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Explicit ion modeling predicts 
physicochemical interactions for 
chromatin organization
Xingcheng Lin†, ‡, Bin Zhang*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United 
States

Abstract Molecular mechanisms that dictate chromatin organization in vivo are under active 
investigation, and the extent to which intrinsic interactions contribute to this process remains debat-
able. A central quantity for evaluating their contribution is the strength of nucleosome- nucleosome 
binding, which previous experiments have estimated to range from 2 to 14 kBT. We introduce an 
explicit ion model to dramatically enhance the accuracy of residue- level coarse- grained modeling 
approaches across a wide range of ionic concentrations. This model allows for de novo predictions 
of chromatin organization and remains computationally efficient, enabling large- scale conformational 
sampling for free energy calculations. It reproduces the energetics of protein- DNA binding and 
unwinding of single nucleosomal DNA, and resolves the differential impact of mono- and divalent 
ions on chromatin conformations. Moreover, we showed that the model can reconcile various exper-
iments on quantifying nucleosomal interactions, providing an explanation for the large discrepancy 
between existing estimations. We predict the interaction strength at physiological conditions to be 
9 kBT, a value that is nonetheless sensitive to DNA linker length and the presence of linker histones. 
Our study strongly supports the contribution of physicochemical interactions to the phase behavior 
of chromatin aggregates and chromatin organization inside the nucleus.

eLife assessment
The authors have developed a compelling coarse- grained simulation approach for nucleosome- 
nucleosome interactions within a chromatin array. The data presented are solid and provide new 
insights that allow for predictions of how chromatin interactions might occur in vivo. The tools 
presented herein will be valuable for the chromosome biology field.

Introduction
Three- dimensional genome organization plays essential roles in numerous DNA- templated processes 
(Dekker et al., 2013; Bonev and Cavalli, 2016; Finn and Misteli, 2019; Misteli, 2020; Lin et al., 
2021b). Understanding the molecular mechanisms for its establishment could improve our under-
standing of these processes and facilitate genome engineering. Advancements in high- throughput 
sequencing and microscopic imaging have enabled genome- wide structural characterization, 
revealing a striking compartmentalization of chromatin at large scales (Lieberman- Aiden et  al., 
2009; Quinodoz et al., 2018; Su et al., 2020; Takei et al., 2021). For example, A compartments 
are enriched with euchromatin and activating post- translational modifications to histone proteins. 
They are often spatially segregated from B compartments that enclose heterochromatin with silencing 
histone marks (Gibcus and Dekker, 2013; Finn and Misteli, 2019; Misteli, 2020; Mirny and Dekker, 
2022; Xie and Zhang, 2019).
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Compartmentalization has been proposed to arise from the microphase separation of different 
chromatin types as in block copolymer systems (Fujishiro and Sasai, 2022; Jost et al., 2014; Falk 
et al., 2019; Bajpai et al., 2021; Laghmach et al., 2020; Hu et al., 2013; Lesne et al., 2014; Di 
Pierro et al., 2016; Xie et al., 2017; Yildirim and Feig, 2018; MacPherson et al., 2018; Shi and 
Thirumalai, 2021; Brahmachari et  al., 2022). However, the molecular mechanisms that drive the 
microphase separation are not yet fully understood. Protein molecules that recognize specific histone 
modifications have frequently been found to undergo liquid- liquid phase separation (Larson et al., 
2017; Kent et al., 2020; Xie et al., 2022; Leicher et al., 2022; Latham and Zhang, 2021; Lin et al., 
2021a; MacPherson et al., 2018), potentially contributing to chromatin demixing. Demixing can also 
arise from interactions between chromatin and various nuclear landmarks such as nuclear lamina and 
speckles (Brahmachari et al., 2022; Falk et al., 2019; Mirny and Dekker, 2022; Kamat et al., 2023), 
as well as active transcriptional processes (Hilbert et al., 2021; Jiang et al., 2022; Brahmachari et al., 
2023; Goychuk et  al., 2023). Furthermore, recent studies have revealed that nucleosome arrays 
alone can undergo spontaneous phase separation (Gibson et al., 2019; Strickfaden et al., 2020; 
Zhang et al., 2022), indicating that compartmentalization may be an intrinsic property of chromatin 
driven by nucleosome- nucleosome interactions.

The relevance of physicochemical interactions between nucleosomes to chromatin organization 
in vivo has been constantly debated, partly due to the uncertainty in their strength (Kruithof et al., 
2009; Cui and Bustamante, 2000; Kaczmarczyk et al., 2020; Funke et al., 2016). Examining the 
interactions between native nucleosomes poses challenges due to the intricate chemical modifica-
tions that histone proteins undergo within the nucleus and the variations in their underlying DNA 
sequences (Fenley et al., 2010; Fenley et al., 2018). Many in vitro experiments have opted for recon-
stituted nucleosomes that lack histone modifications and feature well- positioned 601- sequence DNA 
(Lowary and Widom, 1998) to simplify the chemical complexity. These experiments aim to establish 
a fundamental reference point, a baseline for understanding the strength of interactions within native 
nucleosomes. Nevertheless, even with reconstituted nucleosomes, a consensus regarding the signif-
icance of their interactions remains elusive. For example, using force- measuring magnetic tweezers, 
Kruithof et al. estimated the inter- nucleosome binding energy to be ∼14 kBT (Kruithof et al., 2009). 
On the other hand, Funke et al. introduced a DNA- origami- based force spectrometer to directly 
probe the interaction between a pair of nucleosomes (Funke et al., 2016), circumventing any poten-
tial complications from interpretations of single- molecule traces of nucleosome arrays. Their measure-
ment reported a much weaker binding free energy of approximately 2 kBT. This large discrepancy in 
the reported reference values complicates a further assessment of the interactions between native 
nucleosomes and their contribution to chromatin organization in vivo.

Computational modeling is well suited for reconciling the discrepancy across experiments and 
determining the strength of inter- nucleosome interactions. The high computational cost of atomistic 
simulations (Winogradoff et  al., 2015; Woods et  al., 2021; Li et  al., 2023) has inspired several 
groups to calculate the nucleosome binding free energy with coarse- grained models (Moller et al., 
2019; Farr et al., 2021). However, the complex distribution of charged amino acids and nucleotides 
at nucleosome interfaces places a high demand on force field accuracy. In particular, most existing 
models adopt a mean- field approximation with the Debye- Hückel theory (Phillips, 2012) to describe 
electrostatic interactions in an implicit- solvent environment (Izadi et al., 2016; Bascom and Schlick, 
2018; Moller et  al., 2019; Farr et  al., 2021), preventing an accurate treatment of the complex 
salt conditions explored in experiments. Further force field development is needed to improve the 
accuracy of coarse- grained modeling across different experimental settings (Freeman et al., 2011; 
Hinckley and de Pablo, 2015; Sun et al., 2022; Hayes et al., 2015).

