
Onysk et al. eLife 2023;12:RP90634. DOI: https://doi.org/10.7554/eLife.90634  1 of 35

Statistical learning shapes pain 
perception and prediction independently 
of external cues
Jakub Onysk1,2*, Nicholas Gregory1, Mia Whitefield1, Maeghal Jain1, 
Georgia Turner1,3, Ben Seymour4,5, Flavia Mancini1*

1Computational and Biological Learning Unit, Department of Engineering, University 
of Cambridge, Cambridge, United Kingdom; 2Applied Computational Psychiatry 
Lab, Max Planck Centre for Computational Psychiatry and Ageing Research, Queen 
Square Institute of Neurology and Mental Health Neuroscience Department, Division 
of Psychiatry, University College London, London, United Kingdom; 3MRC Cognition 
and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; 
4Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, Headington, 
Oxford, United Kingdom; 5Center for Information and Neural Networks (CiNet), 
Osaka, Japan

Abstract The placebo and nocebo effects highlight the importance of expectations in modulating 
pain perception, but in everyday life we don’t need an external source of information to form expec-
tations about pain. The brain can learn to predict pain in a more fundamental way, simply by experi-
encing fluctuating, non- random streams of noxious inputs, and extracting their temporal regularities. 
This process is called statistical learning. Here, we address a key open question: does statistical 
learning modulate pain perception? We asked 27 participants to both rate and predict pain intensity 
levels in sequences of fluctuating heat pain. Using a computational approach, we show that prob-
abilistic expectations and confidence were used to weigh pain perception and prediction. As such, 
this study goes beyond well- established conditioning paradigms associating non- pain cues with pain 
outcomes, and shows that statistical learning itself shapes pain experience. This finding opens a new 
path of research into the brain mechanisms of pain regulation, with relevance to chronic pain where 
it may be dysfunctional.

eLife assessment
This study presents a valuable insight into a computational mechanism of pain perception. 
The evidence supporting the authors' claims is compelling. The work will be of interest to pain 
researchers working on computational models and cognitive mechanisms of pain in a Bayesian 
framework.

Introduction
Clinical pain typically varies over time; in most pain states, the brain receives a stream of volatile and 
noisy noxious signals, which are also auto- correlated in time. The temporal structure of these signals 
is important, because the human brain has evolved the exceptional ability to extract regularities from 
streams of auto- correlated sensory signals, a process called statistical learning (Dehaene et al., 2015; 
Schapiro and Turk- Browne, 2015; Fiser and Lengyel, 2019; Meyniel et  al., 2016; Kourtzi and 
Welchman, 2019; Sherman et al., 2020; Turk- Browne et al., 2009). In the context of pain, statistical 
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learning can allow the brain to predict future pain, which is crucial for orienting behaviour and maxi-
mising well- being (Mancini et  al., 2022; Mulders et  al., 2023). Statistical learning might also be 
fundamental to the ability of the nervous system to endogenously regulate pain. Indeed, statistical 
learning generates predictions about forthcoming pain. We already know that pain expectations can 
modulate pain levels by gating the reciprocal transmission of neural signals between the brain and 
spinal cord, as shown by previous work on placebo and nocebo effects (Tracey, 2010; Tinnermann 
et al., 2017; Eippert et al., 2009; Geuter and Büchel, 2013; Fields, 2018).

By using temporal sequences of noxious inputs, we have previously shown that the pain system 
supports the statistical learning of the basic rate of getting pain by engaging both somatosensory and 
supramodal cortical regions (Mancini et al., 2022). Specifically, both sensorimotor cortical regions 
and the ventral striatum encode probabilistic predictions about pain intensity, which are updated as 
a function of learning by engaging parietal and prefrontal regions. According to a Bayesian inference 
framework, both the predictive inference and its confidence should, in principle, modulate the neural 
response to noxious inputs and affect perception, as a function of learning. In support of this conjec-
ture, there is evidence that the confidence of probabilistic pain predictions modulates the cortical 
response to pain (Mulders et al., 2023). The relationship is inverse: the lower the confidence, the 
higher is the early cortical response to noxious inputs (and vice versa), as measured by EEG. This is 
expected based on Bayesian inference theory: when confidence is low, the brain relies less on his prior 
beliefs and more on sensory evidence to respond to the input. Bayesian inference theory also predicts 
that prior expectations and their confidence scale perception (Knill and Richards, 1996). Thus, we 
hypothesise that the predictions generated by learning the statistics of noxious inputs in dynamically 
evolving sequences of stimuli modulate the perception of forthcoming inputs.

Previously, it was found that pain perception is strongly influenced by probabilistic expectations 
as defined by a cue that predicts high or low pain (Jepma et al., 2018). In contrast to such cue para-
digm, the primary aim of our experiment was to determine whether the expectations participants hold 
about the sequence itself inform their perceptual beliefs about the intensity of the stimuli. To that end, 
we recruited 27 healthy participants to complete a psycho- physical experiment where we delivered 
four different, 80- trial- long sequences of evolving thermal stimuli, with four levels of temporal regu-
larity. On each trial, a 2 s thermal stimulus was applied, following which participants were asked to 
either rate their perception of the intensity (Figure 1A) or to predict the intensity of the next stimulus 
in the sequence (Figure 1B). Participants also reported their response confidence.

We contrasted four models of statistical learning, which varied according to the inference strategy 
used (i.e. optimal Bayesian inference or a heuristic) and the role of expectations on perception. All 
models used confidence ratings to weigh the inference. We anticipate that probabilistic learning 
weighted by confidence and expectations modulates pain perception. This provides behavioural 
evidence for a link between learning and endogenous pain regulation. One reason why this is important 
is that it might help understand individual differences in the ability to endogenously regulate pain. 
This is particularly relevant for chronic pain, given that endogenous pain regulation can be dysfunc-
tional in several chronic pain conditions (Bushnell et al., 2013; Bruehl et al., 1999; Yarnitsky, 2015; 
King et  al., 2009; Bannister and Dickenson, 2017), even before chronic pain develops (Tracey, 
2016). Although there is ample evidence for changes in the functional anatomy and connectivity of 
endogenous pain modulatory systems in chronic pain, their computational mechanisms are poorly 
understood.

Results
Model-naive performance
Prior to modelling, we first checked whether participant’s performance in the task was affected by the 
level of temporal regularity, i.e., the sequence condition. We varied the level of volatility and stochas-
ticity across blocks (i.e. conditions), whilst we fixed their overall level within each block; the level of 
volatility was defined by the number of trials until the mean intensity level changes. The stochasticity is 
the additional noise that is added on each trial to the underlying mean, often referred to as the obser-
vation noise. The changes were often subtle and participants were not informed when they happened. 
We set two levels (low/high) of each type of uncertainty, achieving a 2×2 factorial design, with the 
order of conditions randomised across participants. A set of four example sequences of thermal 
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intensities delivered to one of the participants can be found in Figure 1C, alongside their ratings of 
perception and predictions. Additionally, example confidence ratings for each type of response are 
plotted in Figure 1D. Appendix 1—figures 2 and 3 show the plots of each participant’s responses 
superimposed onto the sequences of noxious inputs.

As a measure of performance, we calculated the root mean square error (RMSE) of participants 
responses (ratings and predictions) compared to the normative noxious input for each condition as 
in Figure 2 (see also Materials and methods). The lower the RMSE, the more accurate participants’ 
responses are. Performance in different conditions was analysed with a repeated measures ANOVA, 
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Figure 1. Task design. On each trial, each participant received a thermal stimulus lasting 2s from a sequence of intensities. This was followed by a 
perception (A) or a prediction (B) input screen, where the y- axis indicates the level of perceived/predicted intensity (0–100) centred around participant’s 
pain threshold, and the x- axis indicates the level of confidence in one’s perception (0–1). The inter- stimulus interval (ISI; black screen) lasted 2.5s 
(trial example in C). (D) Example intensity sequences are plotted in green, participant’s perception and prediction responses are in red and black, 
respectively. (E) Participant’s confidence rating for perception (red) and prediction (black) trials.
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whose results are reported in full in Appendix 1—table 1. Although volatility did not affect rating 
accuracy ( F

(
1, 26

)
= 0.96, p = 0.336, η2

p = 0.036 ), we found a two- way interaction between the level 
of stochasticity of the sequence (low, high) and the type of rating provided (perceived intensity vs. 
prediction) ( F

(
1, 26

)
= 29.842, p < 0.001, η2

p = 0.534 ). We followed up this interaction in post hoc 
comparisons, as reported in Appendix 1—table 2. The performance score differences between all 
the pairs of stochasticity and response type interactions were significant, apart from the perception 
ratings in the stochastic environment as compared with perception and prediction performance in the 
low stochastic setting. Intuitively, the RMSE score analysis revealed an overall trend of participants 
performing worse on the prediction task, in particular when the level of stochasticity is high.

