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Abstract Parkinson’s disease (PD) is characterized by motor impairments caused by degener-
ation of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, 
PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, 
which are thought to depend on concomitant alterations of serotonergic and noradrenergic trans-
mission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-
wide serotonergic input. Here, we identified electrophysiological and morphological parameters to 
classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in 
a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). 
Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. 
In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination 
with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. 
Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes 
changes in the DRN neural circuitry.

eLife assessment
This important work provides convincing data on neuronal heterogeneity in the dorsal raphe 
nucleus (DRN), focusing on their electrophysiological properties, morphology, and susceptibility to 
the neurodegeneration of noradrenaline and dopamine systems in the Parkinsonian state. These 
findings suggest a significant interplay between catecholaminergic systems in healthy and parkin-
sonian conditions, as well as neuronal structure and function. Such findings provide a strong foun-
dation for basic scientists as well as pre-clinical researchers interested in the role of dorsal raphe 
neurons in Parkinson's disease.

Introduction
Parkinson’s disease (PD) is a frequent neurodegenerative disorder characterized by the progressive 
loss of dopaminergic (DA) neurons in the nigrostriatal pathway, leading to bradykinesia, tremor, 
rigidity, and postural instability (Braak et al., 2003; Jankovic, 2008). These cardinal motor symptoms 
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are typically addressed by administration of DA drugs or by deep brain stimulation. PD patients 
also experience non-motor symptoms including sleep, affective, and cognitive dysfunctions often 
preceding the motor disabilities (Swick, 2012; Chaudhuri and Schapira, 2009). These comorbidities 
are in large part refractory to current PD treatments and are thought to be caused by neurodegenera-
tive processes occurring in concomitance to the loss of midbrain DA neurons. However, the pathology 
underlying non-motor symptoms remains poorly understood.

Post-mortem studies in PD patients provided first insights into the brain areas which might be 
involved in the etiology of non-motor dysfunctions in PD. Besides the profound degeneration of the 
substantia nigra pars compacta (SNc), these studies found cell loss and reduced neurotransmitter 
release in other monoaminergic brain regions, including the dorsal and median raphe nuclei (DRN and 
MRN, respectively), and the locus coeruleus (LC) (Braak et al., 2003; Halliday et al., 1990a; Halliday 
et al., 1990b; Gesi et al., 2000; Zarow et al., 2003). The DRN constitutes the main source of serotonin 
(5-hydroxytryptamine, 5-HT) in the brain with serotonergic cells (DRN5-HT) accounting for 30–50% of 
its neurons (Huang et al., 2019). DRN5-HT neurons have been implicated in numerous neuropsychiatric 
diseases, rendering them a potential neural substrate for non-motor symptoms in PD. DRN5-HT neurons 
are also of central interest in PD research because of their bidirectional, monosynaptic connection 
with the striatum (Pollak Dorocic et al., 2014; Soghomonian et al., 1989). In fact, several studies 
have shown that serotonergic markers and transmitter levels are altered in Parkinson patients as well 
as in non-human primate and rodent models of PD (Maillet et al., 2021; Jørgensen et al., 2021; 
Cheshire et al., 2015; Pifl et al., 1991; Rylander et al., 2010; Nayyar et al., 2009; Taylor et al., 
2009; Karstaedt et al., 1994). Notably, alterations in the serotonergic system have also been related 
to non-motor comorbidities in PD (Wilson et al., 2018; Politis et al., 2010). Yet, functional investi-
gations of DRN5-HT in rodent models of PD have led to conflicting results showing both increased and 
decreased activity in DRN5-HT neurons themselves as well as in their downstream targets (Kaya et al., 
2008; Prinz et al., 2013; Guiard et al., 2008). Besides the serotonergic neurons, the DRN comprises 
other neuronal populations, including a small group (~1000 neurons in rats) of DA neurons (DRNDA) 
(Descarries et al., 1986). DRNDA neurons have been linked to the regulation of pain, motivational 
processes, incentive memory, wakefulness, and sleep–wake transitions (Wenk et al., 1994; Lu et al., 
2006; Dzirasa et al., 2006; Cho et al., 2017; Lin et al., 2020), but their ultimate behavioral signifi-
cance is yet to be elucidated (Matthews et al., 2016; Taylor et al., 2019; Li et al., 2016; Flores et al., 
2004; Flores et al., 2006). DRNDA neurons are directly innervated by DA neurons in the midbrain 
and have been found to show Lewy bodies in PD patients (Halliday et al., 1990b; Lin et al., 2020; 
Cardozo Pinto et al., 2019). Yet, the physiology and pathophysiology of DRNDA neurons in PD remain 
elusive. The sparsity of research on DRNDA neurons is likely due to the technical challenges associated 
with targeting this population among the diverse cell types in the DRN and adjacent structures (e.g., 
retrorubral field, periaqueductal gray, and LC), which often co-express signature genes, hampering 
their molecular identification and region-specific manipulations with cre driver lines (Huang et al., 
2019; Cardozo Pinto et al., 2019; Dougalis et al., 2012; Fu et al., 2010; Okaty et al., 2015).

Recently, this issue has been addressed by Pinto et al. who showed that DRNDA neurons are most 
faithfully labeled in transgenic mice in which the expression of cre is linked to the DA transporter (DAT-
cre) (Cardozo Pinto et al., 2019). Previously, the membrane properties of DRNDA neurons have only 
been addressed in mice in which DRNDA neurons were identified based on the expression of the tran-
scription factor Pitx3 or the enzyme tyrosine hydroxylase (TH) (Dougalis et al., 2012). In Pitx3-GFP 
mice, about 70% of fluorescent neurons are TH-positive (TH+) as shown by immunohistochemistry. 
Moreover, 40% of TH+ neurons in the DRN are not labeled in these mice, suggesting that this line 
targets a subpopulation of DRNDA neurons (Dougalis et al., 2012). The widely used TH-cre reporter 
line has been found to show ectopic expression of cre in non-DA neurons, probably caused by a tran-
sient developmental expression of TH (Lindeberg et al., 2004; Lammel et al., 2015). In addition, the 
TH-cre line also labels noradrenergic neurons in the neighboring LC (Lindeberg et al., 2004), which 
produces most of the noradrenaline (NA) in the brain and is involved in mood control, cognition, and 
sleep regulation (Carter et al., 2010). The large overlap of functions ascribed to the LC and DRN is 
thought to result from the complex reciprocal synaptic connections between these two brain areas: 
notably, the LC provides noradrenergic input to the DRN (Pudovkina et al., 2003; Trulson and Crisp, 
1984) while receiving input from DRN5-HT neurons (Haddjeri et al., 1997; Singewald et al., 1998; 
Aston-Jones et al., 1991).

https://doi.org/10.7554/eLife.90278
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Here, we used ex vivo whole-cell patch-clamp recordings and morphological reconstructions to 
characterize the electrophysiological and morphological properties of DRNDA and DRN5-HT neurons in 
wild-type (WT) and DAT-tdTomato mice. Moreover, we studied the impact of catecholamine depletion 
on DRNDA and DRN5-HT populations in the 6-hydroxydopamine (6-OHDA) toxin model of PD.

