
Latini, Venafra et al. eLife 2023;12:RP90532. DOI: https://doi.org/10.7554/eLife.90532 � 1 of 26

Unveiling the signaling network 
of FLT3-ITD AML improves drug 
sensitivity prediction
Sara Latini1†, Veronica Venafra1†, Giorgia Massacci2, Valeria Bica1, 
Simone Graziosi1, Giusj Monia Pugliese2, Marta Iannuccelli2, Filippo Frioni3, 
Gessica Minnella4, John Donald Marra3, Patrizia Chiusolo3, Gerardo Pepe2, 
Manuela Helmer Citterich2, Dimitros Mougiakakos5,6, Martin Böttcher5,6, 
Thomas Fischer5,7, Livia Perfetto2,8*, Francesca Sacco2,9*

1Cellular and Molecular Biology, Department of Biology, University of Rome Tor 
Vergata, Rome, Italy; 2Department of Biology, University of Rome Tor Vergata, Rome, 
Italy; 3Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, 
Università Cattolica del Sacro Cuore, Rome, Italy; 4Dipartimento di Diagnostica per 
Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico A. Gemelli 
IRCCS, Rome, Italy; 5Health Campus for Inflammation, Immunity and Infection (GCI3), 
Otto-von-Guericke University of Magdeburg, Magdeburg, Germany; 6Department 
of Hematology and Oncology, Otto-von-Guericke University of Magdeburg, 
Magdeburg, Germany; 7Institute of Molecular and Clinical Immunology, Otto-von-
Guericke University of Magdeburg, Magdeburg, Germany; 8Department of Biology, 
Fondazione Human Technopole, Milan, Italy; 9Telethon Institute of Genetics and 
Medicine (TIGEM), Pozzuoli, Italy

Abstract Currently, the identification of patient-specific therapies in cancer is mainly informed by 
personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treat-
ment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in 
the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop 
a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and 
patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a 
Boolean-based formalism. By this approach, we derive personalized predictive models describing the 
signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive 
mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combina-
torial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in 
the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work 
shows that patient-specific logic models have the potential to inform precision medicine approaches.
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Introduction
In the era of precision medicine, comprehensive profiling of malignant tumor samples is becoming 
increasingly time- and cost-effective in clinical ecosystems (De Maria Marchiano et al., 2021; Tsim-
beridou et al., 2020). While a growing number of genotype-tailored treatments have been approved 
for use in clinical practice (Krzyszczyk et al., 2018; Scheetz et al., 2019), the success of targeted 
therapies is limited by frequent development of drug resistance mechanisms that lead to therapy 
failure and portend a dismal patient prognosis (Mansoori et al., 2017; Sabnis and Bivona, 2019; 
Vander Velde et al., 2020; Vasan et al., 2019). Drug combinations are currently under investigation 
as a potential means of avoiding drug resistance and achieving more effective and durable treatment 
responses.

As the number of possible combinations increases exponentially with the number of drugs avail-
able, it is impractical to test for potential synergistic properties among all available drugs using empir-
ical experiments alone. Computational approaches that can predict drug synergy, including Boolean 
logic models, are crucial in guiding experimental approaches for discovering rational drug combina-
tions. In the Boolean model, a biological process or pathway of interest is modeled in the form of a 
signed and direct graphic with edges representing the regulatory relationship (activating or inhibi-
tory) between the nodes (proteins). Logical operators (AND, OR, and NOT) are then employed to 
dynamically describe how the signal is integrated and propagated in the system over time to reach 
a terminal state. These states can be associated with cellular processes such as apoptosis and prolif-
eration (Calzone et al., 2022). Once optimized, these models offer the ability to test for the effect 
of perturbation of the nodes on the resulting phenotype (e.g. in silico knock-out), allowing us to 
generate novel hypotheses and to predict the efficacy of novel drug combinations (Hemedan et al., 
2022; Le Novère, 2015; Montagud et al., 2022; Schwab et al., 2020; Wang et al., 2012).

Among the different computational methods available, in the present study, we utilized CellNOptR 
(Terfve et al., 2012) to implement an integrated strategy that combines prior knowledge signaling 
networks (PKNs) with multiparametric analysis and Boolean logic modeling. We applied this approach 
to generate genotype-specific predictive models of AML patients with differing sensitivities to drug 
treatments. Specifically, we focused on a subset of AML patients with internal tandem duplication 
(ITDs) in the FLT3 receptor tyrosine kinase. FLT3-ITD, one of the most common driver mutations in 
AML, occurs in exons 15 and 16, which encode the juxtamembrane domain (JMD) and the first tyro-
sine kinase (TKD1) domain, and results in constitutive activation. We and others have demonstrated 
that the location (insertion site) of the ITD is a crucial prognostic factor: treatment with the recently 
FDA-approved multi-kinase inhibitor Midostaurin and standard frontline chemotherapy has a signif-
icant beneficial effect only in patients carrying the ITDs in the JMD domain, whereas no beneficial 
effect has been shown in patients carrying ITDs in the TKD region (Rücker et al., 2022; Pugliese 
et al., 2023; Massacci et al., 2023). Moreover, our group and others have demonstrated that the 
differences underlying tyrosine kinase inhibitor (TKI) sensitivity are related to a genotype-specific 
rewiring of the involved signaling networks.

In the present study, we applied a newly developed integrated approach to construct predictive 
logic models of cells expressing FLT3ITD-TKD and FLT3ITD-JMD. These models revealed that JNK plays a 
crucial role in the TKI response of FLT3-ITD cells through a cell cycle-dependent mechanism, in line 
with our previous findings (Massacci et al., 2023; Pugliese et al., 2023). Additionally, we integrated 
patient-specific genomic and transcriptomic data with cell line-derived logic models to obtain predic-
tive personalized mathematical models with the aim of proposing novel patient-individualized anti-
cancer treatments.

Results
The experimental strategy
In the treatment of cancer, molecular-targeted therapies often have limited effectiveness, as tumors 
can develop resistance over time. One potential solution to this problem is the use of combination 
therapy, for which data-driven approaches are valuable in identifying optimal drug combinations for 
individual patients. To identify novel genotype-specific combinatorial anti-cancer treatments in AML 
patients with FLT3-ITD, we employed a multidisciplinary strategy combining multiparametric anal-
ysis with literature-derived causal networks and Boolean logic modeling. Our experimental model 
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consisted of hematopoietic Ba/F3 cells stably expressing the FLT3 gene with ITDs insertions in the 
JMD domain (aa 598) or in the TKD1 (aa 613) region (henceforth ‘FLT3ITD-JMD’ and ‘FLT3ITD-TKD’ cells, 
respectively). As previously demonstrated, cells expressing FLT3ITD-TKD (‘resistant model’) have signifi-
cantly decreased sensitivity to TKIs, including the recently registered FLT3-TKI Midostaurin, compared 
with FLT3ITD-JMD cells (‘sensitive model’) (Massacci et al., 2023; Pugliese et al., 2023). Our approach 
(schematized in Figure 1) is summarized as follows:

1.	 Step 1: The first step in our strategy aimed at providing a detailed description of FLT3-ITD-
triggered resistance mechanisms. To this end, we carried out a curation effort and mined our 
in-house resource, SIGNOR (Lo Surdo et al., 2023), to build a PKN recapitulating known sign-
aling pathways downstream of the FLT3 receptor. The PKN integrates information obtained in 
different cellular systems under distinct experimental conditions (Figure 1A).

2.	 Step 2: Using the PKN, we selected 14 crucial proteins, which we refer to as ‘sentinel proteins’, 
whose protein activity was emblematic of the cell state downstream of FLT3. Thus, by performing 
a multiparametric analysis, we measured the activity status of the sentinel proteins under 16 
different perturbation conditions in TKIs sensitive and resistant cells to generate the training 
dataset (Figure 1B).

3.	 Step 3: We employed the CellNOptR tool to optimize the PKN using the training data. Two 
genotype-specific predictive models were generated that best reproduced the training dataset 
(Figure 1C).
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Figure 1. Summary of the experimental strategy. (A) Manual curation of FLT3-internal tandem duplication (ITD)-
specific prior knowledge network (PKN). (B) Multiparametric analysis of signaling perturbations in tyrosine kinase 
inhibitor (TKI)-sensitive and TKI-resistant cells. (C) Model generation through the CellNOptR tool. (D) Prediction of 
combinatorial treatments restoring TKI sensitivity. (E) In vitro validation of novel combinatorial treatments.
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4.	 Step 4: Using the optimized model, we performed an in silico knock-out screen involving the 
suppression of multiple crucial nodes. Novel combinatorial treatments were predicted according 
to the induction of apoptosis in TKI-sensitive and TKI-resistant cells (Figure 1D).

5.	 Step 5: The predictive performance of the two models was validated in vitro, and in silico in two 
independent publicly available datasets. The clinical impact of our models was assessed in a 
cohort of 14 FLT3-ITD positive AML patients (Figure 1E).

Generation of FLT3-ITD PKN
The first step in the application of our pipeline consisted of the creation of the PKN, a static and 
genotype-agnostic map recapitulating the signaling pathways deregulated over AML tumor devel-
opment and progression (Figure  2—figure supplement 1). To create the PKN, we embarked on 
a curation effort aimed at describing the molecular mechanisms or causal relationships connecting 
three crucial receptors responsible for sustaining the proliferative and survival pathways in AML 
(FLT3, TNFR, and IGF1R), to downstream events (i.e. apoptosis and proliferation). Gathered data 
were captured using our in-house developed resource, SIGNOR, and made freely accessible to the 
community for reuse and interoperability, in compliance with the FAIR principles (Wilkinson et al., 
2016). Briefly, SIGNOR is a public repository that captures more than 35K causal interactions (up/
down-regulations) among biological entities and represents them in the form of a direct and signed 
network (Lo Surdo et  al., 2023). This representation format makes it particularly suitable for the 
implementation of Boolean logic modeling approaches. The so-obtained pre-PKN included 76 nodes 
and 193 edges, the nodes representing proteins, small molecules, stimuli, and phenotypes, and the 
edges depicting the directed interactions between the nodes (Supplementary file 1).

