Efficient estimation for large-scale linkage disequilibrium patterns of the human genome

Xin Huang ${ }^{1,2,3 \dagger}$, Tian-Neng Zhu ${ }^{1 \dagger}$, Ying-Chao Liu ${ }^{1}$, Guo-An Oi ${ }^{1,4}$, Jian-Nan Zhang ${ }^{5}$, Guo-Bo Chen ${ }^{2,3,6 *}$
${ }^{1}$ Institute of Bioinformatics, Zhejiang University, Hangzhou, China; ${ }^{2}$ Center for General Practice Medicine, Department of General Practice Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China; ${ }^{3}$ Center for Reproductive Medicine, Department of Genetic and Genomic Medicine, and Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, China; ${ }^{4}$ Hainan Institute of Zhejiang University, Hainan, China; ${ }^{5}$ Alibaba Group, Hangzhou, China; ${ }^{6}$ Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China

*For correspondence: chenguobo@gmail.com
${ }^{\dagger}$ These authors contributed equally to this work

Competing interest: The authors declare that no competing interests exist.

Funding: See page 20
Preprint posted
20 June 2023
Sent for Review
07 August 2023
Reviewed preprint posted
05 October 2023
Reviewed preprint revised 10 November 2023
Version of Record published 27 December 2023

Reviewing Editor: Alexander Young, University of California, Los Angeles, United States
© Copyright Huang, Zhu et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Abstract

In this study, we proposed an efficient algorithm (X-LD) for estimating linkage disequilibrium (LD) patterns for a genomic grid, which can be of inter-chromosomal scale or of small segments. Compared with conventional methods, the proposed method was significantly faster, dropped from $O\left(n m^{2}\right)$ to $O\left(n^{2} m\right)$ —n the sample size and m the number of SNPs, and consequently we were permitted to explore in depth unknown or reveal long-anticipated LD features of the human genome. Having applied the algorithm for 1000 Genome Project (1KG), we found (1) the extended LD, driven by population structure, universally existed, and the strength of interchromosomal LD was about 10% of their respective intra-chromosomal LD in relatively homogeneous cohorts, such as FIN, and to nearly 56% in admixed cohort, such as ASW. (2) After splitting each chromosome into upmost of more than a half million grids, we elucidated the LD of the HLA region was nearly 42 folders higher than chromosome 6 in CEU and 11.58 in ASW; on chromosome 11, we observed that the LD of its centromere was nearly 94.05 folders higher than chromosome 11 in YRI and 42.73 in ASW. (3) We uncovered the long-anticipated inversely proportional linear relationship between the length of a chromosome and the strength of chromosomal LD, and their Pearson's correlation was on average over 0.80 for 261 KG cohorts. However, this linear norm was so far perturbed by chromosome 11 given its more completely sequenced centromere region. Uniquely chromosome 8 of ASW was found most deviated from the linear norm than any other autosomes. The proposed algorithm has been realized in C++ (called X-LD) and is available at https://github.com/gc5k/gear2, and can be applied to explore LD features in any sequenced populations.

eLife assessment

This study presents a useful new approach for efficient computation of statistics on correlations between genetic variants (linkage disequilibrium, or LD), which the authors apply to quantify the extent of LD across chromosomes. The method and its derivation are solid. The authors document that cross-chromosome LD can be substantial, which has implications for geneticists who are interested in population structure and its impact on genetic association studies.

Introduction

Linkage disequilibrium (LD) is the association for a pair of loci and the metric of LD serves as the basis for developing genetic applications in agriculture, evolutionary biology, and biomedical research (Weir, 2008; Hill and Robertson, 1966). The structure of LD of the human genome is shaped by many factors, mutation, recombination, population demography, epistatic fitness, and completeness of genomic data itself (Myers et al., 2005; Nei and Li, 1973; Ardlie et al., 2002). Due to its overwhelming cost, LD structure investigation is often compromised to a small genomic region (Chang et al., 2015; Theodoris et al., 2021), and their typical LD structure is as illustrated for a small segment (Barrett et al., 2005). Now, given the availability of large-scale genomic data, such as millions of single-nucleotide polymorphisms (SNPs), the large-scale LD patterns of the human genome play crucial roles in determining genomics studies, and many theories and useful algorithms upon large-scale LD structure, from genome-wide association studies, polygenic risk prediction for complex diseases, and choice for reference panels for genotype imputation (Vilhjálmsson et al., 2015; Yang and Zhou, 2020; Bulik-Sullivan et al., 2015; Yang et al., 2011; Das et al., 2016).

However, there are impediments, largely due to intensified computational cost, in both investigating large-scale LD and providing high-resolution illustrations for their details. If we consider a genomic grid that consists of m^{2} SNP pairs, given a sample of n individuals and m SNPs ($n \ll m$) typically as observed in 1000 Genomes Project (1KG) (Lowy et al., 2019), its benchmark computational time cost for calculating all pairwise LD is $\mathcal{O}\left(\mathrm{nm}^{2}\right)$, a burden that quickly drains computational resources given the volume of the genomic data. In practice, it is of interest to know the mean LD of the m_{i}^{2} SNP pairs for a genomic grid, which covers $m_{i} \times m_{j}$ SNP pairs. Upon how a genomic grid is defined, a genomic grid consequently can consist of (1) the whole genome-wide m^{2} SNP pairs, and we denote their mean LD as ℓ_{g}; (2) the intra-chromosomal mean LD for the ith chromosome of m_{i}^{2} SNP pairs, and denote as ℓ_{i}; and (3) the inter-chromosomal mean LD ith and jth chromosomal $m_{i} m_{j}$ SNP pairs, and denoted as $\ell_{i \cdot j}$.

In this study, we propose an efficient algorithm that can estimate ℓ_{g}, ℓ_{i}, and $\ell_{i \cdot j}$, the computational time of which can be reduced from $\mathcal{O}\left(n m_{i}^{2}\right)$ to $\mathcal{O}\left(n^{2} m_{i}\right)$ for ℓ_{i} and $\mathcal{O}\left(n m_{i} m_{j}\right)$ to $\mathcal{O}\left(n^{2} m_{i}+n^{2} m_{j}\right)$ for $\ell_{i . j}$. The rationale of the proposed method relies on the connection between the genetic relationship matrix (GRM) and LD (Chen, 2014; Goddard, 2009), and in this study a more general transformation

Figure 1. Schematic illustration for large-scale linkage disequilibrium (LD) analysis as exampled for CONVERGE cohort. (A) The 22 human autosomes have consequently $22 \hat{\ell}_{i}$ and $231 \hat{\ell}_{i \cdot j}$, without (left) and with (right) scaling transformation; Scaling transformation is given in Equation 8 . (B) If zoom into chromosome 2 of 420,946 single-nucleotide polymorphisms (SNPs), a chromosome of relative neutrality is expected to have self-similarity structure that harbors many approximately strong $\hat{\ell}_{u}$ along the diagonal, and relatively weak $\hat{\ell}_{u v}$ off-diagonally. Here chromosome 2 of CONVERGE has been split into 1000 blocks and yielded $1000 \hat{\ell}_{u}$ LD grids, and 499,500 $\hat{\ell}_{u v}$ LD grids. (C) An illustration of the construction process for the LD-decay regression model.

Figure 2. Reconciliation for linkage disequilibrium (LD) estimators in the 26 cohorts of 1 KG . (A) Consistency examination for the 261 KG cohorts for their $\hat{\ell}_{i}$ and $\hat{\ell}_{i \cdot j}$ estimated by X-LD and PLINK (--r2). In each figure, the 22 $\hat{\ell}_{i}$ fitting line is in purple, whereas the $231 \hat{\ell}_{i \cdot j}$ fitting line is in green. The gray solid line, $y=\frac{1}{n}+x$, in which n the sample size of each cohort, represents the expected fit between PLINK and X-LD estimates, and the two estimated Figure 2 continued on next page

Figure 2 continued
regression models at the top-right corner of each plot show this consistency. The sample size of each cohort is in parentheses. (B) Distribution of R^{2} of $\hat{\ell}_{i}$ and $\hat{\ell}_{i \cdot j}$ fitting lines is based on X-LD and PLINK algorithms in the 26 cohorts; R^{2} represents variation explained by the fitted model. 261 KG cohorts: MSL (Mende in Sierra Leone), GWD (Gambian in Western Division, The Gambia), YRI (Yoruba in Ibadan, Nigeria), ESN (Esan in Nigeria), ACB (African Caribbean in Barbados), LWK (Luhya in Webuye, Kenya), ASW (African Ancestry in Southwest US), CHS (Han Chinese South), CDX (Chinese Dai in Xishuangbanna, China), KHV (Kinh in Ho Chi Minh City, Vietnam), CHB (Han Chinese in Beijing, China), JPT (Japanese in Tokyo, Japan), BEB (Bengali in Bangladesh), ITU (Indian Telugu in the UK), STU (Sri Lankan Tamil in the UK), PJL (Punjabi in Lahore, Pakistan), GIH (Gujarati Indian in Houston, TX), TSI (Toscani in Italia), IBS (Iberian populations in Spain), CEU (Utah residents [CEPH] with Northern and Western European ancestry), GBR (British in England and Scotland), FIN (Finnish in Finland); MXL (Mexican Ancestry in Los Angeles, CA), PUR (Puerto Rican in Puerto Rico), CLM (Colombian in Medellin, Colombia), and PEL (Peruvian in Lima, Peru).
The online version of this article includes the following figure supplement(s) for figure 2:
Figure supplement 1. Reconciliation for linkage disequilibrium (LD) estimators in AFR, EAS, and EUR.
Figure supplement 2. The computational efficiency of X-LD algorithm.
from GRM to LD can be established via Isserlis's theorem (Isserlis, 1918; Zhou, 2017). The statistical properties, such as sampling variance, of the estimated LD have been derived too.