We introduce a residue- level coarse- grained explicit ion model for simulating chromatin conforma-
tions and quantifying inter- nucleosome interactions. We validate our model’s accuracy through exten-
sive simulations, demonstrating that it reproduces the binding affinities of protein- DNA complexes 
(Privalov et al., 2011) and energetic cost of nucleosomal DNA unwinding (Hall et al., 2009). Further 
simulations of chromatin at various salt concentrations reproduce experimentally measured sedimen-
tation coefficients (Correll et al., 2012). We also reveal extensive close contacts between histone 
proteins and DNA across nucleosomes, the perturbation of which explains the discrepancy among 
various experimental studies. Finally, we determined the binding free energy between a pair of nucle-
osomes under physiological salt concentrations as ∼9 kBT. While longer linker DNA would reduce this 
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binding energy, linker histones can more than compensate this reduction to mediate inter- nucleosome 
interactions with disordered, charged terminal tails. Our study supports the importance of intrinsic 
physicochemical interactions in chromatin organization in vivo.

Results
Counterion condensation accommodates nucleosomal DNA unwrapping
Various single- molecule studies have been carried out to probe the stability of nucleosomes and 
the interactions between histone proteins and DNA (Bennink et  al., 2001; Cui and Bustamante, 
2000; Pope et al., 2005; Bancaud et al., 2007; Hall et al., 2009). The DNA- unzipping experiment 
performed by Hall et al., 2009, is particularly relevant since the measured forces can be converted 
into a free energy profile of DNA unwinding at a base- pair resolution, as shown by Forties et al. with 
a continuous- time Markov model (Forties et al., 2011). The high- resolution quantification of nucleo-
some energetics is valuable for benchmarking the accuracy of computational models.

We introduce a coarse- grained explicit ion model for chromatin simulations (Figure 1). The model 
represents each amino acid with one coarse- grained bead and three beads per nucleotide. It resolves 
the differences among various chemical groups to accurately describe biomolecular interactions with 
physical chemistry potentials. Our explicit representation of monovalent and divalent ions enables a 
faithful description of counterion condensation and its impact on electrostatic interactions between 
protein and DNA molecules. Additional model details are provided in the Materials and methods and 
Appendix.

We performed umbrella simulations (Torrie and Valleau, 1977) to determine the free energy profile 
of nucleosomal DNA unwinding. The experimental buffer condition of 0.10 M NaCl and 0.5 mM MgCl2 
(Hall et al., 2009) was adopted in simulations for direct comparison. As shown in Figure 2B, the simu-
lated values match well with experimental results over a wide range. Furthermore, we computed the 
binding free energy for a diverse set of protein- DNA complexes and the simulated values again match 
well with experimental data (Figure 2—figure supplement 1), supporting the model’s accuracy.

Counterions are often released upon protein- DNA binding to make room for close contacts at the 
interface, contributing favorably to the binding free energy in the form of entropic gains (Schiessel, 
2003). However, previous studies have shown that the histone- DNA interface in a fully wrapped 

Figure 1. Illustration of the residue- level coarse- grained explicit ion model for chromatin simulations. The left 
panel presents a snapshot for the simulation box of a 147 bp nucleosome in a solution of 100 mM NaCl and 
0.5 mM MgCl2. The nucleosomal DNA and histone proteins are colored in red and white, respectively. The zoom- in 
on the right highlights the condensation of ions around the nucleosome, with Na+ in cyan and Mg2+ in yellow. 
Negative residues of the histone proteins are colored in pink.

https://doi.org/10.7554/eLife.90073
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nucleosome configuration is not tightly sealed but instead permeated with water molecules and 
mobile ions (Davey et al., 2002; Materese et al., 2009). Given their presence in the bound form, how 
these counterions contribute to nucleosomal DNA unwrapping remains to be shown. We calculated 
the number of DNA- bound cations and protein- bound anions as DNA unwraps. Our results, shown in 
Figure 2C, indicate that only a modest amount of extra Na+ and Cl− ions becomes associated with the 
nucleosome as the outer DNA layer unwraps. However, significantly more ions become bound when 
the inner layer starts to unwrap (after 73 bp). These findings suggest that counterion release may 
contribute more significantly to the inner layer wrapping, potentially caused by a tighter protein- DNA 
interface.

Charge neutralization with Mg2+ compacts chromatin
In addition to contributing to the stability of individual nucleosomes, counterions can also impact 
higher- order chromatin organization. Numerous groups have characterized the structures of nucleo-
some arrays (Widom, 1986; Schwarz et al., 1996; Engelhardt, 2004; Correll et al., 2012; Grigoryev 
et al., 2009; Allahverdi et al., 2015), revealing a strong dependence of chromatin folding on the 
concentration and valence of cations.

To further understand the role of counterions in chromatin organization, we studied a 12- mer with 
20- bp- long linker DNA under different salt conditions. We followed the experiment setup by Correll 
et al., 2012, that immerses chromatin in solutions with 5 mM NaCl, 150 mM NaCl, 0.6 mM MgCl2, or 
1 mM MgCl2. To facilitate conformational sampling, we carried out umbrella simulations with a collec-
tive variable that quantifies the similarity between a given configuration and a reference two- start 
helical structure. Simulation details and the precise definition of the collective variable are provided 
in the Materials and methods and Appendix. Data from different umbrella windows were combined 
together with proper reweighting (Kumar et al., 1992) for analysis.

As shown in Figure 3A, the average sedimentation coefficients determined from our simulations 
match well with experimental values. Specifically, the simulations reproduce the strong contrast in 
chromatin size between the two systems with different NaCl concentrations. Chromatin under 5 mM 
NaCl features an extended configuration with minimal stacking between one and three nucleosomes 
(Figure 3B). On the other hand, the compaction is evident at 150 mM NaCl. Notably, in agreement 
with previous studies (Ding et al., 2021; Liu et al., 2022; Cai et al., 2018; Dombrowski et al., 2022), 
we observe tri- nucleosome configurations as chromatin extends. Finally, the simulations also support 
that divalent ions are more effective in packaging chromatin than NaCl. Even in the presence of 
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Figure 2. Explicit ion modeling reproduces the energetics of nucleosomal DNA unwrapping. (A) Illustration of the umbrella simulation setup using 
the end- to- end distance between two DNA termini as the collective variable. The same color scheme as in Figure 1 is adopted. Only ions close to the 
nucleosomes are shown for clarity. (B) Comparison between simulated (black) and experimental (red) free energy profile as a function of the unwrapped 
DNA base pairs. Error bars were computed as the standard deviation of three independent estimates. (C) The average number of Na+ ions within 10 Å 
of the nucleosomal DNA (top) and Cl−ions within 10 Å of histone proteins (bottom) are shown as a function of the unwrapped DNA base pairs. Error bars 
were computed as the standard deviation of three independent estimates.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The explicit ion model predicts the binding affinities of protein- DNA complexes well, related to Figure 1 of the main text.
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0.6 mM MgCl2, the chromatin sedimentation coefficient is comparable to that obtained at 150 mM 
of NaCl.

We further characterized ions that are in close contact with DNA to understand their impact on 
chromatin organization. Our simulations support the condensation of cations, especially for divalent 
ions (Figure 3A, bottom) as predicted by the Manning theory (Manning, 1978; Clark and Kimura, 
1990). Ion condensation weakens the repulsion among DNA segments that prevents chromatin from 
collapsing. Notably, the fraction of bound Mg2+ is much higher than Na+. Correspondingly, the amount 
of neutralized negative charges is always greater in systems with divalent ions, despite the signifi-
cantly lower salt concentrations. The difference between the two types of ions arises from the more 
favorable interactions between Mg2+ and phosphate groups that more effectively offset the entropy 
loss due to ion condensation (Clark and Kimura, 1990). While higher concentrations of NaCl do not 
dramatically neutralize more charges, the excess ions provide additional screening to weaken the 
repulsion among DNA segments, stabilizing chromatin compaction.

