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Abstract Studies of climate variation commonly rely on chemical and isotopic changes recorded 
in sequentially produced growth layers, such as in corals, shells, and tree rings, as well as in accre-
tionary deposits—ice and sediment cores, and speleothems. Oxygen isotopic compositions (δ18O) 
of tooth enamel are a direct method of reconstructing environmental variation experienced by an 
individual animal. Here, we utilize long-forming orangutan dentitions (Pongo spp.) to probe recent 
and ancient rainfall trends on a weekly basis over ~3–11 years per individual. We first demonstrate 
the lack of any consistent isotopic enrichment effect during exclusive nursing, supporting the use of 
primate first molar teeth as environmental proxies. Comparisons of δ18O values (n=2016) in twelve 
molars from six modern Bornean and Sumatran orangutans reveal a high degree of overlap, with 
more consistent annual and bimodal rainfall patterns in the Sumatran individuals. Comparisons 
with fossil orangutan δ18O values (n=955 measurements from six molars) reveal similarities between 
modern and late Pleistocene fossil Sumatran individuals, but differences between modern and late 
Pleistocene/early Holocene Bornean orangutans. These suggest drier and more open environments 
with reduced monsoon intensity during this earlier period in northern Borneo, consistent with other 
Niah Caves studies and long-term speleothem δ18O records in the broader region. This approach 
can be extended to test hypotheses about the paleoenvironments that early humans encountered in 
southeast Asia.

eLife assessment
This important study presents convincing evidence for the use of orangutan teeth as terres-
trial proxies to reconstruct rainfall regimes, while exploring the potentially conflicting impact of 
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breastfeeding signals. The findings will be of broad interest for those using and developing methods 
and tools to reconstruct environmental conditions in the historical and archaeological past.

Introduction
Present-day rainfall patterns in Indonesia are controlled by the Asian and Australian monsoon 
systems, yielding annual trends that vary considerably with geography, topography, and the direc-
tion of monsoonal winds (Aldrian and Dwi Susanto, 2003; Moron et al., 2009; Qian et al., 2013; 
Belgaman et al., 2017). Northern Sumatra and western Borneo experience high annual rainfall and 
relatively stable annual temperatures, with a bimodal distribution of rainfall governed by the Inter-
tropical Convergence Zone (Van Schaik, 1986; Aldrian and Dwi Susanto, 2003; Belgaman et al., 
2017). These islands are also under the influence of inter-annual climate fluctuations driven by the 
El-Niño Southern Oscillation (ENSO); a periodic coupling of atmospheric and oceanic temperature 
gradients that initiates in the tropical Pacific, and influences global temperature and precipitation 
trends (Marshall et al., 2009).

It is well understood that variation in rainfall patterns influences the fundamental structure of 
primate habitats (Brockman and Van Schaik, 2005; Wessling et al., 2018). Dense tropical forests are 
sustained by fairly consistent rainfall and short, irregular dry seasons, while woodland communities 
in more arid environments have smaller trees, less dense canopies, and more deciduous trees (Vico 
et al., 2017; Archibald et al., 2019). In regions with prolonged dry seasons, low annual rainfall and 
savannah landscapes abound, in addition to disturbances such as wildfires (Pletcher et al., 2022).

Open woodland and savannah environments are unfavorable for slow-moving orangutans, the 
largest mammal with an arboreal lifestyle, particularly in regions with predators such as tigers or 
humans (Thorpe and Crompton, 2009; Ashbury et al., 2015; Spehar et al., 2018). Supra-annual 
ENSO events may also impact orangutan energy balance, reproduction, and social organization 
through the inducement of mast-fruiting, or dramatic seed production events in dipterocarp forests 
(Knott, 1998; Curran et al., 1999; Marshall et al., 2009). Such climate fluctuations over the past 
several hundred years have been documented in coral isotopes and tree-ring analyses, revealing 
especially marked changes during the past few decades (Cole et  al., 1993; Stahle et  al., 1998; 
Hughen et al., 1999; Urban et al., 2000; Tudhope et al., 2001; Pumijumnong et al., 2020).

Detailed climate records prior to the era of human-induced climate change are somewhat limited 
for island southeast Asia, but they are directly relevant to understanding the recent distribution of 
orangutans, and the arrival and dispersal of modern humans in the region during the Late Pleisto-
cene (e.g. Piper, 2016; Bae et al., 2017; Spehar et al., 2018). A small number of studies of fossil 
corals, molluscs, marine sediments, and speleothems have provided insights into the last interglacial 
and glacial periods (e.g. Hughen et al., 1999; Tudhope et al., 2001; Stephens et al., 2016; Yang 
et al., 2016; Buckingham et al., 2022). For example, oxygen isotopes in fossil corals from seven 
periods during the last 130,000  years suggest that ENSO activity in the western Pacific over that 
time was comparable to modern records, although there was variation in the intensity of such activity 
at different timepoints (Tudhope et al., 2001). This study was also able to resolve bimodal annual 
rainfall peaks in modern corals, yet such detailed subannual records are extremely uncommon, partic-
ularly from terrestrial environments where early humans once lived alongside orangutans and other 
mammals.

