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Disseminating cells in human oral tumours 
possess an EMT cancer stem cell marker 
profile that is predictive of metastasis in 
image-based machine learning
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Abstract Cancer stem cells (CSCs) undergo epithelial-mesenchymal transition (EMT) to drive 
metastatic dissemination in experimental cancer models. However, tumour cells undergoing EMT 
have not been observed disseminating into the tissue surrounding human tumour specimens, 
leaving the relevance to human cancer uncertain. We have previously identified both EpCAM and 
CD24 as CSC markers that, alongside the mesenchymal marker Vimentin, identify EMT CSCs in 
human oral cancer cell lines. This afforded the opportunity to investigate whether the combination 
of these three markers can identify disseminating EMT CSCs in actual human tumours. Examining 
disseminating tumour cells in over 12,000 imaging fields from 74 human oral tumours, we see a 
significant enrichment of EpCAM, CD24 and Vimentin co-stained cells disseminating beyond the 
tumour body in metastatic specimens. Through training an artificial neural network, these predict 
metastasis with high accuracy (cross-validated accuracy of 87–89%). In this study, we have observed 
single disseminating EMT CSCs in human oral cancer specimens, and these are highly predictive of 
metastatic disease.

Editor's evaluation
This is a valuable study that convincingly demonstrates that quantification of EpCAM+/CD24+/
Vimentin+ cells in the stroma of human oral cancers followed by machine learning algorithms can be 
used as a prognostic indicator of metastasis.

Introduction
In multiple types of carcinoma, cancer stem cells (CSCs) undergo epithelial-mesenchymal transition 
(EMT) to enable metastatic dissemination from the primary tumour (Biddle et  al., 2011; Lawson 
et al., 2015; Liu et al., 2014; Ruscetti et al., 2016). This model of metastatic dissemination has been 
built from studies using murine models and human cancer cell line models. However, this process has 
not been observed in human tumours in the in vivo setting, leading to uncertainty over the relevance 
of these findings to human tumour metastasis (Bill and Christofori, 2015; Williams et al., 2019). A 
key complication with efforts to study metastatic processes in human tumours is the inability to trace 
cell lineage. As cancer cells exiting the tumour downregulate epithelial markers whilst undergoing 
EMT, they become indistinguishable from the mesenchymal non-tumour cells surrounding the tumour 
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(Li and Kang, 2016). Therefore, once these cells detach from the tumour body and move away they 
are lost to analysis. Attempts have been made to use the retention of epithelial markers alongside 
acquisition of mesenchymal markers to identify cells undergoing EMT in human tumours (Bronsert 
et al., 2014; Jensen et al., 2015; Puram et al., 2017). However, these studies were limited to char-
acterising cells undergoing the earliest stages of EMT whilst still attached to the cohesive body of the 
primary tumour.

EMT must be followed by the reverse process of mesenchymal-to-epithelial transition (MET) to 
enable new tumour growth at secondary sites, and therefore retained plasticity manifested as ability 
to revert to an epithelial phenotype is an important feature of metastatic CSCs (Ocaña et al., 2012; 
Tsai et al., 2012). We have previously demonstrated that a CD44highEpCAMlow/- EMT population can 
be separated from the main CD44lowEpCAMhigh epithelial population in flow cytometric analysis of 
oral squamous cell carcinoma (OSCC) cell lines and fresh tumour specimens (Biddle et  al., 2016; 
Biddle et al., 2011). We identified retained cell surface expression of EpCAM (Biddle et al., 2011) 
and CD24 (Biddle et al., 2016) in a minority of cells that have undergone a full morphological EMT. 
Both EpCAM and CD24 were individually associated with enhanced ability to undergo MET, and thus 
are markers of EMT CSCs exhibiting retained plasticity. We therefore reasoned that retention of one 
or both of these markers may identify an important population of tumour cells that have undergone 
EMT and disseminated from the primary tumour in human tumour specimens, and are responsible 
for subsequent metastatic seeding. Here, we characterise the combined role of EpCAM and CD24 in 
marking a population of disseminating tumour cells in human OSCC specimens. Staining for EpCAM 
and CD24 alongside the mesenchymal marker Vimentin in over 12,000 imaging fields from 74 human 
tumours, stratified on metastatic status, identifies cells that have undergone EMT and disseminated 
into the stromal region surrounding metastatic primary tumours. Using an image-based machine 
learning approach, we show that the presence of these EMT CSCs in the tumour stroma is predictive 
of metastasis.

eLife digest When oral cancers metastasise – that is, when tumour cells invade other parts of 
the body – they typically do so by first colonizing the lymph nodes present in the neck. As this 
event significantly reduces chances of survival, oral cancer patients often have their neck lymph nodes 
removed to prevent the spread of the disease. However, this surgery carries risks and leads to longer 
hospital stays, stressing the need for better ways to predict which oral tumours will metastasise.