Close contacts drive nucleosome binding free energy
Encouraged by the explicit ion model’s accuracy in reproducing experimental measurements of single- 
nucleosomes and nucleosome arrays, we moved to directly quantify the strength of inter- nucleosomes 
interactions. We once again focus on reconstituted nucleosomes for a direct comparison with in vitro 
experiments. These experiments have yielded a wide range of values, ranging from 2 to 14 kBT (Funke 
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Figure 3. Explicit ion modeling predicts salt- dependent conformations of a 12- mer nucleosome array. (A) Top: Comparison of simulated and 
experimental (Correll et al., 2012) sedimentation coefficients of chromatin at different salt concentrations. Bottom: Number of DNA charges 
neutralized by bound cations (yellow, left y- axis label) and the fraction of ions bound to DNA (red, right y- axis label) at different salt concentrations. 
The error bars were estimated from the standard deviation of simulated probability distributions (Figure 3—figure supplement 1). (B) Representative 
chromatin structures with sedimentation coefficients around the mean values at different salt concentrations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Probability distributions used to compute means and standard deviations of the quantities presented in Figure 3 of the main 
text.

https://doi.org/10.7554/eLife.90073
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et al., 2016; Cui and Bustamante, 2000; Kruithof et al., 2009). Accurate quantification will offer a 
reference value for conceptualizing the significance of physicochemical interactions among native 
nucleosomes in chromatin organization in vivo.

To reconcile the discrepancy among various experimental estimations, we directly calculated the 
binding free energy between a pair of nucleosomes with umbrella simulations. We adopted the same 
ionic concentrations as in the experiment performed by Funke et al., 2016, with 35 mM NaCl and 
11 mM MgCl2. We focus on this study since the experiment directly measured the inter- nucleosomal 
interactions, allowing straightforward comparison with simulation results. Furthermore, the reported 
value for nucleosome binding free energy deviates the most from other studies. In one set of umbrella 
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Figure 4. Close contacts give rise to strong inter- nucleosomal interactions. (A) Illustration of the simulation protocol employed to mimic the 
nucleosome unbinding pathway dictated by the DNA- origami device (Funke et al., 2016). The three configurations, A1, A2, and A3, corresponding 
to the three cyan dots in part B at distances 62.7, 80.2, and 96.3 Å. For comparison, a tightly bound configuration uncovered in simulations without any 
restraints of nucleosome movement is shown as A1’. The number of contacts formed by histone tails and DNA (Htail- DNA) and by histone core and 
DNA (Hcore- DNA) from different nucleosomes is shown for A1 and A1’. (B) Free energy profile as a function of the distance between the geometric 
centers of the two nucleosomes, computed from unrestrained (black) and DNA- origami- restrained simulations (red). Error bars were computed as 
the standard deviation of three independent estimates. (C) Average inter- nucleosomal contacts between DNA and histone tail (orange) and core 
(blue) residues, computed from unrestrained and DNA- origami- restrained simulations. Error bars were computed as the standard deviation of three 
independent estimates.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Illustration of the restrained two nucleosome simulations setup, related to Figure 4 of the main text.

Figure supplement 2. Explicit ion modeling reproduces the experimental free energy profiles of nucleosome binding.

Figure supplement 3. Compared with DNA- origami- restrained simulations, the unrestrained simulations produce more histone- DNA contacts across 
nucleosomes, related to Figure 4 of the main text.

Figure supplement 4. The unrestricted simulations favor a smaller angle  θ  between two nucleosomal planes compared to the DNA- origami- restrained 
simulations, related to Figure 4 of the main text.

https://doi.org/10.7554/eLife.90073
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simulations, we closely mimicked the DNA- origami device employed by Funke et al. to move nucleo-
somes along a predefined path for disassociation (Figure 4A, A1 to A3). For example, neither nucle-
osome can freely rotate (Figure 4—figure supplement 1); the first nucleosome is restricted to the 
initial position, and the second nucleosome can only move within the Y- Z plane along the arc 15 nm 
away from the origin. For comparison, we performed a second set of independent simulations without 
imposing any restrictions on nucleosome orientations. Additional simulation details can be found in 
Materials and methods and Appendix.

Strikingly, the two sets of simulations produced dramatically different binding free energies. 
Restricting nucleosome orientations produced a binding free energy of ∼2 kBT, reproducing the 
experimental value (Figure 4B, Figure 4—figure supplement 2). On the other hand, the binding free 
energy increased to 15 kBT upon removing the constraints.

Further examination of inter- nucleosomal contacts revealed the origin of the dramatic difference 
in nucleosome binding free energies. As shown in Figure 4C, the average number of contacts formed 
between histone tails and DNA from different nucleosomes is around 150 and 10 in the two sets 
of simulations. A similar trend is observed for histone core- DNA contacts across nucleosomes. The 
differences are most dramatic at small distances (Figure 4B, Figure 4—figure supplement 3) and are 
clearly visible in the most stable configurations. For example, from the unrestricted simulations, the 
most stable binding mode corresponds to a configuration in which the two nucleosomes are almost 
parallel to each other (see configuration A1’ in Figure 4A), with the angle between the two nucleo-
some planes close to zero (Figure 4B, Figure 4—figure supplement 4). However, the inherent design 
of the DNA- origami device renders this binding mode inaccessible, and the smallest angle between 
the two nucleosome planes is around 23° (see configuration A1 in Figure 4A). Therefore, a significant 
loss of inter- nucleosomal contacts caused the small binding free energy seen experimentally.

Modulation of nucleosome binding free energy by in vivo factors
The predicted strength for unrestricted inter- nucleosome interactions supports their significant contri-
bution to chromatin organization in vivo. However, the salt concentration studied above and in the 
DNA- origami experiment is much higher than the physiological value (Kaczmarczyk et al., 2020). To 
further evaluate the in vivo significance of inter- nucleosome interactions, we computed the binding 
free energy at the physiological salt concentration of 150 mM NaCl and 2 mM of MgCl2.

We observe a strong dependence of nucleosome orientations on the inter- nucleosome distance. 
A collective variable,  θ , was introduced to quantify the angle between the two nucleosomal planes 
(Figure  5A). As shown in two- dimensional binding free energy landscape of inter- nucleosome 
distance,  r , and  θ  (Figure 5B), at small distances (∼60 Å), the two nucleosomes prefer a face- to- face 
binding mode with small  θ  values. As the distance increases, the nucleosomes will almost undergo a 
90° rotation to adopt perpendicular positions. Such orientations allow the nucleosomes to remain in 
contact and is more energetically favorable. The orientation preference gradually diminishes at large 
distances once the two nucleosomes are completely detached. Importantly, we observed a strong 
inter- nucleosomal interaction with two nucleosomes wrapped by 147 bp 601- sequence DNA (∼9 kBT).

Furthermore, we found that the nucleosome binding free energy is minimally impacted by the 
precise DNA sequence. For example, when the 601 sequence is replaced with poly- dA:dT or poly- 
dG:dC, the free energy only varied by ∼2 kBT (Figure 5—figure supplement 1). However, the poly- 
dA:dT sequence produced stronger binding while poly- dG:dC weakened the interactions. The 
sequence specific effects are potentially due to the increased stiffness of poly- dA:dT DNA (Ortiz and 
de Pablo, 2011), which causes the DNA to unwrap more frequently, increasing cross- nucleosome 
contacts at larger distances (Figure 5—figure supplement 2).

