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Abstract ​Hippocampome.​org is a mature open-access knowledge base of the rodent hippo-
campal formation focusing on neuron types and their properties. Previously, ​Hippocampome.​org 
v1.0 established a foundational classification system identifying 122 hippocampal neuron types 
based on their axonal and dendritic morphologies, main neurotransmitter, membrane biophysics, 
and molecular expression (Wheeler et al., 2015). Releases v1.1 through v1.12 furthered the aggrega-
tion of literature-mined data, including among others neuron counts, spiking patterns, synaptic phys-
iology, in vivo firing phases, and connection probabilities. Those additional properties increased the 
online information content of this public resource over 100-fold, enabling numerous independent 
discoveries by the scientific community. ​Hippocampome.​org v2.0, introduced here, besides incor-
porating over 50 new neuron types, now recenters its focus on extending the functionality to build 
real-scale, biologically detailed, data-driven computational simulations. In all cases, the freely down-
loadable model parameters are directly linked to the specific peer-reviewed empirical evidence from 
which they were derived. Possible research applications include quantitative, multiscale analyses of 
circuit connectivity and spiking neural network simulations of activity dynamics. These advances can 
help generate precise, experimentally testable hypotheses and shed light on the neural mechanisms 
underlying associative memory and spatial navigation.

eLife assessment
The authors have greatly expanded their important ​hippocampome.​org resource about rodent 
hippocampal cell types, their physiological properties, and their interactions. With version 2.0, they 
make a significant advance in providing a user-friendly means to make computer models of hippo-
campal circuits. The work is convincing, and there are only minor reservations that the figures may 
be too complex.

Introduction
Neuroscience knowledge continues to increase every year (Eke et al., 2022; Yeung et al., 2017), 
making it challenging for researchers to keep abreast of mounting data and evolving information 
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even in their own domain of expertise. Large-scale endeavors, such as the Brain Research through 
Advancing Innovative Neurotechnologies (BRAIN) Initiative (Insel et  al., 2013) and the European 
Union’s Human Brain Project (Amunts et al., 2016), are contributing to this tremendous growth along 
with the ‘long tail’ of independent labs and individual scientists (Ferguson et al., 2014). A key orga-
nizing principle for neuroscience knowledge is the seminal notion of neuron types (Petilla Interneuron 
Nomenclature Group et al., 2008; Zeng and Sanes, 2017), which constitute the conceptual ‘parts 
list’ of functional circuits. The National Institutes of Health launched the BRAIN Initiative Cell Census 
Network (BICCN) to help establish a comprehensive reference of the cell type diversity in the human, 
mouse, and non-human primate brains (Hawrylycz et al., 2022). This multi-institution collaboration 
is already producing innovative results (Muñoz-Castañeda et al., 2021) and actionable community 
resources (Hawrylycz et al., 2022).

​Hippocampome.​org (https://www.hippocampome.org) is an open-access knowledge base of the 
rodent hippocampal circuit (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex) at the 
mesoscopic level of neuron types (Wheeler et al., 2015). This resource has proven popular and effec-
tive thanks to the adoption of a simple yet powerful classification system for defining neuron types. 
Specifically, a key property for the identification of neuron types in ​Hippocampome.​org is the loca-
tion of axons and dendrites across the subregions and layers of the hippocampal formation. This 
approach can be broadly extended to classify neurons in other brain regions and neural systems 
(Ascoli and Wheeler, 2016). Focusing on axonal and dendritic distributions provides several consid-
erable advantages. First, these features mediate neuronal connectivity, thus immediately revealing 
the underlying blueprint of network circuitry (Rees et al., 2017). Second, they are widely used in the 
neuroscience community as a reliable and concrete anchoring signature to correlate electrophysio-
logical and transcriptomic profiles (DeFelipe et al., 2013). Third, to coherently classify neuron types, 
we are not reliant on the inconsistent nomenclature that authors provide (Hamilton et al., 2017a). 
Therefore, starting from the foundational morphology-based identification of 122 neuron types in the 
first release (version 1.0 or v1.0), ​Hippocampome.​org progressively amassed an increasing amount 
of complementary data, such as firing patterns (Komendantov et al., 2019), molecular expression 
(White et al., 2020), cell counts (Attili et al., 2022), synaptic communication (Moradi et al., 2022; 
Moradi and Ascoli, 2020), in vivo oscillations (Sanchez-Aguilera et al., 2021), and connection prob-
abilities (Tecuatl et al., 2021b). In all cases, the public repository provided direct links to the specific 
peer-reviewed empirical evidence supporting the added knowledge.

Since the inception of ​Hippocampome.​org, we have attempted to maintain the naming styling 
for already established neuron types by adopting either canonical names, only-cited names, most 
frequently cited names or hybridizations of cited names, and only as last resort crafting our own 
names (see Figure 6 in Hamilton et al., 2017a). In the entorhinal cortex (EC), where many of the 
hybridizations occur, we have followed the authors’ own definitions for the six layers and the distinc-
tion between medial and lateral, when incorprating such terms into ​Hippocampome.​org type names. 
If a neuron type exists in both medial and lateral entorhinal cortex, then the name is simply prefixed 
by EC, rather than MEC or LEC. As another example, in the dentate gyrus (DG), we established 
HIPROM (Hilar Interneuron with PRojections to the Outer Molecular layer) and MOCAP (MOlecular 
Commissural-Associational Pathway-related axons and dendrites) in the same vein as HIPP (HIlar 
Perforant Path-associated), MOPP (MOlecular layer Perforant Path-associated), and HICAP (HIlar 
Commissural-Associational Pathway-related), where the outer two-thirds of the stratum moleculare 
(SMo) is distinguished by the region intercepted by the Perforant Path from the entorhinal cortex, 
and the inner one-third (SMi) is characterized by the commissural-associational pathway that often 
recurrently connects stratum moleculare with the hilus.

Having established a web-based integrated storehouse of hippocampal information, ​Hippo-
campome.​org also expanded its scope by including data-driven computational models of neuronal 
excitability and synaptic signaling, as well as ties to community resources such as NeuroMorpho.Org 
(https://www.neuromorpho.org; Akram et al., 2018), SenseLab ModelDB (McDougal et al., 2017), 
CARLsim (Niedermeier et  al., 2022), and the Allen Brain Atlas (Jones et  al., 2009). Altogether, 
these extensions resulted in the emergence of a complete framework in ​Hippocampome.​org v2.0 that 
makes the original vision of this project, to enable data-driven spiking neural network simulations of 
rodent hippocampal circuits (Ascoli, 2010), finally achievable. The present report thus marks a new 
phase in the life cycle of this community resource.

https://doi.org/10.7554/eLife.90597
https://www.hippocampome.org
https://www.neuromorpho.org
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One line of research pertaining to the state of simulation readiness of ​Hippocampome.​org 
involves a real-scale mouse model of CA3 (Kopsick et al., 2023) investigating the cellular mecha-
nisms of pattern completion, which includes Pyramidal cells and seven main inhibitory interneuron 
types. Another avenue of research investigates spatial representation involving in vivo firing grid cells 
(Sargolini et al., 2006), which utilizes Medial Entorhinal Cortex Layer II Stellate cells, two types of 
pyramidal cells, and three interneuron types. Both lines of research make use of ​Hippocampome.​org 
parameters for properties such as cell census, Izhikevich models (Izhikevich, 2003), synaptic signals, 
and connection probabilities.