Oxygen isotope studies for paleoenvironmental reconstruction
Oxygen isotope values (δ18O) in water vary with latitude, altitude, temperature, and precipitation 
cycles, and are also impacted by precipitation sources. In tropical regions the primary determinant of 
rainfall isotope compositions is rainfall amount (Dansgaard, 1964; Rozanski et al., 1993; Belgaman 
et al., 2017). During wet seasons, rainfall δ18O values are relatively low, while the opposite pattern is 
evident in periods with less rain, although other meteorological factors can influence isotope values 
as well (Belgaman et al., 2016). This primary tropical pattern influences isotopic variation in meteoric, 
surface, and leaf waters, which may show further elevations in δ18O values during dryer periods due 
to preferential evaporative loss of the lighter isotope, 16O (da Silveira et al., 1989; Bowen, 2010; 
Roberts et al., 2017).

https://doi.org/10.7554/eLife.90217
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In addition to δ18O values in fossil corals, tree rings, and speleothems, other fine-scaled oxygen 
isotopic climate proxies include otoliths (fish ear bones) and mollusc shells (e.g. Aubert et al., 2012; 
Stephens et  al., 2016; Prendergast et  al., 2018)—although these are rarely preserved in rain-
forest environments. Records of δ18O values in mammalian tooth enamel are a more direct means of 
studying seasonality (reviewed in Green et al., 2018; Green et al., 2022), providing insight into the 
actual climates experienced by individuals, in contrast to indirect proxies for which it can be difficult to 
establish concurrence. Unlike bone, teeth do not remodel during life, and the phosphate component 
of the enamel mineral (hydroxyapatite) is especially resistant to modification after burial (reviewed in 
Smith et al., 2018a; Pederzani and Britton, 2019).

Tooth enamel is most commonly sampled with hand-held drills to recover the isotopic composition 
of oxygen inputs from water and food preserved in the hydroxyapatite (e.g. Janssen et al., 2016; 
Roberts et al., 2020; Kubat et al., 2023). This coarse drilling method yields spatially and tempo-
rally blurred powdered samples formed over a substantial and unknown period of time, however, 
precluding the identification of precise seasonal environmental patterns. To circumvent this limita-
tion, we have employed the stable isotope sensitive high-resolution ion microprobe (SHRIMP SI) to 
measure δ18O values sequentially from thin sections of teeth, relating these to daily increments and 
birth lines to determine enamel formation times, and in some instances, calendar ages (Smith et al., 
2018a; Smith et al., 2022; Green et al., 2022; Vaiglova et al., 2024).

It is well established that δ18O values in tooth enamel are closely related to local water oxygen 
isotope compositions (reviewed in Green et al., 2018; Green et al., 2022). For teeth that form after 
birth and during periods of milk consumption, δ18O values are expected to be higher, as a result 
of infant evaporative water loss while consuming 18O-enriched mother’s milk (Bryant et al., 1996; 
Wright and Schwarcz, 1999; Britton et al., 2015). Studies of large-bodied mammals report that 
milk δ18O values are elevated by ~1–6‰ relative to local drinking water δ18O (Kornexl et al., 1997; 
Lin et al., 2006; Chesson et al., 2010; Green et al., 2018; but see Cherney et al., 2021). Compa-
rable data on human or nonhuman primate milk enrichment appear to be lacking, save for a study of 

eLife digest When an animal drinks water, two naturally occurring variants of oxygen – known 
as oxygen-18 and oxygen-16 – are incorporated into its growing teeth. The ratio of these variants 
in water changes with temperature, rainfall and other environmental conditions and therefore can 
provide a record of the climate during an animal’s life. Teeth tend to be well preserved as fossils, 
which makes it possible to gain insights into this climate record even millions of years after an animal’s 
death.

Orangutans are highly endangered great apes that today live in rainforests on the islands of Borneo 
and Sumatra. During a period of time known as the Pleistocene (around 2.6 million years to 12,000 
years ago), these apes were more widely spread across Southeast Asia. Climate records from this area 
in the time before human-induced climate change are somewhat limited. Therefore, fossilized orang-
utan teeth offer a possible way to investigate past seasonal rainfall patterns and gain insight into the 
kind of environments early humans would have encountered.

To address this question, Smith et al. measured oxygen-18 and oxygen-16 variants in thin slices 
of modern-day orangutan teeth using a specialized analytical system. This established that the teeth 
showed seasonal patterns consistent with recent rainfall trends, and that the ratio of these oxygen 
variants did not appear to be impacted by milk intake in young orangutans. These findings indicated 
that the oxygen variants could be a useful proxy for predicting prehistoric weather patterns from 
orangutan teeth.

Further measurements of teeth from fossilized Sumatran orangutans showed broadly similar rain-
fall patterns to those of teeth from modern-day orangutans. On the other hand, fossilized teeth from 
Borneo suggested that the environment used to be drier, with less intense wet seasons.

The approach developed by Smith et al. provides an opportunity for scientists to leverage new 
fossil discoveries as well as existing collections to investigate past environments. This could allow 
future research into how climate variation may have influenced the spread of early humans through 
the region, as well as the evolution of orangutans and other endangered animals.

https://doi.org/10.7554/eLife.90217
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44 British infants aged 5–16 weeks (Roberts et al., 1988). The urine of infants who were breast-fed 
showed isotopic enrichment of 1–3‰ compared to infants who were fed formula prepared from sterile 
local tap water.

While such studies point to potential changes in infant body water during nursing, it is unclear 
whether such differences prohibit the use of early-formed enamel in studies of climate variation 
(Blumenthal et  al., 2017; Luyt and Sealy, 2018). Two studies of δ18O values in the dentitions of 
modern sheep, horses, and zebras reported higher bulk values (~1–2‰) in five molars (M1) compared 
to the rest of the permanent dentition (Bryant et al., 1996; Fricke and O’Neil, 1996). This led Fricke 
and O’Neil, 1996, to suggest that M1s are unlikely to reflect the values of local meteoric water due to 
the influence of maternal inputs in utero and through lactation. However, near-weekly δ18O values over 
the first 2.75 years of life in a Neanderthal M1 measured with SHRIMP SI showed clear annual trends 
and maximum δ18O values corresponding to a period after nursing has ceased (Smith et al., 2018a). 
An examination of longer continuous periods of enamel formation within and between teeth will help 
to clarify whether early-formed primate teeth should be avoided for studies of climate seasonality.

