age groups showed no significant difference in anti-S antibody titer (Figure 17—
figure supplement 1). The neutralization activity of the post-vaccinated sera showed similar tendency
with the anti-S antibody titer during the study period (Figure 1C). The above results indicate that the
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Table 2. Demographic data of the reported clinical adverse effects (at injection site).

Percentage (number)

Swelling (injection site)

After 1st dose 27.9% (12)

After 2nd dose 51.2% (22)

Sore/pain (injection site)

After 1st dose 88.4% (38)

After 2nd dose 86.0% (37)

Warmth (injection site)

After 1st dose 32.6% (14)

After 2nd dose 41.9% (18)

mRNA vaccine effectively activated humoral immune responses in healthy individuals, but decreased
by 24 weeks over time as reported (Levin et al., 2021; Pegu et al., 2021).

Antibody sustainers had highly expanded S-reactive Tfh clonotypes

To address the role of T cells in maintaining the antibody titer, we analyzed the S-responsive T cells in
the post-vaccination samples from eight donors, among whom four donors showed relatively sustained
anti-S antibody titer during 6 weeks to 24 weeks (reduction <30%; sustainers, donors #8, #25, #27,
and #28), while the other four donors showed largely declined anti-S antibody titer (reduction >80%;
decliners, donors #4, #13, #15, and #17; Figure 2A and Figure 2—figure supplement 1A). The possi-
bility of SARS-CoV-2 infection of sustainers was ruled out by analyzing anti-nucleocapsid protein (N)
antibody titer in the sera samples at 24 weeks (Figure 2—figure supplement 1B). Antibody sustain-
ability did not correlate with bulk T cell responses to S protein, such as IFNy production (Figure 2—
figure supplement 1C).

To enrich the S-reactive T cells, we labeled the peripheral blood mononuclear cells (PBMCs) with a
cell proliferation tracer and stimulated the PBMCs with an S peptide pool for 10 days. Proliferated T
cells were sorted and analyzed by single-cell TCR- and RNA-sequencing (scTCR/RNA-seq). Clustering
analysis was done with pooled samples of three time points from eight donors, and various T cell
subtypes were identified (Figure 2B, Source code 1). We found that, overall, the S-reactive T cells
did not skew to any particular T cell subset (Figure 2B). However, by grouping the cells from decliners
and sustainers separately, we found difference in the frequency of the cells within the circled popula-
tion (Figure 2C), and overall, the sustainer individuals had more cells in this region (Figure 2—figure
supplement 2). These cells showed high Tth signature scores and expressed characteristic genes of
Tth cells (Figure 2D). This tendency became more pronounced when we selected highly expanded
(top 16) clonotypes in each donor (Figure 2E). In sustainers, S-specific Tth clusters appeared from
6 weeks (Figure 2F), suggesting that vaccine-induced Tth-like cells that have potency of deriving to
Tth cells were established immediately after 2nd vaccination.

Identification of dominant S epitopes recognized by vaccine-induced T
cell clonotypes

To elucidate the epitopes of the highly expanded clonotypes, we reconstituted their TCRs into a T cell
hybridoma lacking endogenous TCRs and having an NFAT-GFP reporter gene. These cell lines were
stimulated with S peptides using transformed autologous B cells as antigen-presenting cells (APCs).
The epitopes of 53 out of 128 reconstituted clonotypes were successfully determined (Figure 3,
Table 4, Figure 3—figure supplements 1 and 2). Epitopes of expanded Tth cells were not limited
in any particular region of S protein (Figure 3). About 72% of these epitopes conserved in Delta and
Omicron variants (Tables 4 and 5). Within the rest of 28% of epitopes which were mutated in variants
of concern (VOCs), although some mutated epitopes located in the receptor-binding domain (RBD) of
VOC:s lost antigenicity, recognition of most epitopes outside the RBD region was maintained or rather
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Table 3. Demographic data of the reported clinical adverse effects (systemic symptoms).