Results
DRNDA and DRN5-HT neurons are electrophysiologically distinct cell 
types
To investigate the electrophysiological and morphological profiles of DRNDA neurons and to compare 
it to DRN5-HT neurons, we performed whole-cell patch-clamp recordings in coronal slices of adult WT 
and DAT-cre mice crossed with tdTomato reporter mice (Figure 1A). All neurons were filled with neuro-
biotin and Alexa488 while recording. Alexa488 allowed us to take snapshots of recorded neurons at 
different time points, thus facilitating the topographical registration of recorded neurons to the post 
hoc stained slices (Figure 1—figure supplement 1). Using this approach, we obtained complete sets 
of electrophysiological and morphological data from 75 neurons in the DRN. Cells were identified as 
DRN5-HT or DRNDA neurons based on tryptophan hydroxylase (TPH) or TH immunoreactivity, respec-
tively (Figure 1A–D). In line with Fu et al., 2010, none of the recorded neurons was positive for both 
TPH and TH (n = 0/412). During the recordings, we used a series of depolarizing and hyperpolarizing 
current steps and ramps that allowed us to characterize active and passive membrane properties in 
detail (Figure  1E–G). Based on the electrophysiological data, we first tested possible differences 
between TH+ neurons recorded in WT mice and tdTomato-positive (tdTomato+) neurons recorded 
in DAT-tdTomato mice. We found no differences between these two groups (n = 13 TH+ vs. n = 30 
tdTomato+ neurons, Figure 1—figure supplement 2) and neither within the subset of tdTomato+ 
neurons when comparing TH+ to TH-negative (TH−) neurons (n = 23 TH+ vs. n = 6 TH− neurons, 
Figure 1—figure supplement 2A–E). Since this small number of TH− neurons were positive for DAT 
and their electrophysiology indistinguishable from TH+ DRNDA neurons, the data were pooled. Please 
note that staining of recorded neurons, that is immunohistochemistry on slices strained by hour-long 
patch-clamp recordings, is more challenging as neurons can be lost after patching (no staining data) 
or the staining might be ambiguous. Out of 114 tdTomato+ neurons only one cell displayed a different 
electrophysiological profile than all other DRNDA neurons, suggesting a false-positive rate of 0.8%. 
That neuron was TH−, displayed profoundly distinct intrinsic properties, and was therefore excluded 
(Figure 1—figure supplement 2F, G). Taken together, the electrophysiological results support the 
use of the DAT-tdTomato mouse line when studying DRNDA neurons and data from both mouse lines 
were pooled. Recordings of DRNDA neurons revealed distinctive electrophysiological properties such 
as a slowly ramping membrane potential during constant current injections giving rise to delayed 
spiking and postinhibitory hypoexcitability (Figure  1E). Moreover, most DRNDA neurons displayed 
rebound oscillations and sag currents (Figure 1E, F).

When comparing the electrophysiological properties of DRNDA to DRN5-HT neurons, we observed 
numerous differences between these two cell types, but here we focus on the five most significant 
ones. While DRN5-HT neurons spike with short delays in response to current steps and maintain a rela-
tively constant action potential (AP) amplitude, DRNDA neurons display a longer delay to the first spike 
and the amplitude of subsequent APs drops (Figure 1F–I). Additionally, the APs of DRN5-HT neurons 
rise faster, while their afterhyperpolarization (AHP) is longer compared to DRNDA neurons (Figure 1H, 
I). Lastly, the capacitance of DRN5-HT neurons is significantly larger than in DRNDA neurons (Figure 1I).

Next, we tested if DRNDA neurons can be distinguished from DRN5-HT neurons based on these five 
electrophysiological parameters. To this end, we standardized the data and ran a principal component 
analysis (PCA) including all DRN5-HT neurons (i. e. all TPH-positive, TPH+), all TH+ neurons recorded in 
wild-type mice and all tdTomato+ cells recorded in DAT-tdTomato mice (except for one outlier shown 
in Figure 1—figure supplement 2F, G). Plotting the first two principal components (PCs) showed two 
separate clusters (Figure 1J, insert). Unsupervised hierarchical cluster analysis based on PC1 and PC2 
revealed the same two major clusters and potential subclusters (Figure 1J). Mapping the molecular 
identity of the cells onto the dendrogram revealed the separation of DRN5-HT and DRNDA neurons, 
while there was no branching according to mouse line (WT vs. DAT-tdTomato), further corroborating 
the validity of DAT-tdTomato mice as a marker for DRNDA neurons. Overall, these data suggest that 

https://doi.org/10.7554/eLife.90278
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Figure 1. DRNDA and DRN5-HT are electrophysiologically distinct cell types. (A) Scheme of the location of the DRN (pink) in a coronal section (top) and 
at higher magnification together with two patch pipettes (center). Bottom: a representative slice stained post-recording for TPH, TH, and neurobiotin 
revealing serotonergic neurons (arrows). The ventricle is indicated with a dashed line. (B) Top: differential interference contrast (DIC) microscopy image 
(left) of neurons that were filled with Alexa488 (right) and neurobiotin. Center, bottom: staining of the same neurons revealing a TPH+ (DRN5-HT) neuron 
and a TPH− and TH− cell. (C) Top: DIC image of recorded neurons that were filled with Alexa488 and neurobiotin. Center, bottom: staining of the same 
neurons revealing tdTomato+ and TH+ (DRNDA) neurons. (D) Representative fluorescent (top), DIC (center) image, and overlay (bottom) of a tdTomato+ 
neuron in a DAT-tdTomato mouse. (E) Representative recordings depicting postinhibitory hypoexcitability, slowly ramping currents and rebound 
oscillations in DRNDA neurons. (F) Representative voltage responses to current injections in a DRN5-HT and DRNDA neuron. (G) Ramping current injections 
reveal AP amplitude accommodation. Gray circles indicate the onset and peak of APs. (H) Amplitude and duration of the AP and AHP in a DRN5-HT and 
DRNDA neuron. Gray circles indicate onset, peak, and end of the AP and AHP. (I) Quantification of electrophysiological properties distinguishing DRN5-HT 
from DRNDA neurons (AP drop rate: n = 32 DRN5-HT, n = 43 DRNDA, Capacitance: n = 32 DRN5-HT, n = 43 DRNDA, AP delay: n = 30 DRN5-HT, n = 43 DRNDA, 
AHP duration: n = 28 DRN5-HT, n = 32 DRNDA, N = 9; Wilcoxon Rank Sum Test). (J) PCA of five electrophysiological parameters (insert) and hierarchical 
cluster analysis based on PCA1 and PCA2 (Ward’s method, Euclidean distance). Intrinsic properties were sufficient to separate TPH+ cells (blue dash) 
from TH+ (red dash) cells. Bottom dashes indicate WT (black) and DAT-tdTomato (gray) mice. Data are shown as mean ± SEM, ***p < 0.001. Scale bars: 
A, 100 μm; B–D, 10 μm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Filling of neurons with AlexaFluor488 and neurobiotin for subsequent immunohistochemistry and topographical registration.

Figure supplement 2. Electrophysiological properties of DRNDA neurons recorded in WT or DAT-tdTomato mice do not differ.