The proposed method can be analogously considered a more powerful realization for Haploview (Barrett et al., 2005), but additional utility can be derived to bring out an unprecedented survey of LD patterns of the human genome. As demonstrated in 1 KG , we consequently investigate how biological factors such as population structure, admixture, or variable local recombination rates can shape largescale LD patterns of the human genomes.

1. The proposed method provides statistically unbiased estimates for large-scale LD patterns and shows computational merits compared with the conventional methods (Figure 2).
2. We estimated ℓ_{g} and 22 autosomal ℓ_{i} and 231 inter-autosomal $\ell_{i \cdot j}$ for the 1 KG cohorts. There was a ubiquitous existence of extended LD, which was associated with population structure or admixture (Figure 3).
3. We provided high-resolution illustration that decomposed a chromosome into upmost nearly a million grids, each of which was consisted of 250×250 SNP pairs, the highest resolution that has been realized so far at autosomal level (Figure 4); tremendous variable recombination rates led to regional strong LD as highlighted for the HLA region of chromosomes 6 and the centromere region of chromosome 11.
4. Furthermore, a consequently linear regression constructed could quantify LD decay score genome-widely, and in contrast LD decay was previously surrogated in a computationally expensive method. There was a strong ethnicity effect that was associated with extended LD (Figure 5).
5. We demonstrate that the strength of autosomal ℓ_{i} was inversely proportional to the SNP number, an anticipated relationship that is consistent with genome-wide spread of recombination hotspots. However, chromosome 8 of ASW showed substantial deviation from the fitted linear relationship (Figure 6).

The proposed algorithm has been realized in C++ and is available at https://github.com/gc5k/ gear2, (copy archived at Chen, 2023). As tested, the software could handle sample sizes as large as 10,000 individuals.

Methods

The overall rationale for large-scale LD analysis

We assume LD for a pair of biallelic loci is measured by squared Pearson's correlation, $\rho_{l_{1} l_{2}}^{2}=\frac{D_{l_{1}}^{2}}{p_{l_{1}} q_{1} p_{1} q_{l_{2}}}$, in which $D_{l_{1} l_{2}}$ the LD of loci l_{1} and l_{2}, p. and q. the reference and the alternative allele frequencies. If we consider the averaged LD for a genomic grid over m_{i}^{2} SNP pairs, the conventional estimator is $\hat{\ell}_{i}=\frac{1}{m_{i}^{2}} \sum_{l_{1}, l_{2}}^{m_{i}} \rho_{l_{1} l_{2}}^{2}$, and, if we consider the averaged LD for m_{i} and m_{j} SNP pairs between two genomic segments, then $\hat{\ell}_{i \cdot j}=\frac{1}{m_{i} m_{j}} \sum_{l_{1}, l_{2}}^{m_{i}, m_{j}} \rho_{l_{1} l_{2}}^{2}$. Now let us consider the 22 human autosomes (Figure 1A).

We naturally partition the genome into $\mathcal{C}=22$ blocks, and its genomic LD, denoted as ℓ_{g}, can be expressed as

$$
\begin{equation*}
\ell_{g}=\frac{1}{m^{2}} \sum_{l_{1}, l_{2}}^{m} \rho_{l_{1} l_{2}}^{2}=\frac{1}{m^{2}}\left(\sum_{i}^{e}\left(\sum_{l_{1}, l_{2}}^{m_{i}} \rho_{l_{1} l_{2}}^{2}\right)+\sum_{i \neq j}^{e}\left(\sum_{l_{1}}^{m_{i}} \sum_{l_{2}}^{m_{j}} \rho_{l_{1} l_{2}}^{2}\right)\right)=\sum_{i}^{e} \frac{m_{i}^{2}}{m^{2}} \ell_{i}+\sum_{i \neq j}^{e} \frac{m_{i} m_{j}}{m^{2}} \ell_{i \cdot j} \tag{1}
\end{equation*}
$$

So we can decompose ℓ_{g} into $\mathcal{C} \ell_{i}$ and $\frac{\mathcal{C}(\mathcal{C}-1)}{2}$ unique $\ell_{i \cdot j}$. Obviously, Equation 1 can be also expressed in the context of a single chromosome $\ell_{i}=\frac{1}{\beta_{i}^{2}}\left(\sum_{u}^{\beta_{i}} \ell_{u}+\sum_{u \neq v}^{\beta_{i}} \ell_{u v}\right)$, in which $\beta_{i}=\frac{m_{i}}{m}$ the number of SNP segments, each of which has m SNPs. Geometrically it leads to β_{i} diagonal grids and $\frac{\beta_{i}\left(\beta_{i}-1\right)}{2}$ unique off-diagonal grids (Figure 1B).

Table 1. Notation definitions.

Notation	Definition
\mathcal{C}	The number of chromosomes.
i and j	Subscripts index chromosome i and j.
β_{i}	The number of SNP segments of chromosome i, each of which has \mathfrak{m} SNPs.
$D_{l_{1} l_{2}}$	The difference between the observed and expected haplotype frequencies, with $D_{l_{1} l_{2}}=p_{l_{1} l_{2}}-p_{l_{1}} p_{l_{2}}$
F	The inbreeding coefficient.
$\underline{\mathbf{K}_{i}}$	Genetic relatedness matrix for chromosome \boldsymbol{i}, and two vectors, $\boldsymbol{k}_{i_{o}}$ and $\boldsymbol{k}_{i_{d}}$, from \mathbf{K}_{i}, where $\boldsymbol{k}_{i_{o}}$ stacks the off-diagonal elements and $\boldsymbol{k}_{i_{d}}$ stacks the diagonal elements.
k	Subscript indexes individual.
l_{1} and l_{2}	Subscripts index a pair of SNPs.
m	The number of SNPs; m_{i} the number of SNPs on chromosome i.
n	The number of samples; n_{i}, the number of samples in subpopulation i.
p_{l} and q_{l}	Frequency of the th reference allele and alternative allele in the population.
$\theta_{k_{1} k_{2}}$	The relatedness score between individual k_{1} and k_{2}.
$x_{k l}$	The genotype for the k th individual at the lth biallelic locus.
$\underline{\mathbf{X}_{i} \text { and } \tilde{\mathbf{X}}_{i}}$	Genotype and standardized genotype matrixes for chromosome i.
$\rho_{l_{1} l_{2}}^{2}$	Squared Pearson's correlation coefficient for any pair of SNPs, including an SNP to itself when $l_{1}=l_{2}$
r^{2}	Squared Pearson's correlation metric for LD but estimated from PLINK (--r2) or PopLDdecay.
ℓ_{g}	The mean LD of the whole genome-wide m^{2} SNP pairs.
$\underline{\ell_{i}}$	The intra-chromosomal mean LD for the ith chromosome of m_{i}^{2} SNP pairs.
$\ell_{i \cdot j}$	The inter-chromosomal mean LD ith and jth chromosomal $m_{i} m_{j}$ SNP pairs, a scaled version is $\tilde{\ell}_{i j}$
ℓ_{u}	The mean LD for a diagonal grid.
$\ell_{u v}$	The mean LD for off-diagonal grids.

LD, linkage disequilibrium; SNP, single-nucleotide polymorphism.

Table 2. Computational time for the demonstrated estimation tasks.

Cohort	Task description	Time cost	Computational time complex
CHB ($n=103, m=2,997,655)$	Estimation for 22 autosomal ℓ_{i}, and 231 interchromosomal $\ell_{i \cdot j}$. For results, see Figure 3 and Table 3.	101,34 s	$\mathcal{O}\left(n^{2} m\right)$
$1 \mathrm{KG}(n=2,503, m=2,997,655)$	Same as above.	3008.29 s	Same as above
$\begin{aligned} & \text { CONVERGE }(n=10,640, \\ & m=5,215,820) \end{aligned}$	Same as above. For results, see Figure 1A.	77,508.00 s	Same as above
	Estimation for high-resolution LD interaction given bin size of 250 SNPs		
CHB ($\left.n=103, m_{2}=241,241\right)$	Chromosome 2, estimation for $965 \ell_{i}$, and 465,130 $\ell_{i \cdot j}$ For results, see Figure 4.	66.86 s	$\mathcal{O}\left(n^{2}\left(m_{i}+\left(\frac{m_{i}}{250}\right)^{2}\right)\right)$
CHB $\left(n=103, m_{22}=40,378\right)$	Chromosome 22, estimation for $162 \ell_{i}$, and 13,041 $\ell_{i \cdot j}$ For results, see Figure 4.	3.22 s	Same as above
$\begin{aligned} & \text { CONVERGE }(n=10,640, \\ & \left.m_{22}=71,407\right) \end{aligned}$	Chromosome 22, estimation for $286 \ell_{i}$, and 40,755 $\ell_{i \cdot j}$.	8,736.29 s	Same as above
$\begin{aligned} & \text { CONVERGE }(n=10,640, \\ & \left.m_{2}=420,949\right) \end{aligned}$	Chromosome 2, estimation for $1000 \ell_{i}$, and 499,500 $\ell_{i \cdot j}$. For results, see Figure 1B.	45,125.00 s	Chromosome 2 was split into 1000 blocks, each of which had about 420 SNPs

For the sake of fair comparison, 10 CPU were used for multi-thread computing.
LD, linkage disequilibrium; SNP, single-nucleotide polymorphism.