Modelling strategy
Our models were selected a priori, following the modelling strategy from Jepma et al., 2018, and 
hence considered the same set of core models for clear extension of the analysis to our non- cue 
paradigm. The key question for us was whether expectations were used to weigh the behavioural 
estimates during sequence learning. Therefore, we compared Bayesian and non- Bayesian models 
of sequential learning that weighted their ratings based on prior expectations versus two corre-
sponding models that assumed perfect perception (i.e. not weighted by prior beliefs). As a baseline, 
we included a random response model (please see Materials and methods for a formal treatment of 
the computational models).

According to an optimal Bayesian inference strategy, on each trial, participants update their beliefs 
about the feature of interest (thermal stimuli) based on probabilistic inference, maintaining a full 
posterior distribution over its values (Jepma et al., 2018; Särkkä, 2013). Operating within a Bayesian 
paradigm, participants are assumed to track and, following new information, update both the mean 
of the sequence of interest and the uncertainty around it (Hoskin et al., 2019). In most cases, such 
inference makes an assumption about environmental dynamics. For example, a common assumption 
is that the underlying mean (a hidden/latent state) evolves linearly according to a Gaussian random 
walk, with the rate of this evolution defined by the the variance of this Gaussian walk (volatility). 
The observed value is then drawn from another Gaussian with that mean, which has some observa-
tion noise (stochasticity). In this case, the observer can infer the latent states through the process of 
Bayesian filtering (Särkkä, 2013), using the Kalman filter (KF) algorithm (Kalman, 1960; Figure 3B).

Sequence learning can also be captured by a heuristic to the Bayesian inference, i.e., a simple rein-
forcement learning (RL) rule. Here, participants maintain and update a point estimate of the expected 
value of the sequence in an adaptive manner, within a non- stationary environment. RL explicitly 
involves correcting the tracked mean of the sequence proportionally to a trial- by- trial prediction error 
- a difference between the expected and actual value of the sequence (Sutton and Barto, 2018; 
Figure  3A). Importantly, RL agents do not assume any specific dynamics of the environment and 
hence are considered model- free.

Figure 2. Participant’s model- naive performance in the task. Violin plots of participant root mean square error (RMSE) for each condition for A: rating 
and B: prediction responses as compared with the input. Lower and upper hinges correspond to the first and third quartiles of partipants’ errors (the 
upper/lower whisker extends from the hinge to the largest/smallest value no further than 1.5 * ”Interquartile range” from the hinge); the line in the box 
corresponds to the median. Each condition has N=27 particpants.
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Both models perform a form of error correction about the underlying sequence. The rate at which 
this occurs is captured by the learning rate  α ∈

[
0, 1

]
  element. The higher the learning rate, the faster 

participants update their beliefs about the sequence after each observation. For the RL model, the 
learning rate α is a free parameter that is constant across the trials. On the other hand, the learning 
rate in the KF model  αt  (known as the Kalman gain) is calculated on every trial. It depends on partici-
pants’ trial- wise belief uncertainty as well as their overall estimation of the inherent noise in the envi-
ronment (stochasticity,  s ). The belief uncertainty is updated after each observation and depends on 
participants’ sense of volatility ( v ) and stochasticity ( s ) in the environment.

Crucially, we also used participants’ trial- by- trial confidence ratings to measure to what extent 
confidence plays a role in learning. This is captured by the confidence scaling factor  C , which defines 
the extent to which confidence affects response (un- )certainty. Intuitively, the higher the confidence 
scaling factor  C , the less important role confidence plays in participant’s response. With relatively low 
values of  C , when the confidence is low, participants’ responses are more noisy, i.e., less certain. We 
demonstrate this in Figure 4 by plotting hypothetical responses (A–F) and the effect on the noise 
scaling (G–L) as a function of  C  and confidence ratings.

To evaluate the effect of expectation on perceived intensity (on top of statistical learning modu-
lating perception), we expanded the standard RL and KF models by adding a perceptual weighting 
element,  γ ∈

[
0, 1

]
  (similarly to Jepma et al., 2018). Essentially,  γ  governs how much each participant 

relies on the normative input on each trial, and how much their expectation of the input influences 
their reported perception - i.e., they take a weighted average of the two. The higher the  γ , the bigger 
the impact of the expectation on perception. Again, in the case of the RL model (eRL - expectation 
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Figure 3. Expectation weighted models. Computational models used in the main analysis to capture participants’ pain perception ( Pt ) and prediction 
( Et+1 ) ratings. Both types of ratings are affected by confidence rating ( Ct ) on each trial. (A) In the reinforcement learning model, participant’s pain 
perception ( Pt ) is taken to be weighted sum of the current noxious input ( Nt ) and their current pain expectation ( Et ). Following the noxious input, 
participant updates their pain expectation ( Et+1 ). (B) In the Kalman filter model, a generative model of the environment is assumed (yellow background) 
- where the mean pain level ( xt ) evolves according to a Gaussian random walk (volatility  v2 ). The true pain level on each trial ( πt ) is then drawn from 
a Gaussian (stochasticity  s2 ). Lastly, the noxious input,  Nt , is assumed an imperfect indicator of the true pain level (subjective noise  ϵ2 ). Inference and 
prediction steps are depicted in a blue box. Participant’s perceived pain is a weighted sum of expectation about the pain level ( mt ) and current noxious 
input ( Nt ). Following each observation,  Nt , participant updates their expectation about the pain level ( mt+1 ).
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weighted RL),  γ  is a free parameter that is constant across trials, while in the KF model (eKF - expecta-
tion weighted KF),  γt  is calculated on every trial and depends on: (1) the participants’ trial- wise belief 
uncertainty, (2) their overall estimation of the inherent noise in the environment (stochasticity,  s ), and 
(3) the participant’s subjective uncertainty about the level of intensity,  ϵ .

Thus, in total we tested five models: RL and KF (perception not weighted by expectations), eRL and 
eKF (perception weighted by expectations), and a baseline random model. We then proceeded to fit 
these five computational models to participants’ responses. For parameter estimation, we used hier-
archical Bayesian methods, where we obtained group- and individual- level estimates for each model 
parameter (see Materials and methods).

Modelling results
We fit each model for each condition sequence. Example trial- by- trial model prediction plots from 
one participant can be found in Appendix 1—figure 4. To establish which of the models fitted the 
data best, we ran model comparison analysis based on the difference in expected log point- wise 
predictive density (ELPD) between models. The models are ranked according to the ELPD (with the 
largest providing the best fit). The ratio between the ELPD difference and the standard error around 
it provides a significance test proxy through the sigma effect. We considered at least a 2 sigma effect 
as indication of a significant difference. In each condition, the expectation weighted models (eKF 
and eRL) provided better fit than models without this element (KF and RL; approximately 2–4 sigma 
difference, as reported in Figure 5A–D) and Appendix 1—table 5. This suggests that regardless of 
the levels of volatility and stochasticity, participants still weigh perception of the stimuli with their 
expectation. In particular, we found that the expectation weighted KF model offered a better fit than 
the eRL, although in conditions of high stochasticity this difference was short of significance against 
the eRL model. This suggests that in learning about temporal regularities in the sequences of thermal 
stimuli, participants’ expectations modulate the perception of the stimulus. Moreover, this process 
was best captured by a model that updates the observer’s belief about the mean and the uncertainty 
of the sequence in a Bayesian manner.

We also found that as the confidence in the response decreases, the response uncertainty is 
scaled linearly with a negative slope ranging between 0.112 and 0.276 across conditions (Figure 6), 
confirming the intuition that less confidence leads to bigger uncertainty.

As an additional check, for each participant, condition and response type (perception and predic-
tion), we plotted participants’ ratings against model predicted ratings and calculated a grand mean 
correlation in Appendix 1—figure 5.

