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Abstract Many classes of drugs can induce fatal cardiac arrhythmias by disrupting the electro-
physiology of cardiomyocytes. Safety guidelines thus require all new drugs to be assessed for pro-
arrhythmic risk prior to conducting human trials. The standard safety protocols primarily focus on 
drug blockade of the delayed-rectifier potassium current (IKr). Yet the risk is better assessed using 
four key ion currents (IKr, ICaL, INaL, IKs). We simulated 100,000 phenotypically diverse cardiomyocytes 
to identify the underlying relationship between the blockade of those currents and the emergence 
of ectopic beats in the action potential. We call that relationship the axis of arrhythmia. It serves as 
a yardstick for quantifying the arrhythmogenic risk of any drug from its profile of multi-channel block 
alone. We tested it on 109 drugs and found that it predicted the clinical risk labels with an accuracy 
of 88.1–90.8%. Pharmacologists can use our method to assess the safety of novel drugs without 
resorting to animal testing or unwieldy computer simulations.

eLife assessment
This compelling and novel mathematical method assesses drug pro-arrhythmic cardiotoxicity by 
examining the electrophysiology of untreated cardiac cells. It will be valuable for future drug safety 
design.

Introduction
Torsades des Pointes is a potentially lethal ventricular arrhythmia that can be induced by many classes 
of drugs. These include antibiotics, antipsychotics, antihistamines, chemotherapeutics, and anti-
arrhythmics (Yap and Camm, 2003). The majority of torsadogenic drugs block the hERG ion channel 
which carries the delayed-rectifier potassium current ‍(IKr)‍ (Witchel, 2011). For this reason, interna-
tional safety guidelines require hERG block to be assessed in living cells prior to conducting human 
trials (ICH, 2005). However, the standard hERG assay is overly sensitive. It does not accommodate 
multi-channel effects which render some drugs safe despite blocking hERG (Martin et  al., 2004; 
Hoffmann and Warner, 2006). Consequently, many useful drugs are prematurely abandoned during 
pre-clinical trials. The safety pharmacology community is actively pursuing new in vitro and in silico 
assays that improve accuracy by targeting multiple ion channels (Pugsley et al., 2008; Colatsky et al., 
2016).

In silico assays use computational models of cardiomyocyte electrophysiology in place of a living 
cell (Mirams et al., 2011; Lancaster and Sobie, 2016; Mann et al., 2016; Dutta et al., 2017; Passini 
et al., 2017; Ballouz et al., 2021; Llopis-Lorente et al., 2020). Drug blockade (Figure 1A) is simulated 
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in the model (Figure 1B) by attenuating the conductivity of the relevant ion currents. The conduc-
tance parameters are labeled ‍G‍ by convention. The simulations can be repeated across a diverse 
range of cardiac phenotypes to ensure generality of the results (Britton et al., 2013; Ni et al., 2018; 
Gong and Sobie, 2018). The individual phenotypes are constructed by randomizing the conductance 
parameters to mimic natural variation in ion channel expression. The method produces a population 
of cardiac action potentials (Figure 1C). Selected biomarkers within the action potentials are then 
statistically analyzed for drug-induced changes (e.g. Hondeghem, 2005; Varshneya et al., 2021). 
Contemporary research is largely concerned with improving those biomarkers.

Yet the main problem with the conventional approach is that it requires multitudes of computa-
tionally intensive simulations for every drug that is assessed. Pharmacology laboratories must invest 
heavily in specialist computing resources and expertise before they can apply the methods to their 
drugs. We propose a new approach that allows drugs to be assessed without conducting drug-specific 
simulations. The method is initiated by simulating a diverse population of cardiomyocytes in the 
absence of drugs. That simulation need only be done once. The drug-free population is then used to 
identify the principal relationship between ionic conductances and ectopic phenotypes. We call that 
relationship the axis of arrhythmia because it describes the principal pathway for transforming benign 
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Figure 1. Conceptual framework. (A) Drugs simultaneously block multiple species of ion channels to differing degrees. The principal ion currents 
implicated in drug-induced Torsades des Pointes are ‍ICaL, IKr, INaL‍, and ‍IKs‍. (B) Simplified circuit diagram of cardiomyocyte electrophysiology. Drug 
blockade is simulated by attenuating the ionic conductances ‍(GCaL, GKr, GNaL, GKs)‍. Those parameters are also varied randomly to mimic individual 
differences in electrophysiology. (C) Simulated action potentials of phenotypically diverse cardiomyocytes. Early after-depolarizations (red) are 
biomarkers for Torsades des Pointes. Conventional in silico assays simulate the effect of drugs on cardiomyocytes on a case-by-case basis. Our method 
inverts the procedure by simulating cardiomyocytes in the absence of drugs and then inferring how drugs would behave.
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Figure 2. Benign versus ectopic cardiac phenotypes. (A) Simulated action potentials for cardiomyocytes with randomly scaled conductance parameters 