Evidence from lab-grown cells and mice studies suggest that, in oral cancer, metastasis occurs 
when some cells in the original tumour go through a process called the epithelial-mesenchymal tran-
sition (EMT for short). This transformation allows the cells to detach from the tumour and become 
invasive. However, it has so far been difficult to observe this process in actual human tumours; this is 
partly because cells undergoing EMT stop producing the proteins that scientists rely on to distinguish 
cancer and healthy cells.

To address this knowledge gap, Youssef et al. focused on three proteins: two tumour markers, 
EpCAM and CD24; and Vimentin, which is produced in greater quantities in the invasive mesenchymal 
state. Previous work had shown that a specific population of oral tumour cells can continue to express 
all three proteins even when adopting a mesenchymal identity through EMT.

Based on this knowledge, Youssef et al. hypothesised that tracking Vimentin, EpCAM and CD24 
using fluorescence microscopy would allow them to identify metastasising cells in human samples. 
An analysis of over 12,000 images from 74 tumours obtained from surgeries revealed that, in the 
metastatic samples, the cells detaching from primary tumours were more likely to express these three 
proteins. Finally, Youssef et al. used these images to train a machine learning algorithm. When applied 
to data from new oral cancer patients, the programme was able to predict whether their tumours were 
likely to spread with 89% accuracy. If confirmed by further work, and in particular on larger samples, 
these findings could in the future help clinicians decide which patients with oral cancer would benefit 
the most from surgery to remove neck lymph nodes.

https://doi.org/10.7554/eLife.90298
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Results
Identification of human tumour cells that have undergone an EMT and 
disseminated into the surrounding stromal region
The retention of EpCAM expression in a sub-population of tumour cells that have undergone EMT 
raised the prospect that we may be able to identify these cells outside of the tumour body in human 
tumour specimens, as EpCAM is a specific epithelial marker that would not normally be found in the 
surrounding stromal region. In combination with EpCAM, we stained tumour specimens for CD24 as a 
second marker of plastic EMT CSCs, and Vimentin as a mesenchymal marker to identify cells that have 
undergone EMT. Notably, CD44 cannot be used as an EMT marker in the context of intact tissue as it 
requires trypsin degradation in order to yield differential expression in EMT and epithelial populations 
(Biddle et al., 2013; Mack and Gires, 2008). Vimentin, on the other hand, accurately distinguishes 
EMT from epithelial tumour cells in immunofluorescent staining protocols (Biddle et al., 2016). By 
combining EpCAM as a tumour lineage and EMT CSC marker, Vimentin as a mesenchymal marker, 
and CD24 as a plastic EMT CSC marker, we aimed to identify tumour cells that have undergone EMT 
and disseminated into the surrounding stromal region. For this, we developed a protocol for auto-
mated four-colour (three markers +nuclear stain) immunofluorescent imaging and analysis of entire 
histopathological slide specimens, to test for co-localisation of the three markers in each individual 
cell across each specimen.

To determine whether this marker combination identifies EMT CSCs, we initially tested the protocol 
on the CA1 OSCC cell line and an EMT CSC sub-line that is a derivative of this cell line (EMT-stem 
sub-line; Biddle et al., 2016). EpCAM+Vim+CD24+ cells were greatly enriched in the EMT-stem sub-
line, comprising 41% of the population, compared to 2.1% in the CA1 line (Figure 1A, B and E). 
Cells with this staining profile were absent from normal keratinocyte culture and cancer associated 
fibroblast culture (Figure 1—figure supplement 1). To test the specific role of EpCAM retention, 
we replaced EpCAM with a pan-keratin antibody against epithelial keratins. There was very little 
Pan-keratin+Vim+CD24+ staining, and no enrichment for Pan-keratin+Vim+CD24+ cells in the EMT-stem 
sub-line (Figure 1C, D and E). Therefore, whilst epithelial keratins are lost, EpCAM is retained in cells 
undergoing EMT and an EpCAM+Vim+CD24+ staining profile can be used as a marker for EMT CSCs 
in immunofluorescent staining protocols.