LD-decay regression

As human genome can be boiled down to small LD blocks by genome-widely spread recombination hotspots (Hinch et al., 2019; Li et al., 2022), mechanically there is self-similarity for each chromosome that the relatively strong ℓ_{i} for juxtaposed grids along the diagonal but weak $\ell_{i \cdot j}$ for grids slightly offdiagonal. So, for a chromosomal ℓ_{i}, we can further express it as

$$
\begin{equation*}
\ell_{i}=\frac{1}{\beta_{i}^{2}}\left(\sum_{u}^{\beta_{i}} \ell_{u}+\sum_{u \neq v}^{\beta_{i}} \ell_{u v}\right)=E\left(\ell_{u}\right) \frac{1}{\beta_{i}}+E\left(\ell_{u v}\right)\left(1-\frac{1}{\beta_{i}}\right)=\frac{1}{\beta_{i}}\left[E\left(\ell_{u}\right)-E\left(\ell_{u v}\right)\right]+E\left(\ell_{u v}\right) \tag{2}
\end{equation*}
$$

in which ℓ_{u} is the mean LD for a diagonal grid, $\ell_{u v}$ the mean LD for off-diagonal grids, and m_{i} the number of SNPs on the ith chromosome. Consider a linear model below (see Figure 1C for its illustration),

$$
\begin{equation*}
\ell=b_{0}+b_{1} x+e \tag{3}
\end{equation*}
$$

in which ℓ represents a vector composed of $\mathcal{C} \ell_{i}, x, x$ represents a vector composed of $\mathcal{C} x_{i}$, and $x_{i}=\frac{1}{m_{i}}$ the inversion of the SNP number of the ith chromosome. The regression coefficient and intercept can be estimated as below:

$$
b_{1}=\frac{\operatorname{cov}(x, \ell)}{\operatorname{var}(x)}=\frac{E(x \ell)-E(x) E(\ell)}{\operatorname{var}(x)}
$$

and

$$
b_{0}=E(\ell)-b_{1} E(x)
$$

There are some technical details in order to find the interpretation for b_{0} and b_{1}. We itemize them briefly. For the mean and variance of x :

$$
\left\{\begin{array}{l}
E(x)=\frac{1}{\mathcal{C}} \sum_{i}^{\mathcal{C}} \frac{1}{m_{i}} \\
\operatorname{var}(x)=\frac{1}{\mathcal{C}} \sum_{i}^{\mathcal{C}} \frac{1}{m_{i}^{2}}-\left(\frac{1}{\mathcal{C}} \sum_{i}^{\mathcal{C}} \frac{1}{m_{i}}\right)^{2}
\end{array}\right.
$$

Figure 3. Various linkage disequilibrium (LD) components for the 261 KG cohorts. (A) Chromosomal scale LD components for five representative cohorts (CEU, CHB , YRI, ASW, and 1 KG). The upper parts of each figure represent $\hat{\ell}_{i}$ (along the diagonal) and $\hat{\ell}_{i \cdot j}$ (off-diagonal), and the lower part $\hat{\tilde{\ell}}_{i \cdot j}$ as in Equation 8. For visualization purposes, the quantity of LD before scaling is transformed to a -log10 scale, with smaller values (red hues) representing

Figure 3 continued on next page

Figure 3 continued
larger LD, and a value of 0 representingthat all single-nucleotide polymorphisms (SNPs) are in LD. (B) The relationship between the degree of population structure (approximated by $F_{s t}$) and $\hat{\ell}_{i}, \hat{\ell}_{g}$, and $\hat{\ell}_{i . j}$ in the 261 KG cohorts.
The online version of this article includes the following figure supplement(s) for figure 3:
Figure supplement 1. Chromosomal scale linkage disequilibrium (LD) components for 26 cohorts in 1 KG .

For $E(x \ell)$:

$$
\begin{aligned}
E(x \ell) & =\frac{\sum_{i}^{e} \frac{1}{m_{i}}\left\{E\left(e_{u} \frac{m}{m_{i}}\right)+E\left(\ell_{u v}\right)\left(1-\frac{m}{m_{i}}\right)\right\}}{e} \\
& =\frac{\sum_{i}^{e}\left\{E\left(\ell_{u} \frac{m}{m_{i}^{2}}\right)+E\left(\ell_{u v}\right)\left(1-\frac{m}{m_{i}}\right)\right\}}{e} \\
& =\left[\left(E\left(\ell_{u}\right)-E\left(\ell_{u v}\right)\right) m\right]\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}^{2}}\right)+E\left(\ell_{u v}\right)\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)
\end{aligned}
$$

For $E(x) E(\ell)$:

$$
\begin{aligned}
E(x) E(\ell) & =\left\{\frac{1}{c} \sum_{i}^{e} \frac{1}{m_{i}}\right\}\left\{\left(\frac{1}{c} \sum_{i}^{e} \frac{1}{m_{i}}\right)\left(E\left(\ell_{u}\right) \cdot m\right)+\left[1-m\left(\frac{1}{c} \sum_{i}^{e} \frac{1}{m_{i}}\right)\right] E\left(\ell_{u v}\right)\right\} \\
& =\left[\left(E\left(\ell_{u}\right)-E\left(\ell_{u v}\right)\right) m\right]\left(\frac{1}{c} \sum_{i}^{e} \frac{1}{m_{i}}\right)^{2}+E\left(\ell_{u v}\right)\left(\frac{1}{c} \sum_{i}^{e} \frac{1}{m_{i}}\right)
\end{aligned}
$$

Then we integrate these items to have the expectation for b_{1} :

$$
\begin{aligned}
& E\left(b_{1}\right)=\frac{E(x t)-E(x) E(e)}{\operatorname{var}(x)} \\
& =\frac{\left\{\left[\left(E\left(e_{u}\right)-E\left(e_{u v}\right)\right) m\right]\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}^{2}}\right)+E\left(\ell_{u v}\right)\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)\right\}-\left\{\left[\left(E\left(e_{u}\right)-E\left(\ell_{u v}\right)\right) m\right]\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)^{2}+E\left(\ell_{u v}\right)\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)\right\}}{\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}^{2}}-\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)^{2}} \\
& =\left[E\left(e_{u}\right)-E\left(e_{u v}\right)\right] m
\end{aligned}
$$

Similarly, we plug in $E\left(b_{1}\right)$ so as to derive b_{0} :

$$
\begin{aligned}
E\left(b_{0}\right)= & E(\ell)-E\left(b_{1}\right) E(x) \\
& =\left\{\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)\left(E\left(\ell_{u}\right) \cdot m\right)+\left[1-m\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)\right] E\left(\ell_{u v}\right)\right\} \\
& -\left\{\left(E\left(\ell_{u}\right)-E\left(\ell_{u v}\right)\right) \cdot m \cdot\left(\frac{1}{e} \sum_{i}^{e} \frac{1}{m_{i}}\right)\right\}=E\left(\ell_{u v}\right)
\end{aligned}
$$

After some algebra, if $E\left(\ell_{u}\right) \gg E\left(\ell_{u v}\right)$ —say if the former is far greater than the latter, the interpretation of b_{1} and b_{0} can be

$$
\left\{\begin{array}{l}
E\left(b_{1}\right)=E\left(\ell_{u}-\ell_{u v}\right) m \approx E\left(\ell_{u}\right) m \tag{4}\\
E\left(b_{0}\right)=E\left(\ell_{u v}\right)
\end{array}\right.
$$

It should be noticed that $E\left(b_{1}\right) \approx E\left(\ell_{u}\right) m$ quantifies the averaged LD decay of the genome. Conventional LD decay is analyzed via the well-known LD decay analysis, but Equation 4 provides a direct estimate of both LD decay and possible existence of extended LD. We will see the application of the model in Figure 5 that the strength of the long-distance LD is associated with population structure. Of note, the underlying assumption of Equations 3 and 4 is genome-wide spread of recombination hotspots, an established result that has been revealed and confirmed (Hinch et al., 2019).
Table 3. X-LD estimation for complex LD components (2,997,635 SNPs).

Figure 4. High-resolution illustration for linkage disequilibrium (LD) grids for CEU, CHB, YRI, and ASW ($\mathfrak{m}=250$). For each cohort, we partition chromosomes 6 and 11 into high-resolution LD grids (each LD grid contains 250 $\times 250$ single-nucleotide polymorphism [SNP] pairs). The bottom half of each figure shows the LD grids for the entire chromosome. Further zooming into HLA on chromosome 6 and the centromere region on chromosome 11, and their detailed LD in the relevant regions are also provided in the upper half of each figure. For visualization purposes, LD is transformed to a -log10-scale, with smaller values (red hues) representing larger LD, and a value of 0 representing that all SNPs are in LD.
The online version of this article includes the following figure supplement(s) for figure 4:
Figure 4 continued on next page

Figure 4 continued
Figure supplement 1. High-resolution illustration for linkage disequilibrium (LD) grids for CEU, CHB, YRI, and ASW ($\mathfrak{m}=500$).

Figure supplement 2. Influence of HLA region on chromosome 6 and centromere region on chromosome 11 on chromosomal linkage disequilibrium (LD) in CEU, CHB, YRI, and ASW.