‍GKr‍, ‍GCaL‍, ‍GNaL‍, and ‍GKs‍. Myocytes that exhibited early after-depolarizations were classified as ectopic (red). Those that did not were classified 
as benign (gray). (B) Swarm plots of the conductance scalars on a logarithmic scale. Color indicates the classification of the myocyte (benign versus 
ectopic). (C) Two-dimensional slice of parameter space showing the relationship between ectopic and benign phenotypes in ‍GCaL‍ versus ‍GKr‍. The 

dashed line is the statistical decision boundary. ‍GNaL‍ and ‍GKs‍ were fixed at unity ‍(e0 = 1)‍. (D) Two-dimensional slice showing ‍GNaL‍ versus ‍GKs‍. In this 

case ‍GCaL = e0.46
‍ and ‍GKr = e−2.3

‍.
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cardiomyocytes into ectopic cardiomyocytes. Thereafter, the axis serves as a yardstick for assessing 
the torsadogenic risk of drugs directly from their physiological signature of ion channel blockade 
alone.

Results
The action potentials of 100,000 randomized ventricular cardiomyocytes (Figure 2A) were simulated 
using a variant of the O’Hara-Rudy model (O’Hara et  al., 2011) that was optimized for long QT 
syndrome (Mann et al., 2016; Krogh-Madsen et al., 2017). Early after-depolarizations were chosen 
as a biomarker for Torsades des Pointes. Cardiomyocytes that exhibited early after-depolarizations 
were classified as ectopic (red) and those that did not were classified as benign (gray).

The four cardiac ion currents that we investigated ‍(ICaL, IKr, INaL, IKs)‍ have previously been impli-
cated in torsadogenic risk (Dutta et  al., 2017; Llopis-Lorente et  al., 2020). The myocytes were 
constructed by re-scaling the conductance parameters ‍(GCaL, GKr, GNaL, GKs)‍ with randomly selected 
multipliers that were drawn uniformly from a logarithmic scale (Figure 2B). The use of the logarithmic 
coordinate frame is crucial to our subsequent analysis.

The ectopic and benign phenotypes were clearly segregated in parameter space (Figure 2C and 
D). Multivariate logistic regression was used to identify the linear boundary (dashed line) that best 
separated the two classes. We refer to it as the decision boundary following the conventions of clas-
sification statistics.

Decision boundary
The multivariate logistic regression equation,

	﻿‍
ln p

1 − p
= β0 + βCaLXCaL + βKrXKr + βNaLXNaL + βKsXKs,

‍�
(1)

describes the log-odds of a cardiomyocyte being ectopic where ‍XCaL = ln(GCaL)‍, ‍XKr = ln(GKr)‍, 
‍XNaL = ln(GNaL)‍, and ‍XKs = ln(GKs)‍. The decision boundary is the hyperplane in four-dimensional param-
eter space ‍(XCaL, XKr, XNaL, XKs)‍ where ‍p = 0.5‍. Figure 2C and D shows the intersection of that hyper-
plane (dashed) with two-dimensional slices of parameter space. Although we illustrate the concept in 
two dimensions, the analysis itself is conducted in four dimensions.

Figure 3. Quantifying drug risk with the axis of arrhythmia. (A) The axis of arrhythmia runs orthogonally to the 
decision boundary. As such, it describes the shortest pathway to ectopy for any cardiomyocyte. The basis vector of 
the axis is labeled ‍B‍. The action of the drug is labeled ‍A‍. The arrhythmogenic component of the drug is obtained 
by projecting vector ‍A‍ onto vector ‍B‍. The length of the projection is our measure of drug risk. (B) The probability 
of ectopy along the axis of arrhythmia. The origin corresponds to the baseline cardiomyocyte. The distance from 
the origin corresponds to the risk score. Distance is measured in log units, using the same scale as panel A.

https://doi.org/10.7554/eLife.90027
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Our estimates of the regression coefficients, ‍β0 = −6.416 ± 0.059‍, 

‍βCaL = 2.509 ± 0.024‍, ‍βKr = −2.471 ± 0.024‍, ‍βNaL = 0.847 ± 0.012‍, ‍βKs = −1.724 ± 0.018‍, were all statis-
tically significant ‍(p < 0.001)‍. The reported confidence intervals represent ± 1 SE. The model itself was 
also significantly different from the null model, ‍χ

2(99995, n = 100000) = 73900,‍ ‍p < 0.001‍.

The action of drugs in logarithmic coordinates
Drugs attenuate the conductivity of ion channels in a multiplicative fashion. The conductance of the 
drugged channel is defined as

	﻿‍ Gdrug = δ × Gion,‍�

where ‍Gion‍ is the baseline conductance of the ion channel and ‍δ ∈ [0, 1]‍ is the fractional conductance 
imposed by the drug. Logarithmic coordinates transform the action of drug blockade into an additive 
process,

	﻿‍ ln(Gdrug) = ln(δ) + ln(Gion),‍�

which can be expressed with vector geometry (Figure 3A). We denote the action of a drug by the 
vector,

	﻿‍ A = {αCaL,αKr,αNaL,αKs},‍�

where ‍α = ln(δ)‍. The values of ‍δ‍ would ordinarily be obtained from patch clamp experiments. In our 
case, we calculated them from the published potencies of 109 drugs collated by Llopis-Lorente et al., 
2020.