Imaging the tumour body and adjacent stroma in sections of human OSCC specimens, we detected 
single cells co-expressing EpCAM, Vimentin and CD24 in the stromal region surrounding the tumour 
(Figure 1F), confirming that these cells can be detected in human tumour specimens. We next strati-
fied 24 human primary OSCC specimens into 12 tumours that had evidence of lymph node metastasis 
or perineural spread, and 12 that remained metastasis free (Supplementary file 1), and stained them 
for EpCAM, Vimentin and CD24. Single cells co-expressing EpCAM, Vimentin and CD24 were abun-
dant in the stroma surrounding metastatic tumours. This was not the case in non-metastatic tumours 
or normal epithelial regions (Figure 2, A-C). In contrast to EpCAM, pan-keratin staining did not iden-
tify cells in the stroma surrounding metastatic tumours (Figure 2D).

We developed an image segmentation protocol that separated the tumour body from the adja-
cent stroma, thus enabling each nucleated cell to be assigned to either the tumour or stromal 
region in automated image analysis (Figure 2E). Expression of EpCAM, Vimentin and CD24 was 
then analysed for every nucleated cell in every imaging field that included both tumour and stroma 
(3500 manually curated imaging fields across the 24 tumours). This enabled the proportion of each 
cell type in each region to be quantified (Figure 2F). EpCAM+Vim+CD24+ cells were enriched in the 
stroma compared to the tumour body, and there was a much greater accumulation of EpCAM+Vi-
m+CD24+ cells in the stroma of metastatic tumours compared to non-metastatic tumours. Interest-
ingly, this was not the case for EpCAM+Vim+CD24- cells, which were also enriched in the stroma 
but showed no difference between metastatic and non-metastatic tumours. Pan-keratin+Vim+CD24+ 
cells were not detected.

To extend this analysis, we stained and imaged a further 59 tumour slides from 54 regions across 
50 additional tumours, stratified on the same criteria. These displayed the same evidence of individual 
disseminating cells co-expressing EpCAM, Vimentin and CD24 in metastatic tumours only (Figure 2G 
and Figure 2—figure supplements 1 and 2). For these tumours, using a variation on the previous 
image segmentation protocol (Figure 2—figure supplement 3A–D), the proportion of EpCAM+Vi-
m+CD24+ and EpCAM+Vim+CD24- cells was quantified for each cell in over 9000 imaging fields at 

https://doi.org/10.7554/eLife.90298
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the tumour-stroma boundary (Figure 2—figure supplement 3E). Consistent with the previous set of 
tumours, only EpCAM+Vim+CD24+ cells were specifically enriched in the stroma of metastatic tumours.

To explore whether these EpCAM+Vim+CD24+ cells in the stroma may in fact be non-tumour cell 
types, we analysed a published scRNAseq dataset for human head and neck cancer (Puram et al., 2017). 
In this dataset, tumour and non-tumour cells were separated using bioinformatic techniques (princi-
pally inferred CNV and a ‘tumour-epithelial’ expression signature). Analysing this dataset for EpCAM, 

Figure 1. Immunofluorescent co-staining for EpCAM, Vimentin and CD24 identifies the EMT stem cell state. (A–D) Immunofluorescent staining 
for EpCAM, Vimentin and CD24 (A, B) and pan-keratin, Vimentin and CD24 (C, D) in the CA1 cell line (A, C) and the EMT-stem CA1 sub-line (B, 
D). (E) Quantification of the percentage of EpCAM+Vim+CD24+ and pan-keratin+Vim+CD24+ cells in the CA1 cell line and EMT-stem sub-line. Significance 
is obtained from a two-tailed student t-test. The graph shows mean +/-95% confidence interval. n=3. (F) Detection of EpCAM+Vim+CD24+ cells in the 
stroma surrounding an oral cancer tumour specimen. The white arrow highlights an EpCAM+Vim+CD24+ cell in the stroma. The red arrow highlights an 
EpCAM+Vim+CD24- cell in the stroma. DAPI nuclear stain is blue. Below inset; enlargement of the highlighted cells for each marker. Scale bars = 100 µm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. EpCAM, Vimentin and CD24 immunofluorescent staining in the CA1 OSCC cell line (left), normal keratinocytes (centre) and oral 
cancer associate fibroblasts (right).