Next, we checked whether the parameters of the the winning eKF model differed across different 
sequence conditions. Given that volatility was fixed within condition, we treated it as a single- context 

Figure 4. Confidence scaling factor demonstration. (A–F) For a range of values of the confidence scaling factor  C , we simulated a set of typical 
responses a participant would make for various levels of confidence ratings. The belief about the mean of the sequence is set at 50, while the response 
noise at 10. The confidence scaling factor  C  effectively scales the response noise, adding or reducing response uncertainty. (G–L) The effect of different 
levels of parameter  C  on noise scaling. As  C  increases the effect of confidence is diminished.

https://doi.org/10.7554/eLife.90634
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scenario from the point of view of modelling (Heald et al., 2023), and we did not interpret its effect 
on the learning rate (Piray and Daw, 2021). There were no differences for the group- level parameters; 
i.e., we did not detect significant differences between conditions in a hypothetical healthy participant 
group as generalised from our population of participants (Appendix 1—figure 12).

However, we found some differences at the individual level of parameters (i.e. within our specific 
population of recruited participants), which we detected by performing repeated measures ANOVAs 

Figure 5. Model comparison for each sequence condition (A–D). The dots indicate the expected log point- wise predictive density (ELPD) difference 
between the winning model (eKF - expectation weighted Kalman filter) and every other model. The line indicates the standard error (SE) of the 
difference. The non- winning models’ ELPD differences are annotated with the ratio between the ELPD difference and SE indicating the sigma effect, a 
significance heuristic.

Figure 6. The effect of the confidence scaling factor on noise scaling for each condition. (A–D) Each coloured line corresponds to one participant, with 
the black line indicating the mean across all participants. The mean slope for each condition is annotated.

https://doi.org/10.7554/eLife.90634
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(see Appendix 1—figure 13 for visualisation). The stochasticity parameter  s  was affected by the inter-
action between the levels of stochasticity and volatility ( F

(
1, 26

)
= 35.108, p < 0.001, η2

p = 0.575 ), and 
was higher in highly stochastic and volatile conditions as compared to conditions where either volatility 

 
(
t = 7.735, pbonf < 0.001

)
 , stochasticity  

(
t = 9.396, pbonf < 0.001

)
 , or both were low  

(
t = 8.826, pbonf < 0.001

)
 . 

This suggests that, while participants’ performance was generally worse in highly stochastic environ-
ments, participants seem to have attributed this to only one source - stochasticity ( s ), regardless of the 
source of higher uncertainty in the sequence (stochasticity or volatility).

The response noise  ξ  was modulated by the level of volatility ( F
(
1, 26

)
= 5.079, p = 0.033, η2

p = 0.163 ), 
where it was smaller in highly volatile conditions. Moreover, we detected a significant interaction between 
volatility and stochasticity on the confidence scaling factor  C  ( F

(
1, 26

)
= 81.258, p < 0.001, η2

p = 0.758 ), 
where the values  C  were overall lower when either volatility  

(
t = −11.570, pbonf < 0.001

)
 , stochasticity 

 
(
t = −6.165, pbonf < 0.001

)
 , or both  

(
t = −4.575, pbonf < 0.001

)
  were high as compared to the conditions 

where both levels of noise were low. This indicates there may have been some trade- off between  ξ  
and  C , as lower values of  C  introduce additional uncertainty when participant’s confidence is low.

Lastly, we found the initial uncertainty belief  w0  was affected by the interaction between volatility 
and stochasticity ( F

(
1, 26

)
= 5275.367, p < 0.001, η2

p = 0.995 ) without a consistent pattern. All the other 
effects were not significant.

In summary, we formalised the process behind pain perception and prediction in noxious time- 
series within the framework of sequential learning, where the best description of participants’ statis-
tical learning was captured through Bayesian filtering, in particular using a confidence weighted KF 
model. Most importantly, we discovered that, in addition to weighing their responses with confidence, 
participants used their expectations about stimulus intensity levels to form a judgement as to what 
they perceived. This mechanism was present across various levels of uncertainty that defined the 
sequences (volatility and stochasticity).

Discussion
Statistical learning allows the brain to extract regularities from streams of sensory inputs and is central 
to perception and cognitive function. Despite its fundamental role, it has often been overlooked in 
the field of pain research. Yet, chronic pain appears to fluctuate over time. For instance Mayr et al., 
2022; Baliki et al., 2012; Foss et al., 2006, reported that chronic back pain ratings vary periodically, 
over several seconds- minutes and in absence of movements. This temporal aspect of pain is important 
because periodic temporal structures are easy to learn for the brain (Dehaene et al., 2015; Mancini 
et al., 2022). If the temporal evolution of pain is learned, it can be used by the brain to regulate its 
responses to forthcoming pain, effectively shaping how much pain it experiences. Indeed, we show 
that healthy participants extract temporal regularities from sequences of noxious stimuli and use this 
probabilistic knowledge to form confidence weighted judgements and predictions about the level of 
pain intensity they experience in the sequence. We formalised our results within a Bayesian inference 
framework, where the belief about the level of pain intensity is updated on each trial according to 
the amount of uncertainty participants ascribe to the stimuli and the environment. Importantly, their 
perception and prediction of pain were influenced by the expected level of intensity that participants 
held about the sequence before responding. When varying different levels of inherent uncertainty in 
the sequences of stimuli (stochasticity and volatility), the expectation and confidence weighted models 
fitted the data better than models weighted for confidence but not for expectations (Figure 5A–D). 
The expectation weighted Bayesian (eKF) model offered a better fit than the expectation weighted, 
model- free RL model, although in conditions of high stochasticity this difference was short of signifi-
cance. Overall, this suggests that participants’ expectations play a significant role in the perception of 
sequences of noxious stimuli.

Statistical inference and learning in pain sequences
The first main contribution of our work is towards the understanding of the phenomenon of statistical 
learning in the context of pain. Statistical learning is an important function that the brain employs 
across the lifespan, with relevance to perception, cognition, and learning (Sherman et  al., 2020). 
The large majority of past research on statistical learning focused on visual and auditory perception 
(Dehaene et  al., 2015; Fiser and Lengyel, 2019; Meyniel et  al., 2016; Meyniel and Dehaene, 

https://doi.org/10.7554/eLife.90634
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2017), with the nociceptive system receiving relatively little attention (Tabor et al., 2017). Recently, 
we showed that the human brain can learn to predict a sequence of two pain levels (low and high) 
in a manner consistent with optimal Bayesian inference, by engaging sensorimotor regions, parietal, 
premotor regions, and dorsal striatum (Mancini et al., 2022). We also found that the confidence of 
these probabilistic inferences modulates the cortical response to pain, as expected by hierarchical 
Bayesian inference theory (Mulders et  al., 2023). Here, we tested sequences with a much larger 
range of stimulus intensities to elucidate the effect of statistical learning and expectations on pain 
perception. As predicted by hierarchical Bayesian inference theory, we find that the pain intensity 
judgements are scaled by both expectations and confidence.

Hence, our work highlights the inferential nature of the nociceptive system (Jepma et al., 2018; 
Tabor et al., 2017; Fardo et al., 2017; Seymour and Mancini, 2020; Büchel et al., 2014), where in 
addition to the sheer input received by the nociceptors, there is a wealth of a priori knowledge and 
beliefs the agent holds about themselves and the environment that need to be integrated to form 
a judgement about pain (Yoshida et al., 2013; Anchisi and Zanon, 2015; Wiech, 2016; Tabor and 
Burr, 2019). This has an immediate significance for the real world, where weights need to be assigned 
to prior beliefs and/or stimuli to successfully protect the organism from further damage, but only to 
an extent to which it is beneficial.

Secondly, our results regarding the effect of expectation on pain perception relate to a much larger 
literature on this topic. The prime example would be placebo analgesia (i.e. the expectation of pain 
relief decreasing pain perception) and nocebo hyperalgesia (i.e. the expectation of high level of pain 
increasing its perception; Tracey, 2010; Büchel et al., 2014; Colloca et al., 2008; Blasini et al., 2017). 
Recent work attempted to capture such expectancy effects within the Bayesian inference framework. 
For example, Hoskin et al., 2019, showed that in addition to expectation influencing perceived pain 
in general, higher level of uncertainty around that expectation attenuated its effect on perception. 
Similarly, Hird et al., 2019, demonstrated that when the discrepancy between the expectation and 
outcome (prediction error) is unusually large, the role of expectation is significantly reduced and so 
the placebo and nocebo effects are not that strong. An unusually large prediction error could be 
thought of as contributing to increased uncertainty about the stimuli, which mirrors the results from 
Hoskin et al., 2019 Bayesian framework. Nevertheless, the types of stimuli used in the above studies 
(i.e. noxious stimuli cued by non- noxious stimuli) differed from the more ecologically valid sequences 
of pain that are reported by chronic pain patients (Mayr et al., 2022), as we indicated above. Further-
more, Jepma et al., 2018, used a conditioning paradigm and also found that expectations influence 
both perception and learning, in a self- reinforcing loop. Our work has followed a similar modelling 
strategy to Jepma et al., 2018, but it goes beyond simple conditioning schedules or sequences of 
two- level discrete painful stimuli, showing expectancy effects even when the intensities are allowed 
to vary across a wider range of values and according to more complex statistical temporal structures. 
Additionally, given the reported role of confidence in the perception of pain (Mulders et al., 2023; 
Brown et al., 2008), we draw a more complete picture by including participants’ confidence ratings 
in our modelling analysis.