Percentage (number)

Fever

After 1st dose

Mild (37.5 °C 2) 2.3% (1)

Severe (>38.0 °C) 0% (0)

After 2nd dose

Mild (37.5 °C 2) 25.6% (11)
Severe (238.0 °C) 23.3% (10)
Fatigue

After 1st dose

Mild 18.6% (8)
Severe 0% (0)

After 2nd dose

Mild 67.4% (29)
Severe 18.6% (8)
Headache

After 1st dose

Mild 7.0% (3)

Severe 0% (0)

After 2nd dose

Mild 32.6% (14)
Severe 7.0% (3)
Chill

After 1st dose

Mild 4.7% (2)
Severe 0% (0)
After 2nd dose

Mild 23.3% (10)
Severe 9.3% (4)
Nausea

After 1st dose

Mild 0% (0)
Severe 0% (0)
After 2nd dose

Mild 4.7% (2)
Severe 0% (0)
Diarrhea

After 1st dose

Mild 0% (0)

Severe 0% (0)

Table 3 continued on next page
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After 2nd dose

Mild 0% (0)
Severe 0% (0)
Muscle pain

After 1st dose

Mild 48.8% (21)
Severe 0% (0)
After 2nd dose

Mild 55.8% (24)
Severe 4.7% (2)
Joint pain

After 1st dose

Mild 4.7% (2)
Severe 0% (0)
After 2nd dose

Mild 25.6% (11)
Severe 4.7% (2)

increased in the variants (Table 5 and Figure 3—figure supplement 3). These results suggest that the
majority of S-reactive clonotypes after vaccination can respond to antibody-escaping VOCs.

Identification of S epitopes and cross-reactive antigens of pre-existing
T cell clonotypes

Before the pandemic, T cells cross-reacting to S antigen were present in the peripheral blood (Grifoni
et al., 2020; Le Bert et al., 2020; Mateus et al., 2020; Meckiff et al., 2020; Sekine et al., 2020). To
characterize these pre-existing S-reactive cells, we analyzed the PBMCs collected from donors who
consented to blood sample donation before vaccination (#4, #8, #13, #15, and #17). PBMCs were
stimulated with the S peptide pool for 10 days, and proliferated T cells were sorted and analyzed
by scTCR/RNA-seq. Similar to vaccine-induced S-reactive T cells (Figure 2B), characteristics of
pre-existing S-reactive T cells were diverse (Figure 4A, Source code 1). To track the dynamics of
cross-reactive clones after vaccination, we combined the single-cell sequencing data of pre- and post-
vaccinated PBMCs and analyzed the clonotypes that have more than 50 cells in total (Figure 4B).
We did find some cross-reactive clonotypes that were further expanded by vaccination, and most of
these clonotypes had cytotoxic features, being CD8* effector memory T cells (Tem) or minor CD4*
cytotoxic T cells (CTLs). In contrast, most of the cross-reactive CD4* T cells became minor clonotypes
after vaccination.

We also explored the epitopes of the top 16 expanded clonotypes in each pre-vaccinated donor
by reconstituting the TCRs into reporter cell lines. We identified 18 epitopes from S protein and
determined some possible cross-reactive antigens (Figure 5, Table 6, Figure 5—figure supple-
ment 1). Most of these cross-reactive antigens originated from environmental or symbiotic microbes
(Table 6). Furthermore, majority of the reactive T clonotypes showed regulatory T cell (Treg) signatures
(Figure 5). Six of these 80 analyzed clonotypes could also be frequently detected in the public TCR
database Adaptive (Emerson et al., 2017, Nolan et al., 2020). Notably, most of these clonotypes,
except for one case, showed comparable frequencies between pre-pandemic healthy donors and
COVID-19 patients (Figure 6), suggesting that these clonotypes did not expand upon SARS-CoV-2
infection, despite they were present before the pandemic. Thus, it is unlikely that these cross-reactive
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Figure 2. Antibody sustainers had highly expanded S-reactive Tth clonotypes. (A) Anti-S IgG titer of serum
samples from sustainers and decliners is shown individually. (B, C, E, F) UMAP projection of T cells in single-cell
analysis of post-vaccinated samples collected from all donors. Each dot corresponds to a single cell and is colored
according to the samples from different time points of donors. All samples together with annotated cell types

Figure 2 continued on next page
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Figure 2 continued

(B), samples grouped by donor type (decliners and sustainers) (C), top 16 expanded clonotypes (16 clonotypes
that had the most cell numbers from each donor) grouped by donor type (E), and top 16 expanded clonotypes
grouped by time point and donor type (F) are shown. Tecm, central memory T cells; Tem, effector memory T cells;
Treg, regulatory T cells; y&T, y& T cells. (D) Tth signature score and expression levels of the canonical Tth cell
markers, IL21, ICOS, PDCD1 and CD200, are shown as heat maps in the UMAP plot.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Humoral and cellular immune responses of sustainers and decliners.