https://doi.org/10.7554/eLife.90298
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Figure 2. Enrichment of EpCAM+Vim+CD24+ cells in the stroma surrounding metastatic tumours. (A–C) Immunofluorescent four-colour staining of 
oral tumour specimens for EpCAM (yellow), Vimentin (red) and CD24 (green) with DAPI nuclear stain (blue). Representative imaging fields from a 
normal epithelial region (A), a non-metastatic tumour (B) and a metastatic tumour (C). (D) Staining of a metastatic tumour for pan-keratin, Vimentin 
and CD24. (E) Image segmentation was performed, with generation of an ‘EpCAM dense cloud’ to distinguish the tumour body from the stroma. Grey 
level intensities for EpCAM, Vimentin and CD24 were obtained for every nucleated cell in each imaging field. (F) Quantification of the percentage of 
EpCAM+Vim+CD24+, EpCAM+Vim+CD24- and pan-keratin+Vim+CD24+ cells in normal region (epithelium distant from the tumour), tumour body, and 
stromal region from metastatic and non-metastatic tumours in the first cohort of specimens. A student t-test was performed comparing the mean 
percentage of EpCAM+Vim+CD24+ co-expressing cells in the metastatic stroma compared to the other fractions. *** signifies p<0.001. The graph shows 
mean +/-95% confidence interval. (G) Immunofluorescent four-colour staining of oral tumours from the second cohort of specimens, showing tumours 
with a range of invasive front presentations. White arrows highlight single EpCAM+Vim+CD24+ cells in the stroma. Scale bars = 100 µm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The metastatic tumour fields from Figure 2G, shown with separate channels at the top and the merge below.

Figure supplement 2. The non-metastatic tumour fields from Figure 2G, shown with separate channels at the top and the merge below.

Figure supplement 3. Enrichment of EpCAM+Vim+CD24+ cells in the stroma surrounding metastatic tumours in the second cohort of specimens.

Figure supplement 4. Analysis of EpCAM, CD24, and Vimentin expression in a published head and neck cancer scRNAseq dataset (Puram et al., 
2017).

https://doi.org/10.7554/eLife.90298


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology

Youssef et al. eLife 2023;0:e90298. DOI: https://​doi.​org/​10.​7554/​eLife.​90298 � 6 of 14

Vimentin and CD24 co-expression, we found that 12% of tumour cells (267/2215) were EpCAM+Vi-
m+CD24+. In the non-tumour cells, only 0.8% (29/3687) were EpCAM+Vim+CD24+ (Figure 2—figure 
supplement 4). Therefore, the observed EpCAM+Vim+CD24+ cells in our tumour specimens are highly 
likely to be a tumour cell population. Indeed, use of EpCAM as a tumour lineage marker is specifically 
intended to exclude staining for stromal constituents. EpCAM is a specific epithelial marker, that is not 
expressed in stromal or immune cells – it is expressed exclusively in epithelia and epithelial-derived 
tumours (Keller et al., 2019).

These findings demonstrate that an EpCAM+Vim+CD24+ staining profile marks tumour cells 
disseminating into the surrounding stroma, and that these cells are enriched specifically in metastatic 
tumours. The presence of disseminating tumour cells that express EpCAM but not CD24 did not 
correlate with metastasis. This highlights a requirement for the plasticity marker CD24, when identi-
fying disseminating metastatic CSCs.

Identification of EpCAM+CD24+Vim+ CSCs enables clinical prediction 
using a machine learning approach
OSCC are an important health burden and one of the top ten cancers worldwide, with over 
300,000 cases annually and a 50% 5-year survival rate. There is frequent metastatic spread to the 
lymph nodes of the neck; this is the single most important predictor of outcome and an important 
factor in treatment decisions (Sano and Myers, 2007). If spread to the lymph nodes is suspected, 
OSCC resection is accompanied by neck dissection to remove the draining lymph nodes, a procedure 
with significant morbidity. At presentation it is currently very difficult to determine which tumours 
are metastatic and this results in sub-optimal tailoring of treatment decisions. Accurate prediction 
of metastasis would therefore have great potential to improve clinical management of the disease 
to reduce both mortality and treatment-related morbidity. We sought to determine whether the 
EpCAM+CD24+Vim+ staining pattern could be predictive of metastasis.

Starting with the EpCAM, Vimentin and CD24 immunofluorescence grey levels for each nucleated 
cell, we used a supervised machine learning approach to predict whether an imaging field comes 
from a metastatic or non-metastatic tumour (Figure 3A). As a benchmark we used the pan-keratin, 
Vimentin and CD24 immunofluorescence grey levels, as we hypothesised that pan-keratin would 
provide an inferior predictive value than EpCAM given that there was no dissemination of pan-keratin 
expressing cells in the stroma. A total of 3500 imaging fields containing 2,640,000 total nucleated cells 
from 24 tumour specimens were used in the machine learning task. We compared the performance 
accuracy (10-fold cross-validated F-score) of different machine learning classification algorithms. The 
best performing classifiers for EpCAM, Vimentin and CD24 were the artificial neural network (ANN) 
and support vector machine (SVM), with F1 accuracy scores of 91% and 87% respectfully (Figure 3B). 
For the ANN, the area under the curve (AUC) accuracy score was 87%, with 94% sensitivity and 82% 
specificity. Training with Pan-keratin, Vimentin and CD24 gave much worse prediction across all clas-
sifiers (Figure 3C). These findings demonstrate that, utilising a machine learning algorithm, staining 
for EpCAM, Vimentin and CD24 can predict metastatic status with high accuracy and may therefore 
have clinical utility.

