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Abstract Erythroblasts possess unique characteristics as they undergo differentiation from hema-
topoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron 
in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood 
cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifac-
eted process requiring numerous properly timed physiological events to maintain efficient produc-
tion of 2 million red blood cells per second in steady state. Iron is required for normal functioning 
in all human cells, the erythropoietic compartment consuming the majority in light of the high iron 
requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythro-
poiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and 
the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differ-
entiation. In addition, significant progress has been made in our understanding of dysregulated iron 
metabolism in various congenital and acquired malignant and non- malignant diseases. Finally, we 
report several actual as well as theoretical opportunities for translating the recently acquired robust 
mechanistic understanding of iron metabolism regulation to improve management of patients with 
disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia 
vera, and myelodysplastic syndromes.

Introduction
Iron is an essential element for almost every organism on earth. Iron can donate and accept 
electrons from various substrates due to its unique oxidation- reduction properties, making it an 
important cofactor in mammalian cells. Despite its abundance in the Earth’s crust, high oxygen 
availability in the atmosphere leads to iron oxidation and the formation of poorly soluble ferric iron. 
As a consequence, iron- dependent organisms like mammals have evolved complex mechanisms 
to conserve and recycle iron, preventing its loss and enabling its enhanced absorption during a 
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deficit or in times of increased demand. The physiological status of iron in biological systems can 
be delineated into three categories: iron coordinated by protein side chains, iron complexed within 
the porphyrin ring of heme, and iron within iron- sulfur clusters. Outside of these contexts, iron 
displays promiscuous reactivity that can damage cells and tissues poorly equipped for handling 
what is termed ‘labile iron.’ Extensive coordination is also required in multicellular organisms for 
movement of iron between organs, in and out of cells, and between compartments within cells to 
effectively avoid inadequate iron supply that may limit systemic functioning and excess iron that 
may be toxic to cells and tissues. Thus, dysregulated iron homeostasis can manifest as total body 
iron deficit (iron deficiency) or excess (iron overload), as well as iron maldistribution among tissues 
in which individual organs may be iron- deficient while other iron- overloaded. Such iron disorders 
may be caused by genetic lesions that directly impair iron regulation or conditions that impact iron 
regulation indirectly.

Although all cells in mammalian systems require small amounts of iron, systemic iron homeostasis 
is mainly regulated by the specific compartments involved in iron absorption, transport, storage and 
recycling, and high- level utilization. These include duodenal enterocytes; serum transferrin- bound 
iron; hepatocytes and macrophages in the liver and spleen; and erythroid precursors in the bone 
marrow, respectively. The largest of these compartments is the erythron, comprising the majority of 
total body iron in adult humans, mainly contained within hemoglobin inside erythroblasts and ulti-
mately red blood cells (RBCs). Said another way, erythropoiesis, even at steady state, consumes most 
of the transferrin bound iron in circulation. Furthermore, stimulation of increased erythropoiesis (e.g. 
via exogenous erythropoietin [EPO], bleeding, phlebotomy, or hypoxia) requires enhanced iron avail-
ability to keep pace with acutely increased hemoglobin synthesis within erythroblasts in the bone 
marrow. A large body of observational work amassed in the last >50 y suggested the presence of 
a direct ‘erythroid regulator’ of iron metabolism to enable this crosstalk. The last few decades have 
provided a series of substantial advances, enabling significant progress in our understanding of iron 
metabolism regulation; normal, stress, and ineffective erythropoiesis; and the crosstalk between them. 
In addition, the development of novel tools, both experimental methods and models of disease, 
has furthered and provided additional opportunities to better understand these pathways, robustly 
confirming and extending previously held assumptions and conjectures. This article aims to bring 
together our collective understanding of what has been learned and developed to study iron metab-
olism and erythropoiesis in health and disease.
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Figure 1. Definitive erythropoiesis. Definitive erythropoiesis in the adult organism is derived from hematopoietic stem cells (HSCs) with progressive 
movement of cells through three compartments: progenitors, erythroblast precursors, and erythrocytes. Erythroid progenitors (burst- forming unit- 
erythroid [BFU- E], colony- forming unit- erythroid [CFU- E]) are defined by their capacity to form colonies of maturing erythroid cells in vitro. Erythroid 
precursors are defined as pro- erythroblasts (ProE), basophilic erythroblasts (BasoE), polychromatophilic erythroblasts (PolyE), and orthochromatic 
erythroblasts (OrthoE) based on morphology and progressive change in the expression of surface markers. OrthoE enucleate to form a pyrenocyte, 
which contains the condensed nucleus, and a reticulocyte, which goes on to mature into an erythrocyte in the peripheral circulation. Erythroblast 
precursors undergo differentiation in contact with a macrophage within the erythroblastic island (EBI).
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Normal erythropoiesis
Erythropoiesis is a continuous process required for making new RBCs in order to replace the senescent 
RBCs lost at the end of their lifecycle. To determine how many RBCs are required, the bone marrow 
relies on the kidney in which interstitial fibroblasts in the renal medulla sense hypoxia, leading to the 
hypoxia- inducible factor 2 (HIF- 2) mediated production and excretion of EPO. EPO binding to EPO 
receptor on erythroid precursors in the bone marrow in turn induces their survival, cell division, and 
differentiation to ultimately enucleate, producing reticulocytes that mature to RBCs in the circulation. 
Hemoglobin synthesis in the developing erythroblasts requires iron- containing heme.

The first wave of erythropoiesis starts as early as embryonic day 7.5 (E7.5) in mouse (Palis et al., 
1999; Palis and Yoder, 2001; Baron et al., 2013) and 3 wk in human (Palis and Yoder, 2001; Dzierzak 
and Philipsen, 2013) in the yolk sac and produces large nucleated erythroid cells from hemangio-
blasts (Dzierzak and Philipsen, 2013; Palis, 2008; Baron et al., 2013). Due to its transient nature, 
it is termed ‘primitive’ erythropoiesis to distinguish it from ‘definitive’ erythropoiesis that gradually 
replaces primitive erythropoiesis in the fetal liver and bone marrow, persisting thereafter throughout 
life. Definitive erythropoiesis produces erythroid progenitor cells from hematopoietic stem cells 
(HSCs) that seed and differentiate within the fetal liver by ~E14.5 in the mouse (Palis et al., 1999; 
Palis and Yoder, 2001; Baron et al., 2013) and 7–8 wk in the human embryo (Palis and Yoder, 2001; 
Dzierzak and Philipsen, 2013). After birth, sites of erythropoiesis transition from liver to spleen and 
eventually bone marrow and enable robust RBC production needed to reach and sustain steady- state 
adult erythropoiesis levels by age 7 wk in the mouse (Chen et al., 2021).

Definitive erythropoiesis is a multi- step, complex process that can be divided into three matura-
tional stages, namely early- stage erythropoiesis, terminal erythroid differentiation, and reticulocyte 
maturation (Figure 1). Early- stage erythropoiesis consists of two erythroid progenitor stages, burst- 
forming unit- erythroid (BFU- E) and colony- forming unit- erythroid (CFU- E). BFU- E and CFU- E were 
initially defined by their ability to form distinct types of colonies of erythroid cells in semisolid media 
(Iscove and Sieber, 1975; Gregory and Eaves, 1977). With the development of flow cytometry 
technology in conjunction with the identification of surface markers, both murine and human BFU- E 
and CFU- E cells can now be identified and isolated by fluorescence- activated cell sorting (FACS) for 
subsequent cellular and molecular studies (Flygare et al., 2011; Li et al., 2014; Zhang et al., 2021). 
Furthermore, a recent study showed that human erythroid progenitor (EP) populations can be further 
subdivided into four subpopulations with EP1 representing predominantly BFU- E with EP2, EP3, and 
EP4 representing increasingly mature CFU- E populations with reduced proliferative responsiveness to 
stem cell factor (SCF), indicating heterogeneity of previously identified CFU- E population (Yan et al., 
2021).

Terminal erythroid differentiation is a process by which proerythroblasts (Pro) differentiate 
sequentially to basophilic (Baso), polychromatic (Poly), and orthochromatic (Ortho) erythroblasts 
that expel their nuclei to become reticulocytes (Figure 1). During terminal erythroid differentia-
tion, several notable changes occur, enabling one to selectively identify erythroblasts at distinct 
developmental stages based on morphological features. These changes include decreasing cell 
size, hemoglobin accumulation, chromatin condensation, and enucleation. Previously, Giemsa 
staining and morphological assessment by light microscopy were the only means for identifying 
at these terminally differentiating erythroblast stages. Currently, isolating and purifying both 
murine and human erythroblasts at distinct stages can be accomplished using surface markers 
and FACS analysis (Chen et al., 2009; Liu et al., 2013; Hu et al., 2013). These novel methods 
for isolating erythroid lineage cells at each stage have not only enabled the study of normal and 
disordered erythropoiesis in a stage- specific manner (Liu et al., 2013; Hu et al., 2013) but have 
also facilitated global molecular characterization of erythropoiesis. Various global omics analyses 
have been performed using purified erythroid cell populations (Li et al., 2014; An et al., 2014; 
Edwards et al., 2016; Schulz et al., 2019). Transcriptome analyses of human and murine erythro-
blasts reveal significant stage- and species- specific differences across stages of terminal erythroid 
differentiation (An et al., 2014). The epigenetic landscape of human erythropoiesis reveals that 
erythroid cells exhibit chromatin accessibility patterns distinct from other cell types. It also reveals 
stage- specific patterns of gene regulation (Schulz et al., 2019). Global omics analyses have also 
been performed on primitive erythroblasts during embryogenesis that revealed molecular simi-
larities and differences between primitive and definitive erythropoiesis (Nemkov et  al., 2022). 

https://doi.org/10.7554/eLife.90189
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The omic databases generated during the last decade not only contribute novel understanding of 
normal erythropoiesis regulation but also provide insight into disease pathophysiology and serve 
as rich resources for future studies.

Enucleation is a distinctive feature of mammalian erythropoiesis. Given the physiological signif-
icance of enucleation in generating highly deformable RBCs for effective oxygen delivery, under-
standing the mechanistic basis of enucleation has been an active area of investigation. Cytoskeleton 
proteins such as actin (Takano- Ohmuro et  al., 1996; Ji et  al., 2008; Watanabe et  al., 2013; 
Ubukawa et al., 2020; Liu et al., 2021), tubulin (Chasis et al., 1989; Wang et al., 2012), myosin 
(Takano- Ohmuro et al., 1996; Ubukawa et al., 2012), tropomodulin (Sui et al., 2014), and chro-
matin condensation and lipid rafts (Ji et al., 2010; Konstantinidis et al., 2012; Malik et al., 2017; 
Zhao et al., 2019; Wang et al., 2021; Jeffery et al., 2021) are essential for normal enucleation. 
Although the function of actin and tubulin in enucleation suggests that erythroblast enucleation is a 
form of asymmetric cytokinesis, evidence documents that vesicle trafficking rather than cytokinesis is 
required for enucleation (Keerthivasan et al., 2010). This conclusion is supported by a recent finding 
that vesicle formation regulated by ERK/MAPK pathway mediates human erythroblast enucleation 
(An et al., 2021). Furthermore, although some evidence suggests that actin forms a contractile ring 
to help expel the nucleus (Ji et al., 2008), other data demonstrates that a dedicated cytoskeletal 
assembly in the cytoplasm, the ‘enucleosome,’ located contralateral to the site of enucleation, that 
is, at the rear of the nucleus, is most likely the driver of nuclear expulsion (Nowak et al., 2017). 
These findings indicate that despite relatively extensive studies on enucleation, the relevant mech-
anisms remain incompletely understood, somewhat controversial, and would benefit from further 
investigation.