Figure supplement 2. Sustainer individuals had more cells in the circled region than decliner individuals.
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Figure 3. The location of S epitopes recognized by top expanded T clonotypes from post-vaccination samples. T cell S epitopes recognized by

top expanded TCR clonotypes in post-vaccinated samples from sustainers and decliners are mapped by their locations in S protein. Each short bar
indicates a 15-mer peptide that activated the TCRs. Epitopes are shown in different colors according to the subsets of the T cells they activated. Relative
frequencies of the T cell subsets are shown in pie charts. Numbers of identified epitopes recognized by a dominant T subset in sustainers (Tth) are
shown in blue bars. NTD, N-terminal domain; RBD, receptor-binding domain; FP, fusion peptide; HR1, heptad repeat 1; CH, central helix; CD, connector
domain; HR2, heptad repeat 2; TM, transmembrane domain.

The online version of this article includes the following figure supplement(s) for figure 3:
Figure supplement 1. Determination of S epitopes for post-vaccinated T cell clonotypes expanded in sustainers and decliners.
Figure supplement 2. Determination of restricting HLAs for post-vaccinated T cell clonotypes expanded in sustainers and decliners.

Figure supplement 3. Determination of mutated epitope antigenicity for post-vaccinated T cell clonotypes expanded in sustainers and decliners.
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Table 5. Reactivity of each clonotype to mutated epitopes in SARS-CoV-2 VOCs.

Immunology and Inflammation

Donor Clonotype Mutated epitopes in VOCs Domain Response
Omicron BA.1 PFFTFKCYGVSPTKL* l
#8 Post_4 Omicron BA.2, 4/5 PFFAFKCYGVSPTKL RBD 1
#8 Post_5 Omicron BA.1 FKIYSKHTPII non-RBD T
Delta, Omicron BA.2, 4/5 FQFCNDPFLDVYYHK 1
#8 Post_6 Omicron BA.1 FQFCNDPFLD---HK non-RBD l
Omicron BA.1 YSVLYNLAPFFTFKC 1
#8 Post_7 Omicron BA.2, 4/5 YSVLYNFAPFFAFKC RBD l
#8 Post_8 Omicron BA1, 2, 4/5 LLQYGSFCTQLKRAL non-RBD T
#8 Post_10 Omicron BAT1, 2, 4/5 LLQYGSFCTQLKRAL non-RBD 1
Delta STEIYQAGSKPCNGV !
#27 Post_5 Omicron BA.1, 2, 4/5 STEIYQAGNKPCNGV RBD 1
Delta STEIYQAGSKPCNGV l
#27 Post_13 Omicron BA.1, 2, 4/5 STEIYQAGNKPCNGV RBD 1
#28 Post_5 Omicron BA.1 LVKNKCVNFNFNGLK non-RBD T
#28 Post_10 Omicron BA.2, 4/5 VIRGNEVSQIA RBD !
#28 Post_14 Omicron BA.1, 2, 4/5 PFDEVFNATRFASVY RBD l
Omicron BA.1 YSVLYNLAPFFTFKC l
#4 Post_11 Omicron BA.2, 4/5 YSVLYNFAPFFAFKC RBD 1
Delta RRRARSVASQSIIAY 1
#15 Post_9 Omicron BA.1, 2,4/5 HRRARSVASQSIIAY non-RBD T
#15 Post_16 Omicron BA.1 IDGYFKIYSKHTPII non-RBD -
#17 Post_11 Omicron BA.1, 2, 4/5 QALNTLVKQLSSKFG non-RBD 1
#17 Post_15 Omicron BA.1 AARDLICAQKFKGLT non-RBD 1

*Amino acids colored red indicate mismatches compared with corresponding S epitopes of Wuhan strain.

T clonotypes contribute to the establishment of S-reactive T cell pools during either vaccination or
infection.

Discussion

Previous studies showed that Tth function and germinal center development were impaired in deceased
COVID-19 patients (Kaneko et al., 2020) and Tth cell number correlated with neutralizing antibody
(Gong et al., 2020; Juno et al., 2020; Zhang et al., 2021). Consistent with the above studies, we
found that the donors having sustained antibody titers between 6 and 24 weeks post-vaccination
had more S antigen-responsive Tfh-like clonotypes maintained in the periphery as a memory pool. As
circulating Tfh clonotypes can reflect the population of germinal center Tth cells (Brenna et al., 2020),
it is possible that these maintained S-responsive Tth cells contribute to the prolonged production of
anti-S antibodies. These results imply that Tth polarization of S-reactive T cells in the blood after 2nd
vaccination can be a marker for the longevity of serum anti-S antibodies. Although monitoring of
S-specific Tth cells in germinal center is ideal (Mudd et al., 2022), it is currently difficult for outpatients
in clinics.