To further investigate its utility for metastasis prediction, we applied our trained ANN to an 
independent cohort of tumours in a blinded analysis. We stained and imaged 59 tumour slides from 
54 regions across 50 tumours, stratified on the same criteria as the previous cohort, for EpCAM, 
Vimentin and CD24. We conducted a blinded test of 10 fields of view from each slide, to determine 
whether the ANN trained using the previous 24 specimens could predict the metastatic status of 
these new specimens. Taking the majority prediction from the 10 fields of view from each slide, the 
ANN correctly predicted metastatic status for 54/59 slides (Supplementary file 2). Next, we deter-
mined whether the increased input available from this new cohort could yield improved predic-
tive accuracy. Over 9000 imaging fields at the tumour-stroma boundary, containing over 8.5 million 
nucleated cells, were fed into a new ANN machine learning task. For this task, we recorded the 
predictive accuracy from the training and validation sets after each training round (‘epoch’), which 
showed good alignment and an 89% accuracy score after 12 training epochs (Figure 3D). Inter-
estingly, this is a similar accuracy to the previous ANN trained using 3500 imaging fields from 24 
specimens, suggesting that feeding more imaging data into the ANN may only improve prediction 
up to a point.

https://doi.org/10.7554/eLife.90298
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Figure 3. Predicting metastasis using EpCAM, Vimentin and CD24 immunofluorescent staining and a supervised machine learning approach. 
(A) Pipeline for machine learning based on grey level intensities for the three markers in tumour cohort 1. The training tiles were classified as coming 
from a metastatic or non-metastatic tumour. (B, C) Performance of EpCAM, Vimentin and CD24 (B) and pan-keratin, Vimentin and CD24 (C) in the 
supervised learning task on tumour cohort 1. The tables show the 10-fold cross-validation F1 scores of different machine learning classification 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.90298
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Finally, to test whether an imaging-based machine learning approach provides increased predictive 
accuracy over simpler approaches, we compared our ANN trained using image pixel intensity values 
to ANNs trained using summary data. These were trained using the CD24+EpCAM+VIM+-positive cell 
counts for each field of view, separated into tumour body and stroma using our imaging segmentation 
pipeline (Figure 2E and F). We used a dummy ANN fed with random gaussian signals as a baseline. 
The resulting ROC curves (Figure 3E) demonstrate that only the ANN trained using image pixel inten-
sity values has predictive utility in our cohort.

To our knowledge, this is the first time immunofluorescent staining of human tumour tissue speci-
mens has been used in a machine learning pipeline for clinical prediction. Previous studies using cyto-
keratin immunohistochemistry, clinicopathological data and serum biomarkers for clinical prediction 
via machine learning have achieved AUCs of 75% in breast cancer (Tseng et al., 2019), 80% in OSCC 
(Bur et al., 2019), and 82% in colorectal cancer (Takamatsu et al., 2019).

Discussion
The role of EMT in tumour dissemination has long been debated but, lacking evidence of cells under-
going EMT whilst disseminating from human tumours in vivo, this role has had to be inferred from 
mouse models and human cell line models. Here, through applying our understanding of EMT cancer 
cell heterogeneity and markers for EMT CSCs, we have identified EMT CSCs disseminating from the 
primary tumour in human pathological specimens. Importantly, the presence of these disseminating 
stem cells is strongly correlated with tumour metastasis. Using an image-based machine learning 
approach, we have demonstrated the ability to predict metastasis with high accuracy through staining 
for EMT CSCs.