The following ‘Description of resource’ section begins with a concise, referenced overview of 
the neural properties collated from ​Hippocampome.​org v1.0 through release v1.12. We then briefly 
describe the new neuron types and data currently being added in ​Hippocampome.​org v2.0. Next is 
an abridged summary of the usage and recognition of this online portal in biomedical research. This is 
followed by an explanation of the latest capabilities of ​Hippocampome.​org v2.0 to search, filter, and 
download the complete set of computational parameters enabling quantitative connectomic analyses 
and spiking neural network simulations. The section concludes with an outlook of possible research 
applications allowed by the expansion of this scientific resource.

Description of resource
Characterizing properties of hippocampal neuron types
​Hippocampome.​org v1.0 (Wheeler et al., 2015) established the morphological encoding of axonal 
and dendritic locations and the main neurotransmitter (glutamate or GABA) as the primary determi-
nants of neuron types in the rodent hippocampal formation. For example, a Dentate Gyrus Basket 
cell (with name capitalized to indicate a formally defined neuron type) is a GABAergic cell with axon 
contained in the granular layer and dendrites spanning all dentate gyrus layers (Figure 1A1-4). In 
this framework, two neurons releasing the same neurotransmitter belong to different types if the 
axon or dendrites of only one of them invades any of the 26 layers across 6 subregions of the hippo-
campal formation (​hippocampome.​org/​morphology). In other words, neurons of the same type share 
the same potential inputs, outputs, and excitatory vs. inhibitory function. These properties were 
initially supplemented with additional empirical evidence for molecular expression of major protein 
biomarkers (Figure  1A5; ​hippocampome.​org/​markers) and membrane biophysics (Figure  1A6-7; ​
hippocampome.​org/​electrophysiology).

Many neuronal properties and functionalities were progressively added in 12 subsequent releases 
(Table 1). The numerical sequencing of these ​Hippocampome.​org versions depended on the order 
of peer-review and publication of the corresponding scientific reports. Here we will describe them 
instead in logical groupings. The first two updates enhanced the user functionality of the knowl-
edge base. Specifically, v1.1 integrated a web-based interactive thesaurus mapping of synonyms and 
definitions (Hamilton et al., 2017a; ​hippocampome.​org/​find-​term) to help disambiguate the many 
terminological inconsistencies in the neuroscience literature (Shepherd et  al., 2019; Yuste et  al., 
2020). Release v1.2 introduced the capability to browse, search, and analyze the potential connec-
tivity between neuron types (Rees et al., 2016; ​Hippocampome.​org/​connectivity) as derived from the 
compiled overlapping locations of all the presynaptic axons and postsynaptic dendrites. Transcrip-
tomic information was greatly expanded in both v1.3 (Hamilton et al., 2017b), which incorporated 
in situ hybridization data from the Allen Brain Atlas (Lein et al., 2007), and v1.5 (White et al., 2020), 
which leveraged relational inferences interlinking the region-specific expression of two or more genes.

The quantifications of firing pattern phenotypes, such as rapid adapting spiking, transient stut-
tering, and persistent slow-wave bursting, in v1.6 (Komendantov et al., 2019; ​hippocampome.​org/​
firing_​patterns) were fitted by dynamical systems modeling (Izhikevich, 2003) in v1.7 (Venkadesh 
et al., 2019; ​hippocampome.​org/​Izhikevich). Although the above properties were largely measured 
from slice preparations, v1.9 made available measurements from in vivo recordings (Sanchez-Aguilera 
et  al., 2021; ​hippocampome.​org/​in-​vivo). Release v1.10 provided a compendium of cognitive 
functions linked to specific hippocampal neurons (Sutton and Ascoli, 2021; ​hippocampome.​org/​
cognome), while the v1.11 neuron type census estimated the population counts for each neuron 
type (Attili et al., 2022; ​hippocampome.​org/​census). Finally, there are a set of properties pertaining 
not to individual neuron types but to synaptic connections between a pair of pre- and post-synaptic 

https://doi.org/10.7554/eLife.90597
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Figure 1. Defining neuron types in Hippocampome.org. (A) Properties of a Hippocampome.org v1.0 neuron type. 
(A1) Morphology of a Dentate Gyrus (i) 2232 Basket cell (NeuroMorpho.Org cell NMO_34300: Figure S3A in Hosp 
et al., 2014) with axons (red) in stratum granulosum (SG) and dendrites (blue) in all four layers. (A2) Schematic 
interpretation of the morphological tracing, where the circle represents the location of the soma in SG, the red 
triangle the location of the axons in SG, and the blue rectangles the locations of the dendrites in all four layers. 
(A3) Hippocampome.org representation of the morphology, where a blue square with a vertical line (|) indicates 
dendritic presence in the outer two-thirds of the stratum moleculare (SMo) and the inner one-third of the stratum 
moleculare (SMi) and the hilus (H), a purple square with a cross (+) indicates both axonal and dendritic presence 
in SG, and a black dot (•) indicates the soma location in SG. (A4) Hippocampome.org numerical coding of the 
reconstructed neuron, where 2 indicates the presence of dendrites (in SMo, SMi, and H); and 3 indicates the 
presence of both axons and dendrites (in SG). (A5) Biomarker expressions, where a green triangle indicates 
positive expression for parvalbumin (PV), and blue triangles indicate negative expression for cholecystokinin 
(CCK) and vasoactive intestinal polypeptide (VIP). (A6) Firing pattern phenotype (non-adapting spiking (NASP); 
adapted from Figure 1B1 in Savanthrapadian et al., 2014). (A7) Membrane biophysics values (from Figure 3C 
and Table 1 in Lübke et al., 1998) recorded at 35–37°C. (B) Properties for a Hippocampome.org v2.0 neuron 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.90597
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neuron types. In particular, v1.8 calculated the synaptic probabilities and the numbers of contacts per 
connected pair (Tecuatl et al., 2021b; ​hippocampome.​org/​syn_​probabilities), and v1.4 data mined 
synaptic physiology (Moradi and Ascoli, 2020; ​hippocampome.​org/​synaptome), with conductance, 
time constant, and short-term plasticity values normalized by age, temperature, species, sex, and 

type. (B1) Morphology of a DG (i) 2210 Basket GRALDEN (NeuroMorpho.Org cell NMO_146159: Figure 4S3 in 
Vaden et al., 2020) with red axons in SG and blue dendrites in SMo and Smi. (B2) Schematic interpretation of 
the reconstruction (same symbols as in A2). (B3-4) Hippocampome.org representation and numerical coding of 
the morphology (same symbols as in A3-4). (B5) Biomarker expression. (B6) Firing pattern phenotype (silence 
preceded by transient stuttering (TSTUT.SLN); adapted from Figure S4 in Markwardt et al., 2011). (B7) Membrane 
biophysics values recorded at room temperature (from Figure 4D in Vaden et al., 2020), and at 22 °C (from Figure 
S4 in Markwardt et al., 2011); emboldened values were extracted from the firing pattern trace in B6. Membrane 
biophysics abbreviations: Vrest: resting membrane potential; Vthresh: firing threshold potential; APampl: action potential 
amplitude; APwidth: action potential width; Rin: input resistance; τm: membrane time constant; Max FR: maximum 
firing rate; fAHP: fast after-hyperpolarizing potential; sAHP: slow after-hyperpolarizing potential; Sag ratio: ratio of 
the steady-state membrane potential to the minimum membrane potential.

Figure 1 continued

Table 1. Added knowledge and functioning in Hippocampome.org releases v1.1–12.