Since the antigen used for BNT162b2 is a full-length S protein from the Wuhan-Hu-1 strain, it
is important to estimate whether vaccine-induced Wuhan S-reactive T cells recognize neutralizing
antibody-evading VOCs, such as Omicron variants. To investigate the dominant T cell epitopes of
vaccine-developed T cells, we utilized a proliferation-based sorting strategy to enrich the S-responsive
T cells. The limitation of this strategy is that a 10 day stimulation would change the transcriptional
profile and repertoire of T cells. However, this strategy allowed us to select the T cell clonotypes that
vigorously responded to the S antigen stimulation, while weakly responsive cells and anergic cells
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A

W #4

#8
MW #13
M #15
W #17

UMAP 2

UMAP 1

Min Max
Clonotype fraction :-
Percentage in T cells (%) Expansion
Donor Clonotype# Cell type Pre 3wks 6wks 24wks Post(max) /Pre
#13 Post_8 CD4 Tem 7.67 0.65 0.00 0.62 0.08
#13 CD4 Tem 6.16 0.00 0.00 0.00 0.00
#13 Post_1 CD8 Tem 6.16 7.65 7.26
#4 Post_3 CD4 Tem 576 1.22 0.03 0.73 0.21
#13 Post_2 CD8 Tem 5.30 10.44 16.55 21.00 3.97
#13 MAIT 520 0.04 0.00 0.00 0.01
#15 CD4 Tem 3.24 0.00 0.00 0.00 0.00
#17 CD4 Treg 3.02 0.00 0.00 0.00 0.00
#13 CD4 Tem 2.79 0.00 0.00 0.00 0.00
#15 CD4 Tem 2.77 0.20 0.25 0.00 0.09
#15 CD4 Tem 2.74 0.00 0.00 0.47 0.17
#15 CD4 Tem/Treg 2.68 0.00 0.00 0.00 0.00
#4 CD8 Tem 245 0.18 0.06 0.00 0.07
#15 CD4 Tem 2.36 0.00 0.00 0.07 0.03
#8 CD4 Tem 1.87 0.06 0.04 0.00 0.03
#8 CD4 Tcm/Treg 1.84 0.00 0.00 0.00 0.00
#8 CD4 Treg 184 0.13 0.00 0.00 0.07
#15 CD4 Tem 1.42 0.00 0.00 0.00 0.00
#15 CD4 Tfr 1.39 0.00 0.00 0.00 0.00
#15 CD4 Tem 1.31  0.00 0.07 0.15 0.11
#15 CD4 Tem 1.31  0.00 0.00 0.00 0.00
#15 CD4 Tem/Treg 1.25 0.00 0.00 0.04 0.03
#15 CD4 Tem 1.19  0.20 0.19 0.00 0.17
#15 CD4 Treg 0.92 0.00 0.00 0.00 0.00
#15 CD4 Treg 092 0.00 0.00 0.00 0.00
#15 CD4 Tem/Treg 0.89 0.00 0.04 0.00 0.04
#15 CD4 Tem 0.88 0.00 0.33 0.00 0.38
#8 Post_1 CD8 Tem 0.86 3.12 0.52 1.14 3.63
#15 CD4 Treg 0.80 0.00 0.16 0.15 0.19
#15 CD4 Treg 0.80 0.00 0.00 0.00 0.00
#15 CD4 Tem 0.77  0.00 0.00 0.00 0.00
#4 Post_1 CD8 Tem 0.61 0.77 3.69 2.18 6.02
#17 CD8 Tem 035 1.16 0.00 0.16 3.34
#17 CD8 Tem 0.30 0.00 0.00 0.21 0.69
#8 CD4 Tir 0.28 042 1.19 0.00 4.31
#15 Post_3 CD4 CTL 022 276 2.35 1.31 12.80
#15 Post_8 CD4 CTL 0.22 1.18 0.87 0.47 5.49
#17 Post_2 CD8 Tem 0.20 0.80 0.21 0.77 4.02
#13 Post_3 CD8 Tem 0.16 1.21 0.69 0.05 7.52
#13 Post_5 CD8 Tem 0.13 1.03 2.07 0.11 16.12
#15 CD4 Tfr 0.11 1.18 0.25 0.73 10.97
#17 CD8 Tem 0.10 0.22 0.11 0.24 2.41
#15 Post_2 CD4 CTL/Treg 0.06 0.99 2.59 117 42.01
#8 Post_15 CD4 Treg->Tcm  0.06 0.17 0.00 1.73 28.14
#13 Post_6 CD8 Tem 0.03 1.30 0.69 0.27 40.39