Axis of arrhythmia
We define the axis of arrhythmia as a line that runs orthogonally to the decision boundary (Figure 3A). 
It represents the shortest path for shifting any cardiomyocyte into the ectopic regime by modifying 
the conductances of its ion channels. The basis vector of the axis,

	﻿‍ B = {βCaL,βKr,βNaL,βKs},‍� (2)

is defined by the coefficients of the regression equation.

Drug risk metric
The arrhythmogenic component of a drug is obtained by projecting the action of the drug onto the 
axis of arrhythmia. The length of the projection is our metric of drug risk. Specifically,

	﻿‍
risk = A · B

||B||
,
‍�

(3)

where ‍A‍ is the action of the drug, ‍B‍ is the basis vector of the axis of arrhythmia, and

	﻿‍
A · B =

∑
i

αiβi
‍�

is the dot product. The metric is normalized to the Euclidean length of ‍B‍, which is denoted ‍||B||‍. From 
our regression coefficients,

	﻿‍ B = {2.509,−2.471, 0.847,−1.724}‍�

and 
‍||B|| =

√
β2

CaL + β2
Kr + β2

NaL + β2
Ks = 4.01‍

.

Risk scores
According to our metric, drugs that shift the electrophysiology toward the ectopic region have posi-
tive scores, whereas drugs that shift it away from ectopy have negative scores. Drugs that do neither 
have scores near zero.

https://doi.org/10.7554/eLife.90027
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The a priori probability of ectopy
The probability of ectopy along the axis of arrhythmia,

	﻿‍
p(x) = 1

1 + exp(x)
,
‍�

(4)

is obtained by rearranging Equation 1 and substituting ‍x = β0 + βCaLXCaL + βKrXKr + βNaLXNaL + βKsXKs‍. 
Equation 4 describes the a priori probability of a cardiomyocyte being ectopic, based on its proximity 
to the decision boundary (Figure 3B). The shallow slope of the profile reflects the uncertainty in fitting 
a linear boundary to the data, as seen in Figure 2C and D.

Susceptibility in the natural population
Any given drug alters the electrophysiology of all cardiomyocytes to the same extent, but only some 
cardiomyocytes become ectopic. The most susceptible are those that are closest to the decision 
boundary. We calculated the proportion of the natural population that would be susceptible to a given 
drug by analyzing how the drug shifts the population density with respect to the decision boundary.

Following the methods of Sobie, 2009, Sadrieh et al., 2013, Morotti and Grandi, 2017, Gong 
and Sobie, 2018, we assumed that ion channel conductances varied independently and were log-
normally distributed ‍(µ = −0.112,σ = 0.472)‍. A log-normal distribution maps onto a normal distri-
bution in logarithmic coordinates, by definition. The natural population in our parameter space is 
therefore a symmetric multivariate Gaussian density function (Figure 4A). In the absence of drugs, the 
natural population density in four dimensions is centered at the point ‍O = {µ,µ,µ,µ}‍.

The proportion of myocytes that become ectopic depends on how far the population is shifted 
along the axis of arrhythmia according to the risk metric (Figure 4B). The proportion is calculated 
as the product of the a priori probability of the ectopy (Equation 4) and the density of the drugged 
population (Equation 6; Methods). For the case of 10× therapeutic dose of Ibutilide — which is a 

Figure 4. Susceptibility to a drug in the natural population. (A) Natural variation in ion channel conductivity is 
represented by a symmetric Gaussian density function centered at point ‍O‍. In this example, a 10-fold dose of 
Ibutilide shifts the population by 1.44 units toward the ectopic region. The proportion of ectopic myocytes in the 
drugged population is 41.5% (red). (B) The relationship between the drug risk score and ectopy in the natural 
population. The drug risk score corresponds to position on the axis of arrhythmia. The shaded region is the a 
priori probability of ectopy along that axis (reproduced from Figure 3B). The Gaussian profile (thin gray line) is the 
natural population density centered at zero. The proportion of myocytes that are ectopic (heavy black line) is 0.93% 
at baseline. That proportion rises as the drug shifts the population density toward the decision boundary.

The online version of this article includes the following video for figure 4:

Figure 4—video 1. An animated version of this figure showing how the population density shifts as the risk score 
increases.

https://elifesciences.org/articles/90027/figures#fig4video1

https://doi.org/10.7554/eLife.90027
https://elifesciences.org/articles/90027/figures#fig4video1
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potent ‍IKr‍ blocker — the proportion of the natural population that is susceptible to drug-induced 
Torsades is 41.5% (Figure 4). The size of the susceptible population is a monotonic function of the 
drug’s risk score, so the torsadogenic risk can be described using either terminology.