Here, we first assess whether wild orangutans show elevated δ18O values in early-formed enamel, 
testing the suggestion that M1s are significantly affected by nursing 18O-enrichment, thereby 
precluding their use in climatological reconstructions. We then explore approximately 30 years of 
weekly δ18O values (n=2016 measurements) to compare orangutan individuals from the islands of 
Sumatra and Borneo. Finally, we contrast δ18O values between modern and Pleistocene orangutans, 
including those from key regions of early human occupation: Lida Ajer, Sumatra (Hooijer, 1948; 
Westaway et al., 2017) and Niah Caves, Malaysia (Hooijer, 1961; Barker et al., 2007; Figure 1, 
Table 1). Novel understanding of climate patterns in these fossil assemblages may inform debates 
about the likelihood of modern humans living in dense Asian rainforests, and the conditions that 
would support savannah corridors for human dispersals throughout the region (e.g. de Vos, 1983; 
Bird et al., 2005; Westaway et al., 2017; Louys and Roberts, 2020; Ao et al., 2024; Hamilton 
et al., 2024).

Figure 1. Approximate location of select modern and fossil orangutans superimposed on modeled isotopic variation. Figure modified from https://
www.waterisotopes.org based on data from the Online Isotopes in Precipitation Calculator (3.0). See Table 1 for the location of particular individuals. 
Sibrambang Cave has yet to be relocated since Eugene Dubois’ original excavations, but it is known to be in the general vicinity of Lida Ajer in the 
Padang Highlands, possibly near to the modern village of a similar name (Louys et al., 2024).

https://doi.org/10.7554/eLife.90217
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Results
Modern orangutans
The δ18O ranges of twelve modern and six fossil orangutan molars, representing 2971 near-weekly 
measurements spanning 57.6 years of tooth formation, are listed in Table 2. Prior to making compar-
isons between individuals, geographic regions, or time periods, we first consider the potential intra-
individual effect of isotopic enrichment from maternal milk on δ18O values. Comparisons of δ18O 
values during the first, second, and third years of life in five modern orangutan first molars (M1) do 
not show consistently elevated values during their first year (Figure 2). Mean yearly δ18O values in the 
first year are elevated by only 0.3‰ compared to the second year. While three of the five M1s showed 
first year δ18O values higher than second year values (p≤0.05), only two individuals showed mean 
values that were ~1–2‰ higher during year 1; one individual showed no difference from the first to 
the second year, and one individual showed lower values during the first year than during the second 
year (p≤0.05) (Table 3). A sixth individual was only sampled from 193 days of age, but maximum values 
from this point onward were similar across more than 3 years of life. Similarly variable patterns were 
observed for the six putative fossil orangutan M1s (Appendix 1—figure 1).

Comparisons across serial molars in four modern orangutans show no consistent trend of elevated 
δ18O values in M1s relative to successive molars (Figure 3). Only two individuals showed maximum 
δ18O values in their M1s relative to M2s; in both instances M3s were unavailable due to their lack of 
development prior to death. The other two individuals showed higher δ18O values in M2s or M3s than 
in their respective M1s. In the case of the oldest individual (ZSM 1981/248), the highest δ18O values 
appeared at approximately 5.8 years of age, well past the age when exclusive nursing ends.

Comparison of the δ18O values in the full datasets of modern Bornean and Sumatran orangutans 
reveals a high degree of overlap. Values from the three Bornean individuals ranged from 12.7‰ to 
20.0‰ (n=955 near weekly measurements), while the three Sumatran individuals ranged from 11.3‰ 
to 20.6‰ (n=1061 measurements). Comparisons of periodic trends via spectral power distribution 
analysis revealed more consistent bimodal patterns in the Sumatran individuals; three of the six 
Bornean molars were aperiodic (statistical power of 0.1 or less), while all six of the Sumatran molars 
revealed annual or semiannual cycles with greater power (Appendix  1—figure 2). Rapid oxygen 
isotopic shifts on the order of ~6–8‰ are evident in the single Bornean and Sumatran individuals with 
δ18O measurements spanning M1 to M3, which may represent one or more supra-annual ENSO events 
captured during the ~9–11 years these molars were forming.

Table 1. Modern and fossil orangutan teeth employed in the current study.

Taxon Accession Origin Sex Age (years) Teeth

Pongo pygmaeus ZSM 1981/48 Skalau, Borneo F ~8.4 RUM1, LLM2

ZSM 1981/87 Skalau, Borneo F >9 LUM1, RUM2, RLM3

MCZ 5290 Borneo (location unspecified) n/a 4.5 RUM1

Pongo abelii ZSM 1981/246 Aceh, Sumatra M ~8.5 LLM1, LUM2

ZSM 1981/248 Aceh, Sumatra F adult LUM1, LUM2, LLM3

ZMB 83508 Sumatra (location unspecified) n/a 8.8 RLM1

Fossil Pongo spp. 11564.5 Sibrambang, Sumatra n/a n/a RUM

11565.162 Sibrambang, Sumatra n/a n/a LUM

11594.12 Lida Ajer, Sumatra n/a n/a RLM

11595.105 Lida Ajer, Sumatra n/a n/a LLM

US/22 Niah Caves, Malaysia n/a n/a RLM

Y/F4 Niah Caves, Malaysia n/a n/a LLM

Numerous taxonomic assignments have been made for fossil orangutans (Pongo spp.), some of which have not 
been based on clear morphological characteristics (Tshen, 2016), and are not relevant for the focus of this paper.

https://doi.org/10.7554/eLife.90217
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Fossil orangutans—oxygen isotopes
Concurrently forming teeth (molar specimens 11594.12 and 11595.105) from same individual at Lida 
Ajer, Sumatra, are nearly isotopically identical; δ18O values range from 15.1‰ to 19.9‰ and 15.7‰ 
to 20.0‰, respectively, supporting the biogenic fidelity of these records. The δ18O values of two indi-
viduals from the nearby Sibrambang site (15.3–20.4‰, 14.7–20.8‰) are very similar to those of the 
Lida Ajer individual. These Sumatran fossils all fall at the upper end of the range of modern Sumatran 
orangutans (Figure 4), and reveal approximately annual δ18O periodicities (0.9–1.3 years), as well as 
strong bimodal distribution patterns in one instance (11565.162).