Efficient estimation for ℓ_{g}, ℓ_{i}, and $\ell_{i \cdot j}$

For the aforementioned analyses, the bottleneck obviously lies in the computational cost in estimating ℓ_{i} and $\ell_{i \cdot j} . \ell_{i}$ and $\ell_{i \cdot j}$ are used to be estimated via the current benchmark algorithm as implemented in PLINK (Chang et al., 2015), and the computational time complex is proportional to $\mathcal{O}\left(\mathrm{nm}^{2}\right)$. We present a novel approach to estimate ℓ_{i} and $\ell_{i \cdot j}$. Given a genotypic matrix \mathbf{X}, a $n \times m$ matrix, if we assume that there are m_{i} and m_{j} SNPs on chromosomes i and j, respectively, we can construct $n \times n$ genetic relatedness matrices as below:

$$
\left\{\begin{array}{l}
\mathbf{K}_{i}=\frac{1}{m_{i}} \tilde{\mathbf{X}}_{i} \tilde{\mathbf{X}}_{i}^{\mathrm{T}} \\
\mathbf{K}_{j}=\frac{1}{m_{j}} \tilde{\mathbf{X}}_{j} \tilde{\mathbf{X}}_{j}^{\mathrm{T}}
\end{array}\right.
$$

in which $\tilde{\mathbf{X}}_{i}$ is the standardized \mathbf{X}_{i} and $\tilde{x}_{k l}=\frac{x_{k l}-2 p_{l}}{\sqrt{2(1+F) p_{1} q_{l}}}$, where $x_{k l}$ is the genotype for the k th individual at the th biallelic locus, F is the inbreeding coefficient having the value of 0 for random mating population and 1 for an inbred population, and p_{l} and q_{l} are the frequencies of the reference and the alternative alleles ($p_{l}+q_{l}=1$), respectively. When GRM is given, we can obtain some statistical characters of \mathbf{K}_{i}. We extract two vectors $\boldsymbol{k}_{i_{o}}$, which stacks the off-diagonal elements of \mathbf{K}_{i}, and $\boldsymbol{k}_{i_{d}}$, which takes the diagonal elements of \mathbf{K}_{i}. The mathematical expectation of $\boldsymbol{k}_{i_{o}}^{2}$, in which $E\left(\boldsymbol{k}_{i_{o}}^{2}\right)=\frac{1}{n(n-1)} \sum_{k_{1} \neq k_{2}}^{n} k_{k_{1}, k_{2}}^{2}$, can be established according to Isserlis's theorem in terms of the four-order moment (Isserlis, 1918),

$$
\begin{equation*}
E\left(\boldsymbol{k}_{i_{o}}^{2}\right)=\frac{1}{m_{i}^{2} n(n-1)} \sum_{k_{1} \neq k_{2}}^{n} \sum_{l_{1}, l_{2}}^{m_{i}}\left[\left(1+\theta_{k_{1} k_{2}}^{2}\right) \rho_{l_{1} l_{2}}^{2}+\theta_{k_{1} k_{2}}^{2}\right] \tag{6}
\end{equation*}
$$

in which $E\left(\theta_{k_{1} k_{2}}\right)=\left(\frac{1}{2}\right)^{r}$ is the expected relatedness score and r indicates the rth-degree relatives. $r=0$ for the same individual, and $r=1$ for the first-degree relatives. Similarly, we can derive for $E\left(\boldsymbol{k}_{i_{o}} \boldsymbol{k}_{j_{o}}\right)$.Equation 6 establishes the connection between GRM and the aggregated LD estimation that $\ell_{i}=E\left(\boldsymbol{k}_{i_{o}}^{2}\right)$. According to Delta method as exampled in Appendix I of Lynch and Walsh, 1998, the means and the sampling variances for ℓ_{i} and $\ell_{i . j}$ are

$$
\left\{\begin{array}{l}
E\left(\boldsymbol{k}_{i_{o}}^{2}\right)=\ell_{i}=\frac{1}{m_{i}^{2}} \sum_{l_{1}, l_{2}}^{m_{i}} \rho_{l_{1}, l_{2}}^{2} \\
\operatorname{var}\left(\ell_{i}\right)=\frac{4\left[\widehat{\operatorname{var}}^{\left(\boldsymbol{k}_{o}\right)}\right]^{2}}{n(n-1)} \\
E\left(\boldsymbol{k}_{i_{o}} \boldsymbol{k}_{k_{o}}\right)=\ell_{i \cdot j}=\frac{1}{m_{i} m_{j}} \sum_{l_{1}, l_{2}=1}^{m_{i}, m_{j}} \rho l_{1}^{2}, l_{2} \\
\operatorname{var}\left(\boldsymbol{k}_{i_{o}}\right)=E\left(\boldsymbol{k}_{i_{o}}^{2}\right)-\left[E\left(\boldsymbol{k}_{i_{o}}\right)\right]^{2}=\ell_{i}-\frac{1}{(n-1)^{2}}
\end{array}\right.
$$

in which $\quad \operatorname{var}\left(\boldsymbol{k}_{i_{o}}\right)=E\left(\boldsymbol{k}_{i_{o}}^{2}\right)-\left[E\left(\boldsymbol{k}_{i_{o}}\right)\right]^{2}=\ell_{i}-\frac{1}{(n-1)^{2}} \quad$ and $\operatorname{cov}\left(\boldsymbol{k}_{i_{o}}, \boldsymbol{k}_{j_{o}}\right)=E\left(\boldsymbol{k}_{i_{o}} \boldsymbol{k}_{j_{o}}\right)-E\left(\boldsymbol{k}_{i_{o}}\right) E\left(\boldsymbol{k}_{j_{o}}\right)=\ell_{i \cdot j}-\frac{1}{(n-1)^{2}}$, respectively. Of note, the properties of ℓ_{g} can be derived similarly if we replace ℓ_{i} with ℓ_{g} in Equation 7 . We can develop $\tilde{\ell}_{i . j}$, a scaled version of $\ell_{i . j}$, as below:

Figure 5. Linkage disequilibrium (LD) decay analysis for 261 KG cohorts. (A) Conventional LD decay analysis in PLINK for 26 cohorts. To eliminate the influence of sample size, the inverse of sample size has been subtracted from the original LD values. The YRI cohort, represented by the orange dotted line, is chosen as the reference cohort in each plot. The top-down arrow shows the order of LDdecay values according to Table 5. (B) Model-based LD decay analysis for the 261 KG cohorts. We regressed each autosomal $\hat{\ell}_{i}$ against its corresponding inversion of the single-nucleotide polymorphism (SNP) number for each cohort. Regression coefficient b_{1} quantifies the averaged LD decay of the genome and intercept b_{0} provides a direct estimate of the possible existence of long-distance LD. The \mathcal{R} values in the first three plots indicate the correlation between b_{1} and LD decay score in three different
Figure 5 continued on next page

Figure 5 continued
physical distance and the correlation between b_{1} (left-side vertical axis) and LD decay score (right-side vertical axis) and the correlation between b_{0} (leftside vertical axis) and $F_{s t}$ (right-side vertical axis), respectively. The last plot assessed the impact of centromere region of chromosome 11 on the linear relationship between chromosomal LD and the inverse of the SNP number. The dark and light gray dashed lines represent the mean of the \mathcal{R} with and without the presence of centromere region of chromosome 11.

The online version of this article includes the following figure supplement(s) for figure 5 :
Figure supplement 1. The correlation between the inverse of the single-nucleotide polymorphism (SNP) number and chromosomal linkage disequilibrium (LD) in 26 cohorts of 1 KG .

$$
\begin{equation*}
\tilde{\ell}_{i \cdot j}=\frac{\ell_{i \cdot j}}{\sqrt{\tilde{\ell}_{i} \tilde{\ell}_{j}}} \tag{8}
\end{equation*}
$$

in which $\tilde{\ell}_{i}=\frac{m_{i} \ell_{i}-1}{m_{i}-1}$, a modification that removed the LD with itself. According to Delta method, the sampling variance of $\tilde{\ell}_{i \cdot j}$ is

$$
\begin{equation*}
\operatorname{var}\left(\tilde{\ell_{i \cdot j}}\right)=\frac{2\left(\widehat{\ell_{i \cdot j}}\right)^{2}}{n(n-1)}\left[\frac{\widehat{\operatorname{var}}\left(\boldsymbol{k}_{i_{o}}\right) \widehat{\operatorname{var}}\left(\boldsymbol{k}_{j_{o}}\right)}{\left(\widehat{\operatorname{cov}}\left(\boldsymbol{k}_{i_{o}}, \boldsymbol{k}_{j_{o}}\right)\right)^{2}}+\frac{\left(\widehat{\operatorname{cov}}\left(\boldsymbol{k}_{i_{o}}, \boldsymbol{k}_{j_{o}}\right)\right)^{2}}{\widehat{\operatorname{var}}\left(\boldsymbol{k}_{i_{o}}\right) \hat{\operatorname{var}}\left(\boldsymbol{k}_{j_{o}}\right)}-2\right] \tag{9}
\end{equation*}
$$

Of note, when there is no LD between a pair of loci, ℓ yields zero and its counterpart PLINK estimate yields $\frac{1}{n}$, a difference that can be reconciled in practice (see Figure 2).

Raise of LD due to population structure

In this study, the connection between LD and population structure is bridged via two pathways below, in terms of a pair of loci and of the aggregated LD for all pair of loci. For a pair of loci, their LD is often simplified as $\rho_{l_{1} l_{2}}^{2}=\frac{D_{l_{1} l_{2}}^{2}}{p_{l_{1}} q_{1} p_{2} q_{l_{2}}}$, but will be inflated if there are subgroups (Nei and Li, 1973). In addition, it is well established the connection between population structure and eigenvalues, and in particular the largest eigenvalue is associated with divergence of subgroups (Patterson et al., 2006). In this study, the existence of subgroups of cohort is surrogated by the largest eigenvalue λ_{1} or $\bar{F}_{\text {st }} \approx \frac{\lambda_{1}}{n}$.

Data description and quality control

The 1 KG (Auton et al., 2015), which was launched to produce a deep catalog of human genomic variation by whole-genome sequencing (WGS) or whole-exome sequencing (WES), and 2503 strategically selected individuals of global diversity were included (containing 26 cohorts). We used the following criteria for SNP inclusion for each of the 26 1KG cohorts: (1) autosomal SNPs only; (2) SNPs with missing genotype rates higher than 0.2 were removed, and missing genotypes were imputed; and (3) only SNPs with minor allele frequencies higher than 0.05 were retained. Then $2,997,635$ consensus SNPs that were present in each of the 26 cohorts were retained. According to their origins, the 26 cohorts are grouped as African (AFR: MSL, GWD, YRI, ESN, ACB, LWK, and ASW), European (EUR: TSI, IBS, CEU, GBR, and FIN), East Asian (EA: CHS, CDX, KHV, CHB, and JPT), South Asian (SA: BEB, ITU, STU, PJL, and GIH), and American (AMR: MXL, PUR, CLM, and PEL), respectively.