Reticulocyte maturation is the final step of erythropoiesis. During this process, a series of major 
changes occur. These include membrane surface area loss via membrane vesiculation (Waugh et al., 
1997), organelle (mitochondria and ribosome) clearance via autophagy (Gronowicz et  al., 1984; 
Kundu et al., 2008; Zhang et al., 2009b), and membrane skeleton reorganization (Chasis et al., 
1989; Liu et al., 2010; Liu et al., 2011). These changes together lead to fully functional mature RBCs 
with maximum hemoglobin carrying capacity and flexible yet stable membranes.

Erythropoiesis is tightly regulated by multiple soluble factors. To determine how many RBCs are 
required, the bone marrow relies on the kidney in which interstitial fibroblasts in the renal medulla sense 
hypoxia, leading to the HIF- 2- mediated production and excretion of EPO. Very recent preliminary data 
using single- cell RNA and transposase- accessible chromatic (ATAC) sequencing to molecularly identify 
EPO- producing cells indicate that a distinct population of renal stromal cells, termed Norn cells, are 
the main source of EPO production in mice and humans (Kragesteen et al., 2023). EPO binding to 
EPO receptor (EPOR) on erythroid precursors in the bone marrow in turn induces their survival, cell 
division, and differentiation to ultimately produce RBCs. EPO and EPOR are indispensable for defin-
itive erythropoiesis. Deletion of EPO or EPOR leads to embryonic lethality at approximately E13 due 
to severe anemia associated with defects in definitive erythropoiesis in mice (Wu et al., 1995). Other 
cytokines, growth factors, and hormones such as stem cell factor, interleukin- 3, insulin- like growth 
factor 1, and glucocorticoids, although not essential for erythropoiesis, also promote proliferation of 
erythroid progenitors (Sonoda et al., 1988; Sonoda et al., 1994; Kolbus et al., 2003; Perry et al., 
2007; Flygare et al., 2011). At the transcriptional level, red cell development is regulated by multiple 
transcription factors (Dzierzak and Philipsen, 2013; Andrieu- Soler and Soler, 2022), two of which, 
GATA1 and KLF1, are considered master regulators, indispensable for normal erythropoiesis (Pevny 
et al., 1995; Siatecka and Bieker, 2011).

Similar to EPO, iron is also essential for erythropoiesis. Hemoglobin synthesis in the developing 
erythroblasts requires iron- containing heme. While EPO allows survival of erythroid progenitors and 
early- stage erythroblasts by activating transcription of anti- apoptotic genes via the EPO/EPOR/JAK2/
STAT5 signaling pathway (Witthuhn et al., 1993), iron modulates EPO responsiveness (Khalil et al., 
2018) and is also essential for differentiation of early- to late- stage erythroblasts, during which time 
iron incorporation into the protoporphyrin ring is required as the last step in heme synthesis. EPO can 
thus be regarded as a ‘driver’ of erythropoiesis, while iron acts as a ‘modulator’ and also serves as the 
fuel for the production of RBCs. In addition, recent data demonstrates that iron may be involved in the 
modulation of EPO responsiveness via the regulatory function of monoferric transferrin.

https://doi.org/10.7554/eLife.90189
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Physiological regulation and dysregulation of iron 
metabolism
Systemic regulation of iron metabolism
Because of its low bioavailability, complex living organisms have developed sophisticated mechanisms 
to obtain, distribute, and sequester iron that have also enabled competition for iron with patho-
gens and prevention of iron excess. In a seminal discovery more than two decades ago, the peptide 
hormone hepcidin, secreted primarily by hepatocytes, has been shown to be the principal regulator 
of iron homeostasis (Krause et al., 2000; Park et al., 2001; Ganz, 2005), modulating dietary iron 
absorption, iron recycling by macrophages, and the release of iron from hepatic stores (Figure 2A). 
Hepcidin is a negative regulator of iron flows with high hepcidin concentration typically resulting 
in the blockade of iron absorption and sequestration of cellular iron. Hepcidin downregulates iron 
release into plasma by binding to and functionally downregulating ferroportin 1, the sole exporter of 
intracellular iron (Nemeth et al., 2004; Donovan et al., 2005; Figure 2B). Ferroportin is evolution-
arily conserved and is found in microbes, invertebrates, plants, and animals (Taniguchi et al., 2015). 
In humans, ferroportin is found in duodenal enterocytes, macrophages, and hepatocytes, all cells 
involved in iron transport (Figure 3). In addition, erythroid progenitors and precursors in the bone 
marrow as well as circulating RBCs also express ferroportin (Zhang et al., 2018; Figure 3C), an inter-
esting finding that remains incompletely understood.

Hepcidin:ferroportin binding leads to both occlusion of the ferroportin channel (Aschemeyer 
et al., 2018) and induction of a conformational change, leading to ferroportin ubiquitination, endocy-
tosis of the complex (Qiao et al., 2012), and its ultimate lysosomal degradation (Nemeth et al., 2004; 
Figure 2B). More recent work provides further structural and functional detail of the hepcidin:ferro-
portin interaction using cryogenic electron microscopy, identifying the 80- fold enhanced hepcidin 
binding to iron- loaded ferroportin and elucidating targeted ferroportin degradation in the presence 
of iron (Billesbølle et al., 2020). From a systemic perspective, this block in cellular iron efflux leads 
to circulating hypoferremia as a consequence of continued iron uptake from the circulation, leading 
to iron consumption if it is not replaced by iron efflux from enterocytes, macrophages, and hepato-
cytes. Thus, maintaining a stable supply of iron in the circulation is dependent on hepcidin- mediated 
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Figure 2. Hepcidin is central to the regulation of iron metabolism. (A) Systemically, hepcidin is a negative regulator of iron flows such that increased 
hepcidin synthesis (which mainly occurs in the liver) leads to hypoferremia by decreasing iron absorption in the duodenum, iron recycling from splenic 
macrophages, and iron release from hepatocyte stores. (B) The mechanism of action of hepcidin involves binding to and occluding ferroportin, 
induction of ferroportin ubiquitination, followed by endocytosis and lysosomal degradation of the ferroportin:hepcidin complex. Fe- Tf, transferrin- 
bound iron; FPN1, ferroportin1; Ub, ubiquitination.
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post- translational regulation of ferroportin. In addition, ferroportin expression in erythrophagocy-
tosing macrophages is also transcriptionally regulated by heme (Marro et al., 2010) and under trans-
lational regulation (i.e. iron response elements on messenger RNA bound to iron response proteins) 
by mechanisms independent of hepcidin regulation (Zhang et al., 2009a). Finally, recent work also 
provides evidence that transferrin also interacts with ferroportin, leading to ferroportin internalization 
and degradation by a well- established pathway, and that only extra- physiological levels of hepcidin 
interfere with the transferrin:ferroportin interaction (Baringer et  al., 2023). The full physiological 
significance of these finding remains to be determined.

Ferroportin expression on the basolateral side of duodenal enterocytes, on splenic and liver 
macrophages, and on hepatocytes enables hepcidin regulation of iron absorption, recycling, and 
storage, respectively (Figure 3A and B). Because hepcidin is a negative regulator of iron metabolism, 
decreased hepcidin concentration results in increased iron absorption and increased release of iron 
from intracellular compartments in hepatocytes and macrophages, enabling recovery from iron defi-
ciency. To elucidate, low hepcidin levels result in greater ferroportin activity on duodenal enterocytes, 
leading to the depletion of enterocyte iron levels with consequently decreased activity of oxygen- and 
iron- dependent prolyl hydroxylases that target hypoxia- inducible factors (HIFs) for degradation in 
proteasomes, stabilizing HIF. HIF2α is an important local regulator of transcription of the apical iron 
importer divalent metal transporter 1 (DMT1), the iron reductase duodenal cytochrome b (DCYTB), 
and the basolateral exporter ferroportin (Schwartz et  al., 2019). Taken together, HIF2α stabiliza-
tion coordinates apical import of dietary iron with the hepcidin- controlled activity of ferroportin to 
enhance absorption of intestinal iron in iron- deficient conditions.

In some pathological conditions, insufficiently increased hepcidin results in excessive iron released 
into the circulation, overwhelming transferrin’s iron binding capacity, resulting in the generation of 
non- transferrin bound iron (NTBI) (Esposito et al., 2003). NTBI, in particular its redox- active form, 
labile plasma iron (LPI), is thought to be the pathogenetic driver of clinically significant iron overload 
in diseases of primary and secondary hemochromatosis (Cabantchik et al., 2005). NTBI/LPI is unavail-
able for erythropoiesis, is taken up by non- hematopoietic cells in a dysregulated manner, causes 
parenchymal iron deposition (Jenkitkasemwong et al., 2015), and can result in free radical damage 
to cells and organs, leading to the morbidity and mortality of iron overload. More detailed pathophys-
iology of iron overload is beyond the scope of the current review; an excellent review of hepcidin in 
disorders of iron regulation was recently published (Nemeth and Ganz, 2023).

Cellular regulation of iron metabolism
As mentioned, iron is required for homeostatic function in all cells, essential for the production of 
heme and iron- sulfur clusters, themselves components of proteins/enzymes involved in respiration, 
nucleic acid replication and repair, metabolic reactions, and host defense. Specifically, iron is neces-
sary for enzymatic reactions in the electron transport chain and the tricarboxylic acid cycle, and iron 
participates in reactions catalyzed by microsomal cytochromes involved in the detoxification of drugs 
and other foreign substances. Despite broad functioning in physiological processes, the majority of 

via FPN1. During iron export, Fe2+ must be oxidized to Fe3+ by HEPH or CP and loaded onto TF for transport in the circulation. Hepcidin prevents iron 
export at the basolateral cell membrane and results in ferritin iron accumulation within the enterocyte. (B) Macrophage: splenic and liver macrophages 
are specifically equipped with mechanisms to enable direct erythrophagocytosis, uptake of Hb:HP complexes via CD163, and heme:HPX complexes 
via CD91. The heme extracted from these pathways is processed by HMOX1 to liberate iron that is then either incorporated into ferritin or exported 
from the cell via FPN1 and loaded onto TF for delivery to iron- requiring cells. (C) Erythroblast: iron- loaded TF binds to TFR1 on the surface of cells with 
erythroblasts expressing the highest concentration of TFR1 relative to other cells in light of their high iron requirements. These complexes localize to 
clathrin- coated pits that invaginate to form specialized endosomes where proton pumps decrease the pH and transported Fe3+ is reduced by STEAP3 
for export from the endosome via DMT1. Erythroblasts shuttle much of their iron to the mitochondria by an incompletely understood mechanism where 
it is incorporated into protoporphyrin. FPN1 is also expressed on erythroblasts but purpose of iron export in erythroblasts is incompletely understood. 
Finally, iron loaded TF also binds TFR2, which is thought to function as an iron sensor to coordinate iron supply with erythropoietic output by modulating 
EPOR localization and consequently EPO responsiveness; a detailed mechanistic understanding of TFR2’s role in erythropoiesis (DMT1, divalent metal 
transporter 1; Dcytb, duodenal cytochrome B reductase; FPN, ferroportin 1; HEPH, hephaestin; CP, ceruloplasmin; TF, transferrin; Fe3+, ferric iron; Fe2+, 
ferrous iron; Hb, hemoglobin; HP, haptoglobin; HPX, hemopexin; CD91 and 169, cluster of differentiation 91 and 163; HMOX1, heme oxygenase 1; TFR1 
and 2, transferrin receptor 1 and 2; EPO, erythropoietin; EPOR, EPO receptor; PCBP1, poly(rC)- binding protein 1; NCOA4, nuclear receptor coactivator 
4; pSTAT5, phosphorylated signal transducer and activator of transcription 5; pAKT, phosphorylated protein kinase B).