Version Contribution Article

 � v1.1 •	 definitions for terms and phrases relevant to Hippocampome.org
Hamilton et al., 
2017a

 � v1.2

•	 clickable connectivity matrix
•	 interactive connectivity navigator Java applet
•	 searching by connectivity Rees et al., 2016

 � v1.3

•	 downloadable list of ABA predictions of marker expressions
•	 utility for viewing the effects of thresholds on ABA marker expres-

sion predictions
Hamilton et al., 
2017b

 � v1.4 •	 access to the synapse knowledge base
Moradi and Ascoli, 
2020

 � v1.5 •	 relational biomarker expression inferences White et al., 2020

 � v1.6

•	 firing pattern phenotypes
•	 clickable firing pattern matrix
•	 clickable firing pattern parameters matrix
•	 search by firing pattern
•	 search by firing pattern parameter

Komendantov et al., 
2019

 � v1.7

•	 Izhikevich models
•	 clickable Izhikevich model parameters matrix
•	 downloadable single-neuron parameter files
•	 downloadable single-neuron CARLSim4 simulation files
•	 ability to perform single-neuron simulations of the firing patterns

Venkadesh et al., 
2019

 � v1.8

•	 clickable/downloadable neurite lengths matrix
•	 clickable/downloadable somatic path distances matrix
•	 clickable/downloadable numbers of potential synapses matrix
•	 clickable/downloadable numbers of contacts matrix
•	 clickable/downloadable connection probabilities matrix Tecuatl et al., 2021b

 � v1.9 •	 clickable matrix for in vivo recordings
Sanchez-Aguilera 
et al., 2021

 � v1.10
•	 Cognome knowledge base of spiking neural circuit functions and 

network simulations of the hippocampal formation
Sutton and Ascoli, 
2021

 � v1.11 •	 clickable matrix of neuron type census values for rat and mouse Attili et al., 2022

 � v1.12

•	 clickable/downloadable matrices of synaptic physiology param-
eter values (g, τd, τr, τf, U) for combinations of species, sex, age, 
temperature, and recording mode Moradi et al., 2022

https://doi.org/10.7554/eLife.90597
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recording method in v1.12 (Moradi et al., 2022; ​hippocampome.​org/​synapse), leveraging machine 
learning and a phenomenological model (Tsodyks et al., 1998).

Expanding the catalog of neuron types and properties from ​
Hippocampome.​org v1.x to v2.0
The ​Hippocampome.​org framework to classify neuron types and collate their properties allows 
agile content updates as new data are continuously reported in the peer-reviewed literature. For 
example, the description of a parvalbumin-positive dentate gyrus GABAergic interneuron with 
axon contained in the granular layer and dendrites invading the molecular layer but not the hilus 
(Vaden et al., 2020) supported the definition of a new neuron type (Figure 1B1-5), referred to 
in ​Hippocampome.​org v2.0 as DG Basket GRALDEN (GRAnular Layer DENdrites) cell. Moreover, 
such an identification made it possible to unequivocally ascribe to this neuron type previously 

Figure 2. New neuron types added to Hippocampome.org v2.0. (A) Morphology encodings of the 56 new neuron types that extend the 124 types in 
Hippocampome.org v1.12. (Left) Increase in number of neuron types for each subregion. For the neuron type names, excitatory types (e) are in black 
font and inhibitory types (i) are in gray font. The 3–6 digit numbers encode the patterns of axons and dendrites in the layers of the home subregion 
of the neuron type: 0=no axons or dendrites, 1=only axons, 2=only dendrites, 3=both axons and dendrites. A “p” indicates that the neuron types 
projects across into other subregions. (B) Biomarker expressions of the neuron types. (C) Membrane biophysics values for the neuron types. Morphology 
abbreviations: DG: dentate gyrus; SMo: outer two-thirds of stratum moleculare; SMi: inner one-third of stratum moleculare; SG: stratum granulosum; 
H: hilus; SLM: stratum lacunosum-moleculare; SR: stratum radiatum; SL: stratum lucidum; SP: stratum pyramidale; SO: stratum oriens; Sub: subiculum; 
PL: polymorphic layer; EC: entorhinal cortex. Marker abbreviations: CB: calbindin; CR: calretinin; PV: parvalbumin; 5HT-3: serotonin receptor 3; CB1: 
cannabinoid receptor type 1; GABAa α1: GABA-a alpha 1 subunit; mGluR1a: metabotropic glutamate receptor 1 alpha; Mus2R: muscarinic type 2 
receptor; vGluT3: vesicular glutamate transporter 3; CCK: cholecystokinin; ENK: enkephalin; NPY: neuropeptide Y; SOM: somatostatin; VIP: vasoactive 
intestinal polypeptide; nNOS: neuronal nitric oxide synthase; RLN: reelin. Membrane biophysics abbreviations: see Figure 1.

https://doi.org/10.7554/eLife.90597
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reported electrophysiological characteristics (Figure 1B6-7; Markwardt et al., 2011). Comprehen-
sive literature mining following the same process expanded the ​Hippocampome.​org v2.0 catalog 
with 56 new neuron types across 5 of the 6 subregions of the hippocampal formation (Figure 2), 
including axonal-dendritic morphological patterns (Figure 2A), molecular expression (Figure 2B), 
and membrane biophysics (Figure 2C).

Besides identifying new neuron types, the ​Hippocampome.​org classification system also allows 
the ongoing accumulation of new properties onto existing neuron types as well as the reconciliation 
of fragmented descriptions from scientific publications (Figure 3). For instance, converging evidence 
indicates that Entorhinal Cortex Layer III Pyramidal cells have axonal projections in all layers of CA1 
(Deller et al., 1996; Takács et al., 2012), not just in stratum lacunosum-moleculare (SLM) as originally 
reported (Steward, 1976). ​Hippocampome.​org v2.0 captures both the new extracted knowledge 
and the corresponding experimental evidence (Figure 3A). The annotation of neuron type-specific 
firing phases relative to in vivo oscillations in v1.9 highlighted a clear distinction between Superficial 
and Deep CA1 Pyramidal cells (Sanchez-Aguilera et al., 2021). The present release enriches that 
description with accompanying novel molecular markers (Figure 3B1), membrane biophysics values 
(Figure 3B2), and differential connectivity with other subregions and neuron types (Figure 3B3). Simi-
larly, numerous additional firing patterns (Figure 3C) have been datamined for existing neuron types, 
such as adapting spiking in CA1 Oriens-Bistratified cells (Craig and McBain, 2015), non-adapting 
spiking in CA3 Basket Cholecystokinin-positive (CCK+) cells (Szabadics and Soltesz, 2009) or tran-
sient stuttering in CA1 Radiatum Giant cells (Kirson and Yaari, 2000). Notably, this includes a novel 
phenotype, transient stuttering followed by persistent stuttering (TSTUT.PSTUT) in CA1 Interneuron 
Specific O-targeting QuadD cells (Chamberland et al., 2010). With this report, we also release new 
differential connection probabilities to various CA1 neuron type targets from traditional CA3 Pyra-
midal cells vs. CA3c Pyramidal cells (Figure 3D) and from Dentate Gyrus Granule cells to mossy fiber 
CA3 targets (Table 2).

Quantifying the content and impact of ​Hippocampome.​org
Over the course of subsequent releases, we have measured ​Hippocampome.​org content using 
two metrics. The number of pieces of knowledge (PoK) tallies the distinct units of structured infor-
mation, such as the statements that Dentate Gyrus Granule cell axons invade the hilus or that 
CA1 Basket cells express parvalbumin. The pieces of evidence (PoE) are specific excerpts of peer 
reviewed publications (portion of text, figure, or table) or database entries (e.g. from the Allen 
Brain Atlas) always linked to each PoK. Both PoK and PoE continued to grow with successive 
releases of ​Hippocampome.​org (Figure 4A). Notably, the largest increases in PoK and PoE were 
related to synaptic properties (Moradi and Ascoli, 2020; Tecuatl et al., 2021b; Moradi et al., 
2022). Specifically, the data underlying synaptic physiology and connection probabilities were 
supported by over 23,000 PoE and yielded a remarkable 500,000 PoK thanks to the normalized 
collection of signaling and short-term plasticity modeling parameters for multiple combinations of 
experimental conditions.