Future studies would need to determine whether statistical learning and its effect on pain is altered 
in chronic pain conditions. This is important because statistical learning could, in principle, influence 
how a pain state evolves. Once a pain state is initiated, how an individual learns and anticipates the 
fluctuating pain signals may contribute to determine how well it can be regulated by the nervous 
system, thus affecting the severity and recurrence of pain flares. This, in turn, would affect whether 
aversive associations with the instigating stimulus are extinguished or reinforced (Seymour and 
Mancini, 2020). In chronic pain, dysfunctional learning may promote the amplification and mainte-
nance of pain signals, contributing to the reinforcement of aversive associations with incident stimuli, 
as well as the persistence of pain (Seymour, 2019; Baliki and Apkarian, 2015; Vlaeyen et al., 2016).

Our paper comes with open tools, which can be adapted in future studies on statistical learning 
in chronic pain. The key advantage of taking an hypothesis- driven, computational- neuroscience 
approach to quantify learning is that it allows to go beyond symptoms- mapping, identifying the quan-
tifiable computational principles that mediate the link between symptoms and neural function.

In summary, we show that statistical expectations and confidence scale the judgement of pain in 
sequences of noxious stimuli as predicted by hierarchical Bayesian inference theory, opening a new 
avenue of research on the role of learning in pain.

https://doi.org/10.7554/eLife.90634
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Materials and methods
Participants
Thirty- three (18 female) healthy adult participants were recruited for the experiment. The mean age 
of participants was 22.4±2.7 years of age (range: 18–35). Participants had no chronic condition and 
no infectious illnesses, as well as no skin conditions (e.g. eczema) at the site of stimulus delivery. 
Moreover, we only recruited participants that had not taken any anti- anxiety, anti- depressive medica-
tion, nor any illicit substances, alcohol and pain medication (including NSAIDs such as ibuprofen and 
paracetamol) in the 24 hr prior to the experiment. All participants gave informed written consent to 
take part in the study, which was approved by the local ethics committee (Department of Engineering, 
University of Cambridge Ethics Committee).

Protocol
The experimental room’s temperature was maintained between 20°C and 23°C. Upon entry, an 
infrared thermometer was used to ensure participants’ temperature was above 36°C at the forehead 
and forearm of the non- dominant hand, to account for the known effects of temperature on pain 
perception (Strigo et al., 2000). A series of slideshows were presented, which explained the premise 
of the experiment and demonstrated what the participant would be asked to carry out. Throughout 
this presentation, questions were asked to ensure participants understood the task. Participants were 
given multiple opportunities to ask questions throughout the presentation.

We used the Medoc Advanced Thermosensory Stimulator 2 (TSA2) (Medoc Advanced Medical 
Systems, 2022) to deliver thermal stimuli using the CHEPS thermode. The CHEPS thermode allowed 
for rapid cooling (40°C/s) and heating (70°C/s) so transitions between the baseline and stimuli 
temperatures were minimal. The TSA2 was controlled externally, via Matlab (Mathworks).

We then established the pain threshold, using the method of limits (Lue and Shih, 2017), in order 
to centre the range of temperature intensities used in the experiment. Each participant was provided 
with stimuli of increasing temperature, starting from 40°C going up in 0.5°C increments, using an 
inter- stimulus interval (ISI) of 2.5 s and a 2 s duration. The participant was asked to indicate when the 
stimuli went from warm to painful - this temperature was noted and the stimuli ended. The procedure 
was repeated three times, and the average was used as an estimate of the pain threshold.

During the experiment, four sequences of thermal stimuli were delivered. Due to the phenom-
enon of offset analgesia, where decreases in tonic pain result in a proportionally larger decrease in 
perceived pain (Hermans et al., 2016), we chose phasic stimuli, with a duration of 2 s and an ISI 2.5 s. 
In order to account for individual differences, the temperatures which the levels refer to are based 
upon the participants’ threshold. The median intensity level was defined as threshold, giving a max 
temperature of 3°C above threshold, which was found to be acceptable by participants. Before the 
start of the experiment each participant was provided with the highest temperature stimuli that could 
be presented, given their measured threshold, to ensure they were comfortable with this. Two partic-
ipants found the stimulus too painful - the temperature range was lowered by 1°C and this was found 
to be acceptable.

After every trial of each sequence, the participant was asked for either their perception of the 
previous stimulus or their prediction for the next stimulus through a 2D VAS (Figure 1B), presented 
using PsychToolBox- 3 (Kleiner, 2007). The y- axis encodes the intensity of the stimulus either perceived 
or predicted, ranging from 0 (no heat detected/predicted) to 100 (worst pain imaginable perceived/
predicted); on this scale, 50 represents the pain threshold. This was done as a given sequence was 
centred around the threshold. The x- axis encodes confidence in either perception or prediction, 
ranging from 0 - completely uncertain (‘unsure’) - to 1 - complete confidence in the rating (‘sure’). 
Differing background colours were chosen to ensure participants were aware of what was being 
asked, and throughout the experiment participants were reminded to take care in answering the 
right question. The mouse movement was limited to be inside of the coloured box, which defined the 
area of participants’ input. At the beginning of each input screen, the mouse location was uniformly 
randomised within the input box.

The sequence of response types was randomised so as to retain 40 prediction and 40 percep-
tion ratings for each of the four sequence conditions. For an 80- trial- long sequence, this gave 80 
participant responses. Each sequence condition was separated by a 5 min break, during which the 
thermode’s probe was slightly moved around the area of skin on the forearm to reduce sensitisation 

https://doi.org/10.7554/eLife.90634


 Research article Neuroscience

Onysk et al. eLife 2023;12:RP90634. DOI: https://doi.org/10.7554/eLife.90634  11 of 35

(i.e. a gradual increase in perceived intensity with repetitive noxious stimuli) (Hollins et al., 2011). 
In the middle of each sequence, there was a 3 min break. During the ISI, the temperature returned 
to a baseline of 38°C. One participant was unable to complete the sequence as their threshold was 
too low, and data from four participants was lost due to Medoc software issues (the remote control 
failed and the data of two out of four sessions were not saved). We excluded one participant’s whose 
ratings/predictions were inversely proportional to the noxious input. Thus, we analysed data from 27 
participants.

Generative process of the painful sequences
We manipulated two sources of uncertainty in the sequence: the stochasticity ( s ) of the observation 
and the volatility ( v ) of the underlying sequence (Piray and Daw, 2021). Sequences were defined by 
two levels (high or low) of stochasticity and volatility, resulting in four different sequences conditions - 
creating a 2×2 factorial design. Each sequence was defined as a series of chunks, where the intensity 

for trial  t ,  it , was sampled from 
 
N
(

I,σ2
)
 
, where  σ2  indicates the level of stochasticity ( σ2 = 1.75  for 

high level of stochasticity,  σ2 = 0.25  for low level of stochasticity). The mean of the chunk,  I  , was drawn 
from  U

(
3.5, 10.5

)
 . To ensure a noticeable difference in chunk intensity to the participant, concurrent 

chunk means were constrained to be at least two intensity levels different. Volatility was implemented 
by defining the length, or number of trials, of a chunk ( l ) drawn from  U

(
L − a, L + a

)
 , where  L  is the 

mean o the chunk length ( L = 15  for high volatility level,  L = 25  for low volatility level). A jitter,  a , 
was added around the mean to ensure the transition from one chunk to the next was not consis-
tent or predictable. For both high and low volatility conditions, we set  a = 3 . Sampled values were 
then discretised, where any intensities outside the valid intensity range  

[
1, 13

]
  were discarded and 

re- sampled resulting in an 80- trial- long sequence for each condition. The mean of each sequence was 
centred around intensity level 7, i.e., the participants threshold. So defined, six sets of four sequences 
were sampled. Each participant received one set, with a randomised sequence order. See an example 
sequence (after subject- specific linear transformation) and one participant’s responses (including 
confidence ratings) in Figure 1C and D.