Figure 3 continued

https://doi.org/10.7554/eLife.90189


 Review article Developmental Biology | Medicine

Ginzburg et al. eLife 2023;12:e90189. DOI: https://doi.org/10.7554/eLife.90189  8 of 37

iron functions as an oxygen carrier in the heme groups of hemoglobin and myoglobin molecules. 
Because iron can be highly toxic to cells, cellular iron trafficking requires deliberate coordination 
to enable its safe utilization. Here, we focus on specific cell types that are central to systemic iron 
metabolism.

1. Duodenal enterocytes: The primary site of dietary iron absorption involves enterocytes within 
duodenal villi. These polarized cells are in contact with the gut lumen and dietary contents on 
their apical side and with blood in circulation on their basolateral side (Figure 3A). Non- heme 
iron is imported from the lumen by the apical enterocyte DMT1 (Gunshin et al., 1997; Fleming 
et al., 1997), a metal transporter that takes up iron after iron reduction from ferric (Fe3+) to 
ferrous (Fe2+) state (McKie et al., 2001). Iron that is not used for enterocyte function is either 
stored within ferritin or exported by ferroportin on the basolateral surface to be loaded onto 
transferrin in circulation. As transferrin- bound iron is obligate Fe3+, intracellular Fe2+ must first 
be oxidized at the basolateral surface to enable its export (Vulpe et al., 1999). Finally, iron 
that is not exported at the enterocyte’s basolateral surface into the circulation is lost during 
mucosal shedding. The concentration of hepcidin in circulation regulates iron absorption at the 
basolateral surface of the enterocyte such that low hepcidin levels correlate with increased iron 
absorption to enable recovery from iron deficiency while high hepcidin levels prevent additional 
iron absorption (Figure 3A).

2. Reticuloendothelial macrophages: At the end of their 120- day life cycle, RBC recycling by 
macrophages in the spleen and liver supports the recovery of iron for further systemic use 
(Figure 3B). In addition, RBC hemolysis leads to the release of hemoglobin into the circula-
tion, where it is bound by haptoglobin, and circulating heme:hemopexin complexes, taken up 
by macrophages via CD163 and CD91, respectively. Macrophages are equipped with mecha-
nisms to recover iron from heme from both intact and hemolyzed RBCs via heme oxygenase 1 
(HMOX1) (Figure 3B). As in duodenal enterocytes, depending on systemic requirements, a frac-
tion of the recovered iron is stored in macrophages, bound for intracellular storage in cytosolic 
ferritin with the rest exported via ferroportin back into the circulation to bind transferrin when 
needed to maintain equilibrium of iron flux or when erythropoiesis is increased (Figure 3B).

A 

hepcidin 

hepcidin HAMP 
hepatocytes 

Erfe 

ERFE 

erythroblast 

ac�vated 
macrophage 

IL-6 

Fe-Tf 

iron recycling 
macrophage 

B 

IL-6 

hepcidin 

hepatocyte 

LSEC 

Fe-Tf 

BMP receptor 

BMP2 BMP6 

liver Fe 

ERFE 

HAMP promoter HAMP gene 

SMAD JAK-STAT 

HJV 

MT-2 

TFR1 HFE TFR2 
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3. Erythroblasts: The vast majority of transferrin- bound iron in the circulation is targeted to devel-
oping erythroid progenitors in the bone marrow to eventually be incorporated into heme (Finch 
et  al., 1970). Iron uptake for erythropoiesis is the result of transferrin:transferrin receptor 1 
(TFR1) binding (Figure 3C). Transferrin protein, with two iron molecules (also known as holo- 
transferrin or diferric transferrin), binds with high affinity to TFR1 at physiological pH 7.4; apo- 
transferrin (lacking iron) does not. Furthermore, monoferric transferrins, which bind TFR1 with 
affinity intermediate between holo- and apo- transferrin, are the most abundant transferrin 
moieties in the circulation (Luck and Mason, 2012; Parrow et al., 2019; Klausner et al., 1983a; 
Iacopetta et al., 1983; Klausner et al., 1983b; Dautry- Varsat et al., 1983; van Renswoude 
et al., 1982). A second transferrin receptor, TFR2, has been shown to mediate signaling events 
unrelated to meeting cellular iron needs, but a detailed understanding of its role in the crosstalk 
between erythropoiesis and iron metabolism awaits additional hypothesis- driven evaluation.

4. Hepatocytes: Hepatocytes account for 60–80% of liver cell mass, are metabolically active cells 
with numerous mitochondria, are responsible for carbohydrate metabolism, and contribute to 
a wide range of regulatory proteins, vitamins, and hormones required for local and systemic 
function. As such, hepatocytes are the main source of hepcidin synthesis and secretion. As a 
consequence, the central function of these cells for the purposes of this article is the mechanistic 
regulation of hepcidin.

Physiological regulation of hepcidin expression
Hepcidin expression is predominantly regulated by iron, inflammation, and erythropoiesis (Figure 4A). 
First, HAMP transcription in hepatocytes is upregulated by iron loading and suppressed by iron 
deficiency as well as expanded or ineffective erythropoiesis. The regulation of hepcidin by iron is 
incompletely understood. Murine models suggest hepatocytes sense local and systemic iron status 
by binding bone morphogenetic proteins (BMPs), primarily BMP6, BMP2, and/or their heterodimers 
via BMP receptors, and transferrin- bound iron via TFR1 and TFR2, leading to signaling to induce 
hepcidin expression (Camaschella et al., 2020; Figure 4B). Second, hepatocyte hepcidin expres-
sion is mediated indirectly by iron in response to iron- induced BMP production by liver sinusoidal 
endothelial cells (LSECs) (Enns et al., 2013). Recent evidence demonstrates that BMP6 expression 
in primary LSEC ex vivo is induced in response to iron only when co- cultured with primary hepato-
cytes or supernatants from primary hepatocyte cultures (Colucci et al., 2022). Additional recent 
effort provides evidence for a minor functional role of LSEC TFR1- mediated iron uptake and BMP6 
induction in iron limited conditions and TFR1- independent iron- mediated regulation of LSEC BMP6 
expression in iron- rich conditions (Fisher et al., 2022). Although how BMP expression is induced 
in LSEC is not fully understood, the BMP pathway is critical for hepcidin the regulation by iron 
(Truksa et  al., 2006; Babitt et  al., 2007). Specifically, BMP6 and BMP2 binding hepatocellular 
BMP receptor triggers phosphorylation and signaling via SMAD1/5/8 that, coupled with SMAD4, 
translocate to the nucleus to induce HAMP expression (Figure 4B). Third, several hepatocellular 
surface molecules modulate HAMP activation in response to iron status, enabling hepatocytes to 
directly sense iron via expression of TFR1, TFR2, and HFE. To briefly delineate, HFE association 
with TFR1 under low iron conditions is displaced when TFR1 binds monoferric or diferric transferrin 
(Feder et al., 1998; Bennett et al., 2000; Giannetti and Björkman, 2004; Lebrón et al., 1998). 
Although a mechanistic understanding of how TFR2 contributes to hepcidin regulation remains 
unclear, we surmise that as serum iron concentration increases, increased transferrin:TFR2 binding 
induces TFR2 membrane stabilization (Johnson and Enns, 2004; Robb and Wessling- Resnick, 
2004) and possibly HFE binding to TFR2. This HFE:TFR2 complex interacts with hemojuvelin (HJV), 
the iron- specific BMP co- receptor, and potentiates the BMP signaling pathway to HAMP expression 
(Figure 4B). Furthermore, the specific mechanism by which HJV regulates hepcidin is incompletely 
understood. For example, recent evidence demonstrates that HJV interaction with neogenin, a 
ubiquitously expressed transmembrane protein, is required for hepcidin regulation (Enns et  al., 
2021). Finally, the pathway is negatively regulated by the transmembrane serine protease matrip-
tase 2 (i.e. TMPRSS6), which by binding HJV, BMP receptor, and/or HFE decreases signaling to 
HAMP expression (Enns et al., 2020). Thus, both TFR2 and HFE:TFR1 complex function as the main 
iron sensors (Schmidt et al., 2008; Robb and Wessling- Resnick, 2004) and communicate systemic 
iron status to modify hepatocyte hepcidin production and secretion with multiple co- factors modu-
lating this signal.
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Interestingly, hepatocyte TFR1 also influences systemic iron homeostasis by interacting with the 
hemochromatosis protein HFE to regulate hepcidin production (Fillebeen et al., 2019; Xiao et al., 
2023). Although loss of hepatic Tfrc is not associated with grossly altered iron metabolism, hepatocyte- 
selective Tfrc knockout mice show predisposition to anemia making their unchanged hepcidin levels 
inappropriately high relative to serum and liver iron concentrations and ERFE levels. In addition, abla-
tion of hepatocyte Tfrc does not modify the iron phenotype in Hfe knockout mice. Lack of Tfrc also 
ameliorates hepcidin deficiency and liver iron loading.

Crosstalk between erythropoiesis and iron metabolism
Hemoglobin synthesis in erythroblasts requires large amount of iron, providing a strong rationale for 
erythropoiesis- mediated regulation of iron availability. For instance, stimulated erythropoiesis (e.g. in 
response to bleeding, repeated or large volume phlebotomy, hypoxia, or administration of exogenous 
EPO) leads to increased iron absorption, and the last few decades have provided a more robust mech-
anistic understanding of how iron availability is regulated by erythropoiesis. For the purposes of this 
article, we will discuss several aspects of this crosstalk, including how iron is taken up and chaperoned 
in erythroblasts, how erythropoiesis modulates iron metabolism directly and indirectly, and how iron 
metabolism itself impacts erythropoiesis.