To assess community usage of ​Hippocampome.​org, we tracked the number of citations of the 
original publication (Wheeler et al., 2015) and of the subsequent versions (Figure 4B), separating 
simple references from actual employment of information extracted from ​Hippocampome.​org for 
secondary analyses (Table 3). At the time of this writing, year 2021 proved to be the most prolific 
citation-wise; however, more than a third of the releases (v1.8–12) appeared after 2021 and most PoK 
were added in 2022, so usage could potentially accelerate further in coming years. An early appli-
cation of ​Hippocampome.​org-​sourced data used subthreshold biophysical measures, such as input 
resistance and membrane time constant, for multicompartmental models of signal integration and 
extracellular field generation (Gulyás et al., 2016). That study concluded that somatic and proximal 
dendritic intracellular recordings in pyramidal cells and calretinin-positive interneurons, in particular, 
do not capture a sizable portion of the synaptic inputs. As a recent usage example, another lab 
employed ​Hippocampome.​org as the primary information resource for neuron types in DG, CA3, and 
CA1 (Schumm et al., 2022). They discovered that mild traumatic brain injury, in the form of alterations 
in spike-timing-dependent plasticity, may affect the broadband power in CA3 and CA1 and the phase 
coherence between CA3 and CA1.

https://doi.org/10.7554/eLife.90597


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Wheeler et al. eLife 2023;13:RP90597. DOI: https://doi.org/10.7554/eLife.90597 � 8 of 27

Figure 3. Extensions to the neuronal properties of Hippocampome.org v1.x. (A) Additions to the axonal projections (circled in green) for two v1.0 
neuron types, based on information derived from Figure 2b in Deller et al., 1996. (B1) Biomarker expressions for the two CA1 Pyramidal sub-types 
added in Hippocampome.org v1.9 (Sanchez-Aguilera et al., 2021). (B2) Membrane biophysics values for the two sub-types. (B3) CA2 projects 
preferentially to the deep sublayer of CA1 (Kohara et al., 2014). More perisomatic parvalbumin-positive (PV+) GABAergic boutons are found at CA1 
Deep Pyramidal cells (Valero et al., 2015). CA1 Superficial Pyramidal cells form more frequent connections to PV + CA1 Basket cells, and PV + CA1 
Basket cells form significantly more perisomatic axon terminals on CA1 Deep Pyramidal cells (Lee et al., 2014). (C1) Additions to the firing pattern 
phenotypes of v1.0 neuron types. (C2a) Example of adapting spiking (ASP.) in a CA1 Oriens-Bistratified cell (adapted from Figure 4B in Craig and 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.90597
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From experimental data to biologically realistic computational models
Several key neural properties collated into ​Hippocampome.​org have gradually transformed the site 
from an organized repository of hippocampal knowledge to a computational framework for launching 
real-scale neural network simulations. Specifically, building a data-driven circuit model of a neural 
system (such as the hippocampal formation or portion thereof) requires four essential quantities 
besides the full list of neuron types (Bahmer et al., 2023; DePasquale et al., 2023): (i) the number of 
neurons in each type; (ii) the input-output response function for each neuron type; (iii) the connection 
probability for each pair of interacting neuron types; and (iv) the unitary synaptic signals for each pair 
of connected neuron types (Figure 5). Of those quantities, (i) and (ii) are neuron type properties, while 
(iii) and (iv) are properties of directional connections, defined as a distinct pair of a presynaptic and a 
postsynaptic neuron type. Moreover, (i) and (iii) are structural features, while (ii) and (iv) are electro-
physiological ones.

​Hippocampome.​org v1.11 provides estimates of the number of neurons in each neuron type (i) 
for both rats and mice (Figure 5A). These values were derived in a two-step process (Attili et al., 
2020): first, literature mining extracted suitable quantitative relations such as the cellular density in a 
given layer (Attili et al., 2019), the total count of neurons expressing a certain gene, or the fraction 
of sampled cells with a particular morphology; second, numerical optimization of the corresponding 
equations yielded a complete census for all neuron types. As of v1.7, ​Hippocampome.​org represents 

McBain, 2015). (C2b) Example of non-adapting spiking (NASP) in a CA3 Basket CCK + cell (adapted from Figure 3A in Szabadics and Soltesz, 2009). 
(C2c) Example of transient stuttering (TSTUT.) in a CA1 Radiatum Giant cell (reproduced from Figure 2Bb in Kirson and Yaari, 2000). (C2d) Example 
of transient stuttering followed by persistent stuttering (TSTUT.PSTUT) in a CA1 Interneuron Specific O-targeting QuadD (adapted from Figure 2D in 
Chamberland et al., 2010). (C2e) Example of silence preceded by transient stuttering (TSTUT.SLN) in a DG MOLAX cell (adapted from Figure S2c in 
Lee et al., 2016). (D) Synaptic probabilities for projecting connections and the corresponding number of contacts in brackets between the two CA3 
Pyramidal neuron types and a selection of CA1 neuron types. Morphology abbreviations: see Figure 2. Marker abbreviations: CB: calbindin; Astn2: 
astrotactin 2; Dcn: decorin; Gpc3: glypican 3; Grp: gastrin releasing peptide; Htr2c: 5-hydroxytryptamine receptor 2 c; Ndst4: N-deacetylase and N-
sulfotransferase 4; Nov: nephroblastoma overexpressed; Nr3c2: nuclear receptor subfamily 3 group C member 2; Nr4a1: nuclear receptor subfamily 
4 group A member 1; Prss12: serine protease 12; Prss23: serine protease 23; Wfs1: wolframin ER transmembrane glycoprotein. Membrane biophysics 
abbreviations: see Figure 1.

© 2000, Society for Neuroscience. Figure 3C2c is reproduced from Figure 2Bb from Kirson and Yaari, 2000, with permission from Society for 
Neuroscience. It is not covered by the CC-BY 4.0 licence and further reproduction of this panel would need permission from the copyright holder.

Figure 3 continued

Table 2. Probabilities of connection and number of contacts per connected pair from DG Granule 
cell to mossy fiber targets in CA3.

Postsynaptic neuron type Probability # contacts

CA3 Pyramidal 1.11E-04 1.08

CA3c Pyramidal 3.91E-04 1.31

CA3 Spiny Lucidum Dentate-Projecting 5.89E-04 1.69

CA3 Mossy Fiber-Associated ORDEN 4.44E-04 1.27

CA3 Basket 6.55E-04 1.50

CA3 Basket CCK+ 2.14E-04 1.16

CA3 Ivy 3.35E-04 1.29

CA3 Mossy Fiber-Associated 3.78E-05 1.04

CA3 LMR-Targeting 1.31E-04 1.21

CA3 Lucidum ORAX 2.62E-04 1.19

CA3 Lucidum-Radiatum 3.25E-04 1.13

CA3 Axo-Axonic 7.56E-04 1.50

CA3 Bistratified 8.25E-04 1.45

CA3 QuadD-LM 2.91E-04 1.25

https://doi.org/10.7554/eLife.90597
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the neuronal input-output response function (ii) 
in the form of single- and multi-compartment 
Izhikevich models (Figure  5B) fitted by evolu-
tionary algorithms to accurately reproduce the 
observed firing behavior of each neuron type 
(Venkadesh et al., 2018). For v1.8, the connection 
probability (iii) from one neuron type to another 
(Figure  5C) was computed from measurements 
of the appropriate axonal and dendritic lengths 
in each invaded subregion and layer (​hippocam-
pome.​org/​A-​D_​lengths). Additionally, users can 
also access the presynaptic and postsynaptic 
path distances from the respective somata (​
hippocampome.​org/​soma_​distances) and the 
number of contacts per connected neuron pairs 
(​hippocampome.​org/​num_​contacts). As for the 
synaptic communication between neurons (iv), ​
Hippocampome.​org v1.12 adopted the Tsodyks-
Pawelzik-Markram formulation, representing 
unitary signals and short-term plasticity with five 
constants for each directional pair of interacting 
neuron types: the synaptic conductance, decay 
time, recovery time, facilitation time, and the 
utilization ratio (Tsodyks et  al., 1998; Moradi 
et al., 2022). Once again, these parameters were 
fitted from the experimental data (Cutsuridis 
et al., 2018) employing deep learning to account 
for (and predict the effects of) numerous exper-
imental variables (Figure  5D), including species 
(rat vs. mouse), sex (male vs. female), age (young 
vs. adult), recording temperature (room vs. body), 
and clamping configuration (voltage vs. current).