Data pre-processing
Since the intensity values of the noxious input were discretised between 1 and 13, while the partici-
pant’s responses (perception and prediction) were given on a 0–100 scale, we applied a linear trans-
formation of the input to map its values onto a common 0–100 range. For each participant, for a set 
of inputs at perception trials from the concatenated sequence (separate sequence conditions in the 
order as presented), we fit a linear least squares regression using Python’s  scipy. stats. linregress func-
tion. On rare occasions, when the transformed input was negative, we refit the line using Python’s non- 
linear least squares function scipy.optimize.curve_fit, constraining the intercept above 0 (Virtanen 
et al., 2020). We then extracted each participant’s optimised slope and intercept and applied the 
transformation to both the concatenated and condition- specific sequence of inputs. So transformed, 
the sequences were then used in all the analyses. Plots of each participant transformation can be 
found in Appendix 1—figure 1. We superimposed participant’s responses onto the noxious input 
condition sequences in Appendix 1—figure 2.

To capture participant’s model- naive performance in the task, both for the concatenated and 
condition- specific sequence, we calculated RMSE of each participant’s perception (Equation 1) and 
prediction (Equation 2) responses as compared to the input. The lower the RMSE, the higher the 
response accuracy.

 
RMSEP =

�����
TP∑
t=1

(Yt − P̂t)

TP   

(1)

 
RMSEE =

�����
TE∑
t=1

(yt+1 − Êt+1)

TE   

(2)
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where  TP  is the number of perception trials,  ̂Pt  is participant’s perception response to the stimulus  yt  
at trial  t ,  TE  is the number of prediction trials, and  ̂Et+1  is participant’s prediction of the next stimulus 
intensity  yt+1  at trial  t + 1 .

Models
Reinforcement learning
RL
In RL models, learning is driven by discrepancies between the estimate of the expected value and 
observed values. Before any learning begins, at trial  t = 1 , participants have an initial expectation, 

 E1 = E0 , which is a free parameter that we estimate.
On each trial, participants receive a thermal input  Nt . We then calculate the prediction error  δt , 

defined as the difference between the expectation  Et  and the input  Nt  (Equation 3).

 δt = Nt − Et  (3)

Participant is then assumed to update their expectation of the stimulus on the next trial as in Equa-
tion 4:

 Et+1 = Et + αδt  (4)

where  α  is the learning rate (free parameter), which governs how fast participants assimilate new 
information to update their belief.

On trials when participants rate their perceived intensity, we assume no effects on their perception 
other than confidence rating  ct  and response noise, so participants’ perception response  Pt  is drawn 
from a Gaussian distribution, with the mean  Pt = Nt  and a confidence- scaled response noise  ξ  (free 
parameter), as in Equation 5:

 
P̂t ∼ N

(
Pt, ξ2exp

{
C−1 (1 − ct

)}2
)

  
(5)

where  C  is the confidence scaling factor (free parameter), which defines the extent to which confi-
dence affects response uncertainty. Please see Figure 4 for an intuition behind confidence scaling.

On trials when participants are asked to predict the intensity of the next thermal stimulus, we use 
the updated expectation  Et+1  to model participants’ prediction response  Et+1 . This is similarly affected 
by confidence rating and response noise and is defined as in Equation 6.

 
Êt+1 ∼ N

(
Et+1, ξ2exp

{
C−1 (1 − ct

)}2
)

  
(6)

To recap, the RL model has four free parameters: the learning rate  α , response noise  ξ , the initial 
expectation  E0 , and the confidence scaling factor  C .

eRL
Additionally, where we investigate the effects of expectation on the perception of pain (Jepma et al., 
2018), we included an element that allows us to express the perception as a weighted sum of the 
input and expectation (Equation 7):

 Pt =
(
1 − γ

)
Nt + γEt   (7)

where  γ ∈
[
0, 1

]
  (free parameter) captures how much participants rely on the normative thermal input 

vs. their expectation. When  γ = 0 , the expectation plays no role and the model simplifies to that of 
the standard RL above. In total, the eRL model has five free parameters, with the other equations the 
same as in the RL model, with the exception of the prediction error, which now relies on the expecta-
tion weighted pain perception  Pt  (Equation 8).

 δt = Pt − Et  (8)

https://doi.org/10.7554/eLife.90634


 Research article Neuroscience

Onysk et al. eLife 2023;12:RP90634. DOI: https://doi.org/10.7554/eLife.90634  13 of 35

Kalman filter
KF
To capture sequential learning in a Bayesian manner, we used the KF model (Jepma et al., 2018; 
Särkkä, 2013; Kalman, 1960). KF assumes a generative model of the environment where the latent 
state on trial t,  xt  (the mean of the sequences in the experiment), evolves according to a Gaussian 
random walk with a fixed drift rate,  v  (volatility), as in Equation 9.

 
xt ∼ N

(
xt−1, v2

)
  (9)

The observation on trial t,  Nt , is then drawn from a Gaussian (Equation 10) with a fixed variance, 
which represents the observation uncertainty  s  (stochasticity).

 
Nt ∼ N

(
xt, s2

)
  (10)

As such the KF assumes stable dynamics since the generative process has fixed volatility and 
stochasticity.

For ease of explanation, we refer to the thermal input at each trial as  Nt , we also use the  N1 : t  nota-
tion, which refers to a sequence of observations up to and including trial  t . The model allows to obtain 
posterior beliefs about the latent state  xt  given the observations. This is done by tracking an internal 
estimate of the mean  mt  and the uncertainty,  wt , of the latent state  xt .

First, following standard KF results, on each trial, the participant is assumed to hold a prior belief 
(indicated with (–) superscript) about the latent state,  xt  (Equation 11).

 
xt|N1 : t−1 ∼ N

(
m
(
−
)

t , w2
(
−
)

t

)

  
(11)

On the first trial, before any observations, we set  m
(
−
)

1 = E0, w
(
−
)

1 = w0  (free parameters). In light of 
the new observation,  Nt  on trial  t , the tracked mean and uncertainty of the latent state are reweighed 
based on the new evidence  Nt  and its associated observation uncertainty  s  as in Equation 12.

 

xt|N1 : t ∼ N


 s2m

(
−
)

t + w2
(
−
)

t Nt

s2 + w2
(
−
)

t

, s2w2
(
−
)

t

s2 + w2
(
−
)

t




 
 
 

(12)

We can then define the learning rate  αt  (Equation 13),

 
αt = w2

(
−
)

t

s2 + w2
(
−
)

t   
(13)

to get the update rule for the new posterior beliefs (indicated with (+) superscript) about the mean 
(Equation 14) and uncertainty (Equation 15) of  xt .

 m
(

+
)

t = m
(
−
)

t
(
1 − αt

)
+ Ntαt  (14)

 w2
(

+
)

t = w2
(
−
)

t
(
1 − αt

)
  (15)

Following this new belief, and the assumption about the environmental dynamics (volatility), the 
participant forms a new prior belief about the latent state  xt+1  for the next trial  t + 1  as in Equation 16.

 
xt+1|N1 : t ∼ N

(
m
(
−
)

t+1 , w2
(
−
)

t+1

)

  
(16)

where

 m
(
−
)

t+1 = m
(

+
)

t   (17)

 w2
(
−
)

t+1 = w2
(

+
)

t + v2
  (18)
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We can simplify the notation to make it comparable to the RL models. We let  mt+1 = m
(

+
)

t = m
(
−
)

t+1  , 

and  w
2
t+1 = w2

(
−
)

t+1 = w2
(

+
)

t + v2
 . Following a new observation at trial  t , we calculate the prediction error 

(Equation 19) and learning rate (Equation 20).

 δt = yt − mt  (19)

 
αt = w2

t
w2

t + s2   
(20)

We then update the belief about the mean (Equation 21) and uncertainty (Equation 22) of the 
latent state for the next trial.

 

mt+1 = mt
(
1 − αt

)
+ Ntαt

= mt + αt
(
Nt − mt

)
 
 
 

(21)

 w2
t+1 = w2

t
(
1 − αt

)
+ v2

  (22)

Now, mapping this onto the experiment, the mean of the latent state is participants’ expectation 
 Et = mt , and so we have participant perception rating modelled as in Equation 23.