In addition, to test the capacity of the developed software (X-LD), we also included CONVERGE cohort ($n=10,640$), which was used to investigate major depressive disorder (MDD) in the Han Chinese population (Cai et al., 2015). We performed the same criteria for SNP inclusion as that of the 1 KG cohorts, and $m=5,215,820$ SNPs remained for analyses.

X-LD software implementation

The proposed algorithm has been realized in our X-LD software, which is written in C++ and reads in binary genotype data as often used in PLINK. As multi-thread programming is adopted, the efficiency of X-LD can be improved upon the availability of computational resources. We have tested X-LD in various independent datasets for its reliability and robustness. Certain data management options, such as flexible inclusion or exclusion of chromosomes, have been built into the commands of X-LD. In X-LD, missing genotypes are naively imputed according to Hardy-Weinberg proportions; however,

Table 4. Estimates for 22 autosomal $\hat{\ell}_{i}$ in CEU, CHB, YRI, and ASW, respectively.

Chromosome	SNP number	$\hat{\ell}_{i}$			
		CEU	CHB	YRI	ASW
1	225,967	$5.0 \mathrm{e}-4$ (8.2e-6)	0.00049 (7.8e-6)	0.00032 (4.3e-6)	0.0015 (4e-05)
2	241,241	$5.0 \mathrm{e}-4$ (8.1e-6)	$5.0 \mathrm{e}-4$ (7.9e-6)	$3.0 \mathrm{e}-4$ (4.1e-6)	0.0015 (4e-05)
3	212,670	$6.0 \mathrm{e}-04$ (1.0e-5)	0.00058 (9.5e-6)	0.00039 (5.7e-6)	0.0018 (5.1e-5)
4	222,241	0.00062 (1.0e-5)	0.00061 (1.0e-5)	0.00038 (5.4e-6)	0.0018 (5.0e-5)
5	193,632	0.00069 (1.2e-5)	7.0e-04 (1.2e-5)	0.00043 (6.5e-6)	0.0018 (4.9e-5)
6	206,165	0.0010 (1.9e-5)	$9.0 \mathrm{e}-04$ (1.6e-5)	0.00064 (1.0e-5)	0.0019 (5.4e-5)
7	177,414	0.00073 (1.3e-5)	0.00071 (1.2e-5)	0.00045 (6.8e-6)	0.0016 (4.3e-5)
8	163,436	0.00075 (1.3e-5)	0.00069 (1.2e-5)	0.00043 (6.5e-6)	0.0022 (6.4e-5)
9	129,440	0.00074 (1.3e-5)	0.00074 (1.3e-5)	0.00047 (7.2e-6)	0.0018 (5.0e-5)
10	152,251	$0.00078(1.4 \mathrm{e}-5)$	$8.0 \mathrm{e}-04(1.4 \mathrm{e}-5)$	0.00058 (9.3e-6)	0.0019 (5.6e-5)
11	151,751	0.0012 (2.3e-5)	0.0012 (2.2e-5)	0.00084 (1.4e-5)	0.0022 (6.2e-5)
12	139,684	$8.0 \mathrm{e}-4$ (1.4e-5)	0.00073 (1.2e-5)	0.00049 (7.5e-6)	0.0017 (4.8e-5)
13	113,390	0.0010 (1.8e-5)	0.00094 (1.6e-5)	0.00061 (9.8e-6)	0.0018 (4.9e-5)
14	97,335	0.0011 (2.0e-5)	0.0010 (1.8e-5)	0.00065 (1.1e-5)	0.0020 (5.6e-5)
15	85,307	0.0010 (1.8e-5)	0.00098 (1.7e-5)	$6.0 \mathrm{e}-4$ (9.6e-6)	0.0020 (5.8e-5)
16	92,007	0.00088 (1.6e-5)	0.00084 (1.5e-5)	0.00054 (8.4e-6)	0.0021 (6.2e-5)
17	79,478	0.0012 (2.3e-5)	0.0011 (2.0e-5)	0.00069 (1.1e-5)	0.0021 (6.0e-5)
18	87,105	0.0010 (1.8e-5)	0.00095 (1.7e-5)	0.00058 (9.2e-6)	0.0023 (6.8e-5)
19	72,794	0.0012 (2.3e-05)	0.0012 (2.1e-5)	0.00082 (1.4e-5)	0.0022 (6.2e-5)
20	68,881	0.0014 (2.6e-5)	0.0015 (2.7e-5)	0.00078 (1.3e-5)	0.0024 (7.0e-5)
21	45,068	0.0018 (3.4e-5)	0.0017 (3.2e-5)	0.00098 (1.7e-5)	0.0024 (7.1e-5)
22	40,378	0.0016 (3.1e-5)	0.0016 (2.9e-5)	0.0010 (1.8e-5)	0.0027 (8.1e-5)

Each $\hat{\ell}_{i}$ and its standard error are in parentheses, as estimated in Equation 7.
SNP, single-nucleotide polymorphism.
when the missing rate is high, we suggest the genotype matrix should be imputed by other advanced imputation tools.

The most time-consuming part of X-LD was the construction of GRM $\mathbf{K}=\frac{1}{m} \widetilde{\mathbf{X}}^{T}$, and the established computational time complex was $\mathcal{O}\left(n^{2} m\right)$. However, if $\tilde{\mathbf{X}}$ is decomposed into $\widetilde{\mathbf{X}}=\left[\widetilde{\mathbf{X}}_{\left[t_{1},\right]}: \widetilde{\mathbf{X}}_{\left[t_{2},\right]} \vdots \ldots: \widetilde{\mathbf{X}}_{\left[t_{2},\right]}\right]$, in which $\widetilde{\boldsymbol{X}}_{\left[t_{i},\right]}$ has dimension of $n \times B$, using Mailman algorithm the computational time complex for building \mathbf{K} can be reduced to $\mathcal{O}\left(\frac{n^{2} m}{\log _{3} m}\right)$ (Liberty and Zucker, 2009). This idea of embedding Mailman algorithm into certain high-throughput genomic studies has been successful, and our X-LD software is also leveraged by absorbing its recent practice in genetic application (Wu and Sankararaman, 2018).

Results

Statistical properties of the proposed method

Table 1 introduces the symbols frequently cited in this study. As schematically illustrated in Figure 1, ℓ_{g} could be decomposed into $\mathcal{C} \ell_{i}$ and $\frac{\mathcal{C}(\mathcal{C}-1)}{2}$ unique $\ell_{i \cdot j}$ components. We compared the estimated

Table 5. LD decay regression analysis for 26 cohorts.
LD-decay regression* Population parameters ${ }^{\dagger}$

Cohort (n)	\hat{b}_{0}	\hat{b}_{1}	\boldsymbol{R}	LD decay score	$\bar{F}_{\text {st }}(\%)$	Ancestry	True LD ${ }^{\ddagger}$
MSL (85)	0.00041	29.97	0.84	0.0421	0.013	AFR	0.62727273
GWD (113)	0.00031	30.17	0.83	0.0439	0.009	AFR	0.65934066
YRI (107)	0.00030	30.64	0.85	0.0436	0.010	AFR	0.66292135
ESN (99)	0.00037	34.82	0.87	0.0436	0.011	AFR	0.65420561
ACB (96)	0.00053	39.62	0.88	0.0451	0.021	AFR	0.63194444
LWK (99)	0.00046	40.52	0.92	0.0447	0.014	AFR	0.64615385
ASW (61)	0.0015	46.88	0.83	0.0472	0.031	AFR	0.57142857
CHS (105)	0.00046	52.36	0.87	0.0555	0.010	EA	0.67375887
CDX (93)	0.00055	53.77	0.83	0.0557	0.012	EA	0.66666667
KHV (99)	0.00044	53.79	0.87	0.0560	0.011	EA	0.68345324
CHB (103)	0.00041	54.90	0.90	0.0558	0.010	EA	0.69402985
JPT (104)	0.00045	57.75	0.85	0.0568	0.010	EA	0.68965517
BEB (86)	0.00045	48.84	0.88	0.0556	0.012	SA	0.66911765
ITU (102)	0.00048	49.58	0.89	0.0546	0.016	SA	0.66433566
STU (102)	0.00055	52.84	0.89	0.0546	0.015	SA	0.64516129
PJL (96)	0.00054	54.00	0.90	0.0546	0.017	SA	0.67073171
GIH (103)	0.00057	55.81	0.91	0.0562	0.017	SA	0.65868263
TSI (107)	0.00041	53.17	0.91	0.0558	0.010	EUR	0.68939394
IBS (107)	0.00039	54.22	0.92	0.0555	0.010	EUR	0.7
CEU (99)	0.00045	54.23	0.89	0.0559	0.011	EUR	0.68085106
GBR (91)	0.00047	58.23	0.91	0.0555	0.012	EUR	0.68027211
FIN (99)	0.00054	59.24	0.86	0.0579	0.011	EUR	0.67073171
MXL (64)	0.0014	66.13	0.89	0.0558	0.036	AMR	0.6
PUR (104)	0.00059	67.20	0.89	0.0571	0.014	AMR	0.67039106
CLM (94)	0.00069	75.97	0.95	0.0572	0.017	AMR	0.66985646
PEL (85)	0.0012	78.15	0.85	0.0598	0.028	AMR	0.61290323
1KG (2503)	0.0061	40.65	0.55		0.066	Mixed	0.51587302