Figure supplement 3. Clustering of DRN neurons based on electrophysiological parameters.

https://doi.org/10.7554/eLife.90278
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electrophysiological parameters themselves are sufficient to distinguish between DRN5-HT and DRNDA 
neurons.

In addition to DRNDA and DRN5-HT, the DRN contains an unknown number of cell types and 47 
out of 120 recorded neurons were neither TH+, nor TPH+ and did not express tdTomato. To test 
whether DRNDA can also be distinguished from those populations based on their electrophysiological 
profile, we ran a PCA on 20 standardized parameters and used the first three PCAs for unsupervised 
hierarchical clustering (Figure 1—figure supplement 3). Our analysis suggests that there might be 
four major electrophysiological cell types in the DRN. In contrast to DRNDA and DRN5-HT neurons, a 
large proportion of the remaining cells showed rebound spiking and biphasic AHPs, resembling the 
profiles of local interneurons in other brain areas (Figure 1—figure supplement 3D, E). Interestingly, 
the clustering also indicated that three TH− and tdTomato-negative (tdTomato−) neurons belonged 
to the DRNDA neurons and further analysis showed that they were indistinguishable from molecularly 
identified DRNDA neurons (Figure 1—figure supplement 3C, F). These findings indicate that clus-
tering can be used to identify neurons that otherwise would have been excluded due to a lack of post 
hoc staining data or genetic driver lines.

Overall, our data show that DRNDA neurons constitute an electrophysiologically distinct class of 
neurons in the DRN expressing several hallmark properties, which are sufficient to identify them within 
the local DRN circuitry.

DRNDA and DRN5-HT neurons have different morphological properties
Next, we characterized the morphological profile of DRN5-HT and DRNDA neurons. We focused on the 
analysis of somatic and dendritic properties since a complete reconstruction of the axonal arborization 
could not be retrieved from the slices. The analysis of the somatic properties showed that DRN5-HT 
neurons had larger cell bodies than DRNDA neurons (Figure 2A, B), as measured in their area, perim-
eter, length, and width (Figure 2B). Cell bodies also differed in shape, with DRNDA neurons having 
more circular somata than DRN5-HT neurons, as indicated by the circularity index (Figure 2B). Analyzing 
the dendritic properties, we found that DRN5-HT neurons had four to five primary dendrites, compared 

Figure 2. DRNDA and DRN5-HT have distinct morphological profiles. (A) Top: representative digital reconstruction of a DRN5-HT. Bottom: representative 
digital reconstruction of a DRNDA. (B) Morphological parameters describing the soma size and shape of DRN5-HT and DRNDA neurons (DRN5-HT: n = 20, N 
= 3; DRNDA: n = 27, N = 3; unpaired t-test or Mann–Whitney U test). (C) Morphological parameters describing the dendritic tree of DRN5-HT and DRNDA 
neurons (DRN5-HT: n = 8, N = 3; DRNDA: n = 7, N = 3; Mann–Whitney U test). Data are shown as mean ± SEM, ***p < 0.001. Scale bar: 10 μm.

https://doi.org/10.7554/eLife.90278
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to only two to three in DRNDA neurons (Figure 2A, C). Moreover, dendrites of DRNDA neurons were 
frequently bipolar with the main primary dendrites starting from opposite extremes of the soma. Both 
populations had relatively few bifurcations (Figure 2C), but the DRN5-HT neurons had significantly more 
terminations (Figure 2C). The overall dendritic length did not differ between the DRN5-HT and DRNDA 
neurons: both populations had a mix of short and long dendrites (Figure 2C). These data suggest 
that DRN5-HT neurons have denser dendritic arborization than DRNDA neurons, mostly due to larger 
numbers of primary dendrites.

Altogether, our results show that DRN5-HT and DRNDA neurons have distinct morphological proper-
ties. DRN5-HT neurons are mostly multipolar neurons, with a big and complex soma and multiple primary 
dendrites, while DRNDA neurons have smaller and more circular cell bodies with bipolar dendrites.

DA and NA depletion distinctly affect the membrane properties of 
DRN5-HT neurons
To elucidate how DRN5-HT and DRNDA neurons might be affected in PD, we characterized these popula-
tions in a mouse model of PD based on bilateral injection of the neurotoxin 6-OHDA in the dorsal stri-
atum. This approach leads to a partial lesion of catecholamine neurons, reproducing an early stage of 
parkinsonism in which particularly non-motor symptoms such as depression- and anxiety-like behavior 
are manifested (Bonito-Oliva et al., 2014a; Ztaou et al., 2018). In line with previous studies, we 
observed a 60–70% reduction of TH levels in the striatum (Figure 3—figure supplement 1, Bonito-
Oliva et  al., 2014b). Only mice meeting this criterion were included in the study. Measurement 
performed by enzyme-linked immunosorbent assay (ELISA) showed that the 6-OHDA injection did 
not alter the levels of 5-HT in the striatum (Figure 3—figure supplement 1D), and immunostaining 
showed that the striatal 6-OHDA injection did not cause degeneration of DRN5-HT or DRNDA neurons 
(Figure 3—figure supplement 2).

Striatal injection of 6-OHDA has also been found to produce a partial loss of NA neurons in the 
LC (Bonito-Oliva et al., 2014b) and ELISA analysis showed that this approach induces approximately 
60% loss of NA in the striatum (Figure 3—figure supplement 1E). In the present study, we deter-
mined the specific impact of NA dysfunction on the physiology of DRN5-HT and DRNDA neurons by 
pre-treating a group of mice with desipramine (DMI), a selective inhibitor of NA reuptake, before 
injecting 6-OHDA (DMI + 6-OHDA mice), which partially prevents striatal NA loss (Figure 3—figure 
supplement 1E). We then assessed the intrinsic properties of DRN5-HT and DRNDA neurons in Sham-
lesion (Sham), 6-OHDA- and DMI + 6-OHDA-treated mice (Figure  3A). Whole-cell recordings 
obtained from DRN5-HT neurons in control mice revealed that 37% of DRN5-HT neurons were sponta-
neously active in slices and the proportion of intrinsically active neurons was similar in mice injected 
with 6-OHDA (Sham: n = 11/30 DRN5-HT neurons, 6-OHDA: n = 6/17 DRN5-HT neurons, Figure 3B). 
However, DRN5-HT neurons recorded in DMI + 6-OHDA mice showed an increased excitability: in this 
condition, 72% of DRN5-HT neurons were spontaneously active and DRN5-HT neurons displayed lower 
rheobase currents than control mice (Figure 3B, C). Because of the protective effect exerted in these 
mice by DMI, these findings suggest that the noradrenergic system contributes to the increased 
firing of DRN5-HT neurons.