 
P̂t ∼ N

(
Pt, ξ2exp

{
C−1 (1 − ct

)}2
)

  
(23)

and the prediction rating for the next trial as in Equation 24.

 
Êt+1 ∼ N

(
Et+1, ξ2exp

{
C−1 (1 − ct

)}2
)

  
(24)

In total the model has six free parameters:  s  (environmental stochasticity),  v  (environmental vola-
tility),  ξ  (response noise),  E0  (initial belief about the mean),  w0  (initial belief about the uncertainty), and 
 C  (confidence scaling factor).

eKF
We can introduce the effect of expectation on the pain perception, by assuming that participants treat 
the thermal input as an imperfect indicator of the true level of pain (Jepma et al., 2018). In this case, 
the input,  Nt , is modelled as in Equation 25:

 
Nt ∼ N

(
πt, ϵ2

)
  (25)

which forms an expression for the likelihood of the observation and adds an additional level to the 
inference, slightly modifying the KF assumptions such that:

 πt ∼ N (xt, s2)  (26)

However, we can apply the standard KF results and Bayes’ rule to arrive at simple update rules for 
the participants’ belief about the mean and uncertainty of the latent state  xt t. From this, we get a prior 
on the  πt  defined in Equation 27:

 
πt|N1 : t−1 ∼ N

(
m
(
−
)

t , w2
(
−
)

t + s2
)

  
(27)

which, following a new input  Nt , gives us the posterior belief about  πt  as in Equation 28.

 

πt|N1 : t ∼ N




ϵ2m
(
−
)

t +
(

s2 + w2
(
−
)

t

)
Nt

ϵ2 + s2 + w2
(
−
)

t

,
ϵ2

(
s2 + w2

(
−
)

t

)

ϵ2 + s2 + w2
(
−
)

t




  

(28)

Now, if we define  γt  as in Equation 29:
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γt = ϵ2

ϵ2 + s2 + w2
(
−
)

t   
(29)

We have that the posterior belief about the mean level of pain  πt  is calculated as:

 P
(

+
)

t = γtm
(
−
)

t +
(
1 − γt

)
Nt  (30)

which is a weighted sum of the input  Nt  and participant expectation about the latent state  xt , governed 
by the perceptual weight  γt , analogously to the eRL model. Finally, the posterior belief about  xt  is 
obtained in Equation 31.

 

xt|N1 : t ∼ N




(
ϵ2 + s2

)
m
(
−
)

t + w2
(
−
)

t Nt

ϵ2 + s2 + w2
(
−
)

t

,

(
ϵ2 + s2

)
w2

(
−
)

t

ϵ2 + s2 + w2
(
−
)

t




  

(31)

Now, setting the learning rate as in Equation 32:

 
αt = w2

t
ϵ2 + w2

t + s2   
(32)

we get:

 m
(

+
)

t = m
(
−
)

t
(
1 − αt

)
+ Ntαt  (33)

 w2
(

+
)

t = w2
(
−
)

t
(
1 − αt

)
  (34)

Next, following the same notation simplification as before, we get the update rules for the prior 
belief about the mean (Equation 35) and uncertainty (Equation 36) of the latent state  xt+1  for the 
next trial.

 

mt+1 = mt
(
1 − αt

)
+ Ntαt

= mt + αt
(
Nt − mt

)
  

(35)

 w2
t+1 = w2

t
(
1 − αt

)
+ v2

  (36)

as well as the expression for subjective perception,  Pt , at trial  t  (Equation 37).

 Pt = γtmt +
(
1 − γt

)
Nt  (37)

The perception and prediction responses are modelled analogously as the KF model. In total, 
the model has seven free parameters:  ϵ  (subjective noise),  s  (environmental stochasticity),  v  (envi-
ronmental volatility),  ξ  (response noise),  E0  (initial belief about the mean),  w0  (initial belief about the 
uncertainty), and C (confidence scaling factor).

Random model
As a baseline, we also included a model that performs a random guess. The perceptual/prediction 
ratings were modelled as in Equation 38.

 
P̂t ∼ N

(
R, ξ2exp

{
C−1 (1 − ct

)}2
)

  
(38)

The model has three free parameters:  R ,  ξ , and  C , where  R  is a constant value that participants 
respond with.

Model fitting
Model parameters were estimated using hierarchical Bayesian methods, performed with RStan 
package (v. 2.21.0) (Stan Development Team, 2019) in R (v. 4.0.2) based on Markov Chain Monte 
Carlo techniques (No- U- Turn Hamiltonian Monte Carlo). For the individual- level parameters we used 
non- centred parametrisation (Papaspiliopoulos et al., 2007). For the group- level parameters we used 
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 N (0, 1)  priors for the mean, and the gamma- mixture representation of the Student’s- t(3,0,1) for the 
scale (Stan Development, 2022). Parameters in the (0, 1) range were constrained using Phi_approx - 
a logistic approximation to the cumulative Normal distribution (Bowling et al., 2009).

For each condition and each of the four chains, we ran 6000 samples (after discarding 6000 warm- up 
ones). For each condition, we examined R- hat values for each individual- (including the  N (0, 1)  error 
term from the non- centred parametrisation) and group- level parameters from each model to verify 
whether the Markov chains have converged. At the group- level and individual- level, all R- hat values 
had a value <1.1, indicating convergence. In the random response model, 0.01–0.16% iterations satu-
rated the maximum tree depth of 11.

Model comparison
For model comparison, we used R package loo, which provides efficient approximate leave- one- out 
(LOO) cross- validation. The package allows to estimate the difference in models’ expected predictive 
accuracy through the difference in ELPD (Vehtari et al., 2017). By looking at the ratio between the 
ELPD difference and the SE of the difference, we get the sigma effect - a heuristic for significance of 
such model differences. There’s no agreed- upon threshold of SEs that determines significance, but 
the higher the sigma difference, the more robust is the effect. The closeness of fit can also be captured 
with LOO information criterion (LOOIC), where the lower LOOIC values indicate better fit.

Parameter comparison
For the comparison of group- level parameters between conditions, we extracted 95% high- density 
intervals of the permuted and merged (across chains) posterior samples of each group- level param-
eter (Kruschke, 2023). To assess significant differences between conditions, we calculated a differ-
ence between such defined intervals. In the Bayesian scenario, a significant difference is indicated by 
the interval not containing the value 0 (Aylward et al., 2019; Ahn et al., 2017).

Parameter and model recovery
To asses the reliability of our modelling analysis (Wilson and Collins, 2019), for each model we 
performed parameter recovery analysis, where we simulated participants’ responses using newly 
drawn individual- level parameters from the group- level distributions.

We repurposed existing sequences of noxious inputs in the [1, 13] range (pre- transformation). 
When then applied a linear transformation to the input sequences using sampled slope and intercept 
coefficients from a Gaussian distribution of these coefficients that we estimated based on our dataset 
using R’s fitdistrplus package. Furthermore, we simulated the confidence ratings based on lag- 1 auto- 
correlation across a moving window of the transformed input sequence.

We then fit the same model to the simulated data and calculated Pearson correlation coefficients 
 r  between the generated and estimated individual- level parameters. The higher the coefficient  r , the 
more reliable the estimates are, which can be categorised as: poor (if r<0.5); fair (if 0.5<r<0.75); good 
(0.75<r<0.9); excellent (if r>0.9) (White et al., 2018). Results are reported in Appendix 1—table 3 
and Appendix 1—figures 6–11.

We also performed model recovery analysis (Wilson and Collins, 2019), where we first simulated 
responses using each model and then fit each model- specific dataset with each model. We then 
counted the number of times a model fit the simulated data best (according to the LOOIC rule), effec-
tively creating an M×M confusion matrix, where M is the number of models. In the case where we 
have a diagonal matrix of ones, the models are perfectly recoverable and hence as reliable as possible. 
Results are reported in Appendix 1—table 4.

In Appendix 1—Tables 6–9 we report bulk and tail effective sample size (ESS) for each condition, 
for each model and parameter.
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Appendix 1
Behavioural results
Model-naive performance
For each sequence condition (volatility × stochasticity), we calculated the RMSE of participants’ 
responses (type: perception and prediction ratings) and compared to the normative noxious input, 
as a measure of performance in the task. We analysed the RMSEs with a repeated measures ANOVA, 
with the results reported in Appendix 1—table 1.

Given the significant interaction between stochasticity and response type, we further ran a post 
hoc comparison tests for this effect, as reported in Appendix 1—table 2.