Validation against known drugs
We used the Hill equation to reconstruct the drug-response profiles of ‍GKr‍, ‍GCaL‍, ‍GKs‍, and ‍GNaL‍ 
from the half-maximal inhibitory concentrations ‍(IC50)‍ of 109 drugs reported by Llopis-Lorente et al., 
2020. They labeled the clinical risks according to the Credible Meds list of QT drugs (Woosley et al., 
2019). In that labeling scheme, Class 1 drugs carry a known torsadogenic risk; Class 2 drugs carry a 
possible risk; Class 3 drugs carry a risk but only in conjunction with other factors; Class 4 drugs have no 
evidence of risk at all. The reconstructed drug-response profiles, along with their corresponding risk 
scores, are provided in Table 2—source data 1 and plotted in Table 2—source data 2.

Cases of Ajmaline and Linezolid
Ajmaline (Figure 5A, top) is an anti-arrhythmic drug that slows conduction by blocking the fast sodium 
current, ‍INa‍ (Kiesecker et al., 2004). It also blocks ‍IKr‍, which is the reason Ajmaline has a known risk 
(Class 1) of inducing Torsades. In comparison, Linezolid (Figure 5A, bottom) is an antibacterial agent 
that has no clinical evidence of Torsades (Class 4) even though it too blocks ‍IKr‍, albeit to a lesser 
extent than it blocks ‍ICaL‍. Indeed, the two drugs have nearly opposite effects on ‍GCaL‍ and ‍GKr‍, as can 
be seen in Figure 5B.

At 25× therapeutic dose, the blocking action of Ajmaline is written in vector notation as

	﻿‍ AAjmaline = {−0.425,−2.32, 0, 0}.‍�

Likewise, the blocking action of Linezolid is

25x dose
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Figure 5. Cases of Ajmaline and Linezolid. (A) Drug-response profiles of ‍ICaL, IKr, INaL‍, and ‍IKs‍ relative to the therapeutic dose. Open circles highlight 
25× therapeutic dose. For Ajmaline, ‍δCaL = 0.654‍ and ‍δKr = 0.0986‍ at 25× dose. For Linezolid, ‍δCaL = 0.067‍ and ‍δKr = 0.437‍ at 25× dose. Data for 

‍INaL‍ and ‍IKs‍ were not available, so those channels were assumed to be unaffected by the drugs in both cases ‍(δNaL = 1‍ and ‍δKs = 1).‍ (B) The blocking 
action of Ajmaline and Linezolid at 25× dose. By definition, ‍α = ln(δ)‍. (C) The corresponding risk scores for Ajmaline ‍(+1.16)‍ and Linezolid ‍(−1.18)‍ at 
that dose. (D) The drug-induced shifts of the natural population density along the axis of arrhythmia. The proportion of myocytes that are ectopic with 
25× dose of Ajmaline is 26% (red), compared to only 0.0095% for Linezolid.

https://doi.org/10.7554/eLife.90027
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	﻿‍ ALinezolid = {−2.71,−0.828, 0, 0}.‍�

The two drugs shift the electrophysiology in opposite directions along the axis of arrhythmia 
(Figure 5C). The corresponding risk scores are ‍+1.16‍ for Ajmaline and ‍−1.18‍ for Linezolid. The signs 
of the scores suggest that Ajmaline is pro-arrhythmic whereas Linezolid is not, which agrees with the 
clinical risk labels. Indeed, the sizable negative score for Linezolid suggests that it may actually have 
anti-arrhythmic properties.

The effect of both drugs on the natural population is shown in Figure 5D. Ajmaline shifts the popu-
lation density by 1.16 units toward the ectopic regime, making 26% of the population susceptible to 
Torsades. Conversely, Linezolid shifts the population 1.18 units away from the ectopic regime, making 
only 0.0095% of the population susceptible, which is a substantial drop compared to the baseline rate 
of 0.93%.

The effect of dosage on multi-channel block
The action of a drug subtly changes direction with dosage because of differing response rates for 
each ion channel. For example, Ajmaline (Figure 6A, left) disproportionately blocks more ‍IKr‍ than 
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Figure 6. Effect of dose on multi-channel drug-block. (A) The attenuation of ‍GCaL‍, ‍GKr‍, ‍GNaL‍, and ‍GKs‍ for 1× to 
30× therapeutic doses of Ajmaline, Propafenone, and Linezolid, respectively. The ion channels respond to dosage 
at differing rates. (B) The dose-dependent action of each drug in the parameter space of ‍GCaL‍ and ‍GKr‍. The 
paths are curvilinear because of the differing response rates of the ion channels. For comparison, the gray traces 
are the pathways of all 109 drugs in the dataset. (C) The corresponding pathways in ‍GNaL‍ and ‍GKs‍. Propafenone 
attenuates ‍GNaL‍ but not ‍GKs‍. Neither Ajmaline nor Linezolid attenuate ‍GNaL‍ or ‍GKs‍, but other drugs do (gray 
traces).