While the rheobase of DRN5-HT neurons was not affected in 6-OHDA mice, we observed that their 
firing properties were profoundly altered: DRN5-HT neurons recorded in 6-OHDA mice displayed smaller 
APs than Sham mice and shorter AHPs than both Sham and 6-OHDA-injected mice pre-treated with 
DMI (Figure 3D–F). In contrast, the APs and AHPs of Sham and 6-OHDA-injected mice pre-treated 
with DMI did not differ. Moreover, DRN5-HT neurons of 6-OHDA-injected mice fired at higher frequen-
cies than 6-OHDA-injected mice pre-treated with DMI (Figure  3G–I). Finally, the membrane time 
constant of DRN5-HT neurons was shorter in 6-OHDA-injected mice than in Sham mice (Figure 3J). 
Interestingly, we found no differences in the firing properties of DRN5-HT neurons recorded in Sham 
and in 6-OHDA-injected mice pre-treated with DMI, suggesting that the noradrenergic lesion criti-
cally contributes to the changes in 6-OHDA mice. Taken together, these results indicate that DRN5-

HT neurons are affected in the 6-OHDA mouse model of PD. Specifically, lesions of the DA system 
increase the excitability of DRN5-HT neurons whereas the combined lesion of the noradrenergic and DA 
systems changes the firing properties of DRN5-HT neurons.

https://doi.org/10.7554/eLife.90278
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Figure 3. Lesions targeting primarily nigrostriatal dopamine increase the excitability of DRN5-HT neurons whereas loss of NA affects their APs. 
(A) Overview of workflow for analyzing the electrophysiological and morphological properties of DRN neurons in Sham- and 6-OHDA-lesioned mice. 
(B) Top: pie charts showing the number of spontaneously active (dark) and silent (pale) DRN5-HT neurons in three conditions: Sham (left), 6-OHDA-
injected mice (center), and 6-OHDA-injected mice pre-treated with DMI + 6-OHDA (right). Bottom: representative recordings of spontaneously active 
DRN5-HT neurons (I = 0 pA). (C) Quantification of the rheobase (left, Sham: n = 30, 6-OHDA: n = 17, DMI + 6-OHDA: n = 25), the firing frequency of 
spontaneously active cells (center, Sham: n = 11, 6-OHDA: n = 6, DMI + 6-OHDA: n = 18), and the resting membrane potential of silent DRN5-HT neurons 
(right, Sham: n = 19, 6-OHDA: n = 11, DMI + 6-OHDA: n = 7). (D) Representative APs of DRN5-HT at low (left) and high (right) temporal resolution. Gray 
circles indicate onset, offset, and peak of the APs as well as the end of the AHP. (E) Quantification of the amplitude (left) and duration (right) of the APs 
of DRN5-HT neurons (Sham: n = 29, 6-OHDA: n = 16, DMI + 6-OHDA: n = 21). (F) Same as in (D) for the AHP. (G) Representative responses of DRN5-HT 
neurons to current steps (I = +75 pA). (H) Quantification of firing frequency/injected current. (I) Quantification of the delay to the first AP when injected 
with current eliciting 1 Hz firing (Sham: n = 29, 6-OHDA: n = 16, DMI + 6-OHDA: n = 21). (J) Quantification of the membrane time constant tau of DRN5-

HT neurons (Sham: n = 32, 6-OHDA: n = 16, DMI + 6-OHDA: n = 21). Sham: N = 6–7; 6-OHDA: N = 7; DMI + 6-OHDA: N = 4; unpaired t-test or Mann–
Whitney U test. Data are shown as mean ± SEM, *p < 0.05, **p < 0.01.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The striatal injection of 6-OHDA induced 60–70% TH loss in the striatum, did not alter striatal 5-HT levels but reduced striatal NA 
levels.

Figure supplement 2. The 6-OHDA injection did not affect the number of DRN5-HT and DRNDA neurons.

Figure supplement 3. Selective lesioning of the NA system based on 6-OHDA injections in the LC affects DRN neurons mildly.

https://doi.org/10.7554/eLife.90278
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Striatal DA depletion induces hypotrophy of DRN5-HT neurons
Morphological analysis revealed a reduced soma size of the DRN5-HT neurons in 6-OHDA mice, 
which was manifested as decreased area, perimeter, and major axes in comparison to control mice 
(Figure  4A–C). Moreover, the increase in the circularity of the 6-OHDA group indicated that the 
shape of the soma of DRN5-HT neurons was also altered by the lesion (Figure 4C). These modifications 
were not observed in DMI + 6-OHDA mice, suggesting that preserving the NA system protected 
the DRN5-HT neurons (Figure 4A–C). Finally, the injection of 6-OHDA without DMI pre-treatment also 
resulted in a trend toward reduced number of primary dendrites and terminations of DRN5-HT neurons 
(Figure 4D). The number of bifurcations and the dendritic length were not affected by the lesion 
(Figure 4D). Globally, these results suggest that the lesion produced by 6-OHDA induces a hypo-
trophic phenotype in DRN5-HT neurons characterized by a shrinkage of the soma and that this alter-
ation is NA dependent.

Striatal DA depletion affects the firing of DRNDA neurons independent 
of NA loss
Finally, we assessed whether the striatal 6-OHDA lesion affects the physiology of DRNDA neurons. 
Whole-cell patch-clamp recordings revealed that 58% of DRNDA neurons are spontaneously active 
in slices of Sham-lesion mice (Figure 5A). In contrast, the proportion of intrinsically active neurons 

Figure 4. Striatal injection of 6-OHDA induced a hypotrophic phenotype in the DRN5-HT, which is prevented by pre-treatment with DMI. 
(A) Representative digital reconstructions of a DRN5-HT neuron in three different conditions: Sham (left), 6-OHDA-injected mice (center), and 6-OHDA-
injected mice pre-treated with DMI (right). (B) Representative confocal pictures of soma from DRN5-HT neurons in Sham (top), 6-OHDA-injected mice 
(center), and 6-OHDA-injected mice pre-treated with DMI (bottom). (C) Morphological descriptors of the soma size and shape in DRN5-HT neurons (Sham: 
n = 20, N = 4; 6-OHDA: n = 19, N = 4; DMI + 6-OHDA: n = 17, N = 3; one-way ANOVA). (D) Morphological descriptors of the dendritic tree in DRN5-HT 
neurons (Sham: n = 8, N = 3, 6-OHDA: n = 6, N = 3: DMI + 6-OHDA: n = 6, N = 2). Data are shown as mean ± SEM, ***p < 0.001, **p < 0.01, *p < 0.05. 
Scale bar: 10 µm.

https://doi.org/10.7554/eLife.90278
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increased to 77% and 78% of DRNDA neurons in 6-OHDA-injected mice with and without pre-treatment 
with DMI, respectively.

In stark contrast to DRN5-HT neurons, the rheobase, the APs and their AHPs, the current-frequency 
slope and the time constant of DRNDA neurons were not affected in any 6-OHDA mice (Figure 5B–I). 
In fact, we did not observe any change in the firing properties of DRNDA neurons that was dependent 
on the protection of the NA system with DMI (Figure 5). DRNDA neurons recorded in 6-OHDA-injected 
mice pre-treated with DMI did however display a reduction in spike latency compared to Sham-
lesioned mice (Figure 5G). Together, these results suggest that the electrophysiological properties of 
DRNDA neurons are affected in the 6-OHDA mouse model of PD and that these changes are primarily 
due to the lesion of the nigrostriatal DA pathway. In contrast, the morphological analysis of DRNDA 
neurons revealed that the striatal 6-OHDA injection did not significantly affect somatic and dendritic 
morphology (Figure 6).