Iron uptake and trafficking in erythroblasts
Hemoglobin, both in circulation and within the bone marrow, contains more than two- thirds of the 
body’s iron, and the majority of circulating iron is destined for uptake by erythroblasts (Finch et al., 
1970). Iron uptake for erythropoiesis occurs via transferrin binding to TFR1 (Figure 3C). Transferrin 
bound to TFR1 is internalized as a complex by receptor- mediated endocytosis (Klausner et al., 1983a; 
Iacopetta et al., 1983), which is coordinated with endosomal acidification, resulting in the release of 
iron from transferrin (Klausner et al., 1983b; Dautry- Varsat et al., 1983; van Renswoude et al., 
1982). Several hypotheses have been tested to ascertain how iron is transported within cells, the 
most compelling of which involves the cytosolic chaperone Poly(rC)- binding protein 1 (PCBP1). PCBP1 
delivers iron to ferritin (Leidgens et al., 2013; Ryu et al., 2017; Figure 3C). Evidence from Pcbp1 
knockout mice, with microcytosis and anemia, demonstrate that iron delivery to ferritin is required 
for normal erythropoiesis (Ryu et al., 2017). In addition, PCBP2 is also required for ferritin complex 
formation (Leidgens et al., 2013). Furthermore, an autophagic process to extract iron from the ferritin 
core is mediated by nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor for auto-
phagic ferritin turn- over, critical for regulation of intracellular iron availability (Mancias et al., 2014; 
Dowdle et al., 2014; Figure 3C). In iron- replete states, PCBP1 and PCBP2 expression is enhanced 
while NCOA4 is targeted to the proteasome for degradation (Mancias et al., 2015). This process, 
termed ferritinophagy, is believed to provide iron to the mitochondria, the main organelle involved in 
heme and hemoglobin synthesis during erythropoiesis. Alternatively, or in concert, the ‘kiss- and- run’ 
model may support the of transfer iron without chaperones when transferrin iron containing endo-
somes and mitochondria come into contact with one another (Hamdi et al., 2016). Finally, transferrin- 
bound iron internalized by TFR2 may undergo trafficking to lysosomes and subsequent transfer to 
mitochondria via Mucolipin 1 and Mitofusin 2 (Khalil et al., 2017; Figure 3C). Taken together, despite 
important recently uncovered mechanistic findings, the nuances of how iron trafficking in erythroblasts 
is dysregulated and contributes to disordered erythropoiesis are incompletely understood.

Erythropoiesis-mediated regulation of iron metabolism
During the last century, investigators have proposed that an erythroid regulator strongly influences 
iron homeostasis. The discovery of hepcidin as an iron- regulatory hormone heralded a new era in 
exploring the mechanistic foundation of an erythroid regulator of iron homeostasis. For instance, stim-
ulation of erythropoiesis—by bleeding, anemia, hypoxia, or injection of exogenous EPO—strongly 
suppresses hepcidin production in mice and humans, and iron absorption increases, often dramati-
cally, during such stress erythropoiesis to accommodate increased iron demand. Initial exploration of 
EPO itself as a hepcidin suppressor revealed a lack of direct effect in in vitro studies in isolated liver 
cells (Gammella et al., 2015), implicating an intermediary EPO- responsive suppressor of hepcidin.
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To explore the mechanism(s) underlying erythropoiesis- mediated regulation of hepcidin required 
separating how EPO, hypoxia, anemia, reticulocytosis, and erythropoiesis itself are individually 
involved. Prior experiments demonstrate that phlebotomy, EPO administration, and hemolysis all 
resulted in decreased hepcidin expression (Nicolas et al., 2002a; Nicolas et al., 2002b; Vokurka 
et al., 2006). Additional studies revealed that bone marrow ablation prevents hepcidin suppression 
in response to phlebotomy, EPO administration, and hemolysis (Vokurka et al., 2006; Pak et al., 
2006), strongly supporting the hypothesis that erythroid regulation of hepcidin is a consequence of 
expanded, stress, or ineffective erythropoiesis. Consistently, iron- loading anemias exhibit complicated 
crosstalk between erythropoiesis and iron metabolism that remain incompletely understood. Such 
diseases of concurrent iron overload and expanded or ineffective erythropoiesis (e.g. β-thalassemia, 
some cases of myelodysplastic syndromes [MDS], and dyserythropoietic anemias) exhibit lower- than- 
expected hepcidin expression, insufficiently elevated relative to increased iron stores. In fact, insuf-
ficiently elevated hepcidin expression results in iron overload in these diseases, providing further 
support to the hypothesis that an ‘erythroid factor’ regulates iron metabolism (Ginzburg et al., 2009; 
Gardenghi et al., 2007).

Such an erythroid factor secreted by erythroid precursors, functioning as a hormone to distally 
suppress hepcidin expression in the liver, was predicted several decades prior to its recent discovery. 
Although multiple factors correlate with pathologically expanded or ineffective erythropoiesis, they 
do not support physiological regulation of iron by erythropoiesis. For example, although circulating 
growth differentiation factor 15 (GDF15) increases in patients with some congenital and acquired 
anemias and inversely correlates with hepcidin (Tanno et al., 2007), levels of GDF15 and hepcidin 
correlate poorly in phlebotomized mice (Casanovas et  al., 2013) and in MDS patients (Santini 
et al., 2011), suggesting that mechanisms of hepcidin suppression by erythropoiesis may be disease 
specific. Furthermore, hypoxia has been shown to decrease hepcidin expression by a novel regulatory 
pathway exerted via platelet- derived growth factor BB (PDGF- BB), leading to increased availability of 
circulating iron that can be used for erythropoiesis (Sonnweber et al., 2014). To interrogate whether 
PDGF- BB is directly regulated by erythropoiesis, mice were treated with EPO demonstrating no signif-
icant impact on serum PDGF- BB concentration. Additional evaluation of this mechanism of regulation 
is needed to understand its full impact and contribution to physiological and/or pathophysiological 
hepcidin regulation.

Finally and importantly, the discovery of erythroferrone (ERFE) provided a mechanism for the 
physiological regulation of hepcidin in the absence of chronic disease (Kautz et al., 2014). ERFE is 
expressed in bone marrow erythroblasts (Figure 4A). As Erfe-/- mice exhibit only mild anemia during 
the postnatal period (Kautz et al., 2014), ERFE expression increases post- phlebotomy and in response 
to exogenous EPO, supporting a hypothesis that its main function is to facilitate iron mobilization 
during recovery from transient anemia. Consistently, hepcidin suppression is dampened in Erfe+/- and 
abrogated in Erfe-/- mice (Kautz et  al., 2014) after phlebotomy. An evaluation of the mechanism 
of ERFE’s regulation of hepcidin demonstrates that ERFE sequesters BMP2 and BMP6, resulting in 
decreased BMP:BMPR binding, decreased BMP:SMAD signaling, and decreased hepcidin expression 
(Arezes et al., 2018; Wang et al., 2020; Figure 4A and B), increasing iron absorption and release 
from intracellular iron stores to meet the iron requirements of temporarily expanded erythropoiesis 
during recovery from transient anemia. However, additional regulators may also exist in light of some 
persistent hepcidin suppression in phlebotomized ERFE knockout mice and ongoing iron accumula-
tion in β-thalassemic ERFE knockout mice (Kautz et al., 2014; Kautz et al., 2015).

Iron-mediated regulation of erythropoiesis
Anemia as a result of systemic iron deficiency is the most common cause of anemia worldwide. There 
is great consensus that iron deficiency inhibits the production of heme and hemoglobin but is errone-
ously synonymous with the resultant anemia. However, decreased heme and hemoglobin production 
in iron- deficient conditions contributes to decreased mean corpuscular volume (MCV) and hemoglobin 
(MCH). Conversely, disease states of excess iron are often associated with higher MCV and MCH as a 
functional utilization of iron within a non- toxic compartment (McLaren et al., 2007). Anemia, on the 
other hand, occurs when iron availability decreases below a threshold, impeding the maturation of 
erythroblasts and thus decreasing production of RBCs. Recent data provides mechanistic evidence 
of what is termed the ‘iron restriction response,’ demonstrating regulation of erythroid precursor 
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differentiation during iron deficiency (Bullock et al., 2010; Khalil et al., 2018). The proposed mech-
anisms involve mitochondrial aconitase enzymes, TFR2, and scribble- mediated EPO receptor regu-
lation, as well as effects on the erythroblast cell cycle (Talbot et al., 2011; Khalil et al., 2018) that 
converge on the decreased EPO- responsiveness of erythroblasts.

Specifically, recent studies reveal a novel iron- sensing function of TFR2 in erythropoiesis, via its 
interaction with EPOR (Forejtnikovà et al., 2010; Nai et al., 2015; Lee et al., 2012; Rishi et al., 
2016; Fouquet et al., 2021; Figure 3C). However, the effect of TFR2 on EPO sensitivity remains 
incompletely understood. While studies in cell culture systems suggest that TFR2 increases EPO 
sensitivity by enhancing cell surface EPOR and downstream signaling (Forejtnikovà et al., 2010; 
Fouquet et  al., 2021), mice with TFR2 knockout in the bone marrow demonstrate an increase, 
rather than the predicted decrease, in EPO sensitivity—but only during iron deficiency (Rishi et al., 
2016). Likewise, iron- deficient mouse chimeras with Tfr2- deficient hematopoietic cells demonstrate 
increased EPO sensitivity, including erythrocytosis and activation of the JAK2- STAT5 and AKT path-
ways (Nai et  al., 2015). Mechanisms by which erythroid TFR2 may regulate EPO sensitivity have 
not been completely delineated. Recent evidence identified a role for TFR2 in modulating surface 
EPOR delivery in response to iron availability. Specifically, erythroid iron restriction accelerates TFR2 
trafficking to the lysosome and enhances catabolism of TFR2- Scribble complexes. The resultant 
deficiency of Scribble leads to diminished surface delivery of EPOR vesicles and diminished EPO 
responsiveness (Khalil et al., 2018). These findings suggest that manipulating TFR2 catabolism could 
provide a therapeutic approach to erythropoietic disorders with aberrant EPO responsiveness. We 
anticipate that the effect of TFR2 on EPO sensitivity depends upon the relative transferrin forms 
available for binding in the circulation and therefore reflect systemic iron status on erythropoiesis 
(Parrow et al., 2019).

Recent studies have also implicated loss of ferritin- induced stabilization of the microtubule 
cytoskeleton as a contributor to the erythroid iron restriction response, possibly explaining the 
misshapen RBCs, poikilocytes, characteristic of iron deficiency anemia (Goldfarb et  al., 2021). 
Finally, evidence points to the importance of transferrin not only in iron delivery for hemoglobin 
synthesis but in regulation of erythroblast differentiation. As noted above, transferrin can be found 
in the circulation as holo- transferrin or diferric transferrin, monoferric transferrin, or apo- transferrin. 
Monoferric transferrins, either monoferric N (monoN) or monoferric C (monoC) lobe transferrin, are 
the most abundant transferrin moieties in the circulation (Luck and Mason, 2012; Parrow et al., 
2019; Klausner et al., 1983a; Klausner et al., 1983b; Iacopetta et al., 1983; Dautry- Varsat et al., 
1983; van Renswoude et al., 1982). Interestingly, relative distribution of the monoferric transferrin 
forms varies with iron status, such that the ratio of monoN to monoC transferrin decreases as serum 
iron falls (Pagani et  al., 2019; Porter, 2020; Welch, 1992). To investigate the potential effects 
of transferrin lobe- specific iron occupancy, mice in which iron- binding was blocked from binding 
to either the N or the C lobe of transferrin (Gomme et  al., 2005) were generated. These mice 
exhibit important differences from each other in both iron metabolism and erythropoiesis. Specif-
ically, monoC- blocked mice predominantly have circulating monoN transferrin and demonstrate 
enhanced EPO sensitivity and hepcidin responsiveness to iron compared with monoN- blocked 
mice in which monoC transferrin is predominantly found in the circulation (Parrow et al., 2019). 
Conversely, primary disease states of excess iron are often associated with expanded RBC size 
and higher cellular hemoglobin concentrations as a functional utilization of iron within a non- toxic 
compartment (McLaren et al., 2007). Taken together, how iron regulates erythropoiesis remains 
substantially but incompletely understood.