As little is known about the specific signaling pathways downstream of the non-canonical FLT3ITD-TKD, 
we enriched the pre-PKN, deriving new edges from cell-specific experimental data of both FLT3ITD-TKD 
and FLT3ITD-JMD expressing cell lines (see Materials and methods, Figure 2A). This refined PKN recaps 
the FLT-ITD downstream signaling and served as the basis for the model optimization.

Multiparametric analysis of TKI-resistant and -sensitive FLT3-ITD cells
To clarify the cooperative and antagonistic interactions among FLT3 inhibition and complementary 
therapeutic strategies, we generated a cue-sentinel-response multiparametric dataset (Supplemen-
tary file 2, Supplementary file 3, and Supplementary file 4). Generally, MAPKs, PI3K-AKT-mTOR, 
and STATs are the main pathways downstream of FLT3, IGF1R, and TNFR; we selected six key kinases 
in the FLT3-ITD PKN, and we perturbed their activity with small molecule inhibitors in presence or 
in absence of the FLT3i Midostaurin. We added the cytokines as stimuli to fully activate the RTKs 
included in our network (Figure 2B). Specifically, we treated sensitive and resistant cells with either 
PI3Ki, mTORi, MEKi, or GSKi±Midostaurin for 90 min and we added IGF1 for the last 10 min. Parallely, 
we treated the cells with p38i or JNKi±Midostaurin for 90 min and added TNFα for the last 10 min 
(Figure 2C). Overall, we subjected our cell lines to 16 experimental conditions (listed in Materials and 
methods, Supplementary file 2) and in each of them we measured the signaling perturbations. As 
sentinels of the signaling activity response, we measured in triplicate the activity states of 14 crucial 
proteins (Figure  2B and C) based on their phosphorylation status (mTOR, CREB1, IGF1R, PTEN, 
GSK3a, GSK3b, STAT3, STAT5, TSC2, p70S6K, RPS6, JNK, p38, ERK1/2).

Briefly, the biological replicates displayed Pearson correlation coefficients ranging between 0.75 
and 1 (Figure 2—figure supplement 2A and B). Overall, the observed modulation of the readouts 
was consistent with the experimental evidence reported in the literature (Figure 2—figure supple-
ment 2C, black squares in the heatmap). For each sentinel protein, we employed combinations of 
inhibitors and stimuli to probe the full spectrum of protein activity, ranging from the minimum (inhib-
itor treatment) to the maximum (stimulus exposure). The data were normalized in the 0–1 range 
using a Hill function. In this way, the fully active sentinel value was = 1, and the inhibited value = 0 
(Figure 2—figure supplement 3).

Principal component analysis (PCA) (Figure 2D) and unsupervised hierarchical clustering (Figure 2—
figure supplement 2D) showed that the activity level of sentinel proteins stratified cells according 
to both FLT3 activation status (component 1: presence vs absence of FLT3i) and cytokine stimulation 
(component 2: IGF1 vs TNFα). Of note, among all the KINi-treated conditions, only the JNKi treat-
ment groups with the FLT3i treated samples in both cell lines. On the contrary, the activation profile of 

https://doi.org/10.7554/eLife.90532
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Figure 2. Generation of the training dataset. (A) Schematic representation of the FLT3-internal tandem duplication (ITD) prior knowledge network (PKN) 
manual curation, integration of data-driven edges, and manual integration of RTKs pathways involved in acute myeloid leukemia (AML). (B) Schematic 
representation of the experimental design: FLT3ITD-JMD and FLT3ITD-TKD cells were cultured in starvation medium (w/o FBS) overnight and treated with 
PI3Ki, MEKi, mTORi, and GSK3i, JNKi and p38i, in presence or absence of the FLT3i Midostaurin for 90 min. Then, the cells were stimulated either with 

Figure 2 continued on next page
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these 14 sentinel proteins was not able to distinguish cells according to the distinct FLT3-ITD insertion 
sites (circles = FLT3ITD-JMD and squares = FLT3ITD-TKD) (Figure 2D). Interestingly, the unsupervised hier-
archical clustering of the 14 analytes revealed different groups according to the pathway proximity 
of the nodes (e.g. JNK-p38; p70S6K-RPS6; STAT3-STAT5) or according to their regulatory role (e.g. 
GSK3a/b, PTEN and TSC2, acting as negative regulators, cluster together) (Figure 2—figure supple-
ment 2E). Together, these observations suggest that the characterization of the genotype-dependent 
rewiring of signaling pathways cannot be obtained by simply looking at single proteins in our multi-
parametric dataset, but rather requires a modeling approach.

Generation of FLT-ITD optimized logic models
CellNOptR was used to derive biologically relevant information from our dataset and generate FLT3-
ITD-specific predictive models. Boolean logic models were optimized by maximizing the concordance 
between the PKN and our cue-sentinel-response multiparametric training dataset (Figure 3A).

In the first step, CellNOptR preprocesses the PKN (Figure 2—figure supplement 1) and translates 
it into logical functions (scaffold model). As previously described (Sacco et al., 2012), the prepro-
cessing consists of three phases: (i) compression, in which unmeasured and untargeted proteins, as 
well as linear cascades of undesignated nodes, are removed; (ii) expansion, in which the remaining 
nodes are connected to the upstream regulators with every possible combination of OR/AND Boolean 
operators; and (iii) imputation, in which the software integrates the scaffold model with regulations 
function inferred without bias from the training dataset.

Using this strategy, we obtained two FLT3-ITD-specific PKNs, accounting for 206 and 208 nodes 
and 756 and 782 edges, for FLT3ITD-JMD and FLT3ITD-TKD, respectively. The variation in the node count 
between these two PKNs results from the inclusion of a different number of AND Boolean operators 
during the expansion step, while the difference in edge numbers is primarily due to different varia-
tions in the data, leading to distinct edge connections in the imputation step.

In the second step, causal paths and Boolean operators from the scaffold models were filtered to 
best fit the experimental context (see Materials and methods). Briefly, for each cell line, we trained the 
software with our normalized cue-sentinel-response multiparametric dataset to generate a family of 
1000 optimized Boolean models, and we retained the top 100 performing models (Figure 3—figure 
supplement 1A).

To qualitatively assess the robustness and reliability of the selected models, we compared the 
average activity modulation of the individual sentinel proteins with experimentally observed readouts 
(Figure 3A, panels 1–2).

Since the performance of the model strongly depends on the topology of the PKN, we performed 
several rounds of PKN check and adjustment, and, in each round, the entire process was iterated until 
the simulation provided the best fit of the available data (Figure 3—figure supplement 1B and C). As 
shown in Figure 3A, panel 3, the fit between simulated and experimental data was generally higher in 
the FLT3ITD-JMD model, which has been more extensively characterized by the scientific community than 
the FLT3ITD-TKD system. For each cell line, we selected the model with the lowest error (see Materials 
and methods) between experimental and simulated data in the two cell lines (best model) (Figure 3B 
and C). Interestingly, the two Boolean models display a different structure, and most of the interactions 
are cell-specific (blue edges), with only a few edges shared among the two networks (e.g. TNFR-FLT3, 

IGF1 or TNFα for 10 min. Control cells were starved and treated with Midostaurin for 90 min. After treatment, samples were collected, and cell lysates 
were analyzed with an xMAP-based assay through the MagPix instrument. Per each experimental condition, we measured the phosphorylation levels of 
14 sentinels. (C) Network representation of a compressed PKN that shows the essential pathways monitored through the perturbation experiment. The 
perturbed nodes are tagged with a drug icon, and the measured nodes are colored green. (D) Principal component analysis (PCA) of FLT3ITD-JMD and 
FLT3ITD-TKD cells in the multiparametric analysis. Each point represents a different experimental condition.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. FLT3-internal tandem duplication (ITD) manually curated prior knowledge network (PKN).

Figure supplement 2. Global overview of multiparametric data.

Figure supplement 3. Normalization of analytes activity through Hill curves.

Figure 2 continued
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Figure 3. Optimized Boolean models recapitulate the different sensitivity of FLT3ITD-JMD and FLT3ITD-TKD cells to tyrosine kinase inhibitor (TKI). (A) Color-
coded representations of the experimental activity modulation (T90–T0) of sentinel proteins used to train the two Boolean models (upper panel) and 
the average prediction of protein activities in the family of 100 best models (central panel). The protein activity modulation ranges from –1 to 1 and is 
represented with a gradient from blue (inhibited) to red (activated). The absolute value of the difference between experimental and simulated protein 

Figure 3 continued on next page
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STAT3-STAT5A, p70S6K-p38, etc.). The architectural differences between the models demonstrate a 
profound rewiring of the signal downstream of FLT3 as a result of the different locations of the ITD.