LD, linkage disequilibrium; SNP, single-nucleotide polymorphism.
*The regression intercept b_{0} and the coefficients b_{1} are as represented in Equation 3.
${ }^{+}$The column for LD decay score was taken as the mean of the estimated $r^{2}-\frac{1}{n}$ from PopLDdecay in a physical distance of 1500 kb , which was approximated to the area under the curve in Figure 5A for each cohort; $F_{s t}$ was approximated by $\frac{\lambda_{1}}{n}$, in which λ_{1} the largest eigenvalue for the cohort.
r^{2} was the estimated LD statistic from PLINK (--r2).
${ }^{ \pm}$True LD is defined as $\frac{\hat{\hat{C}}_{i . j}}{\hat{\hat{t}}_{i, j}+\hat{b}_{0}}$
ℓ_{i} and $\ell_{i \cdot j}$ in X-LD with those being estimated in PLINK (known as '--r2,' and the estimated squared Pearson's correlation LD is denoted as r^{2}). Considering the substantial computational cost of PLINK, only 100,000 randomly selected autosome SNPs were used for each 1 KG cohort, and $22 \hat{\ell}_{i}$ and 231 $\hat{\ell}_{i \cdot j}$ were estimated. After regressing $22 \hat{\ell}_{i}$ against those of PLINK, we found that the regression slope was close to unity and bore an anticipated intercept a quantity of approximately $\frac{1}{n}$ (Figure 2A and B). In other words, PLINK gave $\frac{1}{n}$ even for SNPs of no LD. However, when regressing $231 \hat{\ell}_{i \cdot j}$ estimates

Figure 6. The correlation between the inversion of the single-nucleotide polymorphism (SNP) number and $\hat{\ell}_{\boldsymbol{i}}$. (A) The correlation between the inversion of the SNP number and $\hat{\ell}_{i}$ in CEU, CHB, YRI, and ASW. (B) Leave-one-chromosome-out strategy is adopted to evaluate the contribution of a certain chromosome on the correlation between the inverse of the SNP number and $\hat{\ell}_{\boldsymbol{i}}$. (C) The correlation between the inversion of the SNP number and chromosomal linkage disequilibrium (LD) in CEU, CHB, YRI, and ASW after removing the centromere region of chromosome 11. (D) High-resolution illustration for LD grids for chromosome 8 in CEU, CHB, YRI, and ASW. For each cohort, we partition chromosome 8 into consecutive LD grids (each LD grid contains 250×250 SNP pairs). For visualization purposes, LD is transformed to a -log10-scale, with smaller values (red hues) representing larger LD, and a value of 0 representing that all SNPs are in LD.
The online version of this article includes the following figure supplement(s) for figure 6:
Figure supplement 1. Influence of expanding of single-nucleotide polymorphism (SNP) numbers on the correlation between the inverse of the SNP number and chromosomal linkage disequilibrium (LD) in ASW.
against those of PLINK, it was found that largely because of the tiny quantity of $\hat{\ell}_{i \cdot j}$ it was slightly smaller than 1 but statistically insignificant from 1 in these 261 KG cohorts (mean of 0.86 and SD of 0.10 , and its $95 \% \mathrm{Cl}$ was $(0.664,1.056)$); when the entire 1 KG samples were used, its much larger LD due to subgroups, nearly no estimation bias was found (Figure 2A and B). In contrast, because of their much larger values, $\hat{\ell}_{i}$ components were always consistent with their corresponding estimates from PLINK (mean of 1.03 and SD of $0.012,95 \% \mathrm{Cl}$ was (1.006, 1.053), bearing an ignorable bias). Furthermore, we also combined the African cohorts together (MSL, GWD, YRI, ESN, LWK, totaling 599 individuals), the East Asian cohorts together (CHS, CDX, KHV, CHB, and JPT, totaling 504 individuals), and the European cohorts together (TSI, IBS, CEU, GBR, and FIN, totaling 503 individuals), and the resemblance pattern between X-LD and PLINK was similar as observed in each cohort alone (Figure 2-figure supplement 1). The empirical data in 1 KG verified that the proposed method was sufficiently accurate.

To fairly evaluate the computational efficiency of the proposed method, the benchmark comparison was conducted on the first chromosome of the entire 1 KG dataset ($n=2,503$ and $m=225,967$), and 10 CPUs were used for multi-thread computing. Compared with PLINK, the calculation efficiency of X-LD was nearly 30-40 times faster for the tested chromosome, and its computational time of X-LD was proportional to $\mathcal{O}\left(\frac{n^{2} m}{\log _{3} m}\right)$ (Figure 2-figure supplement 2). So, X-LD provided a feasible and reliable estimation of large-scale complex LD patterns. More detailed computational time of the tested tasks is reported in their corresponding sections below; since each 1 KG cohort had a sample size of around 100, otherwise specified the computational time was reported for CHB ($n=103$) as a reference (Table 2). In order to test the capability of the software, the largest dataset tested was CONVERGE ($n=10,640$, and $m=5,215,820$), and it took $77,508.00 \mathrm{~s}$, about 22 hr , to estimate 22 autosomal $\hat{\ell}_{i}$ and $231 \hat{\ell}_{i \cdot j}$ (Figure 1A); when zooming into chromosome 2 of CONVERGE, on which 420,949 SNPs had been evenly split into 1000 blocks and yielded $1000 \hat{\ell}_{u}$ grids, and 499,500 $\hat{\ell}_{u v}$ LD grids, it took $45,125.00 \mathrm{~s}$, about 12.6 hr , to finish the task (Figure 1B).

Ubiquitously extended LD and population structure/admixture

We partitioned the $2,997,635$ SNPs into 22 autosomes (Figure 3A , Figure 3-figure supplement 1), and the general LD patterns were as illustrated for CEU, CHB, YRI, ASW, and 1 KG . As expected, $\hat{\ell}_{i \cdot j}<\hat{\ell}_{g}<\hat{\ell}_{i}$ for each cohort (Figure 3B). As observed in these 1 KG cohorts, all three LD measures were associated with population structure, which was surrogated by $F_{\text {st }} \approx \frac{\lambda_{1}}{n}$, and their squared correlation R^{2} was greater than 0.8 . ACB, ASW, PEL, and MXL, which all showed certain admixture, tended to have much greater $\hat{\ell}_{g}, \hat{\ell}_{i}$, and $\hat{\ell}_{i \cdot j}$ (Table 3 and Figure 3B). In contrast, East Asian (EA) and European (EUR)-orientated cohorts, which showed little within-cohort genetic differentiation-as their largest eigenvalues were slightly greater than 1—had their aggregated LD relatively low and resembled each other (Table 3). Furthermore, for several European (TSI, IBS, and FIN) and East Asian (JPT) cohorts, the ratio between $\hat{\ell}_{i \cdot j}$ and $\hat{\ell}_{i}$ components could be smaller than 0.1 , and the smallest ratio was found to be about 0.091 in FIN. The largest ratio was found in 1 KG that $\hat{\ell}_{i \cdot j}=5.7 e-3$ and $\hat{\ell}_{i}=6.5 e-3$, and the ratio was 0.877 because of the inflated LD due to population structure. A more concise statistic to describe the ratio between $\ell_{i \cdot j}$ and ℓ_{i} was $\tilde{\ell}_{i \cdot j}$ (Equation 8), and the corresponding value for 231 scaled $\tilde{\ell}_{i \cdot j}$ for FIN was $\hat{\tilde{\ell}}_{i \cdot j}=0.10$ (SD of 0.027) and for 1 KG was $\hat{\tilde{\ell}}_{i \cdot j}=0.88$ (SD of 0.028).

In terms of computational time, for 103 CHB samples, it took about 101.34 s to estimate 22 autosomal $\hat{\ell}_{i}$ and $231 \hat{\ell}_{i \cdot j}$; for all 1 KG 2503 samples, X-LD took about 3008.29 s (Table 1). Conventional methods took too long to complete the analyses in this section, so no comparable computational time was provided. For detailed $22 \hat{\ell}_{i}$ and $231 \hat{\ell}_{i \cdot j}$ estimates for each 1 KG cohort, please refer to Supplementary file 1 (Excel sheet 1-27).

Detecting exceedingly high LD grids shaped by variable recombination rates

We further explored each autosome with high-resolution grid LD visualization. We set $\mathfrak{m}=250$, so each grid had the $\ell_{u v}$ for 250×250 SNP pairs. The computational time complex was $\mathcal{O}\left(n^{2}\left(m_{i}+\frac{\beta_{i}^{2}}{4}\right)\right)$, in which $\beta_{i}=\frac{m_{i}}{250}$, and with our proposed method in CHB it cost 66.86 s for chromosome 2 , which
had 241,241 SNPs and totaled 466,095 unique grids, and 3.22 s only for chromosome 22, which had 40,378 SNPs and totaled 13,203 unique grids (Table 1). In contrast, under conventional methods those LD grids were not very likely to be exhaustively surveyed because its computational cost was $\mathcal{O}\left(n m_{i}^{2}\right)$: for CHB chromosome 2, it would have taken about 40 hr as estimated. As the result was very similar for $\mathfrak{m}=500$ (Figure 4-figure supplement 1), we only report the results under $\mathfrak{m}=250$ below.