Mechanisms underlying anemia related to iron metabolism
Although there is a broad range of anemia- causing mechanisms, we will focus in this review on causes 
related to iron metabolism. In addition to iron deficiency anemia, these foremost include anemia of 
chronic inflammation (ACI). In addition, iron refractory iron deficiency anemia (IRIDA) is an interesting 
albeit rare form of IDA discussed here. In a subsequent section below, we will also discuss iron metab-
olism in the context of ineffective erythropoiesis in iron loading anemias, namely β-thalassemias and 
MDS.
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Anemia of chronic inflammation
ACI is also termed anemia of chronic disease; while iron deficiency results in sometimes severe (i.e. 
hemoglobin 5–7 g/dL) microcytic, hypochromic anemia, ACI is typically a milder normocytic normo-
chromic hypoproliferative anemia (i.e. hemoglobin 8–10 g/dL) and is considered the second most 
frequent anemia in the world, after IDA (Weiss and Goodnough, 2005). Both present with decreased 
circulating serum iron concentration and transferrin saturation, but while IDA is characterized by 
anemia with depleted iron stores (i.e. serum ferritin below the lower limit of normal), iron stores are 
ample in ACI. In the setting of inflammation, differentiating ACI from iron deficiency anemia may be 
challenging, and iron deficiency anemia may co- exist with ACI (Bressman et al., 2021). ACI is also 
the most common anemia in hospitalized patients, found in conditions associated with an activated 
immune response, including chronic infections, autoimmune and inflammatory illnesses and malig-
nancy. The underlying cause of anemia in these diseases is multifactorial, resulting from the effects 
of inflammatory cytokines, particularly interleukin- 1 (IL- 1), IL- 6, IL- 10, tumor necrosis factor-α (TNF-
α), interferon-γ (IFN-ɣ), IFN-α, and IFN-β, all or some of which are increased in most inflammatory 
processes (Raj, 2009). Multiple lines of evidence suggest that elevated inflammatory cytokines lead to 
increased iron sequestration and resultant decreases in iron availability for erythropoiesis and hemo-
globin synthesis, directly and indirectly inhibiting erythroid progenitor differentiation, and resulting in 
a decreased EPO- responsiveness to anemia (Figure 5). The mechanism resulting in anemia in ACI is 
similar to that of IDA when iron stores are depleted (due to poor iron absorption alone or insufficiently 
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Figure 5. Effects of inflammation on iron recycling. Under normal conditions, iron recycling from multiple sources within macrophages leads to export 
of iron via ferroportin back into the circulation where it is loaded onto transferrin and delivered to cells with iron requirements (e.g. for hemoglobin 
synthesis in erythroblasts during erythropoiesis in the bone marrow). Increased hepcidin in states associated with chronic inflammation lead to binding 
to and occlusion of the ferroportin channel, preventing iron egress from cells involved in iron recycling (e.g. splenic red pulp macrophages), leading to 
the accumulation of iron within cellular ferritin core, and causing decreased iron- bound transferrin (low transferrin saturation). This decreased availability 
of iron for erythropoiesis results in anemia of chronic inflammation. Fe, iron; FPN, ferroportin 1; TF, transferrin; Hb, hemoglobin; HP, haptoglobin; HPX, 
hemopexin; PCBP1, poly(rC)- binding protein 1; NCOA4, nuclear receptor coactivator 4.
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enhanced in the setting of bleeding) as both conditions lead to decreased iron availability for eryth-
ropoiesis. The decreased iron availability may also act in a synergistic manner with the inflammatory 
cytokines in ACI, potentiating their capacity for direct suppression of erythroblasts (Richardson et al., 
2013).

Previously considered a diagnosis of exclusion, with treatment of ACI mainly focused on the under-
lying disease, the identification of the peptide hormone hepcidin and its major role in the pathophys-
iology of ACI have enabled both an enhanced mechanistic understanding and development of novel 
therapeutics for ACI. Specifically, production of inflammatory cytokines, such as IL- 6 and possibly 
other cytokines, leads to hepcidin- induced hypoferremia, resulting in iron sequestration within the 
reticuloendothelial system, thereby decreasing iron availability for erythropoiesis (Figure 5). The term 
‘functional iron deficiency’ refers to insufficient iron availability at the site of erythroblast production, 
despite adequate body iron stores. It typically applies to the high hepcidin state in patients with renal 
insufficiency. However, broadly speaking, ACI, another high hepcidin condition, can also conceptually 
be referred to as functional iron deficiency. The teleological argument for the presence of anemia in 
conditions associated with inflammation is presumed to be related to iron sequestration, providing 
an evolutionary advantage in light of the iron dependence of pathogens and rapidly replicating cells. 
Thus, iron sequestration restricts iron availability and serves to limit growth of pathogens and malig-
nant cells at the expense of hemoglobin synthesis. The specifics of iron regulation in infection with 
intracellular organisms (e.g. Salmonella and others) await additional clarification (Gehrer et al., 2023).

Furthermore, a newly emerging theme in inflammation- associated anemias is the contribution of 
alarmins, bioactive molecules released from damaged tissues or stressed cells. These factors may 
enter the circulation and engage receptors on target cells to promote anemia development. In models 
of sepsis, the release of the protein HMGB1 and of mitochondrial DNA act to suppress erythropoiesis 
and increase RBC turnover, respectively (Dulmovits et al., 2022; Lam et al., 2021). HMGB1 appears 
to directly block EPO- EPOR interaction, while mitochondrial DNA binds TLR9 on RBCs to enhance 
erythrophagocytosis and activate macrophage secretion of interferons. Notably, prior studies have 
implicated the alarmins S100A8 and S100A9 in the erythroid differentiation defect associated with 
a specific subclass of MDS, del(5q) (Schneider et al., 2016), raising the possibility that these factors 
may also contribute to inflammation- associated anemia. Finally, IL- 33, recognized as both a cytokine 
and an alarmin, has been identified as a mediator of anemia in a murine model of inflammatory 
spondyloarthritis, acting directly on erythroid progenitors via its receptor, ST2 (Swann et al., 2020). 
While alarmin- or cytokine- induced anemia may be more directly causally linked to acute inflamma-
tion, similar mechanisms may potentially trigger chronically activated propagating loops, exempli-
fied by the feed- forward relationship between erythrophagocytosis and macrophage activation (Lam 
et al., 2021). The role of iron restriction in alarmin- induced anemias remains to be established but is 
suggested by studies in which hepcidin neutralization or loss in a mouse model of acute inflammation 
ameliorates anemia (Sasu et al., 2010; Gardenghi et al., 2014).

IRIDA is a rare autosomal- recessive disorder caused by mutations in TMPRSS6 (transmembrane 
serine protease 6) (Finberg et al., 2008). TMPRSS6 is expressed primarily by the liver (Finberg et al., 
2008; Hooper et  al., 2003) and encodes matriptase- 2, a member of a family of transmembrane 
serine proteases (Ramsay et al., 2008). Matriptase- 2 acts as a negative regulator of BMP signaling for 
hepcidin production by cleaving the BMP co- receptor hemojuvelin from the cell membrane (Silvestri 
et al., 2008), and TMPRSS6 mutations that impact the matriptase- 2 catalytic domain result in impaired 
hemojuvelin cleavage. More recent evidence reveals that TMPRSS6 also targets other components of 
the BMP receptor complex by both proteolytic and nonproteolytic mechanisms (Enns et al., 2020; 
Krijt et al., 2021). As a consequence, patients with IRIDA exhibit hepcidin levels that are inappropri-
ately elevated relative to their body iron stores.

Patients with IRIDA present with hypochromic, microcytic anemia (hemoglobin 6–9  g/dL), very 
low MCV (45–65 fL) and transferrin saturation (<5%), suppressed oral iron absorption, and abnormal 
iron utilization in response to parenteral iron. Surprisingly, infants with IRIDA demonstrate normal 
birth weights, normal growth and development, without cognitive concerns on long- term follow- up. 
Because these patients are generally healthy, anemia diagnosis is made via routine screening 
conducted in the first few years of life (Pearson and Lukens, 1999; Melis et al., 2008; Arsenault 
et al., 2016). Close to 50 different TMPRSS6 mutations have been reported in IRIDA with most vari-
ants unique to individual families (Heeney and Finberg, 2014), and some evidence suggests linkage 
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between common single- nucleotide polymorphisms in TMPRSS6 and various hematological and iron- 
related laboratory parameters (Benyamin et al., 2009; Chambers et al., 2009; Ganesh et al., 2009; 
Soranzo et  al., 2009). Taken together, although the pathophysiology underlying IRIDA has been 
elucidated, a robust understanding of the influence of TMPRSS6 mutations on hepcidin regulation 
and iron availability and the resultant compensatory mechanisms at various life stages that prevent a 
greater plethora of symptoms awaits discovery.

What is ineffective erythropoiesis?
Ineffective erythropoiesis can be defined as the diminished production of enucleated RBCs despite 
an increase in the number of erythroid precursors (Figure 6). When the quantity and/or the ability of 
enucleated RBCs to transport oxygen declines below a certain level, patients require RBC transfusions 
for survival (Kattamis et al., 2022; Ginzburg and Rivella, 2011). Ineffective erythropoiesis has been a 
subject of intensive investigation in β-thalassemia, a disease in which ineffective erythropoiesis mani-
fests with an expanded number of erythroid precursors and their reduced ability to differentiate, an 
increase in erythroblast death in these terminally differentiated cells, and reduced survival of enucle-
ated RBCs (Ginzburg and Rivella, 2011). The proposed underlying mechanism leading to ineffective 
erythropoiesis in β-thalassemia is the relative excess of alpha- globin chains (EACs) (Kattamis et al., 
2022; Ginzburg and Rivella, 2011). EACs alter erythropoiesis in at least two ways: in complex with 
free heme molecules, they form hemichromes, which are the main source of oxidative stress and cell 
death (Kattamis et al., 2022). In addition, EACs reduce the stability of GATA1, the main erythroid 
transcription factor in erythroblasts, interfering with their survival and maturation (Arlet et al., 2014). 
Furthermore, the abnormal and reduced number of RBCs in circulation lead to hypoxia- mediated EPO 
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Figure 6. Ineffective erythropoiesis. Under normal conditions, small numbers of differentiating erythroblasts are needed to efficiently differentiate 
and enucleate to reticulocytes and ultimately mature red blood cells (erythrocytes). In conditions associated with ineffective erythropoiesis (e.g. 
β-thalassemia, myelodysplastic syndrome, and others), a block in erythroblast differentiation leads to the accumulation of immature erythroblasts, 
preventing efficient production of erythrocytes, resulting in anemia.
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production, which in turn exacerbates further the expanded number of immature erythroid precursors 
(Libani et al., 2008).