Figure 4. Characteristics and dynamics of S-cross-reactive clonotypes. (A) UMAP projection of T cells in single-cell analysis of pre-vaccinated samples
from donors #4, #13, #15, #17, and #8. Each dot corresponds to a single cell and is colored according to the samples from different donors. Annotated
cell types are shown. (B) Donor, name of reconstituted clonotypes, cell type, clonotype fraction in T cells from each time points, and expansion ratio of
clonotypes that were found in pre-vaccinated samples and had more than 50 cells in the combined pre- and post-vaccinated sample set. For clonotypes
that showed more than one type, the major type is listed in the front. The expansion ratio was calculated using the maximum cell fraction at post-
vaccination points divided by the cell fraction at the pre-vaccination point of each clonotype. Clonotypes that have an expansion ratio larger than 1 are
considered as expanded post-vaccination. Cell fractions at individual time points are shown as heat map. Tfr, follicular regulatory T cells; MAIT, mucosal-

associated invariant T cells.

will be less considered, which is exactly in line with our purpose. Consistent with previous reports
(GeurtsvanKessel et al., 2022; Keeton et al., 2022; Tarke et al., 2022), most of the epitopes deter-
mined in the current study were conserved in Delta and Omicron (BA.1, BA.2, and BA.4/5) strains,
suggesting that vaccine-induced T cells are able to recognize the mutated S proteins from these
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Figure 5. The location of S epitopes of pre-existing S-reactive T cells. S epitopes recognized by top expanded TCR clonotypes in pre-vaccinated
samples are mapped by their locations in S protein. Each short bar indicates a 15-mer peptide that activated the TCRs. Epitopes are shown in different
colors according to the subtypes of the T cells they activated. Relative frequencies of the T cell subtypes from all five donors are shown in the pie chart.
Numbers of identified epitopes recognized by a dominant T subset of pre-existing clonotypes (Treg) from all donors are shown in green bars.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Determination of S epitopes, restricting HLAs and cross-reactive epitopes for pre-existing T cell clonotypes expanded by S
stimulation.

Figure supplement 2. The pre-existing S-reactive T cell clonotypes did not recognize HCoV epitopes.

variants, despite the B epitopes being largely mutated in these VOCs (GeurtsvanKessel et al., 2022;
Tarke et al., 2022).

SARS-CoV-2-recognizing T cells existed prior to exposure to the S antigens (Grifoni et al., 2020;
Le Bert et al., 2020; Mateus et al., 2020; Meckiff et al., 2020; Sekine et al., 2020), which is consis-
tent with our observation with PBMCs from donors who were uninfected and pre-vaccinated. Among
these pre-existing S-reactive clonotypes, CD8" cytotoxic T clonotypes were expanded by the vaccina-
tion, whereas most CD4" T clonotypes became less dominant after vaccination (Figure 4B). Currently,
the reason for the opposite tendency is unclear. In the present study, we showed that pre-existing T
clonotypes cross-reacting to S protein are unlikely to contribute to vaccine-driven T cell immunity.
This could be due to the fact that cross-reactive T cells had relatively low avidity to S protein (Bacher
et al., 2020). Alternatively, but not mutually exclusively, considering that most of these cross-reactive
T clonotypes have Treg signature (Figure 5), they could be developed to tolerate symbiotic or envi-
ronmental antigens, and might be ineffective to the defense against SARS-CoV-2 and thus replaced
by the other effective T clonotypes induced by vaccination. One exceptional pre-existing clonotype
was #15-Pre_2, as they vigorously expanded in COVID-19 patients (Figure 6). This clonotype was
clustered within a CD4* Tem population and cross-reactive to environmental bacteria, Myxococcales
bacterium (Table 6). Thus, in some particular settings, clonotypes primed by common bacterial anti-
gens might potentially contribute during infection.