https://doi.org/10.7554/eLife.90027
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‍ICaL‍ with increasing dosage. Its dose-dependent action thus follows a gentle arc in parameter space 
rather than a straight line (Figure 6B, left). The effect is less pronounced for Propafenone (Figure 6A, 
middle) which recruits the ion channels more uniformly. Nonetheless, its path is still not strictly linear 
(Figure 6B, middle). Linezolid (Figure 6B, right) follows a similar pattern to Ajmaline (Figure 6B, left), 
but in the opposite direction. Of these three drugs, only Propafenone blocks ‍INaL‍ and none block 

‍IKs‍, hence their pathways in ‍GKs‍ and ‍GNaL‍ (Figure 6C) are of little consequence. Nonetheless, the 
pathways of other drugs (gray traces) are often curvilinear in four dimensions (‍GCaL‍, ‍GKr‍, ‍GNaL‍, ‍GKs‍). 
That curvature influences how these drugs project onto the axis of arrhythmia, hence the risk scores 
depend on dosage. The shifting scores reflect the changing balance of ionic currents that occur natu-
rally with multi-channel drugs.

Testing the risk metric
The metric was tested by scoring all 109 drugs over a range of doses and comparing the results to 
the clinical risk labels from Credible Meds. The clinical labels were lumped into two categories for this 
purpose: UNSAFE (Classes 1 and 2) versus SAFE (Classes 3 and 4). Drugs that scored above a given 
threshold ‍(risk > θ)‍ were predicted to be unsafe and those that scored below the threshold ‍(risk < θ)‍ 
were predicted to be safe. The threshold was optimized for each dosage. For example, a classifica-
tion accuracy of 90.8% was achieved for drugs at 25× dose using a scoring threshold of ‍θ = 0.195‍ 
(Figure 7).

The procedure was repeated for doses ranging from 1× to 32×. The classification accuracy for all 
dosage levels was found to lay between 88.1% and 90.8% (Figure 8A). The differences were primarily 
due to borderline cases, so we refrain from nominating any one dosage as being optimal. In compar-
ison, the conventional hERG assay has an accuracy of 78.9% for the same dataset (Llopis-Lorente 
et al., 2020).

From a safety perspective, the trade-off between false negatives and false positives can be tuned 
by adjusting the scoring threshold, ‍θ‍. This is illustrated by the receiver operating characteristic (ROC) 
curves (Figure 8B and C). In our case, there is little difference between the ROC curves for drugs 
assessed at 5× dose versus 25× dose. The areas under the respective ROC curves (AUROC) are nearly 
identical at 91.3% and 91.5%. The conventional hERG assay, in comparison, has an AUROC of ‍77 ± 7%‍ 
(Kramer et al., 2013).

Discussion
In this study, we have proposed a new metric of torsadogenic risk that is based on the axis of 
arrhythmia. The major benefit of the metric is that it can be applied to novel drugs without conducting 
new computer simulations. The drug-response profiles of four ion currents ‍(δCaL, δKr, δNaL, δKs)‍ are all 
that is needed to calculate the torsadogenic risk of the drug. The ion currents can be measured 
using standard patch clamp techniques and the risk metric can be calculated with pen and paper. 
This simplicity removes a technological hurdle to the adoption of computational assays in safety 
pharmacology.

Identifying the axis of arrhythmia
All of the simulations in the present study were conducted in the absence of drugs. The simulations 
were only needed to identify the axis of arrhythmia and do not need to be repeated when applying 
the metric. The axis encapsulates the principal relationship between ion channel blockade and the 
onset of early after-depolarizations. It represents the most potent combination of pro-arrhythmic 
block that is theoretically possible for any drug, averaged across all cardiomyocytes. As such, it serves 
as an ideal yardstick for measuring the arrhythmogenic risk of real drugs.

The assumption that the boundary is linear is crucial for generalizing the findings across all cardio-
myocytes. It allows the effect of a drug to be analyzed independently of the individual cardiomyo-
cytes. So even though a nonlinear decision boundary might fit some cardiomyocytes better, it would 
not be helpful because the drug analysis would then be patient specific — which is not the aim of 
population safety pharmacology.

https://doi.org/10.7554/eLife.90027
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Credible Meds

Accuracy
90.8%
     False Positive
     False Negative

Population Risk

Drug Risk

Figure 7. Torsadogenic risk for 109 drugs at 25× dose. Colors indicate the clinical risk labels from Credible Meds. 
The drugs are sorted by the score returned by our risk metric (lower axis). The proportion of the natural population 
that would be susceptible to the drug is shown on the upper axis. Drugs to the right of the scoring threshold 

‍(θ = 0.195)‍ were classified as unsafe and those to the left of it were classified as safe. Misclassified drugs are 
marked with a triangle and highlighted in bold. In this case, 90.8% of the drugs were correctly classified.

https://doi.org/10.7554/eLife.90027
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Susceptibility to drug-induced arrhythmia
Our method can also predict the proportion of the population that would be susceptible to a drug 
without explicitly simulating it. The analysis is possible because drug blockade and phenotypic diver-
sity both operate on the same properties of ion channels. The two biological processes are therefore 
mathematically interchangeable. As such, the distribution of the drugged population can be inferred 
from the drug-free population by shifting it according to the drug’s risk score. The size of the suscep-
tible population is a function of the risk score. So the torsadogenic risk can be reported either as a raw 
score or as a percentage of the population at risk.