Evaluating the predictive power of FLT3-ITD logic models
Thus, we first took advantage of the publicly available quantitative phosphoproteomics dataset to 
independently validate our models. To this aim, we computed the steady state of the two models in 
‘untreated’ and ‘FLT3i’ conditions (Figure 3—figure supplement 1D). Briefly, the untreated condition 
represents the tumor state, here the pro-survival receptors (FLT3, IGF1R, and TNFR) are set constitu-
tively active and assigned a Boolean value of 1. In the FLT3i condition (Midostaurin administration), 
the FLT3 receptor is inhibited and associated with a Boolean value of 0, whereas IGF1R and TNFR 
remain constitutively active to reflect the environmental background that sustains tumor growth and 
proliferation (Figure 3D). Given these two initial conditions (untreated vs FLT3i), we carried out a 
synchronous simulation (Schwab et al., 2020) to compute the evolution of the two models. Next, 
we compared the steady state of our model upon FLT3 inhibition with the phosphoproteomic data 
describing the modulation of 16,319 phosphosites in FLT3-ITD Ba/F3 cells (FLT3ITD-TKD and FLT3ITD-JMD) 
upon quizartinib (AC220) treatment (Massacci et al., 2023). The activation status of the nodes in the 
two generated models is highly comparable with the level of regulatory phosphorylations reported 
in the reference dataset, supporting our models (Figure 3—figure supplement 2A). Next, we aimed 
to assess whether the newly generated FLT3ITD-JMD and FLT3ITD-TKD Boolean models could recapitulate 
in silico the modulation of apoptosis and proliferation upon inhibition of FLT3 and other druggable 
nodes of our models. First, to functionally interpret the results of the simulations, for each network, 
we extracted key regulators of ‘apoptosis’ and ‘proliferation’ hallmarks from SIGNOR. To this aim, we 
applied our recently developed ProxPath algorithm, a graph-based method able to retrieve signifi-
cant paths linking the nodes of our two optimized models to proliferation and apoptosis phenotypes 
(Iannuccelli et al., 2023; see Materials and methods; Supplementary file 1; Figure 3E, left panels; 
Figure 3—figure supplement 1D). Then, integrating the signal of their key regulators (see Materials 
and methods), we were able to derive the ‘proliferation’ and ‘apoptosis inhibition’ levels upon each 
initial condition.

Importantly, our strategy demonstrated that FLT3ITD-JMD and FLT3ITD-TKD Boolean models were able 
to recapitulate the different TKI sensitivity of FLT3-ITD cells (Figure 3E, right panels) (Massacci et al., 
2023; Pugliese et al., 2023).

Moreover, by taking advantage of the Beat AML program, which provides ex vivo drug sensitivity 
screening data of 134 FLT3ITD-JMD AML patients, we validated the prediction power of our models by 
comparing our in silico results with the in vitro IC50 values measured upon RTKs inhibition (Figure 3—
figure supplement 2B and C). We observed some discrepancies between model’s prediction and 
patients’ data for PI3K inhibition (probably due to missing connections in our cell-specific model) 
while FLT3, mTOR, JNK, and p38 treatment outcomes in patients were successfully predicted by our 
models.

activity modulation (lower panel) is reported as a gradient from light yellow (error <0.5) to red (1.85). (B–C) FLT3ITD-JMD (B) and FLT3ITD-TKD (C) high-
confidence Boolean models. Perturbed proteins in the experimental setup are marked in red or green if inhibited or stimulated, respectively. Sentinel 
proteins are reported in blue. The edges’ weight represents their frequency in the family of 100 models and only the high-confidence ones (frequency 
>0.4) are reported. Orange edges are cell-specific links. (D) Cartoon of the in silico conditions simulated to analyze the different TKI sensitivity of 
the FLT3ITD-JMD and FLT3ITD-TKD Boolean models. Untreated condition: TNFα+IGF1; FLT3i: TNFα+IGF1+FLT3 inhibition. (E) Heatmaps (left) report the 
activation level of positive and negative phenotype regulators present in the two Boolean models. Bar plots (right) showing the proliferation activation 
and apoptosis inhibition levels in untreated and FLT3i conditions in the steady states of FLT3ITD-JMD (blue) and FLT3ITD-TKD (yellow) Boolean models.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Overview of the optimized Boolean models.

Figure supplement 2. Validation of FLT3-internal tandem duplication (ITD)-specific models on real-world independent datasets.

Figure 3 continued
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Identification of novel combinatorial treatments reverting TKI 
resistance
As per their intrinsic nature, the two optimized Boolean logic models have predictive power and can 
be used to simulate in silico novel combinatorial treatments reverting drug resistance of FLT3ITD-TKD 
cells (Figure 4A).

Thus, we performed a targeted in silico approach in FLT3ITD-TKD and FLT3ITD-JMD cells, by simulating the 
levels of apoptosis and proliferation, upon combinatorial knock-out of FLT3 and one of the following 
key druggable kinases: ERK1/2, MEK1/2, GSK3A/B, IGF1R, JNK, KRAS, MEK1/2, mTOR, PDPK1, PI3K, 
p38. Interestingly, in the FLT3ITD-TKD model, the combined inhibition of JNK and FLT3, exclusively, in 
silico restores the TKI sensitivity, as revealed by the evaluation of the apoptosis and proliferation levels 
(Figure 4B and C).

We thus tested in vitro whether the pharmacological suppression of JNK using a highly selective 
inhibitor could increase the sensitivity of FLT3ITD-TKD cells to TKI treatment. Our data indicate that JNK 
plays a crucial role in cell survival of FLT3-ITD cells, since its pharmacological inhibition (SP600125) 
alone or in combination with Midostaurin (PKC412) significantly increased the percentage of apop-
totic FLT3ITD-TKD cells (Figure 4D). Remarkably, the apoptosis of FLT3ITD-TKD patients-derived blasts is 
increased upon pharmacological inhibition of JNK (Figure 4F). Consistently, in these experimental 
conditions, we observed a significant reduction of proliferating FLT3ITD-TKD cells versus cells treated 
with Midostaurin alone (Figure  4E). Additionally, in agreement with the models’ predictions, we 
demonstrated that pharmacological suppression of ERK1/2 or p38 kinases have no impact on the TKI 
sensitivity of FLT3ITD-TKD cells (Figure 4—figure supplement 1A and B).

We next sought to characterize the functional role of JNK in this response. Recently, we revealed 
that the cell cycle controls the FLT3ITD-TKD TKI resistance via the WEE1-CDK1 axis (Massacci et al., 
2023). Interestingly, JNK has already been shown to play a role in cell cycle regulation through the 
inactivation of CDC25C, a phosphatase and positive regulator of CDK1 (Gutierrez et al., 2010). Thus, 
we investigated whether pharmacological inhibition of JNK may differently impact CDK1 activity in 
FLT3ITD-JMD and FLT3ITD-TKD cells. In line with our previous findings (Massacci et  al., 2023; Pugliese 
et al., 2023), in FLT3ITD-JMD cells, Midostaurin treatment increases the dephosphorylated, cytosolic, 
and monomeric pool of CDK1 and inactivates CDK2 (Figure  4G), leading to cell accumulation in 
the G1 phase (Figure 4H). Combined treatment of SP600125 and Midostaurin increases CDK1 and 
CDK2 phosphorylation and CyclinB1 levels, increasing the percentage of G2-M and S-phases cells, 
compared with Midostaurin treatment alone (Figure 4G and H).

As expected, in cells expressing FLT3ITD-TKD, Midostaurin treatment triggers the formation of the 
inactive stockpiled pre-M-phase promoting factor (Massacci et al., 2023), constituted by the CDK1-
CyclinB1 complex (Figure 4G and I). This complex is associated with a significant accumulation of 
proliferating FLT3ITD-TKD cells in the G2-M phase as compared to Midostaurin-treated FLT3ITD-JMD cells. In 
line with these observations, CDK2 phosphorylation on activating Thr160 was significantly increased 
(Figure 4G, Figure 4—figure supplement 1E). On the other hand, combined treatment of SP600125 
and Midostaurin induces dephosphorylation of CDK1 on the inhibitory Tyr15 and a mild accumula-
tion of FLT3ITD-TKD cells in G2-M phase (Figure 4G and I; Figure 4—figure supplement 1C and D; 
Figure  4—figure supplement 1G). These observations support the hypothesis that the combina-
tion of JNK inhibition with Midostaurin treatment impacts the cell cycle progression in TKI-resistant 
FLT3ITD-TKD cells, impairing their survival and reactivating the TKI-induced apoptosis.

Generation of AML patient-specific logic models
Our genotype-specific Boolean models were built on in vitro signaling data and enabled us to formu-
late reliable mechanistic hypotheses underlying TKI resistance in our AML cellular models. As outlined 
in Figure 5A, to exploit their predictive power in a more clinical setting, we implemented a computa-
tional strategy that combines the models’ topological structure with patient-derived gene expression 
data.

As a pilot analysis, we analyzed the mutational and expression profiles of 262 genes (Supple-
mentary file 7), relevant to hematological malignancies in a cohort of 14 FLT3-ITD positive de novo 
AML patients (Figure 5A, panel a). Briefly, the classification of these 10 patients according to their 
ITD localization (see Materials and methods) was as follows: eight patients with FLT3ITD-JMD, four with 
FLT3ITD-JMD+TKD, and two with FLT3ITD-TKD (Figure 5A, panel b). The specific insertion sites of the ITD in 

https://doi.org/10.7554/eLife.90532
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Figure 4. In silico simulation of the FLT3ITD-TKD logic model allows the prediction of novel combinatorial treatment reverting tyrosine kinase inhibitor (TKI) 
resistance. (A) Cartoon of the in silico simulation conditions. (B–C) Bar plot showing the in silico simulation of proliferation activation (B) and apoptosis 
inhibition (C) levels in untreated and FLT3i conditions in combination with knock-out of each of 10 crucial kinases in FLT3ITD-JMD (blue) and -TKD (yellow) 
cells. (D–E) In FLT3ITD-JMD (blue) and -TKD (yellow) cells treated with 100 nM Midostaurin and/or 10 µM SP600125 (JNK inhibitor) for 24 hr, the percentage 

Figure 4 continued on next page
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the patient cohort are shown in Supplementary file 8. Follow-up clinical data were available for 10 
out of 14 patients (Figure 5B, Supplementary file 9).