As expected, chromosome 6 (206,165 SNPs, totaling 340,725 unique grids) had its HLA cluster showing much higher LD than the rest of chromosome 6. In addition, we found a very dramatic variation of the HLA cluster LD $\hat{\ell}_{H L A}(28,477,797-33,448,354 \mathrm{bp}$, totaling 3160 unique grids) across ethnicities. For CEU, CHB, YRI, and ASW, their $\hat{\ell}_{6}=0.0010,0.00090,0.00064$, and 0.0019 , respectively, but their corresponding HLA cluster grids had $\hat{\ell}_{H L A}=0.042,0.029,0.025$, and 0.022 , respectively (Figure 4). Consequently, the largest ratio for $\frac{\hat{\epsilon}_{H L A}}{\hat{\epsilon}_{6}}$ was 42.00 in CEU, 39.06 in YRI, and 32.22 in CHB, but was reduced to 11.58 in ASW. Before the release of CHM13 (Hoyt et al., 2022), chromosome 11 had the most completely sequenced centromere region, which had much rarer recombination events, and all four cohorts showed a strong LD $\hat{\ell}_{11 . c}$ around the centromere ($46,061,947-59,413,484 \mathrm{bp}$, totaling 1035 unique grids) regardless of their ethnicities (Figure 4). $\hat{\ell}_{11}=0.0012,0.0012,0.00084$, and 0.0022 , respectively, and $\hat{\ell}_{11 . c}=0.098,0.10,0.079$, and 0.094 , respectively; the ratio for $\frac{\hat{\ell}_{11 . c}}{\hat{\ell}_{11}}=$ 81.67, 83,33, and 94,05, for CEU, CHB, and YRI, respectively; the lowest ratio was found in ASW of 42.73. In addition, removing the HLA region of chromosome 6 or the centromere region of chromosome 11 would significantly reduce $\hat{\ell}_{6}$ or $\hat{\ell}_{11}$ in comparison with the random removal of other regions (Figure 4-figure supplement 2).

Model-based LD decay regression revealed LD composition

The real LD block size was not exact of $\mathfrak{m}=250$ or $\mathfrak{m}=500$, but an unknown parameter that should be inferred in computational intensive 'LD decay' analysis (Zhang et al., 2019; Chang et al., 2015). We conducted the conventional LD decay for the 261 KG cohorts (Figure 5A), and the time cost was 1491.94 s for CHB. For each cohort, we took the area under the LD decay curve in the LD decay plot, and it quantified approximately the LD decay score for each cohort. The smallest score was 0.0421 for MSL, and the largest was 0.0598 for PEL (Table 5). However, this estimation did not take into account the real extent of LD, so it was not precise enough to reflect the LD decay score. For example, for admixture population, such as the American cohorts, the extent of LD would be longer.

In contrast, we proposed a model-based method, as given in Equation 3, which could estimate LD decay score (regression coefficient b_{1}) and long-distance LD score (intercept b_{0}) jointly. Given the estimated $22 \hat{\ell}_{i}$ (Supplementary file 1; see Table 4 for four representative cohorts and Supplementary R code), we regressed each autosomal $\hat{\ell}_{i}$ against its corresponding inversion of SNP number, and all yielded positive slopes (Pearson's correlation $\mathcal{R}>0.80$, Table 5 and Figure 5B), an observation that was consistent with genome-wide spread of recombination hotspots. This linear relationship could consequently be considered the norm for a relatively homogeneous population as observed in most 1 KG cohorts (Figure 5-figure supplement 1), while for all the 2503 1KG samples $\mathfrak{R}=0.55$ only (Table 5), indicating that the population structure and possible differentiated recombination hotspots across ethnicities disturbed the assumption underlying Equation 3 and smeared the linearity. We extracted b_{0} and b_{1} for the 261 KG cohorts for further analysis. The rates of LD decay score, as indicated by b_{1}, within the African cohorts (AFR) were significantly faster than the other continents, consistent with previous observation that the African population had relatively shorter LD Gabriel et al., 2002; while subgroups within the American continent (AMR) tended to have extended LD range due to their admixed genetic composition (Table 4 and Figure 5). Notably, the correlation between b_{1} and the approximated LD decay score was $\Re=0.88$. The estimated $\bar{F}_{s t}$ was highly correlated with $b_{0}(\Re=0.94)$.

A common feature was universally relative high LD of chromosome 6 and 11 in the 261 KG cohorts (Figure 5-figure supplement 1). We quantified the impact of chromosome 6 and 11 by leave-one-chromosome-out test in CEU, CHB, YRI, and ASW for details (Figure 6A and B) and found that dropping chromosome 6 off could lift \Re on average by 0.017 and chromosome 11 by 0.046 . One possible explanation was that the centromere regions of chromosomes 6 and 11 have been assembled more completely than other chromosomes before the completion of CHM13 (Hoyt et al., 2022), whereas meiotic recombination tended to be reduced around the centromeres (Hinch et al., 2019). We estimated ℓ_{i} after having knocked out the centromere region (46,061,947-59,413,484 bp, chr 11) in CEU,

CHB, YRI, and ASW, and chromosome 11 then did not deviate much from their respective fitted lines (Figure 6C). A notable exceptional pattern was found in ASW, chromosome 8 of which had even more deviation than chromosome 11 (\Re was 0.83 and 0.87 with and without chromosome 8 in leave-onechromosome out test) (Figure 6B). The deviation of chromosome 8 of ASW was consistent even more SNPs were added (Figure 6-figure supplement 1). We also provided high-resolution LD grids illustration for chromosome 8 (163,436 SNPs, totaling 214,185 grids) of the four representative cohorts for more detailed virtualization (Figure 6D). ASW had $\hat{\ell}_{8}=0.0022$, but $0.00075,0.00069$, and 0.00043 for CEU, CHB, and YRI, respectively.

Discussion

In this study, we present a computationally efficient method to estimate the mean LD of genomic grids of many SNP pairs. Our LD analysis framework is based on GRM, which has been embedded in variance component analysis for complex traits and genomic selection (Goddard, 2009; Visscher et al., 2014; Chen, 2014). The key connection from GRM to LD is bridged via the transformation between $n \times n$ matrix and $m \times m$ matrix, in particular here via Isserlis's theorem under the fourth-order moment (Isserlis, 1918). With this connection, the computational cost for estimating the mean LD of $m \times m$ SNP pairs is reduced from $\mathcal{O}\left(n m^{2}\right)$ to $\mathcal{O}\left(n^{2} m\right)$, and the statistical properties of the proposed method are derived in theory and validated in 1 KG datasets. In addition, as the genotype matrix \mathbf{X} is of limited entries $\{0,1,2\}$, assuming missing genotypes are imputed first, using Mailman algorithm the computational cost of GRM can be further reduced to $\mathcal{O}\left(\frac{n^{2} m}{\log _{3} m}\right)$ (Liberty and Zucker, 2009). The largest data tested so far for the proposed method has a sample size of 10,640 and more than 5 million SNPs, so it can complete genomic LD analysis in $77,508.00 \mathrm{~s}$ (Table 1). The weakness of the proposed method is obvious that the algorithm remains slow when the sample size is large or the grid resolution is increased. With the availability of such a UK Biobank data (Bycroft et al., 2018), the proposed method may not be adequate, and much advanced methods, such as randomized implementation for the proposed methods, are needed.

We also applied the proposed method into 1 KG and revealed certain characteristics of the human genomes. Firstly, we found the ubiquitous existence of extended LD, which likely emerged because of population structure, even very slightly, and admixture history. We quantified the $\hat{\ell}_{i}$ and $\hat{\ell}_{i \cdot j}$ in 1 KG, and as indicated by $\tilde{\ell}_{i . j}$ we found that the inter-chromosomal LD was nearly an order lower than intra-chromosomal LD; for admixed cohorts, the ratio was much higher, even very close to each other such as in all 1 KG samples. Secondly, variable recombination rates shaped peak of local LD. For example, the HLA region showed high LD in the European and East Asian cohorts, but relatively low LD in such as YRI, consistent with their much longer population history. Thirdly, there existed a general linear correlation between ℓ_{i} and the inversion of the SNP number, a long-anticipated result that is as predicted with genome-wide spread of recombination hotspots (Hinch et al., 2019). One outlier of this linear norm was chromosome 11, which had so far the most completely genotyped centromere and consequently had more elevated LD compared with other autosomes. We anticipate that with the release of CHM13 the linear correlation should be much closer to unity (Hoyt et al., 2022). Of note, under the variance component analysis for complex traits, it is often a positive correlation between the length of a chromosome (as surrogated by the number of SNPs) and the proportion of heritability explained (Chen et al., 2014).

In contrast, throughout the study recurrent outstanding observations were found in ASW. For example, in ASW the ratio of $\hat{\ell}_{H L A} / \hat{\ell}_{6}$ substantially dropped compared with that of CEU, CHB, or YRI as illustrated in Figure 4. Furthermore, chromosome 8 in ASW fluctuated upward most from the linear correlation (Figure 6) even after various analyses, such as expanding SNP numbers. One possible explanation may lie under the complex demographic history of ASW, which can be investigated and tested in additional African American samples or possible existence for epistatic fitness (Ni et all, 2020).

Acknowledgements

GBC conceived and initiated the study. XH, TNZ, and YL conducted simulation and analyzed data. GBC, XH, TNZ, GAQ, and JZ developed the software. GBC wrote the first draft of the article. All authors contributed to the writing, discussion of the paper, and validation of the results. This work was
supported by the National Natural Science Foundation of China (31771392), 110202101032 (JY-09), and GZY-ZJ-KJ-23001. The funders played no role in the design, preparation, and submission of the article.

Additional information

Funding

Funder	Grant reference number	Author
National Natural Science Foundation of China	31771392	Guo-Bo Chen
China National Tobacco Corporation	110202101032 (JY-09)	Guo-Bo Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

Xin Huang, Data curation, Software, Formal analysis, Validation, Visualization, Methodology, Writing - original draft; Tian-Neng Zhu, Data curation, Software, Formal analysis, Validation, Visualization, Methodology, Writing - review and editing; Ying-Chao Liu, Data curation, Formal analysis, Validation, Visualization; Guo-An Qi, Formal analysis, Validation; Jian-Nan Zhang, Software; Guo-Bo Chen, Conceptualization, Resources, Software, Formal analysis, Supervision, Validation, Methodology, Writing - original draft, Project administration, Writing - review and editing
Author ORCIDs
Tian-Neng Zhu (D) http://orcid.org/0009-0007-7507-4521
Guo-An Qi (ib http://orcid.org/0000-0002-2412-3932
Guo-Bo Chen (iD) http://orcid.org/0000-0001-5475-8237
Ethics
Human subjects: This study investigated variation in previously published anonymized genome data from the 1000 Genomes Project.