Comparison to conventional approaches
Conventional in silico safety assays are designed to apply the drug directly to simulated cardiomyo-
cytes and then use biomarkers in the action potential to predict the torsadogenic risk. The biomarkers 
are typically optimized using a formal set of training drugs proposed by the comprehensive in vitro 
proarrhythmia assay (CiPA) initiative (Colatsky et al., 2016). See Grandi et al., 2018, for a review. The 
CiPA steering committee (Li et al., 2019) recommends that the electrophysiology be simulated using 
the CiPAORdv1.0 variant of the O’Hara-Rudy model which incorporates the kinetics of drugs binding 
with the hERG channel (Li et al., 2017). The recommended biomarker is qNet (Dutta et al., 2017) 
which measures the net charge of six major ion currents ‍(IKr, ICaL, INaL, Ito, IKs, IK1)‍. The clinical risks 
of the CiPA drugs (n=28) are labeled low, intermediate, or high. Low versus intermediate-or-high risk 
drugs were predicted with 84–95% accuracy using manual patch clamp techniques; or 93–100% accu-
racy using automated patch clamping (Li et al., 2019). Whereas low-or-intermediate versus high risk 
drugs were predicted to 92–100% accuracy using manual patch clamp; or 88–98% using automated 
patch clamp (Li et al., 2019). The measurement of the drug potencies is a source of considerable 
variability, which is exacerbated by the small number of test drugs (n=16). The prediction accuracy 
reported by Li et al., 2019, is higher than our method, but the results cannot be compared directly 
because the risk labels are stratified very differently.

Passini et al., 2017, used a larger dataset (n=62) to obtain 89% accuracy at predicting Class 1 
versus Class 2–4 torsadogenic risk labels from Credible Meds. The cardiomyocytes were simulated 
using the baseline O’Hara-Rudy model without dynamic drug-binding kinetics. The accuracy is within 
the range of our results, but it too uses a slightly different risk stratification scheme. They scored the 
risk independently of dosage by averaging the number of early after-depolarizations, weighted by the 
concentration of the drug (Passini et al., 2017). We believe it is better to quantify the risk as a function 
of dosage, since even the most lethal drug is safe at zero dose.

The present study uses the same dataset (n=109) as Llopis-Lorente et al., 2020, who investigated 
a suite of biomarkers using a recalibrated O’Hara-Rudy model which also had revised gating kinetics 
for ‍INa‍. Their best performing biomarker was qNet, which predicted Class 1–2 versus Class 3–4 torsa-
dogenic risk with 92.7% accuracy. It exceeds our best result by approximately 2% on the same risk 
stratification scheme. Llopis-Lorente et al., 2020, increased the overall performance to 94.5% by 
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90
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Figure 8. Optimal dosage. (A) Classification accuracy for drugs assessed at a range of dosages. (B) Receiver operating characteristic (ROC) curve for 
drugs at 5× dose. (C) ROC curve for drugs at 25× dose. AUROC is area under the ROC curve. TPR is true positive rate. FPR is false positive rate. The 
false negative rate is 1-TPR.
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combining the best biomarkers into a decision tree. Interestingly, early after-depolarizations proved 
to be their worst biomarker, with only 78.9% accuracy, which is quite different to our findings. We 
suspect that their method under-estimated the predictive power of early after-depolarizations by only 
exploring normal physiological limits where such events are rare.

Comparison to MICE models
MICE models (Kramer et al., 2013) are purely statistical. They use logistic regression to predict the 
torsadogenic risk of a drug directly from the half-maximal inhibitory concentrations ‍(IC50)‍ for hERG, 
Cav1.2 and Nav1.5. Kramer et al., 2013, trained six candidate models on a dataset of 55 drugs. Their 
best model predicted the clinical risk labels of the drugs with 90.9% accuracy using only the difference 
between hERG and Cav1.2. Specifically,

	﻿‍
ln p

1 − p
= β0 + β1(C − H),

‍�

where ‍H= − ln(IC50)‍ for hERG and ‍C = − ln(IC50)‍ for Cav1.2. Their regression equation is strikingly 
similar to ours (Equation 1) except that MICE models use ‍ln(IC50)‍ for the predictor variables where we 
use ‍ln(G)‍. The distinction is that the ‍β‍ coefficients in the MICE model have no biophysical interpreta-
tion, whereas in our model they are the basis of the axis of arrhythmia (Equation 2) and so represent 
the most potent combination of pro-arrhythmic channel blocks that is theoretically possible. Interest-
ingly, the accuracy of the two models is nearly identical, albeit on different datasets.