In addition to variations in DNA sequences, in vivo nucleosomes also feature different linker 
lengths. We performed simulations that extend the 601 sequence with 10 extra base pairs of poly- 
dA:dT sequence at each end, reaching a nucleosome repeat length (NRL) of 167 bp. Consistent with 
previous studies (Mangenot et al., 2002; Correll et al., 2012; Huang et al., 2018), increasing the NRL 
weakened inter- nucleosomal interactions (Figure 5C and Figure 5—figure supplement 3), reducing 
the binding free energy to ∼6 kBT.

Importantly, we found that the weakened interactions upon extending linker DNA can be more 
than compensated for by the presence of histone H1 proteins. This is demonstrated in Figure 5C and 
Figure 5—figure supplement 3, where the free energy cost for tearing apart two nucleosomes with 

https://doi.org/10.7554/eLife.90073
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167 bp DNA in the presence of linker histones (blue) is significantly higher than the curve for bare 
nucleosomes (red). Notably, at larger inter- nucleosome distances, the values even exceed those for 
147 bp nucleosomes (black). A closer examination of the simulation configurations suggests that the 
disordered C- terminal tail of linker histones can extend and bind the DNA from the second nucle-
osome, thereby stabilizing the inter- nucleosomal contacts (as shown in Figure 5D). Our results are 
consistent with prior studies that underscore the importance of linker histones in chromatin compac-
tion (Finch and Klug, 1976; Zhou et al., 2021), particularly in eukaryotic cells with longer linker DNA 
(Routh et al., 2008; Dombrowski et al., 2022).

Discussion
We introduced a residue- level coarse- grained model with explicit ions to accurately account for 
electrostatic contributions to chromatin organization. The model achieves quantitative accuracy in 
reproducing experimental values for the binding affinity of protein- DNA complexes, the energetics 
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Figure 5. Simulations predict significant inter- nucleosome interactions at physiological conditions. (A) Illustration 
of the collective variable,  θ , defined as the angle between two nucleosomal planes, and  r   defined as the distance 
between the nucleosome geometric centers.  w⃗1  and  w⃗2  represent the axes perpendicular to the nucleosomal 
planes. (B) The 2D binding free energy profile as a function of  θ  and  r   at the physiological salt condition (150 mM 
NaCl and 2 mM MgCl2) for nucleosomes with the 601 sequence. (C) Dependence of nucleosome binding free 
energy on nucleosome repeat length (NRL) and linker histone H1.0. Error bars were computed as the standard 
deviation of three independent estimates. (D) Representative structure showing linker histones (red and blue) 
mediating inter- nucleosomal contacts.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Dependence of inter- nucleosome interactions on the DNA sequence, related to Figure 5 
of the main text.

Figure supplement 2. The poly- dA:dT sequence produces a higher number of cross- nucleosome histone- DNA 
contacts compared to the poly- dG:dC sequence, related to Figure 5 of the main text.

Figure supplement 3. Free energy profiles for the interactions between a pair of nucleosomes at different 
nucleosome repeat lengths (NRL) and in the presence of the linker histone H1.0, related to Figure 5 of the main 
text.
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of nucleosomal DNA unwinding, nucleosome binding free energy, and the sedimentation coefficients 
of nucleosome arrays. It captures the counterion atmosphere around the nucleosome core particle as 
seen in all- atom simulations (Materese et al., 2009) and highlights the contribution of counterions 
to nucleosome stability. The coarse- grained model also succeeds in resolving the difference between 
monovalent and divalent ions, supporting the efficacy of divalent ions in neutralizing negative charges 
and offsetting repulsive interactions among DNA segments.

One significant finding from our study is the predicted strong inter- nucleosome interactions under 
the physiological salt environment, reaching approximately 9  kBT  . We showed that the much lower 
value reported in a previous DNA- origami experiment is due to the restricted nucleosomal orienta-
tion inherent to the device design. Unrestricted nucleosomes allow more close contacts to stabilize 
binding. A significant nucleosome binding free energy also agrees with the high forces found in single- 
molecule pulling experiments that are needed for chromatin unfolding (Kruithof et al., 2009; Meng 
et  al., 2015; Kaczmarczyk et  al., 2020). We also demonstrate that this strong inter- nucleosomal 
interaction is largely preserved at longer NRL in the presence of linker histone proteins. While post- 
translational modifications of histone proteins may influence inter- nucleosomal interactions, their 
effects are limited, as indicated by Ding et al. (Ding et al., 2021), and are unlikely to completely 
abolish the significant interactions reported here. Therefore, we anticipate that, in addition to molec-
ular motors, chromatin regulators, and other molecules inside the nucleus, intrinsic inter- nucleosome 
interactions are important players in chromatin organization in vivo.

We focused our study on single chromatin chains. Strong inter- nucleosome interactions support 
the compaction and stacking of chromatin, promoting the formation of fibril- like structures. However, 
as shown in many studies (Maeshima et al., 2016; Ricci et al., 2015; Ou et al., 2017; Zhang et al., 
2022), such fibril configurations can hardly be detected in vivo. It is worth emphasizing that this lack 
of fibril configurations does not contradict our conclusion on the significance of inter- nucleosome 
interactions. In a prior paper, we found that many in vivo factors, most notably crowding, could disrupt 
fibril configurations in favor of inter- chain contacts (Liu et al., 2022). The inter- chain contacts can 
indeed be driven by favorable inter- nucleosome interactions.

Several aspects of the coarse- grained model presented here can be further improved. For instance, 
the introduction of specific protein- DNA interactions could help address the differences in non- 
bonded interactions between amino acids and nucleotides beyond electrostatics (Lin et al., 2021a). 
Such a modification would enhance the model’s accuracy in predicting interactions between chro-
matin and chromatin proteins. Additionally, the single- bead- per- amino- acid representation used in 
this study encounters challenges when attempting to capture the influence of histone modifications, 
which are known to be prevalent in native nucleosomes. Multiscale simulation approaches may be 
necessary (Collepardo- Guevara et al., 2015). One could first assess the impact of these modifications 
on the conformation of disordered histone tails using atomistic simulations. By incorporating these 
conformational changes into the coarse- grained model, systematic investigations of histone modifica-
tions on nucleosome interactions and chromatin organization can be conducted. Such a strategy may 
eventually enable the direct quantification of interactions among native nucleosomes and even the 
prediction of chromatin organization in vivo.

Materials and methods
Coarse-grained modeling of chromatin
The large system size of chromatin and the slow timescale for its conformational relaxation necessi-
tates coarse- grained modeling. Following previous studies (Leicher et al., 2020; Ding et al., 2021; 
Lin et al., 2021a; Lin et al., 2021b; Liu et al., 2022), we adopted a residue- level coarse- grained 
model for efficient simulations of chromatin. The structure- based model (Clementi et al., 2000; Noel 
et al., 2016) was applied to represent the histone proteins with one bead per amino acid and to 
preserve the tertiary structure of the folded regions. The disordered histone tails were kept flexible 
without tertiary structure biases. A sequence- specific potential, in the form of the Lennard- Jones (LJ) 
potential and with the strength determined from the Miyazwa- Jernigan (MJ) potential (Miyazawa and 
Jernigan, 1985), was added to describe the interactions between amino acids. The 3SPN.2C model 
was adopted to represent each nucleotide with three beads and interactions among DNA beads 
follow the potential outlined in Freeman et al., 2014, except that the charge of each phosphate site 
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was switched from –0.6 to –1.0 to account for the presence of explicit ions. The Coulombic potential 
was applied between charged protein and DNA particles. In addition, a weak, non- specific LJ poten-
tial was used to account for the excluded volume effect among all protein- DNA beads. Detail expres-
sions for protein- protein and protein- DNA interaction potentials can be found in Ding et al., 2021, 
and the Appendix section ‘Coarse- grained protein- DNA model’.