Expansion in the number of erythroid precursors leads to increased ERFE production and conse-
quent hepcidin suppression (Kautz et al., 2014). Hypoxia also plays a role by increasing expression of 
genes responsible for iron absorption in the duodenum (Anderson et al., 2013). Although in severely 
affected patients organ iron overload develops because of frequent RBC transfusions, in individuals 
with β-thalassemia who are not regularly transfused, the mechanisms responsible for increased iron 
absorption (i.e. insufficiently elevated hepcidin expression), along with chronic hemolysis, lead to 
progressive tissue iron deposition and toxicity, requiring even in these cases the use of iron chelators 
to prevent significant morbidity and mortality (Kattamis et al., 2022; Musallam et al., 2021).

Novel drugs and genetic approaches are now being translated to improve the quality of life in 
β-thalassemia (and other) patients or even cure them. Although a full description of these therapeutics 
is beyond the scope of the current review, these drugs can be broadly classified based on their mech-
anism of action as shown in Table 1. Among these, only gene therapy provides a curative approach. 
However, the risks remain high and alternative therapeutic options are welcome for those patients 
who are ineligible for cure. Drugs that act on iron metabolism (e.g. hepcidin- mimetics and trans-
ferrin) could also improve RBC quality and survival by limiting erythroid iron intake and hemichromes 
formation, as shown in mouse models of β-thalassemia (Li et al., 2010; Guo et al., 2013). However, 
even these drugs may fail to do so in β-thalassemia patients, their use could reduce iron absorption 
in combination with iron chelators if the patient is already iron overloaded. In addition, they could 
prevent iron from being accumulated in combination with drugs that improve RBC quality and produc-
tion (e.g. luspatercept, mitapivat, and TFR2 inhibitors).

Beyond the inherited forms of iron- loading anemias, that is, β-thalassemia, MDS is an acquired form 
of ineffective erythropoiesis associated with iron overload. MDS is a heterogeneous group of bone 
marrow stem cell disorders; several subtypes of MDS are characterized by ineffective erythropoiesis, 
leading to blood cytopenias and increased incidence of transformation to acute myeloid leukemia 

Table 1. Novel agents in development for β-thalassemia (and other) patients.

Mechanism of action Agent name Producer Stage of development Reference

Improve RBC quality and 
production

Luspatercept BMS
FDA approved for TD β-thalassemia and 
MDS- RS Cappellini et al., 2023

Mitapivat Agios

FDA approved for PKD; in phase 
II clinical trial for NTD α- and 
β-thalassemia patients Kuo et al., 2022

TFR2 inhibitors Preclinical Di Modica et al., 2022

Gene therapy to normalize the 
underlying genetic defect

Gene addition
Eckrich and Frangoul, 2023; 
Christakopoulos et al., 2023Gene editing

Suppress erythropoiesis and 
prevent or reverse splenomegaly JAK2 inhibitors Novartis Phase IIa (failed) Taher et al., 2018

Alter iron import Transferrin Preclinical Boshuizen et al., 2017

Limit iron absorption

Hepcidin agonist 
rusfertide Protagonist

Currently in phase II and III clinical trials 
for PV patients Handa et al., 2023

Hepcidin inducer 
sapablursen Ionis

Currently in phase II clinical trials for PV 
patients Ganz et al., 2023

Ferroportin inhibitor 
Vamifeport Vifor

Currently in phase II clinical trials for 
SCD patients Nyffenegger et al., 2022

SLN124 Silence
Currently in phase I clinical trial for 
β-thalassemia and PV patients

ERFE inhibitors Preclinical Arezes et al., 2020

RBC, red blood cell; BMS, Bristol Myers Squibb; FDA, Food and Drug Administration; TD, transfusion dependent; MDS- RS, myelodysplastic syndrome 
with ringed sideroblasts; PKD, pyruvate kinase deficiency; NTD, non- transfusion dependent; TFR2, transferrin receptor 2; SCD, sickle cell disease; ERFE, 
erythroferrone.
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(Haferlach, 2019). The majority of MDS patients have a long median survival (e.g. 10 y), with 30–50% 
requiring only regular RBC transfusions to alleviate anemia and its associated symptoms (Dayyani 
et  al., 2010; Kröger, 2019). RBC transfusions, however, are the main cause of progressive iron 
overload and consequent end- organ damage in transfusion- dependent MDS patients (Oliva et al., 
2010). However, the risk–benefit ratio of treating iron overload in MDS patients remains controver-
sial. Furthermore, RBC transfusion- dependence and iron overload correlate strongly with decreased 
survival in MDS patients (Malcovati et al., 2005; Malcovati et al., 2006; Garcia- Manero et al., 2008; 
Malcovati et al., 2011). In vitro experiments demonstrate that excess iron inhibits erythroid lineage 
differentiation in both murine and human hematopoietic progenitors, exhibiting dysplastic changes 
with increased intracellular reactive oxygen species (ROS), decreased expression of anti- apoptotic 
genes, and DNA damage, triggering apoptosis, and worsening disease in MDS (Pan et al., 1999; 
Camaschella et al., 2007; Fibach and Rachmilewitz, 2012; Taoka et al., 2012; Hartmann et al., 
2013).

The TELESTO trial was designed and executed to test whether iron chelation provides clinical 
benefit in iron- overloaded lower risk MDS patients (Angelucci et  al., 2020). The results demon-
strate prolonged event- free survival in deferasirox- treated MDS patients without clear improvement 
in hemoglobin, reduction of RBC transfusion burden, or effect on overall survival. We hypothesize, 
based on evidence from mutant monoferric mice (see above), that the lack of effect of deferasirox 
on erythropoiesis is a consequence of the specific iron chelator selected. Deferasirox and most other 
commercially available iron chelators have a higher iron binding affinity relative to transferrin (Sohn 
et al., 2008); only deferiprone iron- chelating effect enables iron transfer from parenchymal cells to 
increased transferrin saturation (Schmidt et al., 2015; Casu et al., 2016a), potentially modulating 
monoferric transferrin concentrations. Furthermore, increasing transferrin saturation itself results in 
increased hepcidin expression in the liver (Schmidt et al., 2015; Casu et al., 2016b), in turn preventing 
further iron absorption and recycling, trapping iron within macrophages (Ganz, 2005), and decreasing 
iron availability for erythropoiesis to potentially ameliorate ineffective erythropoiesis in MDS. A direct 
beneficial effect of DFP on erythropoiesis in MDS has yet to be demonstrated. Recent data demon-
strates partial reversal of ineffective erythropoiesis in addition to iron overload, normalizing erythro-
blast iron trafficking and restoring EPO responsiveness in deferiprone- treated mouse model of MDS, 
NUP98- HOXD13 transgenic mice (An et al., 2022).

In addition, a specific subtype of low- risk MDS, namely MDS with ringed sideroblasts, occurs in 20% 
of all MDS patients. Splicing factor 3 B subunit 1 (SF3B1) mutations in hematopoietic stem and progen-
itor cells is a hallmark of this disease, inducing aberrant splicing of genes involved in heme biosyn-
thesis and mitochondrial iron transport, leading to the abnormal deposition of iron in erythroblasts, 
and resulting in dysfunctional hemoglobin synthesis and formation of ringed sideroblasts (Visconte 
et al., 2015; Dolatshad et al., 2015; Dolatshad et al., 2016; Shiozawa et al., 2018; Clough et al., 
2022). Although preclinical data in mouse models predicted a therapeutic effect of splicing inhibition, 
a recent phase I clinical trial did not yield significant clinical improvement (Lee et al., 2016; Steensma 
et al., 2021). Growing evidence suggests that the heme- regulated EIF2AK1 kinase pathway affects 
erythropoiesis in health and disease. For example, EIF2AK1 effector DDIT3 is overexpressed in MDS 
hematopoietic stem and progenitor cells (Berastegui et  al., 2021), DDIT3 overexpression delays 
erythroid differentiation in CD34- positive cells from MDS patients, and EIF2AK1 inhibition increases 
expression of both mitochondrial heme biosynthesis enzymes and iron transporters, reversing SF3B1 
mutation- induced arrest of erythroid differentiation in vitro (Adema et al., 2022).

Lastly, novel therapy has recently been US Food and Drug Administration (FDA) and European 
Medicines Agency (EMA)- approved for very low- to intermediate- risk MDS with ringed sideroblasts. 
Luspatercept is a modified activin receptor IIB ligand trap, a member of the transforming growth 
factor-β (TGF-β) superfamily. While this agent was studied in multiple different MDS subgroups of 
patients in a phase II trial, its efficacy was most robust in patients with MDS with ringed sideroblasts 
(Platzbecker et al., 2017) and led to the phase III MEDALIST trial, a double- blind, placebo- controlled, 
multicenter study in transfusion requiring patients with MDS with ringed sideroblasts (Fenaux et al., 
2018). In the MEDALIST trial, luspatercept led to transfusion independence for  >8  wk in 45% of 
enrolled subjects and median duration of response was 6 mo (Farrukh et al., 2022). To consider how 
MDS with ringed sideroblasts is unique, prior evidence demonstrates that these patients exhibit iron 
overload prior to the initiation of RBC transfusion (Gattermann, 2005) likely as a consequence of 
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especially suppressed hepcidin relative to other MDS subtypes (Gu et al., 2013; Santini et al., 2011) 
and HFE gene polymorphisms that predispose to iron overload are detected in up to 21% of MDS with 
ringed sideroblasts, significantly higher than in other MDS subtypes (Nearman et al., 2007; Valent 
et al., 2008). A more complete understanding of how the formation of ringed sideroblasts in MDS 
contributes to worsening ineffective erythropoiesis is currently lacking. Taken together, these recent 
findings provide supporting evidence for dysregulated iron trafficking in the pathophysiology of inef-
fective erythropoiesis in MDS.

Iron metabolism dysregulation in polycythemia vera
Polycythemia vera (PV), one of the chronic myeloproliferative neoplasms, is a clonal hematopoietic 
stem cell disorder driven by EPO hypersensitive signaling via the JAK2- STAT5 pathway, resulting 
in excess proliferation of erythroid precursors (Rampal et  al., 2014; Levine et  al., 2005; Baxter 
et al., 2005; Kralovics et al., 2005; James et al., 2005; Lu et al., 2008; Akada et al., 2010). The 
vast majority of PV patients are the result of acquired JAK2 mutations in their stem cells, namely 
JAK2V617F on exon 14 (95% of PV patients) or mutations in exon 12 of the JAK2 gene (2–3% of PV 
patients) (Pardanani et al., 2007; Scott et al., 2007). PV patients are frequently iron deficient at the 
time of diagnosis (Gianelli et al., 2008; Thiele et al., 2001; Kwapisz et al., 2009), and this is further 
exacerbated by therapeutic phlebotomies administered with the goal of maintaining hematocrit 
below 45% to decrease thrombotic risk (Marchioli et al., 2013). Repeated phlebotomies may in part 
dampen erythropoiesis by inducing iron deficiency but also potentially contribute to PV- associated 
systemic symptoms due to the depletion of iron stores in non- hematopoietic tissues (Pratt and Khan, 
2016). Recent analysis of PV patients treated with ruxolitinib, a JAK1/2 inhibitor, corroborates the role 
of iron deficiency in the manifestations of this disease as symptom improvement with ruxolitinib is at 
least partly attributable to reversal of systemic iron deficiency (Verstovsek et al., 2017).