Unilateral lesion of LC NA cells induces minor changes in DRN 
subpopulations
Our results so far suggest that concomitant lesioning of the DA and NA system (6-OHDA model) has a 
severe impact on DRN5-HT neurons which cannot be evoked when the NA system is partially protected 

Figure 5. Lesions targeting primarily SN dopamine depolarize DRNDA neurons whereas concomitant loss of NA does not affect their APs. (A) Top: 
pie charts showing the proportion of spontaneously active (dark) and silent (pale) DRNDA neurons in three conditions: Sham (left), 6-OHDA-injected 
mice (center), and 6-OHDA-injected mice pre-treated DMI (right). Bottom: representative recordings of spontaneously active DRNDA (I = 0 pA). 
(B) Quantification of the rheobase (left, Sham: n = 43, 6-OHDA: n = 31, DMI + 6-OHDA: n = 40), the firing frequency of spontaneously active (center, 
Sham: n = 25, 6-OHDA: n = 23, DMI + 6-OHDA: n = 31), and the resting membrane potential of silent DRNDA neurons (right, Sham: n = 18, 6-OHDA: 
n = 7, DMI + 6-OHDA: n = 9). (C) Representative APs of DRNDA at low (left) and high (right) temporal resolution. Gray circles indicate onset, offset, and 
peak of APs and the end of the afterhyperpolarization (AHP). (D) Quantification of the amplitude (left) and duration (right) of the APs of DRNDA neurons 
(Sham: n = 34, 6-OHDA: n = 23, DMI + 6-OHDA: n = 35). (E) Same as in (D) for the AHP. (F) Representative responses of DRNDA neurons to current steps 
(I = 75 pA). Gray circles indicate the delay to the first AP. Quantification of firing frequency/injected current (G, Sham: n = 31, 6-OHDA: n = 23, DMI + 
6-OHDA: n = 27), the delay to the first AP when injected with current eliciting 2 Hz firing (H, Sham: n = 34, 6-OHDA: n = 23, DMI + 6-OHDA: n = 35), and 
the membrane time constant (I, Sham: n = 43, 6-OHDA: n = 29, DMI + 6-OHDA: n = 40) of DRNDA neurons recorded (Sham: N = 8; 6-OHDA: N = 6; DMI 
+ 6-OHDA: N = 6; unpaired t-test or Mann–Whitney U test). Data are shown as mean ± SEM, *p < 0.05.

https://doi.org/10.7554/eLife.90278
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(DMI + 6-OHDA model). Therefore, we next assessed if selective lesioning of the NA system itself is 
sufficient to evoke changes in electrical and morphological properties observed in DRN5-HT neurons 
recorded in 6-OHDA. To that end, we performed unilateral injections of 6-OHDA/saline in the LC 
(Figure 3—figure supplement 3A), which lead to approximately 50% loss of TH+ neurons in the LC 
(Figure 3—figure supplement 3B, C). We chose to restrict the injection of 6-OHDA to one hemi-
sphere because little is known about this type of lesion while the fundamental role of the NA system 
in various neural processes is well established (Poe et al., 2020; Szot et al., 2012). We found that 
selective lesioning of the LC (6-OHDA-LC) did not alter the baseline activity levels, firing frequen-
cies, and resting membrane potentials of DRN5-HT and DRNDA neurons (Figure 3—figure supplement 
3D, E, K, L). However, DRN5-HT neurons recorded in 6-OHDA-LC had a lower input resistance at 
hyperpolarized membrane potentials, a shorter AHP, and a larger capacitance than DRN5-HT neurons 
recorded in control mice (Sham-LC, Figure 3—figure supplement 3E–G). Moreover, DRNDA neurons 
recorded in 6-OHDA-LC showed a reduction in their sag amplitudes (Figure 3—figure supplement 
3M, N). The other electrophysiological parameters were not significantly affected. Morphological 
analysis revealed that the selective lesion of the noradrenergic system did not alter the size and shape 
of cell bodies in either DRN subpopulation (Figure 3—figure supplement 3H1, O, P), however, the 
dendritic branching of both subpopulations was altered, as shown by the increased length of primary 

Figure 6. Striatal injection of 6-OHDA did not alter morphology of DRNDA. (A) Representative digital reconstructions of a DRNDA neuron in three 
different conditions: Sham (left), 6-OHDA-injected mice (center), and 6-OHDA-injected mice pre-treated with DMI (right). (B) Representative confocal 
pictures of soma from DRNDA neurons in Sham (top), 6-OHDA-injected mice (center), and 6-OHDA-injected mice pre-treated with DMI (bottom). 
(C) Morphological descriptors of the soma size and shape in DRNDA neurons (Sham: n = 27, N = 7; 6-OHDA: n = 16, N = 4; DMI + 6-OHDA: n = 31, N = 
5). (D) Morphological descriptors of the dendritic tree in DRNDA neurons (Sham: n = 7, N = 3; 6-OHDA: n = 11, N = 4; DMI + 6-OHDA: n = 7, N = 3). Data 
are shown as mean ± SEM. Scale bar: 10 µm.

https://doi.org/10.7554/eLife.90278
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dendrites in DRN5-HTneurons (Figure 3—figure supplement 3J) and the increased number of primary 
dendrites in DRNDA neurons (Figure 3—figure supplement 3Q).

Discussion
In the present study, we combine ex vivo whole-cell patch-clamp recordings with morphological 
reconstructions and immunohistochemistry, to show that DRNDA neurons have a distinct electrophys-
iological profile, which is sufficient to distinguish them from DRN5-HT neurons as well as other neuron 
classes in the DRN. Utilizing this approach, we also reveal that, in a 6-OHDA mouse model of PD, 
DRN5-HT neurons display distinct pathophysiological changes depending on the loss of DA and NA. 
Notably, degeneration of noradrenergic neurons affects not only the electrical properties of DRN5-HT 
neurons but also evokes hypotrophy of their cell bodies. In contrast, the loss of nigrostriatal DA mainly 
affects the electrophysiological properties of DRNDA neurons while concomitant loss of NA alters their 
morphology.

We used an extensive electrophysiological characterization protocol to quantify the differences 
between the DRNDA and DRN5-HT populations. The electrophysiological properties agree with previous 
studies, such as the spontaneous firing pattern seen in DRNDA neurons (Dougalis et al., 2012) and 
the slow AHP of DRN5-HT neurons (Prinz et al., 2013). Standard electrophysiological parameters were 
used to create a classification tool, which efficiently identifies DRN5-HT and DRNDA cells, including DA 
neurons confirmed by TH staining and/or by fluorescent expression in DAT-tomato mice (Figure 1). 
Importantly, the DRNDA neurons recorded from wild-type and DAT-tdTomato mice did not differ in 
their electrical properties, indicating that the transgene does not interfere with the membrane prop-
erties of this population.