Comparison to Bnet
Bnet (Mistry, 2018) is a simple linear model that predicts the torsadogenic risk of a drug directly from 
the net blockade of inward and outward ion currents. Notably,

	﻿‍
Bnet=

∑n
i Rr−

∑m
j Dj‍�

where ‍Ri‍ and ‍Dj‍ represent the percentage block of the repolarizing currents ‍(IKr, IKs, Ito)‍ and the depo-
larizing currents ‍(ICaL, INa, INaL, IK1)‍, respectively. Percentage block is akin to ‍(1 − δ)‍ in our model, but 
without the logarithmic transform. Bnet predicts the clinical risk labels of the CiPA validation drugs 
as accurately as the CiPAORdv1.0 model when adjusted for drug binding kinetics (Li et al., 2019; 
Mistry, 2019; Han et al., 2019). This has opened a debate between model complexity and biophys-
ical realism in which proponents of biophysical models advocate their explanatory benefits (Lancaster 
and Sobie, 2017), whereas proponents of simple models advocate their predictive power without the 
computational expense (Mistry et al., 2015; Mistry, 2017).

Conclusion
Our approach resolves the debate between model complexity and biophysical realism by combining 
both approaches into the same enterprise. Complex biophysical models were used to identify the 
relationship between ion channels and torsadogenic risk — as it is best understood by theory. Those 
findings were then reduced to a simpler linear model that can be applied to novel drugs without 
recapitulating the complex computer simulations. The reduced model retains a biophysical descrip-
tion of multi-channel drug block, but only as far as necessary to predict the likelihood of early after-
depolarizations. It does not reproduce the action potential itself. Our approach thus represents a 
convergence of biophysical and simple models which retains the essential biophysics while discarding 
the unnecessary details. We believe the benefits of this approach will accelerate the adoption of 
computational assays in safety pharmacology and ultimately reduce the burden of animal testing.

Limitations
The method was evaluated using a dataset of drugs that were drawn from multiple sources and 
diverse experimental conditions (Llopis-Lorente et al., 2020). It is known that such measurements 
differ prominently between laboratories and recording platforms (Kramer et al., 2020). Some drugs 
in the dataset combined measurements from disparate experiments while others had missing values. 
Of all the drugs in the dataset, only 17 had a complete set of ‍IC50‍ values for ‍ICaL‍, ‍IKr‍, ‍INaL‍, and ‍IKs‍. 
The accuracy of the predictions is therefore limited by the quality of the drug potency measurements.

https://doi.org/10.7554/eLife.90027
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The accuracy of the axis of arrhythmia is like-
wise limited by the quality of the biophysical 
model from which it is derived. The present study 
only investigated one particular variant of the 
ORd model (O’Hara et al., 2011; Krogh-Madsen 
et  al., 2017) paced at 1  Hz. Other models and 
pacing rates are likely to produce differing esti-
mates of the axis.

Methods
The action potentials of human endocardial 
ventricular cardiomyocytes were simulated using 
a variant of the ORD11 model (O’Hara et  al., 
2011) in which the maximal conductances of ‍GKs‍, 

‍GKr‍, ‍GCaL‍, ‍GNaL‍, ‍PNaCa‍, and ‍PNaK‍ were re-scaled (Table 1) to better reproduce the clinical phenotypes 
of long QT syndrome (Mann et  al., 2016; Krogh-Madsen et  al., 2017). The source code for the 
ORD11 model (O’Hara et al., 2011) was adapted to run in the Brain Dynamics Toolbox (Heitmann 
et al., 2018; Heitmann and Breakspear, 2022a). The adapted source code is publicly available (Heit-
mann, 2023). The differential equations were integrated forward in time using the matlab ode15s 
solver with error tolerances AbsTol = 1e-3 and RelTol = 1e-6. The model was paced at 1 Hz with a 
stimulus of –70 mV and duration of 0.5 ms. All simulations were equilibrated for at least 1000 beats 
prior to analysis.

Classification of ectopic phenotypes
Blocks of four successive beats were analyzed to accommodate alternans. Cells were classified 
as ectopic if any of those four beats contained an early after-depolarization — as defined by any 
secondary peak that rose above –50 mV and was separated from other peaks by at least 100 ms. Cells 
that did not exhibit early after-depolarizations were classified as benign.

Parameter domain
We chose the domain of parameter space ‍(G ∈ e±3)‍ through trial and error. That domain is large 
enough to cover the ectopic region, but not so large as to be unduly influenced by biological extremes. 
The parameters span between 0.05 and 20 times their baseline value.

Natural population density
Cell-to-cell variability was mimicked by scaling the conductances ‍(GCaL, GKr, GNaL, GKs)‍ by a random 
multiplier that was drawn from a log-normal distribution (Sobie, 2009). The parameters of the distri-
bution ‍(µ=0.112,σ = 0.472‍) were chosen to give the multipliers a mean of 1 and standard deviation of 
0.5. The spread was based on our experience with previous simulations (Sadrieh et al., 2013; Sadrieh 
et al., 2014; Ballouz et al., 2021; TeBay et al., 2022). The ion channel species were assumed to vary 
independently.