The two fossils from the Niah Caves were excavated from different regions and stratigraphic depths; 
δ18O values in the tooth from grid US/22 ranged from 15.9‰ to 24.8‰ and, unlike the three modern 
Bornean individuals, yielded an annual periodicity (1.0 years). The δ18O in the tooth from grid Y/F4 
ranged from 14.2‰ to 22.9‰ and showed a stronger bimodal trend than an annual one, although its 
short formation time may have prohibited identification of longer trends. The range of values from 
these two fossil molars (14.2–24.8‰) markedly exceeds the range of modern Bornean orangutans 
(12.7–20.0‰) (Figure 4), with the mean δ18O value at least 2‰ heavier. This suggests possibly drier 
conditions with greater seasonality during fossil molar formation (Figure 4—figure supplement 1).

Fossil orangutans—U-series age estimates
The six fossil teeth have very low uranium concentrations in their enamel (<0.5 ppm), regardless of 
their origin (Supplementary file 1). These enamel values are very close to the detection limit of the 
Nu Plasma II MC-ICP-MS, and thus are not useful for estimating minimum ages. The dentine of Lida 
Ajer specimen 11595.105 shows a spatial gradient of increasing uranium concentration from ~41 to 
66 ppm, and decreasing age estimates from ~51 to 40 ka (Supplementary file 1). This trend might 
result from a preferential uranium leaching overprint near the end of the root. Spot DE10, positioned 
near the enamel-dentine junction (EDJ), is less likely to be impacted (Appendix 1—figure 3), and is 
thus assumed to provide the most reliable minimum age for the tooth, ~40 ka. Uranium values from 
Lida Ajer specimen 11594.12 show a similar trend of concentrations decreasing from ~31 to 24 ppm 

Table 2. Modern and fossil orangutan molar δ18O values.

Taxon Accession Tooth Cusp Spots Time (days) dO18 range

P. pygmaeus ZSM 1981/48 RUM1 dl 151 1241 13.6–19.9

ZSM 1981/48 LLM2 mb 107 804 13.0–18.8

ZSM 1981/87 LUM1 ml 131 869 13.7-17.9

ZSM 1981/87 RUM2 ml 196 1195 12.7–20.0

ZSM 1981/87 RLM3 mb 220 1350 13.7–19.2

MCZ 5290 RUM1 ml 150 1002 13.8–18.1

P. abelii ZSM 1981/246 LLM1 mb 136 1425 12.3–18.3

ZSM 1981/246 LUM2 ml 229 1376 12.6–18.0

ZSM 1981/248 LUM1 db 177 1072 11.3–19.3

ZSM 1981/248 LUM2 db 193 1374 13.5–20.6

ZSM 1981/248 LLM3 db 191 1461 14.8–19.6

ZMB 83508 RLM1 db 135 1029 13.4–20.4

Fossil Pongo spp. 11564.5 RUM mb 178 1387 15.3–20.4

11565.162 LUM ml 143 1144 14.7–20.8

11594.12 RLM ml 154 1081 15.1–19.9

11595.105 LLM mb 197 1312 15.7–20.0

US/22 RLM mb 149 1023 15.9–24.8

Y/F4 LLM db 134 869 14.2–22.9

https://doi.org/10.7554/eLife.90217
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toward the root tip. However, the U-series age estimates remain constant within the range 31–34 ka 
across the dentine (Supplementary file 1; Appendix 1—figure 3). No evidence for a recent overprint 
is observed, supporting a minimum age of 33 ka. In summary, this individual’s age is at least 33 ka, 
and possibly >40 ka.

U-series analysis of the dentine of Sibrambang specimen 11565.162 shows a slight decreasing trend 
of uranium concentration from the EDJ to the root tip (from >60 ppm to <60 ppm), and corresponding 
increasing age estimates (56–62 ka) (Supplementary file 1; Appendix 1—figure 4). This might result 
from a slight uranium leaching overprint; a minimum age of 60 ka is likely for this tooth. The U-series 
age estimates obtained for Sibrambang specimen 11564.5 show a decreasing trend from the EDJ 
toward the circumpulpal dentine from 75 to 65 ka (Supplementary file 1; Appendix 1—figure 4). 
However, given the associated uncertainties, this trend might not be meaningful. An average dentine 
U-series age of 70.3±5.5 ka (2σ) may be regarded as a minimum age for the fossil, which is broadly 

Figure 2. Comparison of sequential δ18O values across multiple years of first molar formation in five modern orangutans from Borneo and Sumatra. 
Bornean individuals: MCZ 5290, ZSM 1981/48, ZSM 1981/87; Sumatran individuals: ZMB 83508, ZSM 1981/248. The width of each curve is a kernel 
density estimate (KDE) corresponding to the distribution of δ18O values. First year data (Y1) is shown with a purple violin plot, second year data (Y2) with 
a green plot, and third year data (Y3) with a yellow plot where complete/available. Actual data are plotted as black circles.

https://doi.org/10.7554/eLife.90217
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consistent with the single age estimate obtained from the enamel (64 ka). In summary, the two teeth 
from Sibrambang yield U-series apparent ages of ~60–70 ka.