We observe that residue- level coarse- grained models have been extensively utilized in prior studies 
to examine the free energy penalty associated with nucleosomal DNA unwinding (Lequieu et al., 
2016; Parsons and Zhang, 2019; Zhang et  al., 2016), sequence- dependent nucleosome sliding 
(Lequieu et al., 2017; Brandani et al., 2018), binding free energy between two nucleosomes (Moller 
et al., 2019), chromatin folding (Ding et al., 2021; Liu et al., 2022), the impact of histone modifi-
cations on tri- nucleosome structures (Chang and Takada, 2016), and protein- chromatin interactions 
(Watanabe et al., 2018; Leicher et al., 2020). The frequent quantitative agreement between simu-
lation and experimental results supports the utility of such models in chromatin studies. Our intro-
duction of explicit ions, as detailed in Appendix section ‘Coarse- grained explicit ion model’, further 
extends the applicability of these models to explore the dependence of chromatin conformations on 
salt concentrations.

Coarse-grained modeling of counterions
Explicit particle- based representations for monovalent and divalent ions are needed to accurately 
account for electrostatic interactions (Freeman et al., 2011; Hinckley and de Pablo, 2015; Hayes 
et al., 2015; Denesyuk and Thirumalai, 2015; Denesyuk et al., 2018; Wang et al., 2022; Sun et al., 
2022). We followed Freeman et al., 2011, to introduce explicit ions (see Figure 1) and adopted their 
potentials to describe the interactions between ions and nucleotide particles, with detailed expres-
sions provided in the Appendix section ‘Coarse- grained explicit ion model’. Parameters in these 
potentials were tuned by Freeman et al., 2011, to reproduce the radial distribution functions and the 
potential of mean force between ion pairs determined from all- atom simulations.

Table 1. Summary of parameters used to describe interactions between ions and charged particles.
See text section ‘Coarse- grained explicit ion model’ for definitions of various parameters.

Coarse- grained pair  ϵ (kcal/mol)  σ (Å)  rmϵ (Å)  σϵ (Å)
 H1 (kcal/
mol)  rmh1 (Å)  σh1 (Å)

 H2 (kcal/
mol)  rmh2 (Å)  σh2 (Å)

P- P 0.18379 6.86 6.86 0.5 – – – – – –

Na+- P 0.02510 4.14 3.44 1.25 3.15488 4.1 0.57 0.47801 6.5 0.4

Na+- AA+* 0.239 4.065 3.44 1.25 3.15488 4.1 0.57 – – –

Na+- AA−† 0.239 4.065 3.44 1.25 3.15488 4.1 0.57 0.47801 6.5 0.4

Mg2+- P 0.1195 4.87 3.75 1.0 1.29063 6.1 0.5 0.97992 8.3 1.2

Mg2+- AA+ 0.239 3.556 3.75 1.0 1.29063 6.1 0.5 – – –

Mg2+- AA− 0.239 3.556 3.75 1.0 1.29063 6.1 0.5 0.97992 8.3 1.2

Cl−- P 0.08121 5.5425 4.2 0.5 0.83652 6.7 1.5 – – –

Cl−- AA+ 0.239 4.8725 4.2 0.5 0.83652 6.7 1.5 0.47801 5.6 0.4

Cl−- AA− 0.239 4.8725 4.2 0.5 0.83652 6.7 1.5 – – –

Na+- Na+ 0.01121 2.43 2.7 0.57 0.17925 5.8 0.57 – – –

Na+- Mg2+ 0.04971 2.37 2.37 0.5 – – – – – –

Na+- Cl− 0.08387 3.1352 3.9 2.06 5.49713 3.3 0.57 0.47801 5.6 0.4

Mg2+- Mg2+ 0.89460 1.412 1.412 0.5 – – – – – –

Mg2+- Cl− 0.49737 4.74 4.48 0.57 1.09943 5.48 0.44 0.05975 8.16 0.35

Cl−- Cl− 0.03585 4.045 4.2 0.56 0.23901 6.2 0.5 – – –

*Positive amino acids.
†Negative amino acids.

https://doi.org/10.7554/eLife.90073
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This explicit ion model was originally introduced for nucleic acid simulations. We generalized the 
model for protein simulations by approximating the interactions between charged amino acids and 
ions with parameters tuned for phosphate sites. Parameter values for ion- amino acid interactions are 
provided in Table 1 and Table 2.

Details of molecular dynamics simulations
We simulated various chromatin systems, including a single- nucleosome, two- nucleosomes, and a 
12- mer nucleosome array. The initial configurations for the molecular dynamics simulations were 
constructed based on the crystal structure of a single nucleosome with PDB ID: 1KX5 (Davey et al., 
2002) and 3LZ1 (Vasudevan et al., 2010), or a tetranucleosome with PDB ID: 1ZBB (Schalch et al., 
2005). We used the 3DNA software (Lu and Olson, 2003) to add additional DNA, connect and align 
nucleosomes, and extend the chain length as necessary. Further details on constructing the initial 
configurations are provided in the Appendix section ‘Ionic dependence of the conformation for a 
12- mer nucleosomal array’. Chromatin was positioned at the center of a cubic box with a length 
selected to avoid interactions between nucleosomes and their periodic images. Counterions were 
added on a uniformly spaced grid to achieve the desired salt concentrations and neutralize the system. 
The number of ions and the size of simulation boxes are provided in Table 3.

All simulations were performed at constant temperature and constant volume (NVT) using the 
software package LAMMPS (Plimpton, 1995). The electrostatic interactions were implemented with 

Table 2. Summary of parameters used to describe the WCA interactions between ions and neutral 
particles.
See text section ‘Coarse- grained explicit ion model’ for definitions of various parameters.