Mutation profiling analysis of the patient cohort revealed a heterogeneity in the genetic back-
ground among patients and a high number of co-occurring genetic alterations (Figure  5—figure 
supplement 1A and B; Supplementary file 9). By computing the genes’ z-scores with respect to each 
patient’s gene expression distribution, we detected patient-specific up- or down-regulated transcripts 
(Figure 5A, panel a; Supplementary file 9).

Significantly, patients’ unsupervised hierarchical clustering according to the mutational profile or 
according to the z-score distribution of the gene expression and PCA of the gene expression data 
was unable to stratify patients based on their FLT3-ITD subtypes (Figure 5C and D; Figure 5—figure 
supplement 1C).

At this point, we tested whether we could exploit the cell-derived Boolean models to generate 
personalized predictive models able to reproduce the clinical outcome of patients and then identify 
novel personalized combinatorial treatments.

To these aims, each patient’s mutational profile (Figure 5—figure supplement 1A and D, Supple-
mentary file 9) was first used to match the suitable cell-derived FLT3-ITD model and then exploited to 
set the initial condition and obtain 14 personalized Boolean models (Figure 5A, panel c). Next, for each 
patient, we performed a simulation of the following conditions in silico: (i) untreated state; (ii) FLT3i 
condition (see Materials and methods); and (iii) combination of FLT3i and inhibition with previously 
tested kinases. Importantly, our approach enabled us to obtain patient-specific predictive Boolean 
models able to describe the drug-induced signaling rewiring (Figure 5F and Figure 5—figure supple-
ment 2) and to quantify ‘apoptosis inhibition’ and ‘proliferation’ levels (Figure 5A, panels d and e, 
Figure 5E and Figure 5—figure supplement 1E). The anti-proliferative and pro-apoptotic response 
to FLT3 inhibition (Figure 5E) of JMD1, JMD2, JMD3, JMD7, and JMD6 models was confirmed by 
follow-up clinical data that displayed a favorable outcome upon treatment (Figure 5B). In fact, in 
JMD1 patient, the sole FLT3 inhibition impairs the STAT3-STAT5 and JNK-MTOR axes and leads to an 
anti-tumoral phenotype (Figure 5F). Conversely, simulations of JMD5, JMD_TKD2, JMD_TKD3, and 
TKD1 models showed an opposite outcome with respect to real-life clinical observations (Figure 5B). 
For example, in our in silico model, the clinically responder TKD1 patient (Figure 5B) was resistant 
to all the tested combinatorial treatments, with a weak effect of PI3Ki on the pro-proliferative axis 
(Figure 5E and Figure 5—figure supplement 1E). One possible explanation is that the more complex 
mutational landscape of the TKD1 patient cannot be recapitulated by our scaffold model (Figure 5—
figure supplement 1D). Interestingly and in line with our previous cell-line-based findings, JNK 
inhibition appeared to be a promising approach to alleviate the resistant phenotype of the clinically-
not-responder TKD2 (Figure 5B), as revealed by the diminished levels of ‘apoptosis inhibition’ and 
‘proliferation’ (Figure 5E and F). Our model suggests that the effect of combinatorial FLT3i and JNKi 
treatment increases AML cell death through the STAT3/STA5A axis (Figure 5F). Overall, this analysis 

of Annexin V positive cells (D) and the absorbance values at 595 nm (E), normalized on control condition, are reported in bar plots. (F) Primary samples 
from acute myeloid leukemia (AML) patients with the FLT3ITD-TKD mutation (n=2, yellow bars) or the FLT3ITD-JMD/TKD mutation (n=3, blue bars) were exposed 
to Midostaurin (100 nM, PKC412), and JNK inhibitor (10 µM, SP600125) for 48 hr, or combinations thereof. The specific cell death of gated AML blasts 
was calculated to account for treatment-unrelated spontaneous cell death. The bars on the graph represent the mean values with standard errors. (G) In 
FLT3ITD-JMD (blue) and FLT3ITD-TKD (yellow) cells treated with 100 nM Midostaurin and/or 10 µM SP600125, followed by 10’ of TNFα 10 ng/ml, the protein 
levels of phospho-JNK (T183/Y185), JNK, phospho-CDK1 (Y15), phospho-CDK1 (T161), CDK1, phospho-CDK2 (T160), CDK2, CyclinB1, CycinE2, and 
Vinculin were evaluated by western blot analysis. (H) Cytofluorimetric cell cycle analysis of DAPI-stained FLT3ITD-JMD (blue) and FLT3ITD-TKD (yellow) cells 
treated with 100 nM Midostaurin and/or 10 µM SP600125 (JNK inhibitor) for 24 hr. (I) Cartoon of the molecular mechanism proposed for FLT3ITD-JMD and 
FLT3ITD-TKD cells.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Original files for the western blot analysis in Figure 4G of phospho-JNK(T183/Y185), JNK, phospho-CDK1 (Y15), phospho-CDK1 (T161), 
CDK1, phospho-CDK2(T160), CDK2, CyclinB1, CycinE2, and Vinculin.

Source data 2. PDF containing Figure 4G and original scans for the western blot analysis of phospho-JNK(T183/Y185), JNK, phospho-CDK1 (Y15), 
phospho-CDK1 (T161), CDK1, phospho-CDK2(T160), CDK2, CyclinB1, CycinE2, and Vinculin, with highlighted band.

Figure supplement 1. Quantification of western blot analysis of cell cycle proteins.

Figure 4 continued
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Figure 5. FLT3-internal tandem duplication (ITD) patient-specific Boolean models. (A) Schematic representation of our computational approach to 
obtain personalized logic models. (B) Hierarchical clustering of patients according to their clinical characteristics (response to chemotherapy, vital 
status, and acute myeloid leukemia [AML] recurrence). Resistant, alive or deceased responders, and deceased with general or FLT3-ITD AML recurrence 
patients are reported in purple, light or dark green, and light or dark brown, respectively. (C–D) Hierarchical clustering of patients according to their 
mutational profile (C) and their expression profile of 262 genes (D). (E) Heatmap representing patient-specific in silico apoptosis inhibition (left panel) 
and proliferation levels (right panel) upon each simulation condition. (F) Patient-specific (JMD1 and TKD2) Boolean models. In the JMD1 model (left 
panel), nodes’ activity has been simulated in control (bottom-left part) and FLT3 inhibition conditions (upper-right part). In the TKD2 model (right panel), 
nodes’ activity has been simulated in FLT3 inhibition (bottom-left part) and FLT3 and JNK co-inhibition conditions (upper-right part).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Overview of patient-specific Boolean models.

Figure supplement 2. Personalized Boolean models.

https://doi.org/10.7554/eLife.90532
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showcases the two trained Boolean logic models have predictive power and can contribute to identi-
fying potential therapeutic strategies improving clinical outcome of FLT3ITD-TKD patients.

Discussion
Cancer is primarily a signaling disease in which gene mutations and epigenetic alterations drasti-
cally impact crucial tumor pathways, leading to aberrant survival and cell proliferation. Indeed, nearly 
all molecularly targeted therapeutic drugs are directed against signaling molecules (Min and Lee, 
2022). However, the success of targeted therapies is often limited, and drug resistance mechanisms 
arise, leading to therapy failure and dismal patient prognosis. To address this issue, a comprehensive, 
patient-specific characterization of signaling network rewiring can offer an unprecedented opportu-
nity to identify novel promising, personalized combinatorial treatments.

Logic-based models have already been proven to successfully meet this challenge, thanks to their 
ability to condense the signaling features of a system and to infer the response triggered by genetic 
and chemical perturbations to the system in silico (Lee et al., 2012; Montagud et al., 2022).

In the present study, we optimized a methodology to investigate drug sensitivity using genotype-
specific Boolean models. Our approach involved building a model representing the patient-specific 
cell state or disease status and inferring novel combinatorial anti-cancer treatments that may over-
come drug resistance.

Here, we specifically applied this methodology to acute myeloid leukemia (AML) patients carrying 
the ITD in the FLT3 receptor tyrosine kinase. Our group recently showed, by integrating unbiased 
mass spectrometry-based phosphoproteomics with literature-derived signaling networks, that the 
location of the ITD insertion affects the sensitivity to TKIs therapy through a WEE1-CDK1-dependent 
mechanism. Our work enabled us to obtain a nearly complete, though static, picture of how FLT3-ITD 
mutations rewire signaling networks.

The main goal of the present study was the generation of clinically relevant, predictive models of 
the FLT3-ITD-dependent cell state. We aim to use these models to predict in silico the TKI sensitivity 
upon multiple simultaneous perturbations (i); to generate personalized models by combining patient-
specific genomic and transcriptomic datasets (ii); and to propose novel, effective, patient-specific 
anti-cancer treatments (iii).

By taking advantage of the previously developed Cell Network Optimizer software (Terfve et al., 
2012), we employed a multi-step strategy that trains a PKN with a large-scale multiparametric dataset 
by using a Boolean logic modeling formalism.

First, we generated a literature-derived FLT3-ITD-centered signaling network encompassing rele-
vant pathways in AML, including the regulation of key phenotypes, such as apoptosis and prolifera-
tion. Manually curated data were made publicly available and can be freely explored by using tools 
offered by the SIGNOR resource website or downloaded for local analysis, in compliance with the 
FAIR principles (Wilkinson et al., 2016).