The uranium concentration measured across the dentine of the Niah Caves specimen from grid Y/
F4 shows little variability, 4.2–4.9 ppm. The U-series age estimates are between 6.0 and 8.7 ka (Supple-
mentary file 1; Appendix 1—figure 5). The average dentine U-series minimum age is 7.6±1.3 ka. 
Similarly, the Niah Cave specimen from grid US/22 shows a consistent uranium concentration through 

Table 3. Comparisons of first and second year δ18O values in five first molars.

Specimen Adjusted p-values Higher δ18O values

MCZ 5290 p=0.010 Year 1

ZMB 83508 p=0.006 Year 1

ZSM 1981/48 p=0.161 (NS) Year 1

ZSM 1981/87 p<0.001 Year 2

ZSM 1981/248 p<0.001 Year 1

Figure 3. Comparison of sequential δ18O values across multiple years of serial molar formation in two modern orangutans from Borneo (top) and 
two from Sumatra (bottom). Individual in upper left: ZSM 1981/48; upper right: ZSM 1981/87; lower left: ZSM 1981/246; lower right: ZSM 1981/248. 
Developmental overlap was determined through registration of trace elements as in Smith et al., 2017.

https://doi.org/10.7554/eLife.90217
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the dentine (1.3–1.4 ppm), with relatively large uncertainties that nonetheless bracket individual 
age estimates (Supplementary file 1; Appendix 1—figure 5). The average dentine U-series age is 
8.8±3.0 ka. In summary, the two teeth from Niah Cave yield consistent apparent ages of ~8–9 ka, 
which should be regarded as a minimum age constraint for the fossils.

Discussion
Primate oxygen isotope compositions do not reveal a clear milk 
enrichment effect
Half of our modern sample, and potentially all of our fossil sample, are composed of M1s. These begin 
forming around birth and continue growing for 3 or more years (Smith, 2016). Orangutan infants rely 
exclusively on maternal milk during their first year of life, supplementing this with solid foods in the 
second year, which are increased until suckling ceases prior to 9 years of age (van Noordwijk et al., 
2013; Smith et  al., 2017). Our developmentally guided sampling approach allows us to examine 
fine-scaled trends in δ18O values during birth, exclusive nursing, supplemental feeding, and also after 
nursing ends (in those individuals with available serial molar teeth).

We find that five modern orangutans show only minor and inconsistently elevated δ18O values 
during the first year of life when compared to the subsequent year. These data do not support the 
hypothesis that primate infants have markedly elevated body water δ18O values during exclusive 
nursing. Data from the majority of 12 human M1s studied by Vaiglova et al., 2024, similarly reveal 
maximum δ18O values after the first year of tooth formation, well beyond the duration of exclusive 
milk intake. This is also evident in the M1 of a Neanderthal born in the spring (Smith et al., 2018a); 
δ18O values mostly rose for the first 3.5 months of life, but did not reach a maximum for another 2 
years—long after the infant would have begun consuming supplemental foods and liquids. This final 
dataset points to the influence of season of birth on initial postnatal δ18O values, as inferred in other 
mammals (Bryant et al., 1996; Fricke and O’Neil, 1996).

Figure 4. Comparison of δ18O values in fossil and modern orangutans from Borneo (blue) and Sumatra (green). Violin plots show kernel density 
estimates representing the distribution of δ18O values in modern individuals (left plot) and in fossil individuals (right plot). Actual δ18O measurements are 
shown as black circles.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Figure supplement 1. Comparison of δ18O values in fossil and modern orangutans from Borneo and Sumatra.

Figure supplement 1—source data 1. Numerical data used to generate this figure.

https://doi.org/10.7554/eLife.90217
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Comparisons of serially forming teeth in four wild orangutans also fail to show a consistent eleva-
tion of δ18O values in M1s versus M2s (or M3s in two cases). Comparisons of M1 δ18O values with 
subsequent-forming teeth in four baboons, two tantalus monkeys, and one mona monkey (from 
Green et al., 2022: SI Dataset S1) also largely fail to support the enriched ‘Pattern 1’ trend modeled 
by Bryant et al., 1996: Figure 4, p. 401. This is also the case in comparisons of δ18O values from bulk 
samples of human teeth—Wright and Schwarcz, 1999, demonstrated that M1s have higher δ18O 
values than later-forming teeth in only four of seven individuals. In summary, the data from a range 
of primates including humans do not support the exclusion of early-forming primate teeth from the 
assessment of environmental seasonality.

Modern orangutans show similar isotopic values across the islands of 
Borneo and Sumatra
The two Bornean juveniles from the Munich collection (ZSM 1981/48, ZSM 1981/87) reflect the 
environmental conditions of the late 1880s and early 1890s in Skalau—a region where orangutans 
might now be locally extinct. Similarly, the teeth from the two Sumatran individuals from the Munich 
collection (ZSM 1981/246, ZSM 1981/248) were collected prior to 1939 in northern Aceh, from where 
orangutans also have since disappeared (Spehar et al., 2018). While the individuals from northern-
most Sumatra might have inhabited somewhat higher elevations than those from western Borneo, 
there does not appear to be an evident altitude effect (lower isotopic values at higher altitudes), as 
these four individuals show similar isotopic values, save for a single brief excursion below 12‰ in ZSM 
1981/248 (Table 1, Figure 3). It is unknown to what extent local rainfall may have been isotopically 
distinct at the time the teeth were forming.

The δ18O values shown in Figure 1 reflect estimates of monthly and annual average precipitation 
from the Online Isotopes in Precipitation Calculator (3.0) compiled for https://www.waterisotopes.​
org. Actual measurements of precipitation δ18O from the islands of Borneo and Sumatra are extremely 
limited. The closest observation facilities to the ZSM orangutan locations yield similar patterns of 
modern annual rainfall δ18O variability (Belgaman et al., 2017), yet specific measurements from the 
six facilities that make up ‘Cluster 3’ in this reference are not available for comparison.