We showed that DRNDA neurons share electrophysiological properties with other DA popula-
tions in the midbrain such as postinhibitory hypoexcitability, rebound oscillations, a slowly ramping 
membrane potential, and sag currents (Dougalis et al., 2012; Neuhoff et al., 2002; Lammel et al., 
2008), yet their electrophysiological profile is distinct from DRN5-HT neurons as well as other neuronal 
populations in the DRN. Most of the parameters extracted in our characterization rely on intracellular 
recordings of the membrane potential. However, some properties such as spontaneous firing and AP 
kinetics could be useful for in vivo characterization, even in extracellular recordings (Strickland and 
McDannald, 2022; Hajós et al., 2007; Schweimer et al., 2011). In addition to the DRN5-HT and DRNDA 
neuronal populations, a large fraction of neurons displayed electrophysiological properties that were 
distinct from these two groups (Figure 1—figure supplement 3), suggesting that there are other 
neuronal subtypes in the DRN network, such as previously reported GABAergic, glutamatergic, and 
peptidergic neurons (Huang et al., 2019; Pollak Dorocic et al., 2014; Dahlstroem and Fuxe, 1964; 
Weissbourd et al., 2014; Gocho et al., 2013; Xu et al., 2021; Bowker et al., 1983).

In line with previous studies, the majority of DRN5-HT neurons were large multipolar or fusiform 
neurons with four to five primary dendrites, very distinct from the DRNDA neurons (Rivera and Bethea, 
2013; Park, 1987; Calizo et  al., 2011). Very little is known about the morphology of the DRNDA 
neurons, but previous studies identified small ovoid cells in the DRN which are likely to correspond 
to the DRNDA cells (Dougalis et al., 2012; Diaz-Cintra et al., 1981). Out of 25 reconstructed DRN5-

HT neurons, only one displayed dendritic spines. Previous studies in rats described the presence of 
dendritic spines in most DRN5-HT neurons (Li et  al., 2001). However, the study was performed in 
thicker slices and the dendritic spines were scarce in the primary and secondary dendrites, while they 
became dense in the distal dendrites, thus it is possible that in our study those dendrites were not 
present (Li et al., 2001).

In the present study, we assessed the impact on DRN cells of a striatal bilateral 6-OHDA lesion 
performed with or without DMI pre-treatment, which has been shown to protect the NA neurons in 
the LC from the 6-OHDA-induced degeneration (Bonito-Oliva et al., 2014b; Kamińska et al., 2017; 
Fulceri et al., 2006). We found that both DRN5-HT and DRNDA populations were affected in a cell-type-
specific manner by the combined action of 6-OHDA on DA and NA, with DRN5-HT neurons being partic-
ularly sensitive to changes in the noradrenergic system. Loss of SNc DA neurons alone (6-OHDA + 
DMI) – which are known to target DRN5-HT and DRNDA neurons directly – increased the excitability and 
spontaneous activity in DRN5-HT neurons (Pollak Dorocic et al., 2014). This is in line with previous ex 
vivo and in vivo studies showing that the DRN5-HT neurons display increased firing rates in rodents pre-
treated with DMI and injected with 6-OHDA (Prinz et al., 2013; Wang et al., 2009) As hypothesized 

https://doi.org/10.7554/eLife.90278
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by Prinz et al., 2013, the selective loss of midbrain DA may induce a homeostatic increase in the 
excitability of DRN5-HT neurons. Our data contrast with a previous in vivo study showing decreased 
firing activity in DRN5-HT neurons where injection of 6-OHDA was preceded by treatment with DMI and 
fluoxetine (Guiard et al., 2008). This dissimilarity may be related to species-specific (rat vs. mouse) 
and technical (intracerebroventricular vs. striatal injections, recordings performed at 10  days vs. 3 
weeks after the 6-OHDA injection). Importantly, in the same study identification of DRN5-HT neurons 
was not molecularly confirmed and the data may include other spontaneously active DRN neurons. 
In fact, our recordings show that there are non-serotonergic neurons in the DRN, which are sponta-
neously active and display a regular, slow firing frequency similar to DRN5-HT neurons, highlighting the 
importance of unequivocal identification of DRN cell types.

The present study shows that combined DA and NA lesioning affects DRN5-HT neurons more 
profoundly than selective loss of DA (Figures 3 and 4). In mice treated with 6-OHDA only, several 
electrophysiological and morphological properties were altered (Figures 3 and 4). The time constant 
and AHP of DRN5-HT neurons were shorter and the neurons responded with higher firing frequencies to 
current injections than in Sham. This finding suggests that the pronounced AHP and long tau of these 
neurons may act as a ‘brake’ limiting their maximum firing frequency in control conditions and that 
this brake is reduced when the NA system is lesioned. Future studies are needed to assess if DRN5-

HT neurons in fact fire at higher rates in vivo in mice treated with 6-OHDA. In contrast, such changes 
in DRN5-HT neurons were prevented when the NA system was protected by pre-treatment with DMI. 
These findings indicate an important role for NA as mediator of changes in the activity and properties 
of DRN5-HT neurons. The changes produced by the 6-OHDA lesion on the DRNDA population were 
less pronounced than and different from those in DRN5-HT neurons. In terms of electrophysiological 
properties, the observed changes were primarily in the DA only lesion (6-OHDA + DMI), suggesting 
that unlike DRN5-HT, DRNDA neurons are affected by the loss of midbrain DA rather than the accompa-
nying changes in NA (Figure 5). Interestingly, unilateral lesions in the LC did not result in significant 
alterations in DRN neurons to the extent of the larger striatal lesions (Figure 3—figure supplement 
3). Although the trends of some of the electrophysiological parameters, such as the amplitude and 
duration of the AP and the AHP observed in DRN5-HT neurons, were similar to those induced by the 
6-OHDA only lesion shown in Figure 3, the effects were smaller. This could be due to the more limited 
extent of the LC injections compared to the striatal ones as well as the unilateral LC vs. bilateral stri-
atal lesioning. These two factors may have reduced the impact of NA depletion and should be further 
investigated in future studies.

Our results show that DRN neurons are affected by depletion of both DA and NA, thus raising 
the possibility that non-motor symptoms in PD are a result of the intricate organization of DA and 
NA neuromodulation as well as the interactions between the different DRN neuronal populations. 
Moreover, our results highlight the complex interplay in the DRN between NA, DA, and 5-HT, but the 
precise pathophysiological processes resulting from loss of NA, and specifically the impact on DRN, 
are yet to be elucidated.

In conclusion, our study provides a quantitative description and classification scheme for two major 
neuronal populations in the DRN, DRN5-HT and DRNDA neurons. We identified novel electrophysiolog-
ical and morphological changes in these populations in response to DA and NA depletion in the basal 
ganglia. Considering the involvement of DRN and LC in the development of non-motor comorbidities, 
this study provides useful insights to understand better how these areas are affected in the parkinso-
nian condition. Moreover, our data pave the way for future experiments to characterize these subpop-
ulations in terms of receptor expression and synaptic connectivity to shed light on their functional 
roles particularly regarding the wide variety of non-motor symptoms observed in PD.

Methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (mouse, 
C57BL/6J) DAT-cre The Jackson Laboratory Stock #006660

https://doi.org/10.7554/eLife.90278
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background (mouse, 
C57BL/6J) tdTomato The Jackson Laboratory Stock #007909

Antibody
anti-Tyrosine Hydroxylase (rabbit 
polyclonal) Millipore

Millipore: AB152;
RRID:AB_390204 1:1000 IF; 1:2000 WB

Antibody
anti-Tryptophane Hydroxylase 
(mouse monoclonal) Sigma-Aldrich

Sigma-Aldrich: T0678;
RRID:AB_261587 1:600

Antibody
anti-Beta-Actin (mouse 
monoclonal) Sigma-Aldrich

Sigma-Aldrich: A5316;
RRID:AB_476743 1:30,000

Commercial assay 
or kit Noradrenaline Research ELISA kit LDN BA E-5200R

Commercial assay 
or kit Serotonine Research ELISA kit LDN BA E-5900R

Chemical compound, 
drug Desipramine hydrochloride Sigma-Aldrich D3900

Chemical compound, 
drug 6-Hydroxydopamine hydrocloride Sigma-Aldrich H4381

Chemical compound, 
drug Sucrose Fisher Scientific 10638403

Chemical compound, 
drug Glucose Sigma-Aldrich G7021

Chemical compound, 
drug NaHCO3 Fisher Scientific 10118190

Chemical compound, 
drug KCl Sigma-Aldrich P3911

Chemical compound, 
drug NaH2PO4 Sigma-Aldrich 71504

Chemical compound, 
drug CaCl2 Sigma-Aldrich C5080

Chemical compound, 
drug MgCl2 Sigma-Aldrich M2670

Chemical compound, 
drug NaCl Merck 106404

Chemical compound, 
drug K-gluconate Sigma-Aldrich G4500

Chemical compound, 
drug HEPES Sigma-Aldrich H3375

Chemical compound, 
drug Mg-ATP Sigma-Aldrich A9187

Chemical compound, 
drug GTP Sigma-Aldrich G8877

Chemical compound, 
drug Na2-phosphocreatine Sigma-Aldrich P7936

Chemical compound, 
drug Neurobiotin

Vector Laboratories, 
Bionordika SP-1120

Chemical compound, 
drug AlexaFluor488 Hydrazide

Invitrogen/Thermo Fisher 
Scientific A10436

Software, algorithm Igor Pro 6.37 Wavemetrics RRID:SCR_000325

Software, algorithm GraphPad Prism Graphpad Software RRID:SCR_002798

Software, algorithm ImageJ Java RRID:SCR_003070

 Continued on next page
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Software, algorithm neuTube

Howard Hughes Medical 
Institute;
Feng et al., 2015 

RRID:SCR_024867

Other Cy5-conjugated streptavidin Jackson ImmunoResearch

Jackson ImmunoResearch:  
016-170-084;
RRID:AB2337245 1:500

Other NEUROBIOTIN Tracer Vector Laboratories
Vector Laboratories: SP-1120;  
RRID:AB2313575

 Continued

Experimental model details
All animal procedures were performed in accordance with the national guidelines and approved by 
the local ethics committee of Stockholm, Stockholms Norra djurförsöksetiska nämnd, under ethical 
permits to G. F. (N12148/17, 14673–22) and G. S. (N2020/2022). All mice (N = 43) were group-housed 
under a 12 hr light/dark schedule and given ad libitum access to food and water. Wild-type mice 
(‘C57BL/6J’, #000664, the Jackson Laboratory) and DAT-cre (Stock #006660 the Jackson Laboratory) 
mice crossed with homozygous tdTomato reporter mice (‘Ai9’, stock #007909, the Jackson Labora-
tory) were used.

6-OHDA model
Three-month-old, male and female C57BL/6J or DAT-tdTomato were deeply anesthetized with isoflu-
rane and mounted on a stereotaxic frame (Stoelting Europe, Dublin, Ireland). To achieve a partial stri-
atal lesion, each mouse received a bilateral injection of 1.25 μl of 6-hydroxydopamine hydrochloride 
(6-OHDA, Sigma-Aldrich, 4 μg/μl) or vehicle (0.9% NaCl + ascorbic acid 0.02%) in the dorsolateral 
striatum, according to the following coordinates: anteroposterior +0.6 mm, mediolateral ±2.2, dorso-
ventral −3.2 from Bregma, as previously described (Bonito-Oliva et al., 2014a; Masini et al., 2021). 
One group of mice (referred to as DMI + 6-OHDA) was pre-treated with one injection of desipramine 
hydrochloride (DMI, Sigma-Aldrich, 25 mg/kg i.p.) 30 min before the 6-OHDA infusion in order to 
protect the noradrenergic system (Bonito-Oliva et al., 2014b).

For the LC lesion, mice received a unilateral injection of 1 μl of 6-OHDA (Sigma-Aldrich, 4 μg/μl) 
or vehicle (0.9% NaCl + ascorbic acid 0.02%) according to the following coordinates: anteroposterior 
−5.4 mm, mediolateral −0.9, dorsoventral −3.8 from Bregma.

Slice preparation and electrophysiology
Three weeks after the 6-OHDA/vehicle injection, mice were deeply anaesthetized with isoflurane and 
decapitated. The brain was quickly removed and immersed in ice-cold cutting solution containing 
205 mM sucrose, 10 mM glucose, 25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 0.5 mM CaCl2, 
and 7.5 mM MgCl2. In all experiments, the brain was divided into two parts: the striatum was dissected 
from the anterior section for western blot and the posterior part was used to prepare coronal brain 
slices (250 µm) with a Leica VT 1000 S vibratome. Slices were incubated for 30–60 min at 34°C in a 
submerged chamber filled with artificial cerebrospinal fluid (ACSF) saturated with 95% oxygen and 5% 
carbon dioxide. ACSF was composed of 125 mM NaCl, 25 mM glucose, 25 mM NaHCO3, 2.5 mM KCl, 
2 mM CaCl2, 1.25 mM NaH2PO4, and 1 mM MgCl2. Subsequently, slices were kept for at least 60 min 
at room temperature before recording.

Whole-cell patch-clamp recordings were obtained in oxygenated ACSF at 35°C. Neurons were 
visualized using infrared differential interference contrast microscopy (Zeiss FS Axioskop, Oberko-
chen, Germany). DAT-tdTomato-positive cells were identified by switching to epifluorescence using 
a mercury lamp (X-cite, 120Q, Lumen Dynamics). Up to three cells were patched simultaneously. 
Borosilicate glass pipettes (Hilgenberg) of 6–8 MOhm resistance were pulled with a Flaming/Brown 
micropipette puller P-1000 (Sutter Instruments). The intracellular solution contained 130 mM K-gluco-
nate, 5 mM KCl, 10 mM HEPES buffer, 4 mM Mg-ATP, 0.3 mM GTP, 10 mM Na2-phosphocreatine (pH 
7.25, osmolarity 285 mOsm), 0.2% neurobiotin (Vector Laboratories, CA), and Alexa488 (75 µM) was 
added to the intracellular solution (Invitrogen). Recordings were made in current-clamp mode and the 
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intrinsic properties of the neurons were determined by a series of hyperpolarizing and depolarizing 
current steps and ramps, enabling the extraction of sub- and suprathreshold properties. Recordings 
were amplified using MultiClamp 700B amplifiers (Molecular Devices, CA, USA), filtered at 2  kHz, 
digitized at 10–20  kHz using ITC-18 (HEKA Elektronik, Instrutech, NY, USA), and acquired using 
custom-made routines running on IgorPro (Wavemetrics, OR, USA). Throughout all recordings pipette 
capacitance and access resistance were compensated for and data were discarded when access resis-
tance increased beyond 30 MOhm. Liquid junction potential was not corrected for.