A partial EMT state has previously been identified in an OSCC scRNAseq dataset; this state 
retained epithelial gene expression alongside expression of mesenchymal genes, and was correlated 
with nodal metastasis and adverse pathological features (Puram et al., 2017). Now, using immunoflu-
orescent staining for EMT CSCs that retain the epithelial marker EpCAM alongside the mesenchymal 
marker Vimentin and the CSC plasticity marker CD24, we have identified single EMT CSCs dissem-
inating into the stroma surrounding oral tumours. However, epithelial keratins are not retained. We 
have also shown that retention of EpCAM is not on its own sufficient alongside Vimentin to mark 
disseminating EMT CSCs that correlate with metastasis. There is a requirement for CD24, which we 
have previously shown to be a plasticity marker within the EMT population even when driven into full 
morphological EMT under TGFβ treatment (Biddle et al., 2016). This suggests that the EMT CSC 
state may be more complex than a simple coalescence of epithelial and mesenchymal characteristics.

Image-based machine learning approaches employ a greater range of inputs to develop their predic-
tions, and therefore often achieve greater predictive accuracy than machine learning approaches that 
use simpler data inputs. This comes at the cost of increased computing requirements and reduced 
ability to decode the learning process (the so-called ‘black box’), but in our study the image-based 
approach proved essential to achieve high predictive accuracy. The lack of improvement in predictive 
accuracy when trained on a collection of 9000 images compared to 3500 suggests a limitation of the 
ANN, and a possible role for more sophisticated neural network architectures such as convolutional 
neural networks (CNNs). Whereas the ANN is trained using intensity values for each pixel, a CNN uses 
the raw image for training. CNNs require many more images for training, but can reach higher levels 
of accuracy. To support the conclusions of this study, a further blinded cohort and a greater number of 
tumour specimens would be valuable. This may also enable the application of a CNN to the imaging 
data to see if it can achieve even higher predictive accuracy than that reported here.

algorithms. To the right of each table is a receiver-of-operator curve (ROC) showing the area under the curve (AUC) of the artificial neural network (ANN) 
classifier. (D) Performance of EpCAM, Vimentin and CD24 in the supervised learning task on tumour cohort 2. An ANN classifier was trained and tested 
on cohort 2, independently of tumour cohort 1. Accuracy and loss scores are displayed for the training set (green and blue lines) and the validation set 
(red and yellow lines) drawn from within this cohort, for 14 training epochs on the ANN classifier. (E) ROCs comparing accuracy of the image-trained 
ANN (red line) with ANNs trained using the number of EpCAM+Vim+CD24+ cells for each field of view from the tumour stroma (green line) and tumour 
body (yellow line). Training with random gaussian signals provided a baseline (blue line).

Figure 3 continued

https://doi.org/10.7554/eLife.90298
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We have shown that immunofluorescent antibody co-staining for EpCAM, Vimentin and CD24 can 
separate disseminating EMT CSCs from the stromal content of human tumours, a challenge which 
has confounded previous attempts to develop a predictive EMT signature (Tan et  al., 2014). We 
also show that EpCAM+Vim+CD24- tumour cells in the stroma do not correlate with metastasis, and 
therefore the clinically predictive utility of tumour cell staining in the stroma can be isolated specif-
ically to the EpCAM+Vim+CD24+ EMT CSCs. This highlights the value of using techniques that give 
single cell resolution, enabling isolation of the signal to the specific cell type of interest within a highly 
heterogeneous cellular environment. An important strength of our study has been the ability to look 
at the single cell level in an automated fashion across thousands of fields of view from human tumours, 
enabling us to observe and quantify human tumour cells disseminating into the surrounding tissue. 
This in turn enabled us to identify single disseminating EMT CSCs, and use these to train an ANN to 
predict metastasis.

Methods

 Continued on next page

Key resources table 

Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Cell line (Homo 
sapiens) CA1 oral cancer line

Generated in house 
through explant 
culture of a human 
tumour specimen

Cell line (Homo 
sapiens)

Cancer associated 
fibroblasts, primary 
culture

Generated in house 
through explant 
culture of a human 
tumour specimen

Cell line (Homo 
sapiens)

N/TERT non-
transformed 
epidermal 
keratinocyte cell line. 
hTERT immortalised Smits et al., 2017

Biological sample 
(Homo sapiens)

FFPE blocks of 
human oral cancer 
specimens

Barts Health NHS 
Trust diagnostic 
archive

Antibody

IgG2a mouse 
monoclonal CD24 
antibody, clone ML5 BD Bioscience 1:100

Antibody

IgG rabbit 
recombinant 
monoclonal EpCAM 
antibody Abcam EPR20532-225 1:100

Antibody

IgG1 mouse 
monoclonal 
Vimentin antibody, 
clone V9 Dako 1:100

Antibody

IgG rabbit polyclonal 
wide spectrum 
cytokeratin antibody Abcam Ab9377 1:100

Antibody

Anti-mouse IgG2 
Alexa Fluor 488 
secondary antibody Thermo Fisher 1:500

Antibody

Anti-rabbit IgG 
Alexa Fluor 555 
secondary antibody Thermo Fisher 1:500

Antibody

Anti-mouse IgG1 
Alexa Fluor 647 
secondary antibody Thermo Fisher 1:500

https://doi.org/10.7554/eLife.90298
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Reagent type 
(species) or 
resource Designation Source or reference Identifiers Additional information