Other studies underscore the complexity of water transport in this region—multiple factors such as 
the oceanic origin of water vapor, cloud cover and type, and the post-condensation process influence 
the short-term variability of δ18O values in rainfall (Moerman et al., 2013; Suwarman et al., 2013; 
Belgaman et al., 2016). For example, Moerman et al., 2013, provided 5 years of daily rainfall δ18O 
measurements from Northern Borneo (Gunung Mulu National Park, Malaysia); daily rainfall δ18O values 
ranged from +0.7‰ to −18.5‰ and showed 1–3 month, annual, and supra-annual cycle frequencies. 
Interannual rainfall δ18O fluctuations of 6–8‰ were significantly correlated with ENSO events; these 
are similar in scale to the large fluctuations in our serial tooth datasets (Figure 3).

Another potential source of isotopic variability derives from dietary variation, as orangutans obtain 
the majority of their body water from plants (Mackinnon, 1974). Plant oxygen isotope compositions 
can be stratified within tropical forest canopies (da Silveira et al., 1989; Roberts et al., 2017; Lowry 
et al., 2021)—potentially leading to offset values among various animals, including primates, that 
consume different resources in the same forest (Krigbaum et al., 2013; Nelson, 2013; Fannin and 
Scott McGraw, 2020). Orangutans forage at different canopy heights ranging from the ground to 
high in the canopy (Mackinnon, 1974; Ungar, 1996; Thorpe and Crompton, 2005; Ashbury et al., 
2015). Mackinnon, 1974, reported that Bornean and Sumatran orangutans obtain 95% of their food 
from the middle and upper levels of the canopy, where preferred foods are most abundant. In contrast, 
Ungar, 1996, reported that Sumatran orangutans were quite variable in feeding heights, with a mean 
of approximately 19 m; lower than gibbons who fed preferentially in the high canopy. Thorpe and 
Crompton, 2005, reported stratification in Sumatran orangutans, with immature individuals feeding 
below 20 m, females feeding both below and above this height, and adult/subadult males preferring 
to feed high in the canopy.

While differences in enamel δ18O values are apparent in comparisons of sympatric arboreal and 
terrestrial mammals (reviewed in Lowry et  al., 2021; Green et  al., 2022), it remains to be seen 
whether primates with broadly similar diets and habitats show meaningful differences in δ18O values, 
and to what degree plant physiology influences the pattern and amplitude of seasonality relative to 
rainfall. Oxygen isotope compositions in the six modern individuals from the islands of Borneo and 

https://doi.org/10.7554/eLife.90217
https://www.waterisotopes.org
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Sumatra are very similar. Orangutans from both islands prefer ripe fruit when available, with some 
differences in the consumption of bark, leaves, unripe fruits, and insects—which varies between sites 
and across seasons (reviewed in Smith et al., 2012). Seasonal variation in diets and the stratification 
of food within the canopy may also contribute to enamel oxygen isotope variation within individuals, 
in addition to the seasonal rainfall trends we observe in our datasets. Orangutan δ18O values are 
also quite similar to the δ18O values from five humans from Flores, Indonesia (14.8–21.0‰) dated 
at ~2.2–3.0 ka (Vaiglova et al., 2024). This is remarkable given the major dietary differences between 
frugivorous orangutans and omnivorous coastal-dwelling humans, and suggests that their enamel 
δ18O values are predominantly influenced by regional precipitation.

Fossil orangutan isotope values suggest different ancient climates in 
Sumatra and Borneo
Dating studies at Lida Ajer have established the presence of the oldest human remains in insular 
Southeast Asia, ~63–73 ka (Westaway et al., 2017), and a broad survey of the cave has recon-
firmed an age of MIS 4 (59–76 ka) for the mammalian fauna (Louys et al., 2022). This is consistent 
with the minimum age of ~33–40 ka estimated for the two molars examined in the current study. 
The Sumatran Sibrambang Cave has been regarded as roughly contemporaneous to Lida Ajer 
given broad faunal similarities (de Vos, 1983). Recent U-series dating of two fossil orangutans from 
the Sibrambang assemblage yielded minimum ages of >56 ka and >85 ka (Louys et al., 2024), 
which bracket the apparent U-series minimum ages of  ~60–70 ka in the current study. Sibram-
bang primates appear similar to, or slightly older than, those from Lida Ajer, given the minimum 
U-series age estimates for teeth from both sites, but this is not definitive given the absence of 
finite numerical ages for the fossils. Our analysis of δ18O values in Sumatran orangutan fossil molars 
reveals a close similarity across sites and with modern Sumatran individuals, although the fossil 
compositions fall at the upper end of the modern range. This may indicate a slightly dryer and 
less variable climate during the late Pleistocene; elevated tooth δ18O values are also indicative of 
elevated values in hydrological systems globally, resulting from increased ice volumes in glaciers 
and at the poles.

Pollen records from the Niah Caves archaeological site indicate that there were a number of local 
ecological shifts from lowland rainforest to more open environments during the Late Pleistocene and 
into the Holocene (Hunt et al., 2012), where humans may have begun hunting orangutans at ~45 ka 
(Spehar et al., 2018). While it is not possible to locate the two fossil orangutan molars in these pollen 
records, Piper and Rabett, 2016, considered that the large animal bone assemblages accumulated 
within the Lobang Hangus entrance and defined by the Harrisson spit depths of 12–42″ were of 
terminal Pleistocene age. More broadly, the orangutan specimen from grid US/22 (32–36″) is strati-
graphically positioned between radiocarbon ages of 14,206–15,061 cal. BP (OxA-13936) and 36,583–
38,059 cal. BP (OxA-13938), and this provides plausible minimum and maximum age constraints that 
are not incompatible with the apparent minimum U-series age of ~9 ka. Based on these results, the 
tooth is likely to date from the latest part of the Late Pleistocene. The specimen from grid Y/F4 might 
date from the latest part of the Late Pleistocene to the early Holocene, by comparison with the shell 
and fauna assemblage from other excavated areas (Piper et al., 2016.)