Coarse- grained pair  ϵ (kcal/mol)  σ (Å)

Na+- S* 0.239 4.315

Na+- A† 0.239 3.915

Na+- T‡ 0.239 4.765

Na+- G§ 0.239 3.665

Na+- C¶ 0.239 4.415

Na+- AA** 0.239 4.065

Mg2+- S 0.239 3.806

Mg2+- A 0.239 3.406

Mg2+- T 0.239 4.256

Mg2+- G 0.239 3.156

Mg2+- C 0.239 3.906

Mg2+- AA** 0.239 3.556

Cl−- S 0.239 5.1225

Cl−- A 0.239 4.7225

Cl−- T 0.239 5.5725

Cl−- G 0.239 4.4725

Cl−- C 0.239 5.2225

Cl−- AA** 0.239 4.8725

*Sugar.
†Adenine base.
‡Thymine base.
§Guanine base.
¶Cytosine base.
**Non- charged amino acids.
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the particle- particle particle- mesh solver, with the relative root- mean- square error in per- atom force 
set to 0.0001 (Hockney and Eastwood, 2021). A Nosé-Hoover style algorithm (Shinoda et al., 2004) 
was used to maintain the system temperature at 300 K with a damping parameter of 1 ps. We further 
modeled the histone core and the inner layer of the nucleosomal DNA together as a rigid body to 
improve computational efficiency. This approximation does not affect the thermodynamic properties 
of chromatin (Ding et al., 2021; Liu et al., 2022). Umbrella simulations were used to enhance the 
sampling of the conformational space (Torrie and Valleau, 1977), and details of the collective vari-
ables employed in these simulations are provided in the Appendix section ‘Molecular dynamics simu-
lation details’. All the results presented in the main text are reweighted from the biased simulations 
by the weighted histogram algorithm (Kumar et al., 1992).
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Appendix 1
Coarse-grained protein-DNA model
The force fields describing protein- protein, protein- DNA, and DNA- DNA interactions followed 
previous studies (Ding et al., 2021; Liu et al., 2022; Freeman et al., 2014; Zhang et al., 2016). 
Detailed expressions for the potential energies can be found in these references. Specifically, for 
DNA- DNA interactions, we followed the approach described in Freeman et al., 2011, and with the 
parameters updated to the latest version of the DNA model 3SPN.2C (Freeman et al., 2014).

Protein- protein interactions include structure- based terms extracted from the initial configuration 
and generic terms for specific amino acid interactions. We first generated the bonded and non- 
bonded structure- based interactions within histone proteins using the Shadow algorithm (Noel 
et al., 2012) implemented by the SMOG software package (Noel et al., 2016). We further scaled 
the non- bonded interaction strength (Noel et al., 2016) by 2.5 to prevent proteins from unfolding 
at 300 K. Interactions between histone proteins from different nucleosomes were described using 
the MJ potential (Miyazawa and Jernigan, 1985) scaled by a factor of 0.4. We have shown in our 
previous studies that the scaled MJ potential gives a balanced modeling of the radius of gyration for 
both ordered and disordered proteins (Ding et al., 2021).

Protein- DNA interactions include Coulombic interactions and the excluded volume effect. Unlike 
the previous Debye- Hückel treatment of electrostatic interactions in an implicit- solvent environment, 
we modeled the electrostatics between proteins and DNA using the Coulombic potential

 
Uelec = 1

4πϵ0

qiqj
ϵ0r

,
  

(1)

where  ϵ0 = 78.0  is the dielectric constant of the bulk solvent.  qi  and  qj  correspond to the charges 
of the two particles. The excluded volume effect was modeled using the WCA potential with the 
following form

 

UWCA =





4ϵPD[(σ
r

)12 − (σ
r

)6] + ϵPD r < rcut

0 r > rcut.  

(2)

The cutoff distance  rcut  was set to  2
1
6 σ , with  σ = 5.7  Å. The interactive strength  ϵPD  was set as 

0.02987572 kcal/mol. More details of this potential can be found in Zhang et al., 2016.

Coarse-grained explicit ion model
Following Freeman et al., 2011, we adopted three terms to describe interactions between charged 
particles and ions: the Coulombic potential for electrostatic interactions, the Gaussian potential for 
the hydration effect, and the LJ potential for the excluded volume effect. Thus,

 U = Uelec + Uhydr + ULJ.  (3)

The electrostatic potential

 
Uelec = 1

4πϵ0

qiqj
ϵD(r)r

,
  

(4)

where  ϵD(r)  is a distance- dependent dielectric constant given in the form

 
ϵD(r) = ( 5.2 + ϵs

2
) + ( 5.2 + ϵs

2
) tanh[ r − rmϵ

σϵ
].

  
(5)

 ϵs = 78.0  is the dielectric constant of the bulk solvent, and values for  σϵ  and  rmϵ  are provided in 
Table 1. The distance cutoff of this potential is set at 20.0 Å. Electrostatic interactions outside this 
cutoff are computed in reciprocal space.

The hydration potential

 
Uhydr = H

σh
√

2π
exp[− (r − rmh)2

2σ2
h

].
  (6)
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 rmh ,  σh , and  H   represent the midpoint, the width, and the height of the hydration shell, respectively, 
and their ion- specific values are provided in Table 1. Any pair of ions experiences one hydration 
potential defined above. For pairs formed with ions of distinct types, a second hydration potential 
with a different set of parameters is applied, with parameters provided in Table 1. The distance 
cutoff of this potential is set at 12.0 Å.

The LJ potential is given by

 
ULJ = 4ϵ[(σ

r
)12 − (σ

r
)6].

  (7)

The ion- specific values of  ϵ  and  σ  are given in Table 1, and the distance cutoff of this potential is 
set at 12.0 Å.

The interactions between neutral particles and ions are described by the WCA potential

 

Uexcl =





4ϵexcl[(
σ

r
)12 − (σ

r
)6] + ϵexcl r < rcut

0 r > rcut.  

(8)

 rcut = 2
1
6 σ  is located at the minimum of the corresponding LJ potential. Values for  σ  and  ϵexcl  

follow the parameters given by Freeman et al., 2011, and are presented in Table 2.

Molecular dynamics simulation details
All simulations were carried out using the software Lammps (Plimpton, 1995) with the force fields 
defined in the previous two sections. Umbrella sampling simulations (Torrie and Valleau, 1977) 
were performed using the Plumed software package (The PLUMED consortium, 2019). We used 
the weighted histogram analysis method (Kumar et al., 1992) implemented by the SMOG software 
package (Noel et al., 2016) to process the simulation data and compute the free energy profiles.

Binding free energy of protein-DNA complexes
We carried out a series of umbrella- sampling simulations to compute the binding free energies of a 
set of nine protein- DNA complexes with experimentally documented binding dissociation constants 
(Dragan et al., 2003a; Dragan et al., 2004; Dragan et al., 2003b; Dragan et al., 2006; Privalov 
et al., 2011). Initial configurations of these simulations were prepared using the crystal structures 
with the corresponding PDB IDs listed in Figure 2—figure supplement 1.

The simulations were performed under the same experimental conditions of 100 mM monovalent 
ions. We used a spring constant of 0.01 kcal/mol/Å2 to restrain the distance between the geometric 
centers of protein and DNA. The centers of the umbrella windows were placed on a uniform grid of 
[0.0:140.0:10.0] Å, and each umbrella trajectory lasts for 7.15 million steps, with a time step of 2.0 fs. 
We excluded the first 3 million steps when constructing the free energy profile.

Single-nucleosome simulations for DNA unwinding energetics
To study DNA unwinding from a 601- sequence nucleosome, we built the system by combining 
histone proteins with explicit coordinates for the disordered tails from PDB ID: 1KX5 (Davey et al., 
2002) with the DNA structure from PDB ID: 3LZ1 (Vasudevan et al., 2010).

Umbrella simulations with the DNA end- to- end distance as the collective variable was performed 
to determine the free energy profile. The end- to- end distance was defined as the geometric center 
distance between the first and last five base pairs. We used a harmonic umbrella potential with a 
spring constant of 0.001 kcal/(mol·Å2), and the umbrella centers were placed on a uniform grid of 
[30.0:510.0:30.0] Å. To increase computational efficiency, the histone core proteins and the two 
nucleotides located on the dyad axis of the nucleosome were rigidified during the simulations. Each 
umbrella trajectory lasts for 13.65 million steps, with a time step of 10 fs, and we excluded the first 
3 million steps when constructing the free energy profile.