Noxious inputs and responses
Input transformation
We linearly transformed participants’ responses to project them from the 1–13 range to 0–100 using 
a linear transformation we obtained from a regression of stimulus intensities onto pain ratings.

Plots of each participant’s transformation can be found in Appendix 1—figure 1.
We superimposed participants’ responses (perception and prediction ratings) onto the noxious 

input condition sequences in Appendix 1—figure 2. The black line marks the start of a new sequence 
condition.

Finally, we plotted participants’ confidence ratings throughout the task in Appendix 1—figure 3.

Model predictions
Following the model fitting procedure, in Appendix  1—figure 4, we plotted example model 
predicted ratings for both perception and prediction responses for each condition as compared with 
noxious input for one participant’s responses.

Lastly, for each condition and for each participant we plotted model responses (perception and 
prediction) against participant responses in Appendix  1—figure 5. The grand mean correlation 
across participants for each condition and response type was calculated and included in the figure.

Parameter recovery
The results of parameter recovery analysis for each parameter for each model are reported in 
Appendix 1—table 3. We recovered each individual (out of 27 participants) parameter ≈100 times 
and calculated the mean and SD of the correlation between the true and recovered parameter 
values.

Moreover, to assess the number of simulations needed, we calculated the average SD (and its 
error) of the correlation as a function of increasing number of simulation, as plotted in Appendix 1—
figure 6. The average was obtained from the 500 randomly chosen permutations of different 
simulations at each  n  (out of ≈100).

Next, we include scatter plots from the parameter recovery for each model and parameter in 
Appendix 1—figures 7–11.

Model recovery
We also ran model recovery analysis as described in the Materials and methods. We report the 
confusion matrix of our analysis based on approximately 100 simulations (per model pair) in 
Appendix 1—table 4.

Condition-wise model comparison
For each condition, we ran model comparison procedure as described in the Materials and methods. 
The results are reported in Appendix  1—table 5. In each condition, the expectation weighted 
models provided significantly better fit than models without this element.

Model diagnostics
In Appendix 1—tables 6–9, we report bulk and tail ESS for each condition, for each model and 
parameter.

While some of the ESS values are below the recommended threshold of 100, indicating potential 
issues with parameter inference. This may be due to a low participant sample size, as well as small 
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number of trials per condition, hinting limited statistical power. Given that the Rhat values are all 
around 1, and that there are no divergent transitions, as well as a fairly good parameter recovery, we 
see this as a minor issue.

Lastly, in Appendix 1—table 10 we model diagnostics for each condition, such as the estimated 
Bayesian fraction of missing information (E- BFMI), number of divergent transition, and E- BFMI values 
per chain.

Modelling results
Group-level differences between each condition
We plotted the estimate posterior distributions for each parameter of the model (including the 
across- trial average and the final learning rate and perceptual weighting term) in Appendix 1—figure 
12. We found no group- level differences between conditions for any of the posterior distribution of 
the parameters in the winning eKF model.

Individual-level differences between conditions
We estimated the individual- level parameters for each condition, and include their violin plots in 
Appendix 1—figure 13.

https://doi.org/10.7554/eLife.90634
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Appendix 1—figure 1. Linear transformation of the input at perception trials. Blue dots indicate participant’s 
perception responses for a given level of stimulus intensity, black dots indicate transformed intensity values, a 
linear least squares regression was performed to achieve the best fitting line through participant’s responses as 
shown in red, the intercept was constrained>0.
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Appendix 1—figure 2. Participants’ responses (red - perception; green - prediction) to the noxious input (dotted 
line) sequences. Vertical purple lines mark the end of each condition.

https://doi.org/10.7554/eLife.90634
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Appendix 1—figure 3. Participants’ confidence ratings (red - perception; green - prediction) during the task. 
Vertical purple lines mark the end of each condition.

https://doi.org/10.7554/eLife.90634
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Appendix 1—figure 4. Example plot of the input sequences (black) for each condition, one participant’s 
responses (white) and the winning, expectation weighted Kalman filter (eKF), model predictions (blue) including 
95% confidence intervals (shaded blue) for (A–D) perception and (E–H) prediction.

Appendix 1—figure 5. Model responses against participants’ responses for each condition and each response 
type (A–D) perception and (E–H) prediction. The annotated value is the grand mean correlation across subjects for 
each condition and response type.
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Appendix 1—figure 6. Parameter recovery average SD for: (A) eRL; (B) RL; (C) eKF; (D) KF; (E) Random model. The 
average SD is plotted as a function of simulation number averaged across 500 permutations of ≈100 simulations. 
The coloured shading corresponds to 1 SD around the average error.
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Appendix 1—figure 7. Parameter recovery scatter plot for expectation weighted reinforcement learning (eRL) 
model from ≈100 simulations for: (A) ɑ; (B) ɣ; (C) ξ; (D) E0; (E) C parameter.
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Appendix 1—figure 8. Parameter recovery scatter plot for reinforcement learning (RL) model from ≈100 
simulations for: (A) ɑ; (B) ξ; (C) E0; (D) C parameter.
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Appendix 1—figure 9. Parameter recovery scatter plot for expectation weighted Kalman filter (eKF) model from 
≈100 simulations for: (A) ε; (B) s; (C) v; (D) ξ; (E) E0; (F) w0; (G) C parameter.
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Appendix 1—figure 10. Parameter recovery scatter plot for Kalman filter (KF) model from ≈100 simulations for: (A) 
s; (B) v; (C) ξ; (D) E0; (E) w0; (F) C parameter.
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Appendix 1—figure 11. Parameter recovery scatter plot for random model from ≈100 simulations for: (A) ξ; (B) R; 
(C) C parameter.

Appendix 1—figure 12. Group- level distributions for parameters for each condition for the expectation weighted 
Kalman filter (eKF) model.
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Appendix 1—figure 13. Violin plots (and box- plots) of individual- level parameters for each condition in the 
winning expectation weighted Kalman filter (eKF) model. Lower and upper hinges correspond to the first and 
third quartiles of partipants’ errors (the upper/lower whisker extends from the hinge to the largest/smallest value 
no further than 1.5 * ”Interquartile range” from the hinge); the line in the box corresponds to the median. Each 
condition has N=27 particpants.

Appendix 1—table 1. Within- subjects effects from repeated measures ANOVA of participant’s 
RMSE scores with stochasticity, volatility, and response type factors.
SS - sum of squares, MS - mean square, RMSE - root mean square error

Effect SS df MS F p  η
2
  η

2
p 

Volatility 10.714 1 10.714 0.960 0.336 0.007 0.036

Residuals 290.166 26 11.160

Appendix 1—table 1 Continued on next page
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Effect SS df MS F p  η
2
  η

2
p 

Stochasticity 113.964 1 113.964 19.939 <0.001* 0.074 0.434

Residuals 148.603 26 5.715

Type 365.000 1 365.000 85.109 <0.001* 0.237 0.766

Residuals 111.503 26 4.289

Volatility × stochasticity 0.006 1 0.006 5.688e-4 0.981 3.723e-6 2.188e-5

Residuals 261.912 26 10.074

Volatility × type 7.313 1 7.313 3.196 0.085 0.005 0.109

Residuals 59.487 26 2.288

Stochasticity × type 63.662 1 63.662 29.842 <0.001* 0.041 0.534

Residuals 55.466 26 2.133

Volatility × stochasticity × type 1.356 1 1.356 0.704 0.409 8.807e-4 0.026

Residuals 50.060 26 1.925

* indicates statistical significance at 0.05 level.

Appendix 1—table 2. Post hoc comparisons for the repeated measures ANOVA’s interaction effect 
of stochasticity × type.

95%CI for mean diff.

Mean diff. Lower Upper SE t pbonf

High, perception Low, perception 0.367 −0.687 1.421 0.381 0.963 1.000

High, prediction −3.686 −4.636 −2.735 0.345 −10.688 <0.001*

Low, prediction −1.147 −2.329 0.034 0.430 −2.665 0.062

Low, perception High, prediction −4.053 −5.234 −2.871 0.430 −9.415 <0.001*

Low, prediction −1.514 −2.464 −0.564 0.345 −4.390 <0.001*

High, prediction Low, prediction 2.539 1.484 3.593 0.381 6.658 <0.001*

* indicates statistical significance at 0.05 level.