Both orangutan molars from the Niah Caves yield wide ranges of δ18O, which is particularly notable 
given the short periods of time sampled compared to the other fossils and most modern orangutan 
molars. Given the similar offsets in δ18O values between modern baboons living in Ugandan forests 
and the Ethiopian rift region (Green et al., 2022) and modern and prehistoric Bornean orangutans, 
we regard the higher δ18O values in the Niah Cave orangutans as possibly indicative of reduced 
rainfall when compared to recent conditions. This is consistent with paleoclimate reconstructions for 
Borneo and Flores during the late Pleistocene and early Holocene (Griffiths et al., 2009; Buckingham 
et al., 2022), when the environment around the Niah Caves is believed to have been a drier, more 
open seasonal forest (Harrison, 1996; Hunt et al., 2012). A study of δ18O values in Niah Caves shell 
middens dating from the early to mid-Holocene indicates a shift to periods of high rainfall with less 
variation than modern conditions (Stephens et al., 2016). The transition from a drier environment to 
moist tropical rainforest is also reflected in the increasing number and higher frequencies of canopy-
adapted mammalian taxa in excavated layers of the Pleistocene-Holocene transition (Piper and Lim, 
2021).

https://doi.org/10.7554/eLife.90217
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Our approach has the potential to contribute to reconstructions of ancient paleoenvironments in 
Southeast Asia based on studies of pollen, molluscs, faunal community compositions, guano records, 
and stable isotopes of teeth (e.g. Jablonski et al., 2000; Bird et al., 2005; Louys and Meijaard, 
2010; Wurster et al., 2010; Hunt et al., 2012; Janssen et al., 2016; Stephens et al., 2016; Louys 
and Roberts, 2020; Bacon et al., 2021; Louys et al., 2022; Hamilton et al., 2024). This may be 
especially timely given that recent work examining modern fauna compositions in African landscapes 
has cautioned that fossil herbivore assemblages tend to overestimate the extent of ancient grasslands 
in comparison to woodlands (Negash and Barr, 2023; also see Sokolowski et al., 2023). Fine-scaled 
tooth sampling may also allow an expansion of inferences from δ18O values of bulk-sampled Asian 
hominin remains (Janssen et al., 2016; Roberts et al., 2020; Kubat et al., 2023), which are difficult 
to interpret for understanding seasonal rainfall dynamics in tropic environments (Green et al., 2022). 
Such information could better inform debates about whether humans employed arid savannah corri-
dors to avoid dense tropical forests, or whether humans were adept at colonizing such environments 
during their consequential migration throughout island Southeast Asia.

Materials and methods
Orangutan samples
Thin (histological) sections of twelve molar teeth from six modern orangutans and six molar teeth 
from five fossil orangutans were employed (Table 1). These sections were previously prepared for 
studies of incremental tooth development, enamel thickness, elemental chemistry, and Asian homi-
noid taxonomy (Smith, 2016; Smith et al., 2011; Smith et al., 2012; Smith et al., 2017; Smith et al., 
2018b). Four modern individuals were sourced from the Munich State Anthropological Collection 
(ZSM): two were collected in 1893–1894 from Skalau (north of the Kapuas River and south of the Kling-
kang Mountains in eastern West Borneo), and two were collected prior to 1939 from Aceh (northwest 
Sumatra) (Röhrer-Ertl, 1988: Figure 3, p. 14) (Figure 1). It was not possible to determine from which 
specific regions or time periods the two other modern individuals derive—collection notes were not 
available for these specimens from the Harvard Museum of Natural History (MCZ) or the Humboldt 
Museum (ZMB). Ages at death were determined for five of six individuals from assessments of incre-
mental features and elemental registration of serially forming molars (detailed in Smith, 2016; Smith 
et al., 2017).

We also studied four Sumatran fossil orangutan teeth that were collected more than a century 
ago from the Lida Ajer and Sibrambang Caves in the Padang Highlands by Eugene Dubois (de Vos, 
1983). Right and left lower molars from Lida Ajer (11594.12, 11595.105) show identical trace element 
patterns in their dentine (Appendix 1—figure 6), as well as similar occlusal fissure patterns and light 
wear, consistent with their attribution to the same individual. Two Bornean fossil orangutan teeth from 
Niah Caves (Malaysia) were also included in this study. The caves have yielded significant late Pleisto-
cene and early Holocene human remains since the Harrissons began excavations in the 1950s (Barker 
et al., 2007). These lower molars were derived from two different entrances to the cave system, Gan 
Kira (grid square Y/F4) and Lobang Angus/Hangus (grid square US/22), with burial depths of 12–18″ 
and 30–36″, respectively (Hooijer, 1961). Although Hooijer, 1948, Hooijer, 1961, identified all six of 
these fossil teeth as M1s, we regard this as tentative, given that isolated orangutan molars are notori-
ously difficult to seriate (Grine and Franzen, 1994).