The simulation used the same ionic concentration as the experiment, which includes 0.10 M NaCl 
and 0.5 mM MgCl2 (Hall et al., 2009). The cubic simulation box size was set to 600 Å. Extra ions 
were added to neutralize the system. In total, the system includes a total of 13,017 Na+, 65 Mg2+, 
and 13,003 Cl− ions.

https://doi.org/10.7554/eLife.90073
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Ionic dependence of the conformation for a 12-mer nucleosomal array
We constructed a nucleosomal array of 12 nucleosomes with 20 bp linker DNA to study the impact of 
different ions on the higher- order chromatin organization. Using the protocol outlined in a previous 
study (Liu et al., 2022), we started with a nucleosome unit extracted from the tetranucleosome 
crystal structure (PDB ID: 1ZBB) (Schalch et al., 2005). To connect multiple nucleosome units, we left 
an extra 20 bp linker DNA at the exit site of the nucleosome. We connected 12 nucleosome units to 
build the 12- mer nucleosomal array, with an additional 20 bp linker DNA at the end. This 20 bp extra 
linker of the last nucleosome unit was removed to complete the system setup. To ensure complete 
histone proteins with disordered tails, we replaced the histone proteins of the nucleosome units with 
those from the crystal structure with PDB ID: 1KX5 (Davey et al., 2002).

To enhance conformational sampling, we performed umbrella simulations with the collective 
variable  Q  defined as

 
Q = 1

N

N∑
i

exp(−
(ri − di

0)2

2r2
0

)
  

(9)

 i  enumerates all the nucleosome pairs in the system and  ri  is the distance between the ith pair. 
N=66 is the number of nucleosome pairs, and   r0  = 20.0 Å.  d

i
0  corresponds to the distance between 

the ith pair of nucleosomes determined from the reference two- start structure.  Q  measures the 
similarity of a given 12- mer configuration to the reference two- start structure, with larger values 
representing higher similarity. The reference two- start fibril structure was built in our previous study 
(Liu et al., 2022) by aligning the structure with a template generated by the software fiberModel 
(Koslover et al., 2010). We placed the umbrella centers at [0.40:0.90,0.1] and used a spring constant 
of 50.0 kcal/mol in the harmonic potentials. Each umbrella trajectory lasted 7.8 million steps, with a 
time step of 10 fs. We used the last 4.8 million steps to construct free energy profiles and compute 
ensemble averages.

We simulated the nucleosome array under four ionic conditions for comparison with experimental 
measurements (Correll et  al., 2012). The 12- mer was placed in the center of a cubic box, and 
counterions were added to reach the desired concentration. Excess ions were also introduced to 
ensure the net neutrality of the system. Specific values of the simulation box size and counterion 
numbers are provided in Table 3 for reference.

Binding free energy between nucleosomes
Simulations at high salt concentrations
To determine the inter- nucleosome interactions and compare them with the DNA- origami- 
based experiment (Funke et al., 2016), we simulated a pair of 601- sequence nucleosomes. The 
nucleosomes were built in the same way as the single- nucleosome DNA unwrapping simulation. 
The simulation box size was 500 Å, and extra ions were added to neutralize the system. The system 
comprised a total of 2922 Na+, 828 Mg2+, and 4290 Cl− ions.

We defined the internal coordinate system for each nucleosome to control their relative 
orientations as follows. The center of each nucleosome was determined using the geometric center 
of the list of residues: 63–120, 165–217, 263–324, 398–462, 550–607, 652–704, 750–811, and 
885–949. The IDs continuously index residues from chain A to chain H of the crystal structure with 
PDB ID: 1KX5. To define the nucleosome plane, we chose another point based on the geometric 
center of the nucleosome dyad site (residue ID: 81–131, 568–618). The unit vector pointing from 
the nucleosome center to the dyad site center is denoted as  ⃗v  . We further introduced another unit 
vector  ⃗u   in the nucleosome plane that points from the nucleosome center to a point defined as 
the geometric center of residues 63–120, 165–217, 750–811, and 885–949. Finally, the unit vector 
perpendicular to the nucleosome plane,  ⃗w , is determined as the cross product  ⃗u × v⃗  . We use  ⃗w1  and 

 ⃗w2  to differentiate the two nucleosomes.
We utilized two collective variables for the system without constraints to perform the umbrella 

simulations. The first collective variable measures the distance  r  between the two nucleosome 
centers. The second collective variable corresponds to the angle  θ  between the two unit vectors,  ⃗w1  
and  ⃗w2 . The umbrella centers were placed on a uniform grid of [60.0, 130.0, 10.0] Å × [0.0, 180.0, 
30.0] degrees. The spring constants of the harmonic potentials are 0.01 kcal/(mol · Å2) and 0.001 
kcal/(mol · ○2).

https://doi.org/10.7554/eLife.90073


 Research article      Structural Biology and Molecular Biophysics

Lin and Zhang. eLife 2023;13:RP90073. DOI: https://doi.org/10.7554/eLife.90073  22 of 24

For the system that mimics the DNA- origami experiments, we imposed several spatial restraints 
such that the nucleosomes unbind along a specific pathway (Figure 4—figure supplement 1). As 
detailed below, the restraints ensure that the first nucleosome is fixed on the X- Y plane while the 
second nucleosome moves along an arc 15 nm away from the origin.

1. We introduced three virtual sites, denoted as  O, A , and  B , with Cartesian coordinates as [0, 0, 

0], [150, 0, 0], and [0, 150, 0] Å, respectively. The vectors  
−→
OA  and  

−→
OB  define the X- Y plane. We 

further denote the centers of the two nucleosomes as  C1  and  C2 .
2. The first nucleosome was restrained at site B using a harmonic potential with a spring constant 

of 100 kcal/(mol · Å2). In addition, to mimic its attachment to the bottom arm of the DNA 
origami, we forced this nucleosome to be parallel to the X- Y plane. Specifically, we restrained 

the angles between  ⃗w1  and  
−→
OA  or  

−→
OB  to be 90°. The spring constant of these harmonic restraints 

was set to 100 kcal/(mol · ○2).
3. To mimic the attachment of the second nucleosome to the upper arm of the origami, we 

restrained the distance between  C2  and site O as 150 Å with a harmonic potential. The spring 
constant of this potential was set to 100.0 kcal/(mol · Å2). In addition, we ensured that the 

second nucleosome is parallel to the plane formed by the vector  
−→
OA  and the vector connecting 

site O to  C2 . Two harmonic potentials were applied on the angles between  ⃗w2  and  
−→
OA  or  

−−→
OC2  

to restrict them to 90°. The spring constant of these restraints was set to  100 kcal/(mol · ◦2) . We 
further restricted the second nucleosome to only move in the Y- Z plane by biasing the angle 

between  
−−→
OC2  and  

−→
OA  to 90° with a spring constant of 100 kcal/(mol · ○2).

4. Finally, we ensured that the dyad axes of the two nucleosomes in our system are at an angle 
of 78°, as done experimentally (Funke et al., 2016), by applying a harmonic potential on the 
angle between the  ⃗v   of the two nucleosomes. The spring constant of this potential was set to 
100 kcal/(mol · ○2).