Common cold human coronavirus (HCoV)-derived S proteins are reported as potential cross-
reactive antigens for pre-existing SARS-CoV-2 S-reactive T cells (Becerra-Artiles et al., 2022; Low
et al., 2021; Loyal et al., 2021, Mateus et al., 2020). However, the highly responding SARS-CoV-2
S-reactive clonotypes in pre-vaccinated donors did not react with HCoV S proteins in the present
study (Figure 5—figure supplement 2), which might be partly due to the difference of cohorts or
ethnicities. Instead, most of those T cells cross-reacted with environmental or symbiotic bacteria.
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Figure 6. Frequencies of pre-existing S-reactive clonotypes in the public database of uninfected and infected
cohorts. TCRB sequences of the top expanded clonotypes in pre-vaccinated samples were investigated in the
Adaptive database. Frequencies of detected clonotypes are shown in box plot. Healthy, dataset from 786 healthy
donors. COVID, dataset from 1485 COVID-19 patients.

These observations suggest that these cross-reactive T cells might have been developed to establish
tolerance against less harmful microbes, and thus unlikely to efficiently contribute to the protective
viral immunity. Vaccination may induce opposite tendencies on T cell clonotypes that recognize the
same antigen (Aoki et al., 2022), which is hardly detected by the bulk T cell analyses. The current
study highlights the necessity of dynamic tracing of T cell responses in an epitope-specific clonotype
resolution for the evaluation of vaccine-induced immunity.

The limitation of this study is the number of individuals we analyzed. However, chronological and
clonological analysis of antigen-specific T cells in characteristic groups followed by epitope determi-
nation has not been performed before. This study suggests that mRNA vaccine is potent enough to
prime rare T cell clonotypes that become dominant afterwards. Furthermore, we propose that the
types of CD4* T clonotypes developed shortly after two doses of vaccination could be an indication
of the longevity of antibodies in the following months. Tfh-inducing adjuvants or Tfh-skewing epitope
would be a promising ‘directional’ booster in the post-vaccine era when most people worldwide
were exposed to the same antigen in multiple doses within a short period. Furthermore, in addition
to SARS-CoV-2, this strategy can also be applicable for the prevention of other infectious diseases of
which neutralizing antibody titers are effective for protection.

Materials and methods
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resource Designation Source or reference Identifiers Additional information

Antibody Anti-Human 1gG HRP (Goat Abcam ab97175 ELISA (1:5000)
polyclonal)

Antibody Anti-SARS-CoV-1gG WHO NIBSC 20/136 ELISA (10-31250)
international Standard (Human
polyclonal)

Antibody Anti-human CD3-FITC (mouse BioLegend Cat#: 300305 FACS (1:100)
monoclonal)

Antibody TotalSeq-C anti-human Hashtags BioLegend Cat#: 394661,  Single-cell sequencing (1:50)
(mouse monoclonal, mixture) etc

Antibody Anti-mouse CD69-APC (armenian BioLegend Cat#: 104513 FACS (1:100)
hamster monoclonal)

Peptide, recombinant protein SARS-CoV-2 Spike (trimeric) Cell Signaling #65444

Technology
Peptide, recombinant protein SARS-CoV-2 Nucleocapsid ACRO Biosystems NUN-C5227

protein

Peptide, recombinant protein

SARS-CoV-2 (Spike Glycoprotein), JPT Peptide JER-PM-WCPV- S peptide pool
PepMix Technologies GmbH ~ S-1-2

Peptide, recombinant protein

Individual S peptide Genscript a peptide scan (15mers with 11 aa
overlap) through S protein (Swiss-Prot

ID: PODTC2)

Recombinant DNA reagent

Yamasaki et al., 2006 retroviral vector

pMX-IRES-rat CD2 (plasmid)

Cell line (Cercopithecus aethilops) Vero E6/TMPRSS2

JCRB cell bank;
Yoshida et al., 2021

Cell line (Mus musculus)

NFAT-GFP Reporter cell Matsumoto et al., T cell hybridoma lacking endogenous

2021 TCR with an NFAT-GFP reporter gene

Biological sample (Human
gammaherpesvirus 4)

Epstein-Barr virus (EBV) Kanda et al., 2015 For B cell transformation

Software, algorithm

GraphPad Prism 8

GraphPad Software GraphPad

Prism 8

Sample collection

Samples (serum, whole blood, and PBMCs) were collected four times at 0-7 days before 1st dose vacci-
nation as pre-vaccination, at 14-21 days after 1st dose vaccination as 3 weeks sample, at 35-49 days
after 1st dose vaccination as 6 weeks sample, and at 154-182 days after 1st dose of vaccination as
24 weeks sample. At the same time of blood sampling, adverse event information was also collected
from all participants. PBMCs were isolated using BD vacutainer CPT cell separation tube (Beckton
Dickinson), according to manufacturers’ instructions. Isolated PBMCs were stored in the vapor phase
of liquid nitrogen until use.