Dating of fossil samples
Preliminary assessments at the Australian National University Radiocarbon Dating Laboratory 
confirmed that collagen preservation in the six fossil orangutans was insufficient for radiocarbon 
dating, a common limitation in tropical environments (e.g. Wood et al., 2016). Laser ablation uranium 
series (U-series) analyses were carried out on longitudinal sections of teeth at the Radiogenic Isotope 
Facility of the University of Queensland using an ASI RESOlution SE laser ablation system connected 
to a Nu Plasma II MC-ICP-MS. A succession of several rasters (<2 min linear ablations) was made in 
a transect across the dentine and enamel of each tooth (Appendix 1—figures 3–5) following Grün 
et al., 2014. The 230Th/238U and 234U/238U activity ratios of the samples were normalized to bracketing 
analyses of a homogeneous rhino tooth standard that has been precisely calibrated by isotope dilu-
tion (Grün et al., 2014). Importantly, dental tissues are known to behave as open systems for U-series 

https://doi.org/10.7554/eLife.90217
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elements; provided there is no occurrence of uranium leaching, age estimates should therefore be 
regarded as minimum age constraints since uranium uptake into dental tissues may be significantly 
delayed after death.

Tooth formation and oxygen isotope analyses
Thin sections were first imaged with transmitted light microscopy. Enamel daily secretion rates were 
measured between sequential accentuated growth lines to yield the time of formation (see Smith, 
2016: Figure 1, p. 94), and enamel extension rates were calculated between accentuated lines to 
guide placement of the analyzed spots at approximately weekly intervals of growth from the dentine 
horn tip to the enamel cervix (Smith et al., 2018a; Green et al., 2022). Following the removal of cover 
slips by immersion in xylene, each thin section was analyzed for δ18O at the SHRIMP Laboratory at the 
Australian National University according to methods detailed in Vaiglova et al., 2024.

In brief, a 15 kV Cs primary ion beam focused to a spot ~15 × 20 µm diameter was used to sequen-
tially sample the enamel as close as possible to the EDJ. Oxygen secondary ions were extracted at 
10 kV and analyzed isotopically by a multiple collector equipped with dual electrometers operated 
in resistor mode. The δ18O values were calculated relative to reference apatite (Durango 3) measured 
every 10–15 sample analyses. Distances of SHRIMP δ18O measurements along the innermost enamel 
from the cusp to cervix were converted to secretory time in days following Green et al., 2022. A poly-
nomial regression relating distances to days was created using the enamel extension rates, and this 
regression was applied to estimate the timing of secretory deposition at every SHRIMP spot location. 
The Lomb-Scargle periodogram was used to assess time-dependent patterns of δ18O values, which 
estimates the power of sine wave periods within a given range to produce the temporal patterns 
present within those measurements.

The probability that differences between first and second year δ18O values in modern first molars 
might have arisen by chance was assessed by one-way paired t-tests, with alpha = 0.05 adjusted by 
Bonferroni correction due to repeated comparisons across multiple teeth. Figure and data plotting 
using Python 3 in the Google Colab environment were aided by ChatGPT, a language model based 
on the GPT-3.5 architecture developed by OpenAI.
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Appendix 1

Appendix 1—figure 1. Comparison of sequential δ18O values across multiple years of molar formation in six 
putative fossil orangutan M1s from Borneo and Sumatra. The width of each curve is a kernel density estimate (KDE) 
corresponding to the distribution of oxygen isotope values measured from different teeth. From each tooth, first 
year data (Y1) is shown with a purple violin plot, second year data (Y2) with a green plot, and third year data (Y3, if 
present) with a yellow plot. Actual data are plotted as black circles.

https://doi.org/10.7554/eLife.90217
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Appendix 1—figure 2. Inferred seasonality of δ18O values from a Bornean (top) and Sumatran (bottom) M1. 
Lomb-Scargle periodograms show potential periods in days (x-axis) against period power (y-axis), where higher 
values on the y-axis indicate underlying sine wave periods that produce, contribute to, or explain δ18O value 
oscillations. Best-fit periodicities are shown as light gray vertical lines, whereas annual periodicities are indicated by 
blue dashed horizontal lines. We regard the Bornean M1 (MCZ 5290) as largely aperiodic; a minor peak is observed 
at c. 6 months, and increasing powers at very high periods are an artifact of limited sampling length within teeth 
relative to the model. The Sumatran M1 (ZMB 83508) has a 1.1 year inferred frequency, as well as an approximately 
6-month peak, likely reflecting semiannual monsoons.

https://doi.org/10.7554/eLife.90217
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Appendix 1—figure 3. Laser ablation profiles performed across the two teeth from Lida Ajer. #576 (left) refers to 
specimen 11595.105; #578 (right) refers to specimen 11594.12. The red dots represent the position of the rasters, 
and arrows indicate the sequence of the analyses. EN = enamel. DE = dentine.

Appendix 1—figure 4. Laser ablation profiles across the two teeth from Sibrambang Cave. #577 (left) refers to 
specimen 11565.162; #581 (right) refers to specimen 11564.5. The red dots represent the position of the rasters, 
and arrows indicate the sequence of the analyses. EN = enamel. DE = dentine.

https://doi.org/10.7554/eLife.90217
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Appendix 1—figure 5. Laser ablation profiles across the two teeth from Niah Caves. #579 (left) refers to specimen 
from grid Y/F4; #580 (right) refers to specimen from grid US/22. The red dots represent the position of the rasters, 
and arrows indicate the sequence of the analyses. EN = enamel. DE = dentine.

Appendix 1—figure 6 continued on next page

https://doi.org/10.7554/eLife.90217
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Appendix 1—figure 6. Matching trace element patterns in cross-sections of two isolated molars from the 
Dubois collection of fossil orangutan teeth from Lida Ajer. High concentrations are shown in warm colors, low 
concentration are in cool colors; here Li/Ca is shown, but identical corresponding patterns were also observed for 
Ba/Ca and Sr/Ca (not shown). The enamel cap of each tooth is to the left, and root dentine is to the right. Trace 
elements were measured according to LA-ICP-MS methods detailed in Smith et al., 2017.

https://doi.org/10.7554/eLife.90217
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