We used the angle  θ  between the two vectors  ⃗w1  and  ⃗w2  as the collective variable for umbrella 
simulations. The umbrella centers were placed on a uniform grid of [0.0, 110.0, 5.0] degrees. The 
spring constant of the harmonic potential was set as 0.01 kcal/(mol · ○2). Each umbrella simulation 
lasted 13 million steps and a time step of 10 fs. The first 3 million steps of the simulation were 
discarded as equilibration.

Simulations at the physiological salt concentration
We performed a series of simulations under the physiological salt concentration, i.e., 150  mM 
NaCl and 2  mM MgCl2 for nucleosomes with different repeat lengths and DNA sequences. The 
601- sequence nucleosomes were built in the same way as the single- nucleosome simulations. To 
explore the effect of DNA sequences on inter- nucleosomal interactions, we replaced the original 
nucleosomal DNA with poly- dA:dT and poly- dG:dC sequences.

To investigate the effect of linker DNA, we simulated nucleosomes with a repeat length of 
167 bp. We added 10 base pairs of poly- dA:dT sequences on each side of the existing 147 bp 
601- nucleosomal DNA using the software X3DNA (Lu and Olson, 2003). Specifically, we generated 
an 11- base- pair linker DNA of poly- dA:dT sequence. The additional DNA base pair was created to 
align the linker DNA with the existing nucleosomal DNA. This alignment was performed such that 
this additional base pair overlapped with the nucleosomal DNA’s first or last base pair, fixing the 
linker DNA’s orientation. Finally, we deleted the additional base pair of DNA after the alignment.

Additionally, we built nucleosomes with linker histones using a recently resolved chromatosome 
structure through cryoelectron microscopy (Zhou et  al., 2021). The experimentally determined 
structure (PDB ID: 7K5X) includes a 197 bp 601- sequence nucleosome with the globular domain 
of H1.0. As the disordered regions of the linker histone were not resolved in the structure, we 
modeled them based on the protein sequence using the software Modeller (Eswar et al., 2006) and 
connected the modeled structure to the globular domain. We then replaced the histone proteins 
with those from the PDB ID: 1KX5  to provide explicit coordinates for the histone tails. Only the 
central 167 bp of DNA was kept to build a system with 10 bp linker DNA. The globular domain of 
H1.0 was bound to the nucleosome dyad and simulated with the histone core protein as a rigid body 
for computational efficiency.

https://doi.org/10.7554/eLife.90073
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The numbers of ions and box sizes in each simulation are provided in Table 3. We employed the 
same two collective variables as the unrestrained simulation at high salt concentrations to conduct 
umbrella simulations. The umbrella centers were placed on a uniform grid of [60.0, 130.0, 10.0] Å 
× [0.0, 180.0, 30.0] degrees. The spring constants of the harmonic potentials are 0.01 kcal/(mol · 
Å2) and 0.001 kcal/(mol · ○2). Each simulation lasted 13 million steps with a time step of 10 fs. We 
excluded the first 3 million steps when constructing the free energy profiles.

Details of simulation analysis
Number of ions bound to DNA and histone proteins
To calculate the number of ions bound to the nucleosomal DNA and histone proteins, we used the 
COORDINATIONNUMBER command available in the Plumed (The PLUMED consortium, 2019) 
software package.

For example, for every Na+, we computed the coordinate number as  CN =
∑

i s(ri) , where  i  loops 
over all coarse- grained DNA sites and  ri  is the distance between the ion and the ith DNA bead.  s(r)  
is a switching function defined as

 

s(r) =
1 − ( r − d0

r0
)n

1 − ( r − d0
r0

)m
,

  

(10)

where  d0 = 0.0 ,  r0 = 10.0 ,  n = 15 , and  m = 30 . An ion with a coordination number greater than 1 was 
considered bound to DNA. We followed the same procedure to calculate the number of ions bound 
to histone proteins.

The calculations were performed using the open- source, community- developed PLUMED library 
(The PLUMED consortium, 2019), version 2.4 (Tribello et al., 2014; The PLUMED consortium, 
2019).

Number of unwrapped DNA base pairs
We computed the number of unwrapped DNA base pairs using a similar procedure to the one used 
for calculating the number of bound ions.

First, we computed a coordination number for each DNA base pair to determine whether it was 
bound to the histone core. The coordinate number was defined as  CN =

∑
i
∑

j s(ri,j) , where  i  loops 
over all coarse- grained sites of the corresponding DNA base pair and  j  loops over all coarse- grained 
sites of the histone core.  s(r)  is defined in Equation 10 with  d0 = 0.0 ,  r0 = 8.0 ,  n = 15 , and  m = 30 . 
A DNA base pair with CN greater than 1 was considered bound to histone proteins. As the histone 
core is not a perfect cylinder, there were several continuous regions of bound DNA interspersed by 
regions of unbound DNA. To avoid ambiguity, we defined the wrapped base pairs,  Nwrapped , as those 
between the first and last bound base pairs. Correspondingly, the number of unwrapped base pairs 
was  Nunwrapped = 147 − Nwrapped .

We set  r0 = 8.0  Å when computing the switching function. At larger values for  r0 , we found that 
the calculated numbers overestimate the unwrapped base pairs, as seen from visual inspection of 
the structures (Figure 2, Appendix 1—figure 1).

Sedimentation coefficients of nucleosome arrays
We calculated the sedimentation coefficients for the 12- mer nucleosome array using the HullRad 
method (Fleming and Fleming, 2018) with the following equation

 
s = 108(

M − Mv̄ρ20,w
NA6πη0RT

).
  

(11)

 M   is the molar mass of the molecule,  NA  is Avogadro’s number, and  ̄v  is the partial specific volume. 

 ρ20,w  is the density of water at 20°C, and  η0  is the water viscosity at 20°C. RT is the translational 
hydrodynamic radius calculated based on the convex hull of the target biomolecule.

Estimation of error bars
We estimated the error bars of the 12- mer simulations based on the standard deviation calculated 
from the probability distribution of the variables (Figure 3—figure supplement 1), i.e.,

https://doi.org/10.7554/eLife.90073
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 σ(X) =
√

E[X2] − (E[X])2   (12)

where  E[X]  is the expected value of  X  .
We divided the trajectories into three equal- length partitions for all the other simulations and 

computed the free energy profiles independently. The error bars were estimated as the standard 
deviation of the three independent estimates.

Appendix 1—figure 1. A cutoff value of 8.0 Å produces more accurate values for the number of unwrapped DNA 
base pairs as determined from visual inspection of representative configurations, related to Figure 2 of the main 
text. See text section ‘Number of unwrapped DNA base pairs’ for additional discussions. A typical nucleosome 
structure with most of the outer layer DNA unwrapped was used to examine the impact of different cutoff values. 
The histone core is colored in gold, with histone tails in white, the wrapped DNA in blue, and the unwrapped 
DNA in red. The discrepancy among various cutoff values is evident in the highlight regions enclosed by dotted 
circles. As shown in the zoom- ins in the middle panel, a cutoff of 10 Å results in three additional base pairs of DNA 
detected as wrapped in I (highlighted in orange square). However, these extra base pairs not detected with a 
cutoff of 8 Å are visibly detached from histone proteins. Similarly, 9 Å and 10 Å cutoff values result in five extra base 
pairs of DNA detected as wrapped in II (highlighted in orange squares in the bottom panel).

https://doi.org/10.7554/eLife.90073
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