The above description underscores the crucial 
interconnectedness of individually measured 
neuronal properties forming a cohesive whole 
in ​Hippocampome.​org (Figure  6). In particular, 

normalized simulation parameters (e.g. the sensitivity of recovery variable in Izhikevich models) 
are derived from quantitative experimental measurements, such as the spiking adaptation rate 
(Figure 6a). Those in turn are linked to an identified neuron type based on qualitative features, like 
calbindin expression or laminar distribution of axons and dendrites. In addition to enabling computa-
tional applications as described below, such integration also allows the meta-analysis of correlations 
between morphological features, molecular profiles, electrophysiological properties, and dynamic 
circuit functions. At the same time, several components of ​Hippocampome.​org are also synergistically 
linked to external community resources (Figure 6B). For example, each neuron page links out to all 
three-dimensional morphological reconstructions of the same cell type available in NeuroMorpho.Org 
(Ascoli et al., 2007), and selected data from NeuroMorpho.Org were used to compute axonal and 
dendritic length and connection probabilities. Each neuron page also links out to all computational 
models (including Hodgkin-Huxley, stochastic diffusion, mean firing rate, etc.) involving the same cell 
type on ModelDB (McDougal et al., 2017), while conversely ModelDB includes the Izhikevich models 
for all ​Hippocampome.​org neuron types. Moreover, simulation parameters from ​Hippocampome.​org 
are exportable to the CARLsim simulation environment (Nageswaran et  al., 2009), enabling fast 
execution of spiking neural network models optimized for GPUs. Furthermore, ​Hippocampome.​org 
harnessed data from the Allen Brain Atlas (Lein et al., 2007) to infer gene expression for principal 
neurons and cell densities for use in the neuron type census.

Figure 4. Trends in Hippocampome.org data, 
knowledge, citations, and usage since v1.0. (A) Increase 
in pieces of knowledge (blue) and evidence (red) with 
Hippocampome.org version number. (B) Number of 
citations, in which the publication is simply referenced 
(blue and gray portions), and usage cases, in which the 
citing work makes use of the information contained 
within the Hippocampome.org-related work (orange 
and yellow portions), by year.

https://doi.org/10.7554/eLife.90597
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To facilitate construction of spiking neural network simulations, ​Hippocampome.​org v2.0 also 
includes a new graphical user interface (GUI). With this GUI, users can download sets of simulation 
parameter values for arbitrarily selected neuron types, a subregion of interest, or the whole hippo-
campal formation (Figure 7). The sets consist of files for the instantiation of CARLsim simulations 
and a comma-separated values (CSV) spreadsheet of parameters for use in a different simulation 
environment of the user’s choice. For the convenience of users interested in simplified circuit models, ​
Hippocampome.​org informally ranks the importance of each neuron type in terms of the functional 
role it plays in the hippocampal circuitry from 1 (essential) to 5 (dispensable). For instance, a user may 
choose to simulate only the canonical, or rank 1, neuron types of the tri-synaptic circuit and entorhinal 
cortex, consisting of Dentate Gyrus Granule, CA3 Pyramidal, CA1 Pyramidal, and Medial Entorhinal 
Cortex Layer II Stellate cells. When ​Hippocampome.​org is missing a parameter value due to insuffi-
cient experimental evidence, the GUI exports a default value clearly indicating so in the downloadable 
files. For missing Izhikevich and synaptic signaling parameters, the default values are those provided 
by the CARLsim simulation environment. For missing synaptic probabilities, ​Hippocampome.​org 

Table 3. Examples of independent studies utilizing unique neuronal properties from 
Hippocampome.org v1.0.

Article Usage

Gulyás et al., 2016
Lists of subthreshold physiological properties for 
multicompartmental modeling

Skene and Grant, 2016 Catalog of CA1 Interneuron types

Faghihi and Moustafa, 2017
Diversity of hippocampal neuron types and 
morphological neuronal features

Puighermanal et al., 2017 Biomarker expression in CA1 interneurons

Depannemaecker et al., 2020
Parameter values for a model of synaptic 
neurotransmission

Ecker et al., 2020
Evidence that CA1 interneurons express multiple 
overlapping chemical markers

Hunsberger and Mynlieff, 2020 Cell identification based on firing properties

Schumm et al., 2020 Directionality of connections in the hippocampus

Aery Jones et al., 2021 Local connectivity of CA1 PV + interneurons

Ciarpella et al., 2021 Lists of hippocampal genes

Luo et al., 2021 Confirmation of multiple hippocampal neuron types

Mehta et al., 2021 Connectome model inspired by entorhinal-CA1 circuit

Obafemi et al., 2021
Principal channels of information processing are DG 
Granule cells and CA1-3 Pyramidal cells

Sáray et al., 2021 Membrane biophysics values for CA1 Pyramidal cells

Smith et al., 2021 Omni-directionality of axons of CA1 Pyramidal cells

Venkadesh and Van Horn, 2021
Example of a brain region’s mesoscopic structural 
connectivity

Walker et al., 2021
Reference to morphological and molecular characteristics 
of hippocampal principal cells and interneurons

Wynne et al., 2021 Example brain region with a variety of cell types

Kopsick et al., 2023
Utilize accumulated knowledge as the basis for 
simulations

Schumm et al., 2022
Hippocampal morphology, biomarker expression, 
connectivity, and typing of neurons

Zagrean et al., 2022
Diversity of hippocampal neuronal types and their 
properties

https://doi.org/10.7554/eLife.90597
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precomputes values averaged by connection type, namely excitatory-excitatory (0.0117), excitatory-
inhibitory (0.0237), inhibitory-excitatory (0.00684), and inhibitory-inhibitory (0.00423).