Chemical 
compound, drug

DAPI nuclear dye, 
kept as a 1 mg/ml 
stock in DMSO Sigma 1:1000

Software, algorithm
GE developer 
toolbox GE

Software, algorithm
Skikit-learn Python 
3.6 libraries

Pedregosa et al., 
2011

Software, algorithm
Tensorflow/Keras 
framework

https://www.​
tensorflow.org/api_​
docs/python/tf/​
keras/models

 Continued

Cell culture
The CA1 OSCC cell line and oral cancer associated fibroblasts were both previously derived in our 
laboratory, from separate biopsies of OSCC of the floor of the mouth. The EMT-stem sub-line was 
derived as a single cell clone from the CA1 cell line (Biddle et al., 2016). Normal keratinocytes were 
the N/TERT hTERT-immortalised epidermal keratinocyte cell line (Smits et  al., 2017). Cell culture 
was performed as previously described (Biddle et al., 2011). Cell removal from adherent culture was 
performed using 1 x Trypsin-EDTA (Sigma, T3924) at 37 °C.

Immunofluorescent staining of cell lines and tumour tissue sections
Tumour specimens were obtained from the pathology department at Barts Health NHS Trust, with full 
local ethical approval and patients' informed consent. Clinicopathological details for tumour cohort 
1 are in Supplementary file 1, and clinicopathological details for tumour cohort 2 are in Supplemen-
tary file 2. Tumour cohort 1 consisted of 24 tumours. Tumour cohort 2 consisted of 54 distinct tumour 
blocks across 50 tumours. In addition, five tumour blocks were included twice (with two different 
sections). This made a total of 59 slides for cohort 2. From the tumour cohort 2 cases listed in Supple-
mentary file 2, tumours 25, 28, 29, 32 were included as two separate blocks. Tumours 21, 29, 32, 33, 
43 were included twice from the same block.

Sections of formalin fixed paraffin embedded (FFPE) archival specimens were dewaxed by clearing 
twice in xylene for 5 min then gradually hydrating the specimens in an alcohol gradient (100%, 90%, 
70%) for 3 min each. The sections were then washed under running tap water before immersing the 
slides in Tris-EDTA pH9 for antigen retrieval using a standard microwave at high power for 2 min and 
then 8 min at low power.

Four-colour immunofluorescent staining was performed by firstly staining the membranous proteins 
prior to the permeabilisation and blocking steps. The sections were incubated with an IgG2a mouse 
monoclonal CD24 antibody (clone ML5, BD Bioscience) and IgG rabbit recombinant monoclonal 
EpCAM antibody (EPR20532-225, Abcam) in PBS overnight at 4  °C (1/100 dilution). The sections 
were then washed three times in PBS and incubated for 1 hr at room temperature with anti-mouse 
IgG2 Alexa Fluor 488 and anti-rabbit IgG Alexa Fluor 555 secondary antibodies (1/500 dilution). The 
sections were then washed in PBS and permeabilised with 0.5% triton-X in PBS for 10 min followed by 
blocking for 1 hr with blocking buffer (3% goat serum, 2% bovine serum albumin in PBS). The sections 
were then incubated with an IgG1 mouse monoclonal Vimentin antibody (clone V9, Dako) and (option-
ally, in place of EpCAM) IgG rabbit polyclonal wide spectrum cytokeratin antibody (ab9377, Abcam) 
overnight at 4 °C in blocking buffer (1/100 dilution). After washing with PBS, the sections were incu-
bated with anti-mouse IgG1 Alexa Fluor 647 antibody and (optionally) anti-rabbit IgG Alexa Fluor 555 
for 1 hr at 4 °C (1/500 dilution). After washing three times with PBS, cell nuclei were stained with DAPI 
(1/1000 dilution in PBS) for 10 min.