We previously demonstrate that PV, compared to secondary forms of erythrocytosis, is associ-
ated with relative suppression of hepcidin, potentially due to more expanded erythropoiesis and iron 
depletion (Ginzburg et al., 2018). In addition, PV patients experience erythrocytosis despite a more 
profound iron deficiency relative to healthy blood donors (Feola et al., 2019; Stetka et al., 2023). 
This is evidenced by significantly lower MCVs, serum iron and ferritin concentrations, and transferrin 
saturation; this systemic iron deficiency in PV patients does not resolve despite elevated ERFE with 
consequent hepcidin suppression. Hepcidin suppression would be expected to result in enhanced 
intestinal iron absorption and mobilization of intracellular recycled and stored iron, leading to cellular 
iron efflux, more circulating iron, and recovery from systemic iron deficiency. However, recovery from 
iron deficiency does not occur in PV, where a low hepcidin state is insufficient to replenish iron stores, 
implying dysregulated iron homeostasis.

We hypothesize that relative hepcidin suppression without recovery from iron deficiency in PV may 
result from the combined effects of concurrent inflammation, insufficiently elevated ERFE with insuf-
ficiently suppressed hepcidin, and/or aberrant hypoxia signaling in the intestine preventing recovery 
from iron deficiency (Nemeth and Ganz, 2014; Frise et  al., 2016; Shah et  al., 2009). A recent 
report suggests that ERFE exerts a relatively diminished effect on hepcidin regulation relative to that 
of inflammation in PV patients (Bennett et al., 2023). In this study, Erfe deletion in Jak2V617F mice 
did not alter hepcidin levels or disease severity, resulting in stably elevated hematocrits and RBC 
counts. Using a human hepatocyte cell line, HepG2 cells, the authors further explored the hypothesis 
that PV- associated inflammation leads to hepcidin upregulation, demonstrating that the increased 
hepcidin expression was induced by plasma from PV patients but not plasma from normal controls 
and was normalized by blocking IL- 6 binding to its receptor (Bennett et al., 2023). These findings 
suggest that inflammatory cytokines in PV may be crucial to disordered iron utilization. In addition, 
persistent erythropoiesis despite iron deficiency in PV may also occur as a consequence of aberrant 
erythropoiesis that is insensitive to iron deficiency, preventing physiological mechanisms that normally 
coordinate iron supply with erythropoietic output (Khalil et al., 2017; Khalil et al., 2018; Feola et al., 
2019). An excellent review on dysregulated iron metabolism in PV was recently published (Ginzburg 
et al., 2018).

To elucidate briefly, suboptimally suppressed hepcidin prevents recovery from iron deficiency, 
enables absorption of iron to maintain pathologically enhanced erythropoiesis, and provides a ratio-
nale for maximizing this finding for therapeutic purposes in PV. Said another way, although we do 
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not yet understand the pathophysiological mechanism that enables persistent erythropoiesis in PV 
despite iron deficiency, we anticipate that using hepcidin mimetics to further suppress iron absorption 
and recycling may prevent erythropoiesis in PV, redistributing iron to non- hematopoietic cells and 
possibly reversing iron deficiency associated symptoms in PV patients.

Lastly, significant advances in the translation of hepcidin mimetics in PV are worth noting. Our 
understanding about hepcidin’s mechanism of action predicts that hepcidin elevation would be 
expected to sequester recycled and stored iron and prevent iron absorption, resulting in reduced 
iron availability for erythropoiesis and replenishing iron stores within liver and splenic macrophages, 
thus aiding in recovery from systemic iron deficiency (Casu et al., 2018, Aschemeyer et al., 2018; 
Ginzburg et al., 2018; Ginzburg, 2019; Figure 7). Preclinical studies demonstrated proof of principle 
for this approach using minihepcidins, engineered peptides with the necessary functional ferroportin 
binding domain (Preza et al., 2011), resulting in a significant dose- dependent decrease in RBC count, 
hematocrit, and splenomegaly in Jak2V617F mice, a well- established mouse model of PV (Casu et al., 
2016b). In addition, minihepcidin results in increased iron in the splenic red pulp of Jak2V617F mice, 
consistent with sequestration of recycled iron. More recently, another hepcidin mimetic agent—anti-
sense oligonucleotide targeting TMPRSS6, leading to the downregulation of TMPRSS6 gene product 
that prevents the degradation of HJV, yielding an increase in endogenous hepcidin expression in 
the liver—used in Jak2V617F mice also resulted in decreased RBC counts and hematocrit levels as well 
as suppression of bone marrow erythroblast numbers (Casu et al., 2021). Similar findings were also 
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Figure 7. Effects of hepcidin- mimetic on erythropoiesis in polycythemia vera. Similar to normal erythropoiesis, in polycythemia vera, iron recycling from 
multiple sources within macrophages leads to export of iron via ferroportin back into the circulation where it is loaded onto transferrin and delivered 
to cells with iron requirements (e.g. for hemoglobin synthesis in erythroblasts during erythropoiesis in the bone marrow). Unlike normal erythropoiesis, 
erythropoiesis proceeds despite iron deficiency and hepcidin remains low, enabling continued iron release into the circulation to support continued 
erythropoiesis. Increased hepcidin leads to binding to and occlusion of the ferroportin channel, preventing iron egress from cells involved in iron 
recycling (e.g. splenic red pulp macrophages), leading to the accumulation of iron within cellular ferritin core, and causing decreased iron- bound 
transferrin (low transferrin saturation). This decreased availability of iron for erythropoiesis results in reduction of erythrocytosis in polycythemia Vera. 
RBC, red blood cell; Fe, iron; TF, transferrin; FPN, ferroportin 1.
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recently demonstrated using a parenteral synthetic hepcidin (Taranath et  al., 2021) and an orally 
bioavailable ferroportin inhibitor (Stetka et al., 2023).

Most recently, preliminary results from phase II clinical trials evaluating the safety and efficacy 
of hepcidin mimetic rusfertide (PTG- 300) in phlebotomy- requiring PV patients demonstrate a virtual 
elimination of phlebotomy requirements, control of RBC count, increase in systemic iron stores, 
and a potential decrease in systemic symptoms (Hoffman, 2021; Hoffman et al., 2022; Ginzburg 
et al., 2021). A dramatic reduction in phlebotomy requirements, with 84% of PV subjects achieving 
phlebotomy- independence, was observed in the first 28 wk of treatment, and hematocrit control was 
sustained for up to 2 y on study drug. Several other hepcidin- inducing agents are either enrolling PV 
patients to a phase II clinical trial (NCT05143957) or in planning stages, and the global, multicenter, 
randomized, placebo- controlled phase III trial (NCT05210790) is currently underway (Verstovsek 
et al., 2021) to further clarify the potential role of rusfertide in the management of patients with PV.

What role do macrophages play in supporting normal and 
disordered erythropoiesis?
Erythropoiesis occurs at the erythroblastic island (EBI) that is composed of a central macrophage 
surrounded by developing erythroid cells (Bessis, 1958) and granulocyte progenitors (Romano et al., 
2022). The functional role of EBI was first suggested by Mohandas and colleague, who showed that in 
hyper- transfused rats, the numbers of EBI in the bone marrow were significantly decreased (Mohandas 
and Prenant, 1978). The importance of the central macrophage in supporting normal erythropoiesis 
was further supported by the abnormal macrophage differentiation in EMP- null (Wei et al., 2019; 
Soni et al., 2006), KLF1- null (Mukherjee et al., 2021; Porcu et al., 2011), and other mouse models 
(Chow et al., 2013; Sadahira et al., 1995; Kawane et al., 2001; Mankelow et al., 2004), leading 
to significantly impaired erythropoiesis and anemia. Furthermore, the depletion of macrophages with 
either clodronate liposomes or CD169- diptheria toxin leading to impaired erythropoiesis provide 
direct evidence that macrophages play critical roles in supporting erythropoiesis in vivo, particularly 
during stress erythropoiesis (Chow et al., 2013; Ramos et al., 2013). In vitro studies showed that 
macrophages promoted erythroblast proliferation/survival (Rhodes et  al., 2008; Lopez- Yrigoyen 
et al., 2019; Perron- Deshaies et al., 2020). It has been reported that fetal liver macrophages can 
efficiently engulf extruded nuclei in a phosphotidylserine- dependent manner (Yoshida et al., 2005) 
and that failing to degrade the engulfed DNA by macrophages due to lack of DNAase II led to severe 
anemia and embryonic death (Sadahira et al., 1995). Notably, in both Jak2V617F (PV mouse model) and 
Hbb3/+ (transfusion independent β-thalassemia mouse model) mice, macrophage depletion normal-
ized erythropoiesis (Ramos et al., 2013). Together, these findings indicate that macrophages play 
important roles in supporting normal erythropoiesis and can be targeted to at least partly ameliorate 
the disordered erythropoiesis in PV and β-thalassemia. However, due to the inability to identify and 
isolate EBI macrophages for cellular and molecular studies, the mechanisms by which EBI macro-
phages support normal erythropoiesis or contribute to disordered erythropoiesis have not been fully 
interrogated. We recently discovered that EBI macrophages are characterized by the expression of 
EPOR (Li et al., 2019; Zhang et al., 2021) and that EPO enhanced the ability of macrophages to 
form EBIs with erythroblasts both in vitro and in vivo (Li et al., 2019). Supporting the functional role 
of EPO/EPOR in EBI macrophages, others also documented that Epo/EpoR signaling in macrophages 
is required for stress erythropoiesis in the spleen (Chen et al., 2020). In addition, fine characterization 
of EBIs indicates neutrophil precursors specifically associated with BM EBI macrophages, suggesting 
that erythro- (myelo)- blastic islands are a site for terminal granulopoiesis and erythropoiesis (Romano 
et al., 2022). Finally, the relative proportion of granulocytes within EBIs increases during inflamma-
tory conditions and decreases during stress erythropoiesis, suggestive of a functional plasticity of the 
central macrophage within the EBIs (Romano et al., 2022).

To develop a comprehensive characterization of the EBI macrophages at the molecular level and 
gain insights into the mechanisms by which they support erythropoiesis, we performed RNA- seq 
analyses on the sorted bone marrow F4/80+EpoR+ and F4/80+EpoR- macrophages (Li et al., 2019). 
Bioinformatics analyses revealed that the expression levels of Vcam1 and CD169 known to be 
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involved in macrophage–erythroblast interaction (Chow et al., 2013; Sadahira et  al., 1995) were 
significantly higher in F480+EpoR+ than in F480+EpoR- macrophages. Similarly, the expression levels 
of Mertk required for pyrenocyte engulfment (Toda et al., 2014), and DNase2α (DNAse2) critical for 
DNA degradation of the engulfed nuclei (Kawane et al., 2001), were also significantly higher in the 
F480+EpoR+ macrophages. Intriguingly, key molecules involved in iron recycling such as phosphoti-
dylserine receptor Tim4, heme oxygenase- 1, iron exporter ferroportin, and iron transporter transferrin 
are also abundantly expressed in bone marrow F4/80+EpoR+ macrophages. In addition, insulin growth 
factor 1, one of the known erythropoiesis- promoting cytokines, is expressed in EBI macrophages but 
not non- EBI macrophages. These findings provide support for the long- standing expectation that EBI 
macrophages are unique in providing essential elements to enable differentiation of the surrounding 
erythroblasts. Further evidence is forthcoming regarding the mechanistic nature of the support EBI 
macrophages provide to differentiating erythroblasts.