Potential applications to connectomic analyses and spiking neural 
networks simulations
​Hippocampome.​org v2.0 enables the multiscale analysis of circuit connectivity (Figure  8). At the 
highest echelon are the connections between hippocampal subregions, which are comprised of the 
mesoscopic level potential connectivity between individual neuron types (Figure  8A). Expanding, 
for example, upon the 147 connections between the dentate gyrus and CA3 neuron types reveals 
all the connections every individual neuron type forms with the other neuron types within and across 
the subregions (Figure 8B). Zooming in onto a single neuron type each from the dentate gyrus and 
CA3, it is possible to quantify the efferent and afferent connections with other neuron types from 
throughout the hippocampal formation in terms of synaptic probabilities and number of neuronal 

Figure 5. Transitional knowledge enabling Hippocampome.org to support spiking neural network simulations. Center: General diagram of the 
hippocampal formation and the number of cell types in Hippocampome.org v1.0. (A) Neuron type census. Top: General pipeline for obtaining 
cell counts for specific collections of neurons from the peer reviewed literature. Left: Neuron count proportions for the different subregions of the 
hippocampal formation. Insert: Normalized neuron counts for the inhibitory vs. excitatory balance by subregion. Right: Neuron counts for five identified 
CA2 neuron types (green schematic: excitatory, red schematic: inhibitory). (B) Neuron dynamics. Top: General pipeline for obtaining Izhikevich models to 
reproduce the firing pattern phenotypes from peer reviewed data. Right: Simulated firing pattern from a Sub CA1-Projecting Pyramidal cell in response 
to a 250 pA current injection pulse lasting 1 s. Izhikevich model parameters are shown in bold and the membrane biophysics properties are shown in 
regular font. (C) Synaptic probabilities. Left: General pipeline for obtaining the connection probabilities, number of contacts, and dendritic and axonal 
path lengths from 2D reconstructions. Middle: Example of a connectivity diagram of a DG Granule cell and two interneurons across the different parcels 
of DG. Probabilities of connection (mean ± SD) are shown in black, numbers of contacts in gray, dendritic path lengths in blue, and axonal lengths in 
red. Right top: Total number of connections within DG by connection type. Right bottom: Breakdown of the total number of connections by parcel 
and connection type. (D) Synaptic physiology. Left: General pipeline for obtaining normalized synaptic parameters from paired recordings with a TPM 
model. Right top: Digitized synaptic data between two EC LII-III Pyramidal-Tripolar cells. Experimental data are shown in blue, initiation synaptic points 
in pink, model data in orange, and corrected data in green. Right bottom: Simulated modeling conditions, electrophysiological parameters, and TPM 
parameters. Abbreviations by panel: (A) PC: Pyramidal cell; BC: Basket cell; WA BC: Wide-Arbor Basket cell; BiC: Bistratified cell; Exc: excitatory; Inh: 
inhibitory. (B) Vr: resting membrane potential; Vt: firing threshold potential; Vpeak: spike cutoff potential; Vmin: post-spike reset potential. (C) E-E: excitatory-
excitatory; E-I: excitatory-inhibitory; I-I: inhibitory-inhibitory; I-E: inhibitory-excitatory. (D) Vh: holding potential; τr: recovery time constant; τf: facilitation 
time constant; g: conductance; τd: deactivation time constant; U: utilization ratio.

https://doi.org/10.7554/eLife.90597
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partners (Figure 8C). Diving even deeper into the isolated connection between two neuron types, 
such as the mossy fiber contacts from Dentate Gyrus Granule cells to CA3 Basket cells, expands the 
connectivity analysis to several physiological factors affecting neuronal communication: the subcel-
lular location of the synaptic contact (e.g. soma in stratum pyramidale and proximal dendrites in 
stratum lucidum), the transfer function (product of synaptic conductance and decay time constant), 
the in vivo firing rate of the presynaptic neuron type, and the relationship between input current and 
resulting output spiking frequency (F-I curve) of the post-synaptic neuron (Figure 8D).

Release of v2.0 makes the original objective of ​Hippocampome.​org, to enable data-driven spiking 
neural network simulations of rodent hippocampal circuits (Ascoli, 2010), finally achievable. An 
ongoing line of research in this regard focuses on a real-scale mouse model of CA3, with the eventual 

Figure 6. Hippocampome.org data provenance. (A) The internal web of constituent neuron-type properties (black 
thin arrows) that ultimately contribute to the instantiation of spiking neural simulations (orange thick arrows). 
Properties described qualitatively, such as morphological presence of axons in a layer or molecular biomarker 
expressions, are in black font. Properties described by quantitative values, such as membrane biophysics and 
neurite lengths, are in red font. Properties with v2.0 updated information, such as connectivity and firing pattern 
phenotypes, are depicted by blue hexagons, and v1.x information, such as Izhikevich modeling parameter values 
and neuron-type census values, is visualized by black circles. (B) External resources that contribute data to and 
receive data from Hippocampome.org (the ModelDB logo has been modified from the original).

https://doi.org/10.7554/eLife.90597
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goal of investigating the cellular mechanisms of pattern completion. Initial work included excitatory 
Pyramidal cells and seven main inhibitory interneuron types: Axo-axonic cells (AAC), Basket cells 
(BC), Basket Cholecystokinin-positive cells (BC CCK+), Bistratified cells (BiC), Ivy cells, Mossy Fiber-
Associated ORDEN (MFA ORDEN) cells, and QuadD-LM (QuadD) cells (Kopsick et al., 2023). Use of ​
Hippocampome.​org parameters for cell census, Izhikevich models, synaptic signals, and connection 
probabilities resulted in robust, realistic, rhythmic resting state activity for all neuron types (Figure 9A). 
Building off the constructed network of CA3, we seek to understand how the neuron type circuit may 
allow for the formation of cell assemblies that correspond to distinct memories. Additionally, we will 
evaluate the network’s pattern completion capabilities when presented with degraded input patterns 
(Guzman et al., 2021). Furthermore, associations between memories in CA3 may be encoded by 
cells shared between cell assemblies (Gastaldi et al., 2021). Therefore, we will investigate how cell 
assembly size and overlap may impact memory storage and recall and the role of different neuron 
types in associating cell assemblies with one another.

Another pursuit using a spiking neural network seeks to replicate the spatial representation in grid 
cells (Sargolini et al., 2006), modeled utilizing ​Hippocampome.​org Medial Entorhinal Cortex Layer II 
Stellate cells (SC), and supported by various GABAergic interneuron types (Dhillon and Jones, 2000): 
Axo-axonic (AA), Basket cells (BC), and Entorhinal Cortex Layer II Basket-Multipolar cells (BC MP). 
This study aims to reproduce the in vivo firing of these neuron types as a virtual rodent explores an 
open field (Figure 9B). Different theories offer potential neural mechanisms underlying the grid cell 
phenomenon, but it remains challenging to test them comprehensively for anatomical and electrophys-
iological consistency with experimental data (Sutton and Ascoli, 2021; Zilli, 2012). Our work, which 
is in preparation for publication, demonstrates that a spiking neural network implementation of one 
such theory, the continuous attractor model, generates grid field activity highly compatible with that 
measured in behaving animals when utilizing ​Hippocampome.​org model parameters. While prelim-
inary, these illustrative examples highlight the potential of ​Hippocampome.​org enabled data-driven 

Figure 7. CARLsim simulation parameters selection and file generation interface. (A) The user chooses which subset of the available neuron types 
to include in the generated downloadable parameter file. Neuron types can be selected (check boxes and gray highlights) either individually or 
by groupings, such as by subregion and/or by importance rank. (B) Representative user selection. (C) Downloadable neuron-level parameters. 
(D) Downloadable connection-level parameters.

https://doi.org/10.7554/eLife.90597
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Figure 8. Hierarchy of neuronal connectivity in Hippocampome.org. (A) Subregional connectivity, where the number of connections between 
subregions is shown, and the node size is proportional to the number of neuron types in each subregion. (B) The reciprocal connectivity between DG 
and CA3 neuron types consists of 147 connections. The node size is proportional to the census size for each neuron type. (C) The full connectivity 
involving DG Granule and CA3 Basket neuron types consists of 98 connections. The node size is proportional to the census size for each neuron type, 
and the thicknesses of the connecting arrows are proportional to the synaptic probability. The dashed lines are connections for which the synaptic 
probability has been approximated based on the means of known values. (D) The electrophysiological connection between a DG Granule cell and a 

Figure 8 continued on next page
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spiking neural network simulations to investigate computational theories of cognitive functions in 
hippocampal circuits at the level of biologically detailed mechanisms.