Antibody titer determination by enzyme-linked immunosorbent assay
(ELISA)

Serum antibody titer was measured using ELISA. Briefly, recombinant ancestral S protein (S1 + S2,
Cell Signaling Technology; 1 pg/ml) or recombinant nucleocapsid protein (Acrobiosystems; 1 pg/
ml) was coated on 96-well plate at 4 °C overnight. On the second day, wells were blocked with
goat serum (Gibco) for 2 hr at room temperature. The sera were diluted from 10 to 31,250 folds in
blocking buffer and incubated overnight at 4 °C. The next day, wells were washed and incubated with
horseradish peroxidase (HRP)-conjugated antibodies (Abcam) for 3 hr at room temperature. After
being washed with PBS-T (0.05% tween 20), wells were incubated with the peroxidase chromogenic
substrate 3,3'-5,5'-tetramethyl benzidine (Sigma-Aldrich) for 30 min at room temperature, then the
reaction was stopped by 0.5 N sulfuric acid (Sigma Aldrich). The absorbance of wells was immediately
measured at 450 nm with a microplate reader (Bio-Rad). The value of the half-maximal antibody titer
of each sample was calculated from the highest absorbance in the dilution range by using Prism 8
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software. The calculated antibody titer was converted to BAU/ml by using WHO International Stan-
dard 20/136 (NIBSC) for ancestral S-specific antibody titer.

Whole blood interferon-gamma release immune assay (IGRA) for SARS-
CoV-2-specific T cell responses using QuantiFERON

SARS-CoV-2 specific T cell immune responses were evaluated by QuantiFERON SARS-CoV-2 (Qiagen)
(Jaganathan et al., 2021), according to manufacturer’s instructions, in which CD4* T cells were acti-
vated by epitopes coated on Ag1 tube, and CD4* and CD8"* T cells were activated by epitopes coated
on Ag2 tube. Briefly, 1 ml of whole blood sample with heparin is added into each of Nil (negative
control), Mito (positive control), Ag1, and Ag2 tubes, and incubated at 37 °C for 22-24 hr. Tubes
were then centrifuged at 3000xg for 15 min for collecting plasma samples. IFNy derived from acti-
vated T cells was measured with enzyme-linked immunosorbent assay (ELISA) (Qiangen) according to
the manufacturer’s instructions. IFNy concentration (IU/ml) was calculated with background (Nil tube)
subtracted from values of Ag1 or Ag2 tubes.

Pseudo-typed virus neutralization assay

The neutralizing activity of serum antibodies was analyzed with pseudo-typed VSVs as previously
described (Yoshida et al., 2021). Briefly, Vero E6 cells stably expressing TMPRSS2 were seeded on
96-well plates and incubated at 37 °C for 24 h. Pseudoviruses were incubated with a series of dilutions
of inactivated serum for 1 hr at 37 °C, then added to Vero E6 cells. At 24 hr after infection, cells were

lysed with cell culture lysis reagent (Promega), and luciferase activity was measured by Centro XS® LB
960 (Berthold).

In vitro stimulation of PBMCs

Cryopreserved PBMCs were thawed and washed with warm RPMI 1640 medium (Sigma) supple-
mented with 5% human AB serum (GeminiBio), Penicillin (Sigma), streptomycin (MP Biomedicals), and
2-mercaptoethanol (Nacalai Tesque). PBMCs were labeled with Cell Proliferation Kit (CellTrace Violet,
ThermoFisher) following the manufacturer’s protocol and were stimulated in the same medium with
S peptide pool (1 pg/ml per peptide, JPT) for 10 days, with human recombinant IL-2 (1 ng/ml, Pepro-
tech), IL-7 (5 ng/ml, BioLegend) and IL-15 (5 ng/ml, Peprotech) supplemented on day 2, day 5, and
day 8 of the culture. On day 10 cells were washed and stained with anti-human CD3 and TotalSeg-C
Hashtags antibodies. Proliferated T cells (CD3*CTV"*") were sorted by cell sorter SH800S (SONY) and
used for single-cell TCR and RNA sequencing analyses.