Second, we used the xMAP technology to interrogate signaling in FLT3-ITD cells treated with a 
panel of nine different perturbations. Analysis of this large multiplex signaling dataset, consisting of 
16 distinct experimental conditions, revealed a clear separation between TKI-treated and untreated 
cells as well as IGF1 and TNFα-stimulated cells. Surprisingly, there was no clear separation between 
FLT3ITD-JMD and FLT3ITD-TKD cells, upon clustering based on signaling parameters. This may be caused 
by the targeted nature of our measurements, in line with our recent demonstration that unbiased 
phosphoproteome profiles discriminate FLT3-ITD cells according to the ITD location (JMD region vs 
TKD region). We also speculate that the different ITD insertion site has a less pronounced effect on 
cell signaling as compared to the pharmacological inhibition of key kinases (e.g. FLT3) or stimulation 
with cytokines. This observation highlights the necessity of a systems-based approach allowing the 
generation of predictive, genotype-specific models describing how signaling rewiring may affect TKI 
sensitivity.

Third, we optimized two genotype-specific Boolean models to delineate the signaling networks 
downstream of FLT3ITD-JMD and FLT3ITD-TKD. The topology of the two Boolean models was different 
and most of the interactions cell-specific, suggesting a deep rewiring of the signal downstream of 
FLT3 due to the different locations of the ITD. Remarkably, when we simulated the pharmacological 
suppression of FLT3 in silico, our models were able to recapitulate the well-documented differential 
sensitivity to TKI treatment of cells expressing FLT3ITD-JMD versus FLT3ITD-TKD. Additionally, by taking 

https://doi.org/10.7554/eLife.90532
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advantage of two independent publicly available datasets, including phosphoproteomic and drug 
sensitivity screening datasets, we validated the predictions of our models.

Simulation of several simultaneous perturbations of these models in silico highlighted the role of 
JNK in the regulation of TKI sensitivity. Remarkably, we discovered that JNK impacts the cell cycle 
architecture of FLT3ITD-TKD cells, by acting as a mediator of the CDK1 activity. This is in line with our 
previously described model, showing that hitting cell cycle regulators triggers apoptosis of FLT3ITD-TKD 
cells (Massacci et al., 2023).

In the present study, we also investigated the clinical relevance of our optimized Boolean models, 
in a pilot cohort of patients. By integrating the mutation and transcriptome profiling of 14 FLT3-ITD 
AML patients with our cell-derived logic models, we were able to derive patient-specific signaling 
features and enable the identification of potential-tailored treatments restoring TKI resistance. To 
note, in our pilot analysis, we could observe that while our predictions were confirmed by follow-up 
clinical data for some patients (JMD1, JMD2, JMD3, JMD6, JMD7, JMD_TK2, JMD_TKD3, TKD2), the 
high genetic complexity of other FLT3-ITD positive patients was not completely addressed by our cell 
line-derived scaffold model (JMD5, TKD1). This could be due to a number of factors: (i) the size of the 
FLT3-ITD patient subgroups may have been too small to derive significant biological conclusions (e.g. 
only two patients with FLT3ITD-TKD); (ii) the panel of molecular readouts in our training dataset might 
be too limited to capture the pleiotropic impact of the FLT3-ITD mutations; and (iii) a more heteroge-
neous experimental data might be needed to train a predictive model able to recapitulate the genetic 
background of a real cohort of patients.

In conclusion, the integration of a cell-based multiparametric dataset with a prior knowledge network 
in the framework of the Boolean formalism enabled us to generate optimized mechanistic models of 
FLT3-ITD resistance in AML. This is the proof of concept that our personalized informatics approach 
described here is clinically valid and will enable us to propose novel patient-centered targeted drug 
solutions. In principle, the generalization of our strategy will enable us to obtain a systemic perspec-
tive of signaling rewiring in different cancer types, driving novel personalized approaches.

Materials and methods
Cell culture
Murine Ba/F3 cells stabling expressing ITD-JMD and ITD-TKD constructs were kindly provided by 
Prof. T Fischer. Cells were cultured in RPMI 1640 medium (Hyclone, Thermo Scientific, Waltham, MA, 
USA) supplemented with 10% heat-inactivated fetal bovine serum (ECS0090D Euroclone, Italy, MI), 
100 U/ml penicillin and 100 mg/ml streptomycin (Gibco 15140122), 1 mM sodium pyruvate (Sigma-
Aldrich, St. Louis, MO, USA, S8636) and 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) (Sigma H0887). These cells were chosen as an experimental system as previously described 
(Massacci et al., 2023).

Multiparametric experiment of signaling perturbation
Ba/F3 FLT3ITD-JMD and FLT3ITD-TKD cells were cultured in complemented RPMI w/o FBS for 16 hr. After-
ward, cells were treated with a panel of small molecule inhibitors for 90 min: Midostaurin 100 nM 
(Selleck Chemicals, S8064), SB203580 10 μM (Selleck Chemicals, S1076), SP600125 10 μM (Selleck 

Table 1. Small molecule inhibitors and stimuli for the multiparametric analysis.

Inhibitors Target Usage Time Stimuli Usage Time

Midostaurin FLT3 100 nM 90 min IGF1 100 ng/ml 10 min

SB203580 p38 10 μM 90 min TNFα 10 ng/ml 10 min

SP600125 JNK 20 μM 90 min

Wortmannin PI3K 50 nM 90 min

Rapamycin mTOR 100 nM 90 min

UO126 MEK1/2 15 μM 90 min

LY2090314 GSK3 20 nM 90 min

https://doi.org/10.7554/eLife.90532
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Chemicals, S1460), Wortmannin 35 nM (Selleck Chemicals, S2758), Rapamycin 100 nM (Sigma-Aldrich, 
R8781), UO126 15 μM (Sigma-Aldrich, 662005), LY2090314 20 nM (Selleck Chemicals, S7063). Cells 
were stimulated with IGF1 100 ng/ml (Sigma-Aldrich, I8779) and TNFα 10 ng/ml (Miltenyi Biotec, 130-
101-687). Table 1 summarizes the treatments used, inhibitors and stimuli, their specific targets, the 
readout sentinels, and the concentrations and the treatment time chosen. We selected the inhibitors 
for their specificity toward key kinases in the FLT3-ITD downstream signaling. We tested their efficacy 
in our model cell line to set the optimal concentration and time to inhibit the kinase activity to phos-
phorylate its downstream targets (i.e. the UO126 at 15 µM for 90 min inhibits MEK and we observed 
dephosphorylated ERK).

We selected IGF1 and TNFα as stimuli to fully activate the receptors and their downstream kinases 
in order to perturb and measure more efficiently the signaling. Each treatment and perturbed kinase 
were paired with a sentinel analyte to monitor the responses to perturbations of all main signal trans-
duction pathways of our cell lines included in the PKN.

We combined the treatments listed in Table 1 to finally obtain 16 different experimental conditions 
in both FLT3ITD-JMD and FLT3ITD-TKD cell lines. The experimental conditions are summarized in Supple-
mentary file 2 and listed below:

1.	 FLT3i
2.	 FLT3i+IGF1
3.	 FLT3i+TNFα
4.	 FLT3i+p38i+TNFα
5.	 FLT3i+JNKi+TNFα
6.	 FLT3i+PI3Ki+IGF1
7.	 FLT3i+mTORi+IGF1
8.	 FLT3i+MEKi+IGF1
9.	 IGF1

10.	 TNFα
11.	 p38i+TNFα
12.	 JNKi+TNFα
13.	 PI3Ki+IGF1
14.	 mTORi+IGF1
15.	 MEKi+IGF1
16.	 GSK3i+IGF1

Table 2. xMAP analytes.

Analytes Cat. no. Phosphosite measured Activity annotation

CREB1 42-680MAG Ser133 1

ERK1/2 42-680MAG Thr185/Tyr187 1

JNK 42-680MAG Thr183/Tyr 185 1

p38 42-680MAG Thr180/Tyr182 1

STAT3 42-680MAG Ser727 1

STAT5 42-680MAG Tyr694/699 1

p70S6K 42-611MAG Thr412 1

RPS6 42-611MAG Ser235/236 1

MTOR 42-611MAG Ser2448 1

IGF1R 42-611MAG Tyr1135/Tyr1136 1

PTEN 42-611MAG Ser380 –1

TSC2 42-611MAG Ser939 –1

GSK3A 42-611MAG Ser21 –1

GSK3B 42-611MAG Ser9 –1

β-Tubulin 46-413MAG Total protein Loading control

https://doi.org/10.7554/eLife.90532
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We combined the inhibition of a specific target with the stimulation of corresponding pathways 
with either IGF1 (AKT-MAPK pathway) or TNFα (p38-JNK pathway), in the presence or absence of 
FLT3 inhibitor Midostaurin. Combinatorial treatments aimed at perturbing the cell signaling and at 
measuring amplified signaling changes in our system. We therefore measured the phosphorylation 
levels of 14 sentinel proteins listed in Table 2 through the X-Map Luminex technology. To each residue 
measure, we mapped the functional role associated, activatory = 1, inhibitory = –1 depending on the 
annotated function on PhosphoSitePlus.

Cells were collected, lysed, and stained following the manufacturer’s instructions. Briefly, in 96-well 
plates, cell lysates were marked with the mix of specific antibodies covalently bound to magnetic 
beads, and the signal was amplified with a biotin-streptavidin system. The plates were read through 
the Magpix instrument: for each sample, the instrument measured the intensity of the fluorescent 
signal pairing it with the identity of the beads given by their location on the magnetic field. As the final 
output, we obtained the median fluorescence intensity (MFI) for all the sentinels in each experimental 
condition, paired with the number of detected beads. For each sentinel, the fluorescent threshold 
should be associated with a count of more than 50 beads to be technically reliable. We then excluded 
from the dataset the measures with less than 50 beads detected as shown in the ‘filter on n. beads’ 
sheet of Supplementary file 3 and Supplementary file 4. Then, we normalized the MFI of each 
analyte on the values of β-tubulin as loading control and we calculated the median and SD of the three 
biological replicates (Supplementary file 3 and Supplementary file 4).