Discussion
​Hippocampome.​org, through its continuous updates and conspicuous usage, has established itself 
prominently amongst other readily accessible, evidence-based, expert-curated bioscience public 
resources of note, such as FlyBase for Drosophila molecular biology (The FlyBase Consortium, 1994; 
dos Santos et  al., 2015), WormBase for nematode genomics (Stein et  al., 2001), the Blue Brain 
Project for somatosensory cortex (Markram, 2006), SynGO for synaptic functions (Koopmans et al., 
2019), and RegenBase for spinal cord injury biology (Callahan et al., 2016). ​Hippocampome.​org has 
evolved from being a storehouse of information in v1.0–1.12, along the lines of FlyBase, WormBase, 
SynGO, and RegenBase, to a platform in v2.0 for launching detailed simulations of the hippocampal 
formation, in the vein of the Blue Brain Project. However, ​Hippocampome.​org distinguishes itself in its 
reliance wholly on already published data and the more tailored focus on a single portion of the brain.

The foundation for ​Hippocampome.​org has always been the data that are published in the litera-
ture. Although a certain level of interpretation is always necessary to make the data machine readable 
and suitable for database incorporation, data inclusion does not depend on how the data are modeled. 
Nevertheless, some of the simulation-ready parameters now also included in ​Hippocampome.​org 
are indeed the result of modeling, such as the neuronal input/output functions (Izhikevich model; 
Izhikevich, 2003) and the unitary synaptic values (Tsodyks-Pawelzik-Markram model; Tsodyks et al., 
1998). Other simulation-ready parameters are the result of specific analysis approaches, including the 
connection probabilities (axonal-dendritic spatial overlaps) and the neuron type census (numerical 
optimization of all constraints).

The growth of ​Hippocampome.​org since the initial release of v1.0 (Wheeler et  al., 2015) has 
been prodigious. To date, the site has been visited over 136,000 times with over 33,000 unique 
visits, and the original publication has been cited more than hundred times. Each successive release 
of ​Hippocampome.​org v1.X has added new dimensions of knowledge and/or functionality and has 
been building toward assembling all the components necessary to produce real-scale computational 
models of the rodent hippocampal formation. The culmination of all this work is the release of ​Hippo-
campome.​org v2.0, which introduces a framework for launching computer simulations directly from 
the accumulated knowledge. However, achieving simulations does not mark the end point for this 
project, because ​Hippocampome.​org will continue to aggregate new knowledge as it is published 
in the peer-reviewed literature. Gradually, the focus of this resource will shift from development to 
exploitation through the in silico emulation of complex dynamics observed in vivo and in vitro, with 
the goal of shedding light on the underlying synaptic-level computational mechanisms.

The creation of real-scale spiking neural network models of the hippocampal formation and its 
subregions can foster biologically realistic, data-driven, mesoscopic simulations of cognitive function 
and dysfunction (Sutton and Ascoli, 2021). For instance, simulations with ​Hippocampome.​org’s real-
scale model of the dentate gyrus can build on previous network models of epileptogenesis (Dyhrfjeld-
Johnsen et al., 2007) by providing further clarity to the roles of all documented neuron types and 
their corresponding potential connections in seizure initiation and propagation. A real-scale model of 
CA1 can aim to further the insights into the spatiotemporal dynamics of the circuit during theta oscil-
lations (Bezaire et al., 2016; Navas-Olive et al., 2020; Romani et al., 2023). Furthermore, network 
models involving multiple subregions can open new vistas on unexplored territories, such as the use 
of real-scale models of the entorhinal cortex and CA2 to simulate the neuron- and connection-type 
specific mechanisms of social memory (Lopez-Rojas et al., 2022). Moreover, open source sharing of 
the real-scale models replicating those functions (Gleeson et al., 2017) will facilitate cross-talk within 

CA3 Basket cell. The in vivo firing rate is shown for the presynaptic neuron. The transfer function between the two neuron types is proportional to the 
synaptic conductance times the single-exponential decay time constant (g · τd; rat, male, P56, 32 °C, current clamp). The frequency-current (F–I) curve 
of the single-compartment Izhikevich model of a CA3 Basket cell was obtained with 10 pA current steps. Inset: Izhikevich model firing pattern of a CA3 
Basket cell simulated with 430 pA of current applied for 500 ms (vertical and horizontal scale bars, respectively).

Figure 8 continued
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Figure 9. Spiking neural network simulations. (A) Full-scale CA3 model. (A1) Neuron type connectivity schematic. 
(A2) Theta (4–12 Hz; top), Gamma (25–100 Hz; middle), and Sharp-Wave Ripple (150–200 Hz; bottom) filtered 
local field potentials from 175ms of the simulation. (A3) Raster plot of 500 Pyramidal cells and 50 interneurons of 
each type (top), and representative voltage traces for each neuron type (bottom) during the same 175ms of the 

Figure 9 continued on next page

https://doi.org/10.7554/eLife.90597


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience

Wheeler et al. eLife 2023;13:RP90597. DOI: https://doi.org/10.7554/eLife.90597 � 18 of 27

the systems neuroscience community to better understand the role of distinct neuron types in hippo-
campal function.

A notable aspect of ​Hippocampome.​org is that all freely downloadable model parameters are 
directly linked to the specific peer-reviewed empirical evidence from which they were derived. Thus, if 
users disagree with a specific interpretation, or are not fully convinced by an individual experimental 
measurement, they maintain control in selecting the information sources. Conversely, researchers can 
choose to reuse the collated experimental data to constrain different computational models they may 
prefer, such as adopting the Hodgkin-Huxley formalism instead of Izhikevich dynamics. At the same 
time, ​Hippocampome.​org is not only a collection of model parameters and corresponding empirical 
evidence, but it also provides an opportunity to unearth knowledge gaps, as facilitated by an intuitive 
search functionality (​hippocampome.​org/​find-​neuron). Missing data can serve to guide the design of 
targeted ‘low hanging fruit’ experiments or to generate new hypotheses.

Another important element of ​Hippocampome.​org is the careful annotation of the experimental 
metadata for each piece of evidence, including the species (rat or mouse), sex (male or female), age 
(young or adult) as well as any and all reported details that could affect the recorded neuronal prop-
erty. Examples of these confounding factors abound especially for in vitro electrophysiological data, 
such as the exact chemical composition of the solution in the electrode and in the bath, slice thick-
ness and orientation, clamping configuration, recording temperature, and animal weight. Because 
these covariates, when reported by the original investigators, are also stored in the database, it is 
possible to account for them in subsequent analyses and simulations. ​Hippocampome.​org therefore 
constitutes a considerably rich one-stop resource to compare and ‘translate’ key parameters, such as 
the amplitude and duration of a synaptic signal between two specifically identified neuron types, for 
instance, from 14-day-old male rat at 22 °C in voltage clamp to a 56-day-old female mouse at 32 °C in 
current clamp. When fed into spiking neural network simulations, these differential parameter values 
can foster intuition while attempting to reconcile neuroscience theories and observations.