Peer review material
Joint Public Review: https://doi.org/10.7554/eLife.90636.3.sa1
Author Response https://doi.org/10.7554/eLife.90636.3.sa2

Additional files

Supplementary files

- MDAR checklist
- Supplementary file 1. Extended data for 1KG LD estimation.

Data availability
Public genetic datasets used in this study can be freely downloaded from the following URLs. 1000 Genomes Project: https://www.ebi.ac.uk/eva/?eva-study=PRJEB30460. CONVERGE: https://www. ebi.ac.uk/eva/?eva-study=PRJNA289433. All data generated or analysed during this study are included in the manuscript and supporting file. The CONVERGE dataset was used to generate Figure 1 and the other figures were generated from 1000 Genomes Project data.

The following previously published datasets were used:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Lowy-Gallego E, Fairley S, ZhengBradley X, Ruffier M, Clarke L, Flicek P	2019	Variant calling on GRCh38 with the 1000 genomes samples	https://www.ebi.ac. uk/eva/?eva-study= PRJEB30460	European Nucleotide Archive, PRJEB30460
Na Cai, Bigdeli TB, Kretzschmar WW, Li Y, Liang J, Hu J, Peterson RE, Bacanu S, Webb BT, Riley B, Li Q, Marchini J, Mott R, Kendler KS, Flint J	2017	Study of Major Depression in Chinese women	https://www.ebi.ac. uk/eva/?eva-study= PRJNA289433	European Nucleotide Archive, PRJNA289433

References

Ardlie KG, Kruglyak L, Seielstad M. 2002. Patterns of linkage disequilibrium in the human genome. Nature Reviews. Genetics 3:299-309. DOI: https://doi.org/10.1038/nrg777, PMID: 11967554
Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. 2015. A global reference for human genetic variation. Nature 526:68-74. DOI: https://doi.org/10 1038/nature15393, PMID: 26432245
Barrett JC, Fry B, Maller J, Daly MJ. 2005. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263-265. DOI: https://doi.org/10.1093/bioinformatics/bth457, PMID: 15297300
Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Patterson N, Daly MJ, Price AL, Neale BM. 2015. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics 47:291-295. DOI: https:// doi.org/10.1038/ng.3211, PMID: 25642630
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O'Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203-209. DOI: https://doi.org/10. 1038/s41586-018-0579-z, PMID: 30305743
Cai N, Bigdeli TB, Kretzschmar W, Li Y, Liang J, Song L, Hu J, Li Q, Jin W, Hu Z, Wang G, Wang L, Qian P, Liu Y, Jiang T, Lu Y, Zhang X, Yin Y, Li Y, Xu X, et al. 2015. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523:588-591. DOI: https://doi.org/10.1038/nature14659, PMID: 26176920
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7. DOI: https://doi.org/10.1186/s13742-015-0047-8, PMID: 25722852
Chen GB. 2014. Estimating heritability of complex traits from genome-wide association studies using IBS-based Haseman-Elston regression. Frontiers in Genetics 5:107. DOI: https://doi.org/10.3389/fgene.2014.00107, PMID: 24817879
Chen G-B, Lee SH, Brion M-JA, Montgomery GW, Wray NR, Radford-Smith GL, Visscher PM, International IBD Genetics Consortium. 2014. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Human Molecular Genetics 23:4710-4720. DOI: https://doi.org/10.1093/hmg/ ddu174, PMID: 24728037
Chen GB. 2023. Gear2. swh:1:rev:5fc8952989f2a4cc6abf936aea6a48368a7456a7. Software Heritage. https:// archive.softwareheritage.org/swh:1:dir:1a6c0e75da11e684adabbc15b04e7b40ac2f0494;origin=https://github. com/gc5k/gear2;visit=swh:1:snp:21669cb98f18047c02d9e4476253ff4dd7f42009;anchor=swh:1:rev:5fc89529 89f2a4cc6abf936aea6a48368a7456a7
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M, Schlessinger D, Stambolian D, Loh P-R, Iacono WG, Swaroop A, Scott LJ, Cucca F, Kronenberg F, Boehnke M, Abecasis GR, et al. 2016. Next-generation genotype imputation service and methods. Nature Genetics 48:1284-1287. DOI: https://doi.org/10.1038/ng.3656, PMID: 27571263
Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D. 2002. The structure of haplotype blocks in the human genome. Science 296:2225-2229. DOI: https://doi.org/10. 1126/science. 1069424, PMID: 12029063
Goddard M. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245-257. DOI: https://doi.org/10.1007/s10709-008-9308-0, PMID: 18704696
Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Genetical Research 8:269-294 PMID: 5980116.
Hinch AG, Zhang G, Becker PW, Moralli D, Hinch R, Davies B, Bowden R, Donnelly P. 2019. Factors influencing meiotic recombination revealed by whole-genome sequencing of single sperm. Science 363:eaau8861. DOI: https://doi.org/10.1126/science.aau8861, PMID: 30898902

Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A, de Lima LG, Limouse C, Halabian R, Wojenski L, Rodriguez M, Altemose N, Rhie A, Core LJ, Gerton JL, Makalowski W, Olson D, Rosen J, Smit AFA, Straight AF, Vollger MR, et al. 2022. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 376:eabk3112. DOI: https://doi.org/10.1126/science.abk3112, PMID: 35357925
Isserlis L. 1918. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12:134-139. DOI: https://doi.org/10.1093/biomet/12.1-2.134
Li Y, Chen S, Rapakoulia T, Kuwahara H, Yip KY, Gao X, Marschall T. 2022. Deep learning identifies and quantifies recombination hotspot determinants. Bioinformatics 38:2683-2691. DOI: https://doi.org/10.1093/ bioinformatics/btac234
Liberty E, Zucker SW. 2009. The Mailman algorithm: A note on matrix-vector multiplication. Information Processing Letters 109:179-182. DOI: https://doi.org/10.1016/j.ipl.2008.09.028
Lowy GE, Fairley S, Zheng BX, Ruffier M, Clarke L, Flicek P, 1000 Genomes Project Consortium. 2019. Variant calling on the GRCh38 assembly with the data from phase three of the 1000 Genomes Project. Wellcome Open Research 4:50. DOI: https://doi.org/10.12688/wellcomeopenres.15126.2, PMID: 32175479
Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits Sinauer.
Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. 2005. A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321-324. DOI: https://doi.org/10.1126/science.1117196, PMID: 16224025
Nei M, Li WH. 1973. Linkage disequilibrium in subdivided populations. Genetics 75:213-219. DOI: https://doi. org/10.1093/genetics/75.1.213, PMID: 4762877
Ni X, Zhou M, Wang H, He KY, Broeckel U, Hanis C, Kardia S, Redline S, Cooper RS, Tang H, Zhu X. 2020. Detecting fitness epistasis in recently admixed populations with genome-wide data. BMC Genomics 21:476. DOI: https://doi.org/10.1186/s12864-020-06874-7
Patterson N, Price AL, Reich D. 2006. Population structure and eigenanalysis. PLOS Genetics 2:e190. DOI: https://doi.org/10.1371/journal.pgen.0020190, PMID: 17194218
Theodoris C, Low TM, Pavlidis P, Alachiotis N. 2021. quickLD: An efficient software for linkage disequilibrium analyses. Molecular Ecology Resources 21:2580-2587. DOI: https://doi.org/10.1111/1755-0998.13438, PMID: 34062051
Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, Genovese G, Loh P-R, Bhatia G, Do R, Hayeck T, Won H-H, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Discovery, Biology, and Risk of Inherited Variants in Breast Cancer study, Kathiresan S, Pato M, Pato C, Tamimi R, Stahl E, Zaitlen N, Pasaniuc B, et al. 2015. Modeling linkage disequilibrium increases accuracy of polygenic risk scores. American Journal of Human Genetics 97:576-592. DOI: https://doi.org/10.1016/j.ajhg.2015.09.001, PMID: 26430803
Visscher PM, Hemani G, Vinkhuyzen AAE, Chen G-B, Lee SH, Wray NR, Goddard ME, Yang J. 2014. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLOS Genetics 10:e1004269. DOI: https://doi.org/10.1371/journal.pgen.1004269, PMID: 24721987
Weir BS. 2008. Linkage disequilibrium and association mapping. Annual Review of Genomics and Human Genetics 9:129-142. DOI: https://doi.org/10.1146/annurev.genom.9.081307.164347, PMID: 18505378
Wu Y, Sankararaman S. 2018. A scalable estimator of SNP heritability for biobank-scale data. Bioinformatics 34:i187-i194. DOI: https://doi.org/10.1093/bioinformatics/bty253, PMID: 29950019
Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, Smith AV, Ingelsson E, O’Connell JR, Mangino M, Mägi R, Madden PA, Heath AC, Nyholt DR, Martin NG, Montgomery GW, Frayling TM, Hirschhorn JN, McCarthy MI, Goddard ME, et al. 2011. Genomic inflation factors under polygenic inheritance. European Journal of Human Genetics 19:807-812. DOI: https://doi.org/10.1038/ejhg.2011.39, PMID: 21407268
Yang S, Zhou X. 2020. Accurate and scalable construction of polygenic scores in large biobank data sets. American Journal of Human Genetics 106:679-693. DOI: https://doi.org/10.1016/j.ajhg.2020.03.013, PMID: 32330416
Zhang C, Dong S-S, Xu J-Y, He W-M, Yang T-L. 2019. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786-1788. DOI: https://doi. org/10.1093/bioinformatics/bty875, PMID: 30321304
Zhou X. 2017. A unified framework for variance component estimation with summary statistics in genome-wide association studies. The Annals of Applied Statistics 11:2027-2051. DOI: https://doi.org/10.1214/17AOAS1052, PMID: 29515717