Quantification of electrophysiological parameters
Immediately after obtaining a whole-cell patch in DRN neurons, we first obtained a 10-s voltage 
recording of the neural activity without injecting any current. This recording was used to calculate the 
average resting membrane potential in silent neurons and the firing frequency of spontaneously active 
neurons. Subsequently, neurons were held at −60 mV while an extensive series of de- and hyperpo-
larizing current steps was applied. The amplitude of all current steps was scaled according to a test 
pulse that was set to evoke one to two APs. The resulting voltage recordings were used to extract 
and calculate the following parameters: The rheobase was defined as the minimum current required 
to evoke AP firing. AP parameters were extracted from recordings where DRN5-HT neurons fired at 1 
± 0.3 Hz and DRNDA neurons at 2 ± 0.3 Hz (i.e., close to their average spontaneous firing frequency) 
and values from individual APs were averaged. AP onset was extracted by quantifying where the 
rising slope of the AP (its first derivative) reached 5 V/s and the end of the AP was defined as the time 
where the AP had repolarized to the same membrane voltage as found at the onset. The AP duration 
was calculated as the time between the onset and the offset. The amplitude of the AP was defined 
as the voltage difference between the onset and its peak. The amplitude of the AHP was defined as 
the voltage difference between the end of the AP and the subsequent local minimum. The end of the 
AHP was found by using a sliding window of 50 ms to assess when the slope of the decaying AHP 
had first decreased to 0.005 V/s or less. The AP drop rate was measured by injecting a current ramp 
into the neurons that evoked multiple APs. The amplitude of these APs was extracted as described 
above. The amplitude was plotted vs. the injected current and a linear fit was applied whose slope 
constitutes the AP drop rate. The delay to the first spike constitutes the time between the onset of 
the current injection and the onset of the first AP in recordings. The input resistance was based on the 
slope of a linear fit across all current–voltage steps that resulted in a steady-state voltage between 
−90 and −50 mV (R = U/I). The steady-state voltage was based on the average voltage found during 
a time window starting 0.5 s after the beginning of a 1-s long current step and lasting until the end 
of the current step. The amplitude of sag currents was defined as the average voltage difference 
between the steady-state voltage and the peak voltage evoked by current steps that hyperpolarized 
the neurons to −90 ± 5 mV. The peak voltage constituted the minimum voltage observed during the 
first 0.5 s of the step. The time constant tau was extracted following injection of a 5-ms long hyper-
polarizing current step. We applied an exponential fit to the resulting voltage recording that started 1 
ms after the negative voltage peak had been reached and ended when the membrane potential had 
returned to the average baseline voltage preceding the step. Tau corresponds to K2 given the expo-
nential fit is defined as y = K0 + K1*exp(−K2*x). Based on tau and the steady-state input resistance, 
we calculated the capacitance C according to C = tau/resistance. The IF slope was extracted from the 
linear fit applied to a current–frequency plot.

Immunofluorescence
Following the recordings, slices were fixated overnight at 4°C in a 4% paraformaldehyde (PFA) solu-
tion. Slices were then washed with PBS 1×. For the immunofluorescence, slices were treated with PBS 
1× + Triton 0.3% and then incubated with a blocking solution of normal serum 10% and bovine serum 
albumin 1% for 1 hr at room temperature. Afterward, slices were incubated overnight at 4°C with 
the following primary antibodies: rabbit anti-TH (Millipore, 1:1000), mouse anti-TPH (Sigma-Aldrich, 
1:600), and streptavidin (Jackson Immunoresearch, 1:500). The following day, primary antibodies 
were washed out and slices were incubated with the appropriate fluorochrome-conjugated secondary 
antibodies.

For the immunostainings in the striatum, SNc, LC, and cell counting in DRN, mice were deeply 
anesthetized and transcardially perfused with PFA 4%. The brains were extracted and post-fixed in 
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PFA 4% for 24 hr. 40 µm coronal slices were prepared with a vibratome (Leica VT1000 S) and processed 
as described above.

Confocal microscopy analysis
The slices were imaged using Confocal (ZEISS LSM 800) at ×10 and ×40 and z-stacks were retrieved. 
For cell identification, colocalization between neurobiotin and TH or TPH was evaluated.

Morphological analysis
For morphological analysis of dendrites, the confocal z-stacks were used in a semi-manual recon-
struction using neuTube (Feng et al., 2015) and custom code, as previously described (Hjorth et al., 
2020). Soma morphology was analyzed by tracing manually the cell body profile, excluding dendritic 
trunks, in order to measure area (µm²), perimeter, major and minor axis length (µm), and circularity 
values. Circularity, calculated as the ratio between the squared perimeter and the area (i.e., perime-
ter²/4π area), can be a value between 0 and 1 (1 for circular shapes and values <1 for more complex 
shapes). The morphological analysis was performed on the neurobiotin stacks.

Western blot
The striata were sonicated in 1% sodium dodecyl sulfate and boiled for 10 min. Equal amounts of 
protein (25 μg) for each sample were loaded onto 10% polyacrylamide gels and separated by electro-
phoresis and transferred overnight to nitrocellulose membranes (Thermo Fisher, Stockholm, Sweden). 
The membranes were immunoblotted with primary antibodies against actin (1:30,000, Sigma-Aldrich, 
Stockholm, Sweden) and TH (1:2000, Millipore, Darmstadt, Germany). Detection was based on fluo-
rescent secondary antibody binding (IR Dye 800CW and 680RD, Li-Cor, Lincoln, NE, USA) and quan-
tified using a Li-Cor Odyssey infrared fluorescent detection system (Li-Cor, Lincoln, NE, USA). The TH 
protein levels were normalized for the corresponding actin detected in the sample and then expressed 
as a percentage of the control (Sham lesion).

Enzyme-linked immunosorbent assay (ELISA)
NA and 5-HT levels in the striatum were determined by ELISA. Three weeks after the 6-OHDA injection, 
mice were killed by decapitation and the striatum was dissected out freehand on an ice-cold surface 
and weighted. The tissue was sonicated in a buffer with HCl 0.01 M, Ethylenediaminetetraacetic acid 
(EDTA) 1 mM, and sodium metabisulfite 4 mM (25 µl/mg of tissue). The brain homogenates were 
centrifuged at 4°C, 13,000 rpm for 20 min and the supernatants were collected. The samples were 
assessed in analytic duplicate using Noradrenaline and Serotonin Research ELISA kits (LDN, Germany), 
according to the manufacturer’s instructions. The absorbance at 450 nm was measured using a micro-
plate reader. Tissue concentrations of NA and 5-HT were determined using a standard curve.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 9.2.0. Data were first tested for normality by 
Kolmogorov–Smirnov test. Two groups analysis was performed by unpaired t-test for normally distrib-
uted data and the Mann–Whitney U test for non-normally distributed data. Three groups analysis was 
performed by one-way analysis of variance (ANOVA) for normally distributed data or Kruskal–Wallis 
test for non-normally distributed data. Data are reported as average ± standard error (SEM) of the 
mean. N indicates the number of mice, while n indicates the number of cells. Significance was set at 
p < 0.05.
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records/​11371818

Zenodo, 10.5281/
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