​Hippocampome.​org is yet poised for the onset of an information deluge from current and future 
big science projects, which will need to be integrated into a complete cohesive picture (de la Prida 
and Ascoli, 2021). Although morphological identification will continue to play a fundamental role in 
defining neuron types and circuit connectivity, the manner in which knowledge is cross-referenced in 
this resource will allow its effective linkage to rapidly accumulating molecular and imaging data. The 
ongoing spatial transcriptomics revolution is already transforming the frontiers of cellular neuro-
science, often using the hippocampus as its favorite sandbox (Lein et al., 2017; Yao et al., 2021; 
Zeisel et al., 2015). Single-cell transcriptomics via scRNAseq can bolster the current morphological 
information by offering distinct transcription factor codes for existing neuron types and assist in 
defining new ones (Cembrowski and Spruston, 2019; Winnubst et al., 2020; Yuste et al., 2020). 
From the functional side, optical imaging via genetically encoded voltage indicators (Knöpfel and 
Song, 2019) will provide in vivo voltage traces for defined neuron types that can greatly enhance 
the repertoire of firing pattern phenotypes to utilize in simulations (Adam et al., 2019). Data-driven 
computational models can provide a useful conceptual bridge between molecular sequencing and 
activity imaging by investigating the effects of specific subcellular distributions of voltage- and 
ligand-gated conductances on neuronal excitability (Migliore et al., 2018). With the converging 
maturation of these young techniques and the advent of others yet on the horizon, ​Hippocam-
pome.​org will be able to integrate multidimensional knowledge on the solid foundation of neuronal 
classification.

simulation in (A2). (B) A mock up of a spatial representation through grid cell firing. (B1) Neuron type connectivity 
schematic. (B2) Simulated animal trajectory (black) with red dots indicating the firing of a neuron in those locations. 
(B3) Raster plot of 300 neurons from each type (top), and representative voltage traces for each neuron type. 
Abbreviations by panel: (A) PC: Pyramidal cell; BiC: Bistratified cell; QuadD: QuadD-LM cell; AAC: Axo-axonic cell; 
MFA ORDEN: Mossy Fiber-Associated ORDEN cell; BC CCK+: cholecystokinin-positive Basket cell. (B) SC: Medial 
Entorhinal Cortex Layer II Stellate cell; PC: Entorhinal Cortex Layer III Pyramidal cell; MP PC: Entorhinal Cortex 
Layer I-II Multipolar Pyramidal cell; AA: Entorhinal Cortex Layer II Axo-axonic; BC: Medial Entorhinal Cortex Layer II 
Basket; BC MP: Entorhinal Cortex Layer II Basket-Multipolar Interneuron.

Figure 9 continued
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Materials and methods
​Hippocampome.​org v2.0 vs. the legacy status of v1.12
With the release of v2.0 of ​Hippocampome.​org upon publication of this article, v1.12 of the website 
will no longer be updated and will transition to legacy status (​hippocampome.​org/​legacy_​v1). In this 
way, users may avail themselves of the full benefits of the new content and functionality of v2.0, while 
maintaining access to reference content as published through v1.12. In the near term, neuron types 
new to v2.0 are tagged with an asterisk on the web site to differentiate them from v1.X types.

Linking neuron types to NeuroMorpho.Org morphological 
reconstructions
​Hippocampome.​org neuron types are regularly linked to appropriately identified digital reconstruc-
tions of neuronal morphology from NeuroMorpho.Org (Ascoli et al., 2007). Identification of suitable 
reconstructions with individual neuron types depends on the correspondence of dendritic and axonal 
locations across hippocampal subregions and layers, as they appear in the reference publication. 
Alternatively, direct cell typing by the authors in the reference publication text is accepted as evidence 
for canonical (principal cell) types, such as CA1 Pyramidal cells or Dentate Gyrus Granule cells. Recon-
structions are not linked to a neuron type if the experimental conditions are inconsistent with the 
inclusion criteria of ​Hippocampome.​org, as in the case of cell cultures or embryonic development. 
Lack of either axonal or dendritic tracing also disqualifies reconstructions of non-canonical neurons 
from being linked.

Connections from DG Granule cells to CA3
To compute estimates of connection probabilities and numbers of contacts per connected pair for the 
rat mossy fiber-CA3 circuit, we used previously calculated average convex hull volume (Tecuatl et al., 
2021b) and several measurements from a seminal anatomical study (Acsády et al., 1998): DG Granule 
cell axonal length within CA3 (3,236 µm), inter-bouton distances for mossy boutons on Pyramidal 
cell targets in CA3c (162 µm) and in the rest of CA3 (284 µm), and inter-bouton distances for en-pas-
sant and filipodia boutons onto CA3 interneurons (67.4 µm, considering that 48 interneurons can be 
contacted by a single GC). Given that the mossy fibers innervate mainly CA3 SL, and due to the lack 
of information regarding the exact proportion of axons innervating CA3 SP, these calculations assume 
that GCs only innervate SL. The probabilities of connection and numbers of contacts per connected 
pair (Table 2) are estimated as previously described (Tecuatl et al., 2021a) utilizing the CA3 dendritic 
lengths reported in ​Hippocampome.​org.

Connections from CA3 and CA3c Pyramidal cells to CA1
To compute estimates of connection probabilities and numbers of contacts per connected pair 
for the rat Schaffer collaterals-CA1 circuit, we utilized previously reported values for the distinct 
axonal innervation patterns (Ropireddy et  al., 2011; Sik et  al., 1993; Wittner et  al., 2007) in 
CA1 stratum radiatum (SR) and stratum oriens (SO) from CA3 Pyramidal cells (27.5% of total axonal 
length: 64% to SR, 15% to stratum pyramidale (SP), 21% to SO) and CA3c Pyramidal cells (64.1% of 
total axonal length: 94% to SR, 3% to SP, 3% to SO). In addition, we used the average inter-bouton 
distance reported for the Schaffer collaterals (Li et  al., 1994) in SR (4.47  µm) and SO (5.8  µm). 
Total axonal length was measured with L-Measure (Scorcioni et al., 2008) from three NeuroMorpho.
Org reconstructions for CA3c (NMO_00187, NMO_00191) and CA3b (NMO_00931). We extracted 
parcel-specific convex hull volumes from Janelia MouseLight (Winnubst et  al., 2019) Pyramidal 
cell reconstructions (AA0304, AA0307, AA0420, AA0960, AA0997, AA0999, AA1548) mapped to 
the 2022 version of the Allen Institute Common Coordinate Framework (CCF). The probabilities 
of connection and number of contacts per connected pair were estimated as previously described 
(Tecuatl et  al., 2021a) using CA1 dendritic lengths from ​Hippocampome.​org. We used separate 
values for inter-bouton distances in CA1 SR for CA3c Pyramidal cells (5.5 µm: Wittner et al., 2007) 
and CA3 Pyramidal cells (3.7 µm: Shepherd et al., 2019; 4.4 µm: Li et al., 1994; 4.29 µm: Sik et al., 
1993; averaged as 4.1 µm).

https://doi.org/10.7554/eLife.90597
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Constructing ​Hippocampome.​org spiking neural simulations
​Hippocampome.​org utilizes CARLsim (Nageswaran et al., 2009) as its default simulation environ-
ment (https://sites.socsci.uci.edu/~jkrichma/CARLsim/). CARLsim is a graphics processing unit (GPU)-
accelerated library of functions for simulating spiking neural networks based on Izhikevich neuron 
models (Izhikevich, 2003). We selected CARLsim due to this ability to run on collections of GPUs, as 
the power of a GPU supercomputer is needed to simulate the millions of neurons that comprise a full-
scale spiking neural network simulation of the complete hippocampal formation. The current version 
is CARLsim 6 (Niedermeier et al., 2022), and the most up-to-date ​Hippocampome.​org-​optimized 
code base, including features not yet released in the main CARLsim version, can be found at ​hippo-
campome.​org/​CARLsim (Kopsick et al., 2023).

Web portal, database, and source code
​Hippocampome.​org runs on current versions of Chrome, Safari, and Edge web browsers, and it is 
deployed on a CentOS server running Apache. The website runs off of PHP from a MySQL database. 
The code for ​Hippocampome.​org v2.0 is available open source at GitHub (copy archived at Wheeler 
et al., 2023). This includes all code for displaying the pages of the website, all scripts for importing 
spreadsheets into the database, code for using evolutionary algorithms to optimize Izhikevich model 
parameters, code for the graph theory analysis of the potential connectome, code for the implemen-
tation of the firing pattern classification algorithm, and code for analyzing network simulations in 
CARLsim.
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