Data normalization
The phosphorylation measure of the 14 sentinel signaling proteins was scaled between 0 and 1, using 
customized Hill functions for each analyte. By applying the formula:

	﻿‍
y = xn

K + xn ‍�

We derived n and K parameters of customized Hill functions from the distribution of each analyte 
in our experimental data. Briefly, given the asymptotic behavior of the Hill function, we set the experi-
mental maximum (maxS) of the analyte to be 0.999 (theoretical maximum, maxT) and the experimental 
minimum (minS) to be 0.001 (theoretical minimum, minT). We then computed the b parameter as:

	﻿‍
b = maxS

minS ‍�

Next, we calculated n and K for each analyte Hill function:

	﻿‍
n =

(
1 − minT

)
maxT(

1 − maxT
)

minT ‍�

	﻿‍
K = 1 − maxT

maxT
maxSn

‍�

PCA and hierarchical clustering
PCA was performed using the stats R package (v. 4.1.2).

Perseus software was employed to perform unsupervised hierarchical clustering. Specifically, the 
Pearson correlation coefficents between phosphorylation profiles of sentinel proteins across different 
experimental conditions were calculated and used to generate the tree. Similar experimental condi-
tions are in the same branches.

FLT3-ITD-specific Boolean model construction with CellNetOptimizer
We exploited the CellNetOptimizer pipeline which integrates (i) a PKN and (ii) multiparametric, normal-
ized experimental data to obtain two FLT3 TD-JMD and -TKD dynamic and predictive Boolean models.

The overall bioinformatics strategy was divided into two main parts:

A.	 Cells-specific models’ generation
B.	 Assessment and validation of the optimized models

https://doi.org/10.7554/eLife.90532
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For each step, we provide references to the corresponding code available in our GitHub repository, 
(copy archived at SaccoPerfettoLab, 2023). This meticulous exposition serves to enhance transpar-
ency and facilitate a more in-depth and independent assessment of our analytical procedures.

Cell-specific models’ generation
To generate FLT3-ITD-specific predictive Boolean models, we exploited the genetic algorithm of Cell-
NOptR, which trains a manually curated FLT3 Prior Knowledge Network (76 nodes and 193 edges, 
Figure 2—figure supplement 1) on perturbation data (Supplementary file 1).

PKN manual curation
We built an FLT3-ITD-specific PKN combining (i) a manual curation and (ii) a data-driven approach. 
Starting from the SIGNOR database, through a curation effort, we assembled a causal network 
describing the FLT3-ITD signaling, comprising all the direct and indirect interactions implied in the 
receptor signaling and leukemogenesis. The PKN is publicly available on SIGNOR. We downloaded 
from SIGNOR the interaction table representing the PKN, and we manually simplified the network, we 
compressed some articulated and redundant paths (Supplementary file 1; Figure 2—figure supple-
ment 2). We converted the network into a .sif file made of three columns, entity A, entity B, and 
interaction type described with 1 if activatory or –1 if inhibitory. Importantly, during the optimization 
process, the PKN was adjusted until we reached an optimal performance of the model. The final 
version of the PKN displayed 76 nodes and 193 edges.

Preprocessing of the PKN
Next, we used CellNOptR v.1.40.0, to preprocess the PKN and to convert the causal network into 
logical functions (scaffold model), describing the regulatory relations among gene products using OR/
AND Boolean operators. This phase is needed to achieve, from the PKN, a simplified yet informative 
network (here dubbed ‘scaffold model’). We remove unnecessary nodes such as chains of signaling 
interaction with the same sign, and we check that the scaffold model has the potential to display 
an output (modulation of a sentinel) for any input provided (cue) (Terfve et al., 2012). This phase 
accounts for three main steps:

•	 Compression: unmeasured and untargeted proteins are removed.
•	 Expansion: the remaining nodes are connected to every possible combination of upstream 

regulators with both ‘AND’ and ‘OR’ Boolean operators. The ‘AND’ operators are added as 
nodes of the network. Thus, we end with 204 nodes (30 proteins and 174 AND Boolean oper-
ators) and 612 edges.

•	 Imputation: This step is crucial to add co-regulations that may happen in our system but are still 
not known or annotated in literature and thus are missing in the PKN. The R package CNOR-
feeder v.1.34.0 (FEED method) was exploited to integrate the interactions derived from corre-
lation among analytes in the perturbation data. This step allowed us to add 144 data-derived 
edges in the FLT3ITD-JMD model and 170 in the FLT3ITD-TKD.

Using this strategy, we obtained two FLT3-ITD-specific scaffold models, accounting for 206 and 208 
nodes and 756 and 782 edges, for FLT3ITD-JMD and FLT3ITD-TKD, respectively.

The code to reproduce this step is available in our GitHub repository in the ‘Cell-specific model’s 
generation’ section, Paragraph 2.

Network model optimization
In this step, we took advantage of a successful strategy used in our previous work (Sacco et al., 2012). 
The aim of this step is to train and optimize a Boolean logic model able to reproduce in silico our cue-
sentinel-response multiparametric training dataset (Figure 3A). In this phase, we followed standard 
practice in logical modeling (Dorier et al., 2016; Traynard et al., 2017):

•	 Generation of the family of 1000 Boolean models: we run the genetic algorithm of CellNOptR 
package 1000 times to generate a family of 1000 optimized Boolean models for each cell line. 
Briefly, this choice is driven by:

○○ the stochastic nature of the genetic algorithm.
○○ the possibility of obtaining quantitative predictions averaging the discrete node state in 

each model. This feature offers the opportunity to readily evaluate the optimization process, 

https://doi.org/10.7554/eLife.90532
https://github.com/SaccoPerfettoLab/FLT3-ITD_driven_AML_Boolean_models
https://signor.uniroma2.it/pathway_browser.php?organism=&pathway_list=SIGNOR-FIS&x=13&y=28
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since the agreement between experimental and simulated data increases when the predic-
tions are carried out by averaging a larger number of models.

The CellNOptR genetic algorithm minimizes the difference (mean squared error [mse]) between 
experimental data and the values simulated from the Boolean model.

•	 Selection of 100 optimal models: given the observation that the agreement (mse) between 
experimental and simulated data reached an apparent plateau at 100 models (Figure 3—figure 
supplement 1), we filtered out only the 100 models that better fit the experimental data, thus 
having the lowest mse (family of best models) (Dorier et al., 2016). Then, for each cell line, we 
compared the experimental activity modulation of each protein (Figure 3A, panel 1) with the 
average activity modulation of the protein in the family of 100 models (Figure 3A, panel 2). The 
fit between simulated and experimental data is reported in Figure 3A, panel 3. Importantly, 
this procedure enables quantitative prediction even using Boolean models, which are discrete 
by nature.

The code to reproduce this step is available in our GitHub repository in the ‘Cell-specific model’s 
generation’ section, Paragraph 3.

Visualization of optimized models

•	 Final model selection: to perform further analyses we selected only the best model. The strength 
of this approach is that Boolean rules are derived from the combination of prior knowledge 
and experimental data. However, the optimization process creates a family of Boolean models 
where some nodes are regulated by different and opposite Boolean rules making it difficult to 
perform simulations (Figure 3—figure supplement 1B). To resolve this ambiguity and have 
a single Boolean rule for each node and, hence, to exploit the intrinsic predictive power of 
Boolean models, we selected the model with the lowest error (mse) between experimental and 
simulated data in FLT3ITD-JMD and FLT3ITD-TKD cell lines (best model). The so-obtained final models 
consist of 68 and 60 nodes (of which 38 and 30 are AND operators) and 161 and 133 edges for 
FLT3ITD-JMD and FLT3ITD-TKD, respectively.

•	 High-confidence model generation: to keep a measure of reliability from the whole optimiza-
tion procedure in each best model, we added the frequency of each edge in the 100 models 
as an attribute in each cell-specific best model. The two final Boolean models with the highest 
edge confidence (frequency in 100 models >0.4) are shown in Figure 3B and C.

The code to reproduce these steps is available in our GitHub repository in the ‘Visualization of 
optimized models’ section.

Assessment and validation of the optimized models
Validation strategy
To assess whether the newly generated FLT3ITD-JMD and FLT3ITD-TKD Boolean models could recapitulate 
in silico the TKI-induced modulation of apoptosis and proliferation, we defined a strategy that is 
composed of three steps: (i) We set up two initial conditions of the models aiming at reproducing 
the biological context of our cells before and after the FLT3 inhibitor treatment. (ii) We computed the 
steady state of each Boolean model to derive the states of the model’s proteins associated with each 
initial condition. (3) We unbiasedly associated the final conditions with the phenotypic states of the 
cells.

We here in brief describe the rationale behind these choices and relative technical details.

1.	 Initial conditions of the simulation: briefly, we defined ‘Untreated’ the condition that reproduces 
a malignant state where cells proliferate and escape apoptosis. From the model perspective, 
this condition is represented by an active state of the FLT3, IGF1R, and TNFR nodes. Next, we 
defined ‘FLT3i’ the condition that reproduces malignant cells treated with the FLT3 inhibitor 
(Midostaurin). From the model perspective, this condition is represented by an active state of 
the IGF1R, and TNFR nodes and an inactive state of FLT3. Summing up, the conditions used 
were:

•	 Untreated condition, in which all the receptors included in the model (FLT3, IGF1R, and 
TNFR) are set to ON.