For cell line staining, cells were fixed in 4% PFA for 10 min then washed with PBS. Staining was 
performed in the same manner as described above, however permeabilisation was performed with 
0.25% Triton-X for 10 min and DAPI incubation was reduced to 1 min.

https://doi.org/10.7554/eLife.90298
https://www.tensorflow.org/api_docs/python/tf/keras/models
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Quantifying the abundance of stained sub-populations in cell lines and 
tumour tissue sections
Imaging of the stained slides was performed using the In Cell Analyzer 2200 (GE), a high content 
automated fluorescence microscope with four-colour imaging capability. The slides were imaged at 
x20 and x40 magnification. An image segmentation protocol was developed to extract grey level 
intensities corresponding to EpCAM, Vimentin and CD24 expression for every DAPI stained nucleated 
cell in the tumour body and the adjacent stroma separately. Segmentation was performed using the 
Developer Toolbook software (GE). As shown in Figure 2E and Figure 2—figure supplement 3A–D, 
an ‘EpCAM dense cloud’ or ‘Vimentin dense cloud’ was generated to isolate individual nucleated cells 
in the tumour body from the adjacent stroma and analyse them separately.

Grey level intensities obtained from the imaging analysis were processed in the following way. 
Firstly, the median number of nucleated cells was calculated and imaging fields with fewer than 
20% of the median nucleated cells were excluded from the analysis pipeline. The folded edges of 
a specimen were also excluded. The median grey level intensity of the FITC, CY3 and CY5 fluo-
rescence channels corresponding to CD24, EpCAM and Vimentin expression were computed for 
the negative control stained slides. A nucleated cell was deemed to have positive CD24, EpCAM 
or Vimentin expression if its grey level intensity exceeded the background threshold value (1.5 x 
median grey level intensity of negative control slide) for the FITC, CY3 and CY5 channels, respec-
tively. If a nucleated cell surpassed the background threshold for all three fluorescence channels it 
was termed a triple positive cell (CD24+EpCAM+Vim+) and denoted with 1 and if this criteria was not 
met the nucleated cell was denoted with a 0. For EpCAM+Vim+CD24- cells (termed double positive), 
the nucleated cell must exceed the background threshold for the CY3 and CY5 channels but not 
the FITC.

The scRNAseq dataset (Puram et al., 2017) was analysed using a threshold (median or quartile) 
using the normalised count expression for EpCAM, CD24 and Vimentin for each cell.

Machine learning for prognostic prediction using immunofluorescent 
staining data
A dataset was created of a pool of 2,640,000 nucleated cells across 3500 imaging fields from 24 
tumour specimens (12 with lymph node metastasis or perineural spread, and 12 without) (cohort 1) 
or 8,563,000 nucleated cells across 9200 imaging fields from 59 tumour specimens (29 with lymph 
node metastasis or perineural spread, and 30 without) (cohort 2). The background threshold for the 
FITC, CY3 and CY5 channels was subtracted from the grey level intensities for each nucleated cell. 
The supervised machine learning task was to classify each imaging field into whether it belonged to a 
metastatic or non-metastatic tumour.

The dataset was stratified into a training and validation cohort in a 70%:30% ratio using a random 
seed split. Supervised machine learning approaches were implemented using the skikit-learn Python 
3.6 libraries (Pedregosa et al., 2011) and Tensorflow/Keras framework (https://www.tensorflow.org/​
api_docs/python/tf/keras/models). Hyper-parameter optimisation was performed by an exhaustive 
grid search and computed on Apocrita, a high performance cluster (HPC) facility at Queen Mary 
University of London (http://doi.org/10.5281/zenodo.438045). To further minimise overfitting, 
10-fold cross-validation was performed and the mean accuracy metric, F1 score, was obtained for 
each learning iteration. Receiver-of-operator (ROC) curves and the area-under the-curve (AUC) were 
computed for the optimum supervised learning algorithm. Supervised approaches used were logistic 
regression, support vector machines (Smola and Schölkopf, 2004), Naïve Bayes (Zhang, 2005), 
K-Nearest Neighbours (Bentley, 1975), decision trees (Dumont et  al., 2009), and artificial neural 
networks (Rumelhart et al., 1986).

For the blinded analysis of tumour cohort 2 using the ANN trained on tumour cohort 1, the identity 
of the tumours was withheld by the pathologists at Barts Health NHS Trust and thus both the model 
and research team developing the model were blind to the clinical ground truth for the new imaging 
fields. For each new tumour, a pool of 10 imaging fields were used to make predictions using the 
previously trained ANN. A majority vote for the 10 imaging fields was obtained and each tumour was 
assigned either a metastatic or non-metastatic identity by our model. The clinical ground truth was 
then provided to us by the pathologists to confirm the accuracy of the predictions.

https://doi.org/10.7554/eLife.90298
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