Appendix 1—table 3. Pearson correlation coefficient  r  (SD) from the parameter recovery analysis 
for each model.

eRL

 α  γ   ξ  E0  C 

 r   (SD) 0.685 (0.113) 0.92 (0.049) 0.993 (0.005) 0.723 (0.093) 0.481 (0.131)

RL

 α  ξ  E0  C 

 r   (SD) 0.842 (0.081) 0.993 (0.004) 0.625 (0.107) 0.455 (0.133)

eKF

 ϵ  s  v  ξ  E0  w0  C 

 r   (SD) 0.742 (0.1) 0.531 (0.13) 0.745 (0.09) 0.986 (0.075) 0.849 (0.118) 0.309 (0.179) 0.472 (0.123)

KF

 s  v  ξ  E0  w0  C 

Appendix 1—table 1 Continued

Appendix 1—table 3 Continued on next page
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eRL

 r   (SD) 0.605 (0.129) 0.589 (0.117) 0.993 (0.005) 0.585 (0.157) 0.298 (0.18) 0.442 (0.146)

Random model

 ξ  R  C 

 r   (SD) 0.996 (0.004) 0.999 (0.001) 0.079 (0.206)

Appendix 1—table 4. Confusion matrix from the model recovery analysis based on ≈100 
simulations.
The y- axis indicates which model simulated the dataset, while the x- axis indicates which model fit 
the data based on leave- one- out information criterion (LOOIC).

eRL RL eKF KF Random

Simulated

eRL 0.327 0.173 0.404 0.096 0.000

RL 0.223 0.234 0.223 0.319 0.000

eKF 0.382 0.067 0.427 0.124 0.000

KF 0.229 0.281 0.281 0.208 0.000

Random 0.292 0.000 0.358 0.000 0.349

Fit

Appendix 1—table 5. Model comparison results for each condition.

Condition Model name ELPD difference SE difference Sigma effect LOOIC

Vol. high Stoch. high

eKF - expectation weighted 0.000 0.000 15748.389

eRL - expectation weighted –9.560 5.071 1.885 15767.509

RL –139.407 61.362 2.272 16027.202

KF –161.444 77.335 2.088 16071.277

Random response –730.600 77.009 9.487 17209.588

Vol. high Stoch. low

eKF - expectation weighted 0.000 0.000 15682.115

eRL - expectation weighted –17.439 5.896 2.958 15716.993

RL –131.817 35.936 3.668 15945.749

KF –133.464 37.171 3.591 15949.042

Random response –824.346 79.148 10.415 17330.807

Vol. low Stoch. high

eKF - expectation weighted 0.000 0.000 15990.114

eRL - expectation weighted –12.027 7.029 1.711 16014.169

RL –149.338 43.874 3.404 16288.789

KF –159.738 46.485 3.436 16309.590

Random response –831.096 84.549 9.830 17652.306

Vol. low Stoch. low

eKF - expectation weighted 0.000 0.000 15904.936

eRL - expectation weighted –11.068 4.309 2.569 15927.072

RL –70.588 16.643 4.241 16046.111

KF –74.031 20.972 3.530 16052.997

Random response –901.792 107.244 8.409 17708.519

Appendix 1—table 3 Continued
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Appendix 1—table 6. Bulk and tail effective sample size (ESS) values for vol. high - stoch. high.

Model Param. ESS (bulk) ESS (tail)

eRL

 α 58.166 47.491

 C 90.5 79.142

 E0 54.655 137.729

 ξ 31.233 47.726

 γ  39.509 49.335

RL

 α 56.22 36.057

 C 99.642 52.599

 E0 126.757 467.373

 ξ 31.322 36.92

eKF

 C 89.281 83.274

 E0 37.723 103.977

 ϵ 94.203 429.332

 v 53.099 41.511

 s 1665.566 4593.161

 w0 616458.467 467603.626

 ξ 31.322 47.1

KF

 C 101.584 55.345

 E0 122.76 512.134

 v 114.644 54.015

 s 438.028 730.579

 w0 904.643 6759.804

 ξ 31.457 36.763

Random

 R 27.939 33.982

 C 397.862 259.967

 ξ 32.334 41.271

Appendix 1—table 7. Bulk and tail effective sample size (ESS) values for vol. high - stoch. low.

Model Param. ESS (bulk) ESS (tail)

eRL

 α 86.32 60.849

 C 235.396 373.736

 E0 43.489 109.903

 ξ 30.471 36.664

 γ  42.125 55.178

RL

 α 49.221 40.877

 C 328.761 455.542

 E0 63.341 111.689

 ξ 30.304 38.063

Appendix 1—table 7 Continued on next page
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Model Param. ESS (bulk) ESS (tail)

eKF

 C 227.813 363.944

 E0 33.393 104.395

 ϵ 376.691 1218.299

 v 45.861 37.486

 s 99526.69 148393.383

 w0 567627.288 634817.458

 ξ 30.438 36.66

KF

 C 328.005 448.632

 E0 57.467 124.471

 v 293.426 480.255

 s 164.454 598.211

 w0 412979.973 354163.251

 ξ 30.16 38.105

Random

 R 28.397 32.922

 C 1794.614 1170.459

 ξ 30.204 34.896

Appendix 1—table 8. Bulk and tail effective sample size (ESS) values for vol. low - stoch. high.

Model Param. ESS (bulk) ESS (tail)

eRL

 α 43.312 40.66

 C 248.885 434.44

 E0 49.006 85.409

 ξ 29.68 34.909

 γ  45.37 52.755

RL

 α 39.911 35.351

 C 433.949 435.575

 E0 181.442 618.317

 ξ 29.527 36.192

eKF

 C 248.848 418.003

 E0 35.363 51.728

 ϵ 1272.838 2427.211

 v 41.144 40.915

 s 2399.657 6854.212

 w0 612283.163 531588.25

 ξ 29.699 34.762

Appendix 1—table 7 Continued

Appendix 1—table 8 Continued on next page
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Model Param. ESS (bulk) ESS (tail)

KF

 C 423.339 417.747

 E0 88.749 302.863

 v 58.795 47.015

 s 206.969 672.666

 w0 499152.469 573964.793

 ξ 29.511 36.341

Random

 R 27.892 32.919

 C 269.239 106.139

 ξ 29.69 44.38

Appendix 1—table 9. Bulk and tail effective sample size (ESS) values for vol. low - stoch. low.

Model Param. ESS (bulk) ESS (tail)

eRL

 α 57.116 40.932

 C 162.472 129.413

 E0 43.707 117.295

 ξ 29.632 34.486

 γ  65.497 151.548

RL

 α 45.892 37.244

 C 158.681 98.898

 E0 80.406 441.719

 ξ 29.558 35.077

eKF

 C 149.16 126.209

 E0 38.88 73.732

 ϵ 653.635 1473.554

 v 48.883 43.445

 s 2263.547 9318.066

 w0 635517.969 313426.188

 ξ 29.699 34.721

KF

 C 158.729 105.929

 E0 71.438 457.431

 v 91.988 69.957

 s 287.835 895.249

 w0 527620.655 587092.529

 ξ 29.527 35.147

Random

 R 28.474 38.123

 C 2426.581 1279.66

 ξ 29.532 34.731

Appendix 1—table 8 Continued
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Appendix 1—table 10. Model diagnostics for each condition - estimated Bayesian fraction of 
missing information (E- BFMI), number of divergent transition E- BFMI values per chain.

Condition Model # chains low E- BFMI # div. transitions E- BFMI values

HVHS

eRL 0 0 0.696 0.713 0.695 0.691

RL 0 0 0.76 0.748 0.771 0.806

eKF 0 0 0.755 0.767 0.771 0.759

KF 0 0 0.633 0.596 0.547 0.563

Random 0 0 0.842 0.851 0.843 0.835

HVLS

eRL 0 0 0.689 0.76 0.69 0.689

RL 0 0 0.624 0.688 0.688 0.685

eKF 0 0 0.741 0.764 0.753 0.779

KF 0 0 0.654 0.734 0.689 0.674

Random 0 0 0.883 0.779 0.836 0.833

LVHS

eRL 0 0 0.73 0.732 0.728 0.702

RL 0 0 0.719 0.714 0.742 0.7

eKF 0 0 0.753 0.755 0.792 0.766

KF 0 0 0.75 0.768 0.729 0.754

Random 0 0 0.864 0.849 0.883 0.845

LVLS

eRL 0 0 0.764 0.762 0.75 0.764

RL 0 0 0.714 0.764 0.719 0.697

eKF 0 0 0.783 0.751 0.772 0.77

KF 0 0 0.705 0.695 0.702 0.726

Random 0 0 0.835 0.829 0.852 0.847
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