Single-cell-based transcriptome and TCR repertoire analysis

Single cell library was prepared using the reagents from 10x Genomics following the manufactur-
er's instructions. After reverse transcription, cDNA was amplified for 14 cycles, and up to 50 ng of
cDNA was used for construction of gene expression and TCR libraries. Libraries were sequenced in
paired-end mode, and the raw reads were processed by Cell Ranger 6.0.0 (10x Genomics). Distribu-
tion of the mitochondrial gene percentage, n_counts and n_genes were fitted with a one-variable,
two-component mixed Gaussian model using the Python package scikit-learn (Pedregosa et al.,
2011) and divided into two distributions corresponding to high and low levels, respectively. The
cutting threshold values were the middle value of the means of the two fitted Gaussian distributions.
A package call Scrublet was also applied (Wolock et al., 2019), and the events whose main hashtag
reads are less than 95% of the total hashtag reads were gated out before the UMAP plots were
exported using BBrowser (Le et al., 2020). Tth signature score was generated using canonical Tth
marker genes (IL21, ICOS, CD200, PDCD1, POU2AF1, BTLA, CXCR5, and CXCL13). Other cell popu-
lations were annotated using the following markers: Treg, CD4*FOXP3*; CDAT, CD3E*CD4*; CD8T,
CD3E*CD8A; central memory (cm) cells, SELL(CD62L)" cells although sometimes CCR7 expression is
vague; effector memory (em) cells, SELL*-CCR7- and IFNG-expressing cells containing populations;
naive cells, CCR7*TCF7*; cycling cells, MKI67"; y8T, TRDC*; B cells, CD19*; Monocyte, CD14*; MAIT,
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CD3E*KLRB1*IL18R1*; Tfr, FOXP3*NRN1* in cells with high Tfth score; CD4-CTL, GZMB* in CDA4T cells
(Kaech et al., 2002; Meckiff et al., 2020, Sallusto et al., 2004, Wang et al., 2021).

Reporter cell establishment and stimulation

TCRa and B chain cDNA sequences were introduced into a mouse T cell hybridoma lacking TCR
and having a nuclear factor of activated T-cells (NFAT)-green fluorescent protein (GFP) reporter gene
(Matsumoto et al., 2021) using retroviral vectors (Lu et al., 2021; Yamasaki et al., 2006). TCR-
reconstituted cells were co-cultured with 1 pg/ml of peptides in the presence of antigen-presenting
cells (APCs). After 20 hr, cell activation was assessed by GFP and CD69 expression.

Antigen-presenting cells

Transformed B cells and HLA-transfected HEK293T cells used as APCs were generated as described
(Lu et al., 2021). For transformed B cells, 3x10° PBMCs were incubated with the recombinant Epstein-
Barr virus (EBV) suspension (Kanda et al., 2015) for 1 hr at 37 °C with mild shaking every 15 min.
The infected cells were cultured in RPMI 1640 medium supplemented with 20% fetal bovine serum
(FBS, CAPRICORN SCIENTIFIC GmbH) containing cyclosporine A (CsA, 0.1 pg/ml, Cayman Chemical).
Immortalized B lymphoblastoid cell lines were obtained after 3 weeks of culture and used as APCs.
For HLA-transfected HEK293T cells, plasmids encoding HLA class /Il alleles (Jiang et al., 2013) were
transfected in HEK293T cells with PEI MAX (Polysciences).

Determination of epitopes and restricting HLA

15-mer peptides with 11 amino acids overlap that cover the full length of S protein of SARS-CoV-2
were synthesized (GenScript). Peptides were dissolved in DMSO at 12 mg/ml and 12-15 peptides
were mixed to create 26 different semi-pools. TCR-reconstituted reporter cells were stimulated with
1 pg/ml of S peptide pool (1 pg/ml per peptide, JPT), then 36-peptide pools that consist of three
semi-pools each, then semi-pools, and then 12 individual peptides in the presence of autologous B
cells to identify epitope peptides. To determine the restricting HLA, HLAs were narrowed down by
co-culturing reporter cells with autologous and various heterologous B cells in the presence of 1 pg/
ml of the epitope peptide. HLAs shared by activatable B cells were transduced in HEK239T cells and
used for further co-culture to identify the restricting HLA.

Statistics

All values with error bars are presented as the mean = SEM. One-way ANOVA followed by Turkey's
post hoc multiple comparison test was used to assess significant differences in each experiment using
Prism 8 software (GraphPad Software). Differences were considered to be significant when p value
was less than 0.05. p values in Figure 6 were calculated with t-test using the ‘stat_compare_means’
function in R (version 4.3.0 for armé4).
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Nakagami H, sustained or declined query/acc.cgi?acc=
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