Tools and analytic endpoints for studying erythropoiesis and 
iron metabolism
To study erythropoiesis, it is important to identify and isolate erythroid lineage cells at distinct stages 
of differentiation. During the past decade, considerable progress has been made, and methods for 
analyzing and isolating murine and human erythroblasts at distinct developmental stages have been 
developed. Here, we summarize these methods.

Isolation of murine erythroid progenitors
Traditionally, the erythroid progenitors BFU- E and CFU- E have been functionally defined by their ability 
to form erythroid colonies of distinct kinetics and morphology (Iscove and Sieber, 1975; Gregory 
and Eaves, 1977). It should be pointed out that the erythroid colonies contain terminally differen-
tiated erythroid cells and not the BFU- E and CFU- E cells themselves. With the development of flow 
technology for analysis and sorting of cells using lineage- specific surface markers, a flow cytometry- 
based method was developed to isolate erythroid progenitors from mouse fetal liver (Flygare et al., 
2011). Briefly, the fetal liver lineage+ cells were depleted by antibodies against murine Ter119, B220, 
CD3, Gr- 1, CD41, Sca- 1, CD34, Mac- 1, and CD16/CD32. The resulting lineage- cells were stained 
with CD117 (c- Kit) and CD71. Within the Kit+ fraction, the level of CD71 expression was used to sepa-
rate BFU- E (CD7110%low) and CFU- E (CD7120%high) with more than 90% purity (Flygare et al., 2011). A 
similar strategy can be used to isolate murine bone marrow erythroid progenitors, but unlike fetal liver 
BFU- E, the bone marrow BFU- E cells are Kit+CD71- (Zhang et al., 2021).

Isolation of human erythroid progenitors
To identify the surface markers for human BFU- E and CFU- E, we systematically examined the 
expression of surface markers CD34, IL- 3R, CD36, CD71, CD45, and GPA during human early stage 
erythropoiesis in vitro. Based on the expression profiles of these surface markers and the related 
colony- forming ability, the surface marker profiles for human BFU- E and CFU- E are CD45+GPA-IL- 3R-

CD34+CD36-CD71low and CD45+GPA-IL- 3R-CD34-CD36+CD71high, respectively (Li et al., 2014). Impor-
tantly, this method can be used to isolate primary BFU- E and CFU- E cells from human bone marrow, 
umbilical cord blood, and peripheral blood (Li et al., 2014). A recent study documented that early 
human erythroid progenitors can be further subdivided into four subpopulations as they lose CD34 
staining and acquire CD105 during progression from BFU- E to immature CFU- E and sequentially 
mature CFU- Es (Yan et al., 2021).

Isolation and quantification of murine erythroblasts terminal 
differentiation
To identify surface markers for isolating murine erythroblasts, we examined the changes in RBC 
membrane proteins during murine terminal erythroid differentiation and found that the expression 
of CD44 dramatically decreased during erythroid differentiation, with more than a 30- fold decrease 
from Pro to Ortho erythroblasts. Use of CD44 in conjunction with erythroid lineage marker TER119 
and forward scatter (cell size) enabled stage- specific purification of murine erythroblasts with more 
than 90% purity (Chen et al., 2009). Under physiological conditions, murine Pro undergo three rounds 
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of mitosis to sequentially generate Baso, Poly, and Ortho erythroblasts. It is therefore expected that 
during normal terminal erythroid differentiation the ratio of Pro:Baso:Poly:Ortho should follow a 
1:2:4:8 pattern. We further improved this method, enabling quantification of this process in vivo, and 
identified stage- specific alterations during terminal erythroid differentiation of β-thalassemia mouse 
bone marrow (Liu et al., 2013).

Isolation and quantification of human erythroblasts during terminal 
differentiation
To identify surface markers for staging human erythroblasts, we examined changes in surface markers 
during human terminal erythroid differentiation in vitro. Notably, different from mouse, CD44 demon-
strates no significant changes during terminal erythropoiesis. Interestingly, while cell surface band 3 
progressively increases, α4 integrin decreases. The use of band 3 and α4 integrin in conjunction with 
the human erythroid lineage marker glycophorin A enabled separation of highly purified populations 
of erythroblasts at distinct stages in culture, designated as Pro (α4 integrinhiband3neg), early Baso (α4 
integrinhiband3low), late Baso (α4 integrinhiband 3med), Poly (α4 integrinmedband3med), and Ortho (α4 
integrinlowband 3hi) erythroblasts (Hu et al., 2013). Importantly, the surface markers identified using 
the in vitro erythroid culture system can be used to separate erythroblasts at distinct developmental 
stages from primary human bone marrow cells. Furthermore, the ratio of erythroblasts at successive 
stage in human bone marrow followed the predicted 1:2:4:8:16 pattern. Analyses of bone marrow 
from patients with MDS and sickle cell disease revealed the expected alteration in terminal erythroid 
differentiation profiles (Hu et al., 2013; Ali et al., 2018; El Hoss et al., 2021). These methods offer 
novel strategies for quantitative assessment of erythroid differentiation in mouse disease models and 
human erythroid disorders.

Assessment of enucleation by flow cytometry
Enucleation is the process during which the condensed nucleus is extruded from the erythroblast to 
yield the reticulocyte and the ‘pyrenocyte.’ Discrimination of nucleated erythroblasts, reticulocytes, 
and extruded nuclei by flow cytometry is based on DNA staining, surface expression of erythrocyte- 
specific markers, or forward scatter. The enucleation of murine erythroblasts is assessed by surface 
expression of the murine erythrocyte marker TER119 and DNA staining (Ji et al., 2008; Zhang et al., 
2003). Three discrete populations that represent nucleated erythroblasts, reticulocytes, and extruded 
nuclei are defined as HoechstmedTER119high, HoechstlowTER119high, and HoechsthighTER119med, respec-
tively (Ji et al., 2008; Zhang et al., 2003). Another nuclei acid staining dye, SYTO16, is used for the 
assessment of human enucleation in combination with forward scatter. For human cells, the three 
populations that represent nucleated erythroblasts (high forward scatter SYTO16+), reticulocyte (high 
forward scatter SYTO16-), and extruded nuclei (low forward scatter SYTO16+) are thus identified 
(Yoshida et al., 2005).

Models for iron-restricted anemias
Cell culture and in vivo techniques have been developed for analysis of the effects of iron restric-
tion on erythropoiesis. In in vitro cell culture, human or murine hematopoietic stem and progenitors 
are subjected to a two- stage system using defined, serum- free conditions. Progenitors successfully 
studied have included human CD34+ peripheral blood- mobilized progenitors and murine Lin- Kit+ 
splenic stress progenitors (Bullock et al., 2010; Khalil et al., 2018). In the initial phase of culture, 
progenitors undergo expansion for ~2 d in the presence of early- acting cytokines, SCF, FLT3- ligand, 
TPO, and IL- 3. The cells are then shifted into erythroid medium containing SCF and EPO. By adding 
different proportions of apo- and holo- transferrin, the transferrin saturation (%TSAT) can be adjusted 
to create iron- replete or iron- restricted conditions. Initial studies with human progenitors identified a 
TSAT level of 15% as showing a selective inhibition of erythropoiesis while not affecting granulopoiesis 
or megakaryopoiesis (Bullock et al., 2010). In subsequent studies with human stem and progenitor 
cultures, either TNFα or IFNγ when combined with a TSAT of 15% (instead of 100%) resulted in a 
synergistic suppression of erythropoiesis, suggesting a means for modeling ACI in vitro (Richardson 
et al., 2013). The most straightforward in vivo model for iron- restricted anemia consists of placing 
mice on low iron diet using customized mouse chow (Envigo Teklad 2.5–4 ppm iron). Important consid-
erations in this model are to use male weanlings, enhance susceptibility to the development of iron 
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deficiency, and use control customized iron- replete chow (containing ~35–50 ppm) that is matched in 
composition to the low iron chow. Robust in vivo models for iron- restricted anemia in the setting of 
chronic inflammation have included rat adjuvant arthritis, caused by injection of the streptococcal cell 
wall peptidoglycan- polysaccharide and murine chronic inflammation induced by weekly injections of 
low dose killed Brucella abortus combined with customized iron- replete chow (Envigo Teklad 35–50 
ppm) (Richardson et al., 2013; Guo et al., 2019; Goldfarb et al., 2021). Evidence supporting a role 
for iron restriction in these rodent ACI models consisted of the amelioration of the anemia with isoc-
itrate injections (Richardson et al., 2013; Goldfarb et al., 2021). Finally, as discussed in respective 
section above, several mouse models that recapitulate diseases such as β-thalassemia, MDS, and PV 
are commercially available.

Perspectives and future directions (all)
Taken together, a great deal is currently known about the physiology of erythropoiesis and iron 
metabolism as well as the pathophysiology of diseases in which these biological systems are dysreg-
ulated. Despite this, significant unknowns remain, both regarding the mechanisms of normal function 
and their disordered regulation in disease; we thus include here an incomplete list to guide the next 
generation of targeted inquiry along these lines:

•	 A mechanistic molecular understanding of ineffective erythropoiesis and a more complete 
delineation of how EPO responsiveness is modulated in both physiological and pathological 
conditions remains elusive. This direction of investigation could yield novel therapeutic devel-
opment for a variety of diseases associated with anemia, for example, anemia of chronic inflam-
mation and in renal failure.

•	 The role of and purpose for iron and heme export from erythroblasts (via ferroportin and FLVCR, 
respectively) is counterintuitive and incompletely understood.

•	 Whether and how iron- specific proteins (Tfr1, Tfr2, transferrin, etc.) in non- hepatocyte cells 
regulate the crosstalk between iron metabolism, immunity, and erythropoiesis is not well under-
stood. Such exploration may yield novel therapeutic targets for a variety of disorders.

•	 Whether and how EPOR expression outside of erythroid lineage cells regulate the crosstalk 
between iron metabolism and erythropoiesis remains to be more completely elucidated.

•	 How iron deficiency anemia exerts and influences platelet production remains largely unknown 
despite the long- standing clinical recognition of thrombocytosis as a common co- occur-
rence. Such mechanisms could potentially be exploited in designing novel treatments for 
thrombocytopenia.

•	 Genetic factors most likely contribute to heterogeneity in the human response to iron deficiency. 
Why do individuals with the same degree of iron deficiency show differences in the extent of 
anemia and of thrombocytosis? Understanding such factors may enable a more personalized 
approach toward iron- related therapies.

•	 A novel mechanism for cell death, ferroptosis, was recently discovered, an iron- mediated 
mechanism leading to lipid peroxidation and cell death that is being targeted as a therapeutic 
approach in various cancers. Understanding the role of ferroptosis as it pertains to iron traf-
ficking in erythroblasts may shed light on iron- loading anemias associated with ineffective eryth-
ropoiesis (i.e. β-thalassemia and MDS).

•	 Given the critical role of EBI macrophages in supporting erythropoiesis, understanding whether 
and how EPO/EPOR signaling in these cells further enables coordination of erythropoiesis and 
enucleation in normal and disordered erythropoiesis is important.
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