By definition, the log-normal distribution maps onto the normal distribution under the logarithmic 
transform. The natural population is therefore represented in logarithmic parameter space by a 
symmetric multivariate normal distribution. Specifically,

	﻿‍ f(w, x, y, z) = f(w) f(x) f(y) f(z),‍�

where

	﻿‍
f(x) = 1√

2πσ2
exp

(
− (x − µ)2

2σ2

)

‍�
(5)

is the univariate normal distribution.

Table 1. The baseline scaling factors applied to 
the ORD11 model.

Maximal conductance Multiplier

‍GKs‍ 8.09

‍GKr‍ 1.17

‍GCaL‍ (‍PCa‍) 3.57

‍PNaCa‍ 3.05

‍PNaK‍ 1.91

‍GNaL‍ 1.7

https://doi.org/10.7554/eLife.90027
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Joint probability
Rotational symmetry allowed the multivariate distribution to be projected onto the axis of arrhythmia 
as a univariate distribution. The probability of a cardiomyocyte in the natural population being ectopic 
is

	﻿‍
P =
ˆ

p(x) f(x) dx,
‍�

(6)

where ‍p(x)‍ is the a priori probability of ectopy for that phenotype (Equation 4) and ‍f(x)‍ is the propor-
tion of cells in the population with that phenotype (Equation 5). Drugs serve to shift ‍f(x)‍ along the axis 
of arrhythmia. The size of that shift is defined by the risk metric (Equation 3).

Drug dataset
The drug-response curves were reconstructed using the Hill equation,

	﻿‍
δ =

ICh
50

ICh
50 + [C]h

,
‍�

(7)

Table 2. The drug-response dataset.

Variable name Description

DrugID Unique identifier for each compound in the dataset

Compound Name of the compound

Class
Clinical risk label where 1=known risk, 2=possible risk, 3=conditional risk, 4=no 
evidence of risk

EFTPC Effective free therapeutic plasma concentration (nM)

Cmax Concentration relative to therapeutic dose

Conc Concentration of the dose (nM)

GKrScale ‍δKr‍ for the given dose (Equation 7)

GNaScale ‍δNa‍ for the given dose (Equation 7)

GNaLScale ‍δNaL‍ for the given dose (Equation 7)

GCaLScale ‍δCaL‍ for the given dose (Equation 7)

GKsScale ‍δKs‍ for the given dose (Equation 7)

GK1Scale ‍δK1‍ for the given dose (Equation 7)

GtoScale ‍δto‍ for the given dose (Equation 7)

LogGKrScale ‍αKr = ln(δKr).‍

‍αNa = ln(δNa).‍

LogGNaLScale ‍αNaL = ln(δNaL).‍

LogGCaLScale ‍αCaL = ln(δCaL).‍

LogGKsScale ‍αKs = ln(δKs).‍

LogGK1Scale ‍αK1 = ln(δK1).‍

LogGtoScale ‍αto = ln(δto).‍
Score Risk score (Equation 3)

The online version of this article includes the following source data for table 2:

Source data 1. The data in CSV format.

Source data 2. Dose-response plots for each drug in the dataset.

https://doi.org/10.7554/eLife.90027
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where ‍δ ∈ [0, 1]‍ represents the fractional conductance of the ion channel. The concentration of the 
drug ‍(C)‍ was normalized to the effective free therapeutic plasma concentration (EFTPC). The EFTPCs 
and half-maximal inhibitory concentrations ‍(IC50)‍ were taken from Supplementary Table S2 of Llopis-
Lorente et al., 2020, which was curated from publicly available datasets and scientific publications. 
Where multiple values were encountered, Llopis-Lorente et al., 2020, used the median ‍IC50‍ and the 
worst-case (highest) EFTPC values. We assumed that ion channels with missing ‍IC50‍ values were not 
blocked by the drug ‍(δ = 1)‍. We also fixed the Hill coefficients at ‍h = 1‍ because (i) there is no evidence 
for co-operative drug binding in the literature, and thus no theoretical justification for using coeffi-
cients other than one; (ii) only 17 of the 109 drugs in the dataset had a complete set of Hill coefficients 

‍(hCaL, hKr, hNaL, hKs)‍ anyway. The clinical risk labels for the drugs were transcribed from Table 1 of 
Llopis-Lorente et al., 2020.

Dataset availability
The dataset containing the reconstructed drug-response curves is included in the source data for 
Table 2.

Source code availability
The source code for the cell model is available from https://zenodo.org/records/7796721 under the 
GNU General Public License v3.0. The cell model requires version 2022 or later of the Brain Dynamics 
Toolbox (Heitmann and Breakspear, 2022a) which can be downloaded from https://zenodo.org/​
records/7070703 under the BSD 2-clause license.
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