•	 FLT3 inhibition condition (FLT3i), in which FLT3 was set to OFF.

https://doi.org/10.7554/eLife.90532
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2.	 Computation of steady states: here we used the simulatorT1 function of CellOptR package, 
which performs a Synchronous Boolean simulation to compute the steady state of each cellular 
model in two conditions (Figure 3—figure supplement 1D).

3.	 Apoptosis and proliferation activity inference: to functionally interpret the results of the simula-
tions, we derived the levels of ‘apoptosis inhibition’ and ‘proliferation activation’ in each condi-
tion (Figure 3E). To do that:

•	 We annotated all the proteins in the network as activators or inhibitors of ‘apoptosis’ and 
‘proliferation’ phenotypes using our recently published research ProxPath (Lo Surdo et al., 
2023), which computes significantly ‘close’ paths linking SIGNOR proteins and pheno-
types. The distance table connecting the model nodes to the ‘apoptosis’ and ‘proliferation’ 
phenotypes is available in Supplementary file 1.

•	 For the inference of phenotypes, we considered only proteins that were (i) regulators of 
a phenotype and (ii) endpoint proteins in high-confidence signaling axes (edge frequency 
0.4, Figure 3B and C). This choice is driven by the need to avoid redundancy and consider 
the final nodes of the model which are the real effector proteins according to our mutations-
specific FLT3 Boolean models.

•	 Then, we integrated the signal of the phenotype regulators proteins (Figure 3E heatmaps) 
to compute the level of ‘apoptosis inhibition’ and ‘proliferation activation’ in each cell line 
(Figure 3E bar plot). Integration, in this context, means computing the sum of the 'scores' 
of proteins that influence each phenotype, with an underlying assumption of equal impor-
tance for both inhibitors and activators (OR logic).

As a result of this step, we obtained a comprehensive model encompassing proteins and pheno-
types (apoptosis and proliferation) that can possess multiple values, effectively creating a multi-valued 
model. This enhancement enables a finer comparison between different cell lines. The code that 
describes this step is available in our GitHub repository in the ‘In silico validation’ section.

Boolean models’ validation using independent resources
Using the strategy described above, we computed the steady state of FLT3ITD-JMD and ITD-TKD Boolean 
models with and without the inhibition of FLT3 and other druggable nodes.

To independently validate the models, we used as a reference the phosphoproteomic data of 
FLT3-ITD Ba/F3 cells (FLT3ITD-JMD and FLT3ITD-TKD) upon quizartinib (AC220) treatment (Massacci et al., 
2023). We mapped xMAP residues associated with protein complexes (e.g. ERK1/2) to unique protein 
sequences (e.g. Mapk1 and Mapk3) (Supplementary file 2). We estimated the activity of sentinel 
proteins in the reference dataset using the modulation of their regulatory phosphosites. Then, we 
compared the estimated activity with the sentinels’ states in the FLT3 inhibition simulation (Figure 3—
figure supplement 2).

Moreover, to functionally interpret the results and assess the reliability of the model, we computed 
the activity of ‘apoptosis’ and ‘proliferation’ phenotypes upon FLT3 and other druggable nodes’ inhi-
bition as described in 3. Apoptosis and proliferation activity inference section.

The Beat AML program on a cohort of 672 tumor specimens collected from 562 patients has been 
exploited for model validation. We focused on drug sensitivity screening on 134 patients carrying the 
typical FLT3-ITD mutation in the JMD region. Drugs were annotated for their targets using SIGNOR 
and ChEBI databases. Drugs inhibiting FLT3, PI3K, mTOR, JNK, and p38 were selected and the 
average IC50 of FLT3ITD-JMD patient-derived primary blasts was calculated (Supplementary file 6).

Combinatory treatment inference
Given the ability of the FLT3ITD-JMD and FLT3ITD-TKD networks to reproduce the different sensitivity to 
TKIs, the generated ITD-specific Boolean models were exploited to find a co-treatment, in addition to 
FLT3 inhibition, that could revert the resistant phenotype.

For each cell line, we inferred the levels of ‘apoptosis inhibition’ and ‘proliferation activation’ upon 
every possible combined inhibition of FLT3 and key signaling kinases (ERK1/2, MEK1/2, GSK3A/B, 
IGF1R, JNK, KRAS, MEK1/2, MTOR, PDPK1, PI3K) in the model (Figure 4A). Briefly, here we used the 
same strategy described in ‘Assessment and validation of the optimized models’ section. The initial 
conditions considered were:

•	 Untreated, in which all the receptors included in the model (FLT3, IGF1R, and TNFR) are set to 
ON.

•	 FLT3i, in which FLT3 was set to OFF.

https://doi.org/10.7554/eLife.90532
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•	 Combinatory treatment (e.g. FLT3i+KRASi), in which both FLT3 and the target of the specific 
inhibition (in this case KRAS) were set to OFF.

We eventually selected co-treatments in the FLT3ITD-TKD model able to trigger activation levels of the 
‘apoptosis’ and ‘proliferation’ to the same level as the FLT3ITD-JMD model.

The code to reproduce this step is available in our GitHub repository in the ‘Combinatory treat-
ment inference’ section.

Apoptosis assay
Ba/F3 cells were treated with Midostaurin 100 nM and SP600125 10 μM for 24 hr.

The concentration of SP600125 to use for this long-term treatment was chosen based on setup 
experiment: we treated sensitive and resistant cells with increasing concentrations of SP600125 for 
24 hr and evaluated the cell viability using the Cell Proliferation Kit I (MTT) (Roche, Cat. 11465007001) 
and measuring the absorbance value at λ=590 nm. We then calculated the IC50 with a nonlinear 
regression drug-response curve fit using Prism 7 (GraphPad). IC50 values are approximately 1.5 µM 
in FLT3-ITD mutant cell lines (FLT3ITD-JMD cells IC50=1.54  μM; FLT3ITD-TKD cells IC50=1.69  μM). The 
SP600125 treatment affects cell viability, reaching a plateau phase of cell death and at about 2 µM. 
We used 10 µM SP600125 to inhibit JNK phosphorylation (Kim et al., 2010; Moon et al., 2009). The 
concentration of Midostaurin for the apoptotic assay was chosen based on the previously published 
work (Massacci et al., 2023) where we show that FLT3ITD-TKD cells treated with Midostaurin 100 nM 
show lower apoptotic rate and higher cell viability compared to FLT3ITD-JMD cells. Apoptotic cells were 
analyzed with the Ebioscience Annexin V Apoptosis Detection Kit APC according to the kit instructions 
(Cat. 88-8007-74, Thermo Fisher Scientific). Samples were read through the CytoFLEX S (Beckman 
Coulter) instrument using the APC laser to detect the Annexin-V+ cells. Quality control of the cytom-
eter was assessed weekly using CytoFLEX Daily QC Fluorospheres (Beckman Coulter B53230). The 
fluorescence threshold was set for the APC laser using a blank sample, without the fluorescent label. 
The results were analyzed by the CytExpert software and represented in bar plots as the percentage 
of Annexin-V+ cells fold change of treated conditions on controls.

MTT assays
Ba/F3 cells were treated with Midostaurin 100 nM, SP600125 20 μM, SB203580 10 μM, and UO126 
15 μM for 24 hr in 96-well plates. The concentration of SB203580 and UO126 to use for this long-term 
treatment was chosen based on previous data available in the lab and setup experiments. We used 
the concentration in which we could observe a reduced activity of the target (lower phosphorylation 
of downstream proteins) without cell toxicity. Cell viability was assessed using the Cell Proliferation Kit 
I (MTT) (Roche, Cat. 11465007001), following the manufacturer’s instructions. The plates were read 
through a microplate reader (Bio-Rad) at λ=590 nm. The results were represented in bar plots as fold 
change of treated conditions on controls.

Cell cycle analysis
Ba/F3 cells were treated with Midostaurin 100 nM and SP600125 10 μM for 24 hr, 106 cells were 
collected, washed in ice-cold PBS 1×, and fixed in agitation with 70% cold ethanol. Fixed samples 
were incubated at 4°C O/N, washed in PBS 1×, and resuspended in 1 μg/ml DAPI (Thermo Scientific, 
#62248) and 0.2 mg/ml RNase (Thermo Scientific, # 12091021) PBS solution before analysis. Samples 
were read through the CytoFLEX S (Beckman Coulter) instrument using the PB450 laser to detect the 
DAPI+ cells. Data were analyzed by CytExpert (Beckman Coulter) software and represented in bar 
plots as a percentage of DAPI+ cells.

Immunoblot analysis
Ba/F3 cells were seeded at the concentration of 5×105 cells/ml and treated with Midostaurin 100 nM, 
SP600125 20 μM, SB203580 10 μM, UO126 15 μM, for 24 hr, and TNFα 10 ng/ml for 10 min. Cells 
were lysed for 30 min in ice-cold lysis buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% Nonidet 
P-40 [NP-40], 1 mM EGTA,5 mM MgCl2, 0.1% SDS) supplemented with 1 mM PMSF, 1 mM orthova-
nadate, 1 mM NaF, protease inhibitor mixture 1×, inhibitor phosphatase mixture II 1×, and inhibitor 
phosphatase mixture III 1×. The insoluble material was separated at 13,000 rpm for 30 min at 4°C 
and total protein concentration was measured on supernatants using Bradford reagent (Bio-Rad). 

https://doi.org/10.7554/eLife.90532
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Protein extracts were denatured with NuPAGE LDS (Invitrogen) and boiled at 95°C for 10 min. SDS-
PAGE and transfer were performed on 4–15% Bio-Rad Mini/Midi PROTEAN TGX and Trans-Blot Turbo 
mini/midi nitrocellulose membranes using the Trans-Blot Turbo Transfer System (Bio-Rad). Nonspecific 
binding sites were blocked using 5% non-fat dried milk in TBS-0.1% Tween-20 (TBS-T) for 1 hr at RT, 
shaking. Primary antibodies were diluted according to the manufacturer’s instruction and incubated 
at 4°C O/N, shaking. HRP-conjugated secondary antibodies were diluted 1:3000 in 5% non-fat dried 
milk in TBS-T and incubated for 1  hr at RT, shaking. Peroxidase chemiluminescence reaction was 
enhanced with Clarity Western ECL Blotting Substrates (Bio-Rad) and detected through the Chemidoc 
detection system (Bio-Rad). Densitometric quantitation of raw images was obtained with Fiji soft-
ware (ImageJ, NIH). The primary and secondary antibodies used are listed: CDK1 (sc- 53219); CDK2 
(sc-6248); phpspho-CDK1 Y15 (CS 9111); phospho-CDK1 T161 (CS 9114); phospho-CDK2 T160 (CS 
2561); phospho-SAPK/JNK T183/Y185 (CS 9251); SAPK/JNK (CS 9252); CyclinB1 (CS 4138); CyclinE2 
(CS 4132); Vinculin (CS 13901).

Primary patient blast sensitivity
Peripheral blood (PB) samples were collected from patients with AML in accordance with the Declara-
tion of Helsinki (ethics committee approval number 115/08) and with the patients’ informed consent. 
The FLT3-ITD mutation integration site was determined as previously described (Massacci et  al., 
2023).

Mononuclear cells were isolated from PB using Ficoll-Paque (GE Healthcare, Chicago, IL, USA). 
Cryoconserved peripheral blood mononuclear cells (PBMCs) from seven patients were cultured in 
RPMI-1640 medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal calf serum 
(Bio&Sell GmbH, Germany), 2 mM L-glutamine (Sigma-Aldrich), and 40 U/ml penicillin-streptomycin 
(Thermo Fisher Scientific) at a density of 5×105/ml. Cultures were incubated for 48 hr in the absence 
or presence of 100 nM PKC412 and 10 µM SP600125 (all Selleck Chemicals LLC, Houston, TX, USA), or 
combinations of PKC412 with SP600125. The viability of the patient’s blast cells was assessed by flow 
cytometry, while the specific cell death was calculated as described previously (Pugliese et al., 2023). 
Briefly, samples were stained with fluorochrome-conjugated antibodies against CD45, CD33, CD34, 
CD13, and CD117, followed by the addition of Annexin V and 7AAD. The samples were recorded 
using a NorthernLight-3000 spectral flow cytometer (Cytek Biosciences, Freemont, CA, USA) and 
analyzed through FlowJo v.10.9 (BD Bioscience, Franklin Lakes, NJ, USA).

Statistical analysis
Data are represented as the mean ± SEM of at least three independent experimental samples (n=3). 
Comparisons between three or more groups were performed using the ANOVA test. Statistical 
significance between the two groups was estimated using Student’s t-test. Statistical significance is 
defined as p-value where *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. All statistical analyses were 
performed using Prism 7 (GraphPad).

RNAseq of patient samples
RNA was extracted from peripheral blasts of 14 treatment naïve patients with de novo FLT3-ITD-driven 
AML diagnosis. Clinical characteristics were available for only 10 patients (Supplementary file 9). PB 
samples from 14 AML patients were obtained upon the patient’s informed consent. The integration 
site of the FLT3-ITD mutation was determined as previously described (Rücker et al., 2022). Briefly, 
RNA was prepared from PBMCs using the RNeasy Mini Kit (QIAGEN, Germany), retro-transcribed in 
cDNA, and quantified using the Qubit 4.0 Fluorimeter assay (Thermo Fisher Scientific) and sample 
integrity, based on the DIN (DNA integrity number), was assessed using a Genomic DNA ScreenTape 
assay on TapeStation 4200 (Agilent Technologies).

High-throughput sequencing was performed on the coding region of 262 genes involved in hema-
tologic malignancies. A comprehensive list of all genes is included in Supplementary file 7.

Genomic DNA Libraries were prepared from 100  ng of total DNA using the NEGEDIA Cancer 
Haemo Exome sequencing service (Next Generation Diagnostic srl) which included library prepa-
ration, target enrichment using Cancer Haemo probe set, quality assessment, and sequencing on a 
NovaSeq 6000 sequencing system using a paired-end, 2×150 cycle strategy (Illumina Inc). Paired-end 
reads were produced with a 100× coverage and a median of 40M reads per sample.

https://doi.org/10.7554/eLife.90532
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Bioinformatic analysis of transcriptome data of patient samples
The raw data were analyzed by Next Generation Diagnostics srl Cancer haemo Exome pipeline (v.1.0) 
which involves a cleaning step by UMI removal, quality filtering and trimming, alignment to the refer-
ence genome, removal of duplicate reads, and variant calling (FASTQC: https://www.bioinformatics.​
babraham.ac.uk/projects/fastqc/, Freed et al., 2017; McLaren et al., 2016; Smith et al., 2017).

Illumina NovaSeq 6000 base call (BCL) files were converted into fastq files through bcl2fastq (2019) 
(v.2.20.0.422). UMI removal was carried out with UMI-tools 1.1.1. Data quality control was performed 
with FastQC v.0.11.9 and reads were trimmed and cleaned using Trimmomatic 0.38.

Alignment to human reference (hg38, GCA_000001405.15), deduplication, and variant calling were 
performed with Sentieon 202011.01.

Variant calling output was converted into vcf and MAF format. The maf files were further anno-
tated with the OncoKB annotator (Chakravarty et al., 2016) to obtain the mutation effect on protein 
function and oncogenicity. We filtered out variants with MUTATION_EFFECT equal to ‘Unknown’, 
‘Inconclusive’, ‘Likely Neutral’, and ‘Switch-of-function’ (Supplementary file 9).

All downstream analyses were carried out using R v.4.1.2 and BioConductor v.3.13 (Huber et al., 
2015; R Development Core Team, 2021).

Gene counts tables were generated from bam files using Rsubread v. 2.8.2. Data were normalized 
with the ‘trimmed mean of M values’ (TMM) method of edgeR v.3.36.0 (Robinson et al., 2010) and 
converted to log2 (Supplementary file 9).

FLT3-ITD localization
Generic variant callers can’t identify medium-sized insertions, like FLT3-ITDs. As such, we used the 
specialized algorithm getITD v.1.5.16 (Blätte et  al., 2019) to localize ITDs in each patient. Reads 
mapping on FLT3 genomic region between JMD and TKD domain (28033888–28034214) were 
extracted from bam files and converted in fastq format with samtools v.1.16.1.

getITD was run with default parameters, but with a custom reference sequence without introns (‘caat​
ttag​gtat​gaaa​gcca​gcta​caga​tggt​acag​gtga​ccgg​ctcc​tcag​ataa​tgag​tact​tcta​cgtt​gatt​tcag​agaa​tatg​aata​
tgat​ctca​aatg​ggag​tttc​caag​agaa​aatt​taga​gttt​ggga​aggt​acta​ggat​cagg​tgct​tttg​gaaa​agtg​atga​acgc​aaca​
gctt​atgg​aatt​agca​aaac​agga​gtct​caat​ccag​gttg​ccgt​caaa​atgc​tgaa​ag’) that was annotated according to 
getITD annotation file. Patients carried multiples ITDs and we classified them as follows: eight patients 
as FLT3ITD-JMD (JMD1-8), four patients as FLT3ITD-JMD+TKD (JMD_TKD1-4), and two patients as FLT3ITD-TKD 
(TKD1-2) (Supplementary file 8).

Patients’ simulation on cell-derived ITD-specific Boolean models
We decided to use the FLT3ITD-JMD cell models for both FLT3ITD-JMD and FLT3ITD-JMD+TKD given the domi-
nant effect that the FLT3ITD-JMD mutation displays over the FLT3ITD-TKD one (Rücker et al., 2022).

We used patients’ data to perform Boolean simulations on cell-derived ITD-specific Boolean 
models. We used FLT3ITD-JMD cell lines Boolean models for FLT3ITD-JMD and FLT3ITD-JMD+TKD patients 
and FLT3ITD-TKD models for FLT3ITD-TKD patients. Each patient mutational profile was binarized, setting 
‘Loss-of-function’ or ‘Likely loss-of-function’ equal to 0, and ‘Gain-of-function’ or ‘Likely gain-of-
function’ equal to 1. Using CellNOptR, for each patient we computed the steady state of its corre-
spondent cell-derived Boolean model in two conditions: (i) the input is the mutational profile (tumor 
simulation – ‘untreated’); (ii) the input is the mutational profile + FLT3 inhibition (treatment with 
FLT3i simulation). Hence, we inferred the ‘apoptosis’ and ‘proliferation’ phenotype scores, as stated 
above.

We also performed an in silico combined treatment of patients simulating their mutations with the 
inhibition of FLT3 and a key signaling kinase (11 different simulations).

Network visualization
To visualize the best model, we exported CellNOptR results using writeScaffold and writeNetwork 
functions and imported the network in Cytoscape v.3.9.0. For nodes and edges’ color, we used the 
style of Cytocopter app v.3.9. We added as edges’ attribute the frequency of each edge in the family 
of 100 models and we kept only the edges having a frequency >0.4.

https://doi.org/10.7554/eLife.90532
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Statistical analyses and tools
The patient z-score was computed by subtracting the mean of patient-specific expression distribution 
and dividing by its standard deviation. PCA and clustering graphs were generated with stats v.4.1.2, 
ggfortify v.0.4.15, and ggdendrogram v.0.1.23 packages. Heatmaps were created using pheatmap 
v.1.0.12. Phenotypes bar plots are created with ggplot2 v.3.4.0.
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