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Abstract Meiotic sex chromosome inactivation (MSCI) is a critical feature of meiotic prophase I 
progression in males. While the ATR kinase and its activator TOPBP1 are key drivers of MSCI within 
the specialized sex body (SB) domain of the nucleus, how they promote silencing remains unclear 
given their multifaceted meiotic functions that also include DNA repair, chromosome synapsis, and 
SB formation. Here we report a novel mutant mouse harboring mutations in the TOPBP1- BRCT5 
domain. Topbp1B5/B5 males are infertile, with impaired MSCI despite displaying grossly normal 
events of early prophase I, including synapsis and SB formation. Specific ATR- dependent events are 
disrupted, including phosphorylation and localization of the RNA:DNA helicase Senataxin. Topbp1B5/

B5 spermatocytes initiate, but cannot maintain ongoing, MSCI. These findings reveal a non- canonical 
role for the ATR- TOPBP1 signaling axis in MSCI dynamics at advanced stages in pachynema and 
establish the first mouse mutant that separates ATR signaling and MSCI from SB formation.

eLife assessment
This important study reports a new mutant mouse line with compromised function of a DNA 
damage response protein. The evidence supporting the conclusion that the mutants display defec-
tive maintenance of meiotic sex chromosome inactivation is solid. This work is of interest to biomed-
ical researchers working on meiosis and meiotic sex chromosome inactivation.

Introduction
During prophase I, the SPO11 topoisomerase- like enzyme and its cofactors induce programmed DNA 
double- strand breaks (DSBs) that are then recognized by the DNA damage response (DDR) machinery 
to promote recombination between homologous chromosomes (Handel and Schimenti, 2010; Joshi 
et  al., 2015; Keeney et  al., 1997; Subramanian and Hochwagen, 2014). Proper chromosome 
synapsis achieved through the formation of the proteinaceous synaptonemal complex, together with 
homologous recombination (HR)- mediated DNA repair (Pereira et al., 2020), is critical for the forma-
tion of crossovers that ensure the correct segregation of chromosomes and the formation of healthy 
and genetically diverse haploid gametes (Gray and Cohen, 2016). Chromosomes that fail to synapse 
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as prophase I progresses trigger a process referred to as meiotic silencing of unsynapsed chromatin 
(MSUC) (Abe et  al., 2020; Burgoyne et  al., 2009; Turner, 2015; Turner et  al., 2006) to silence 
genes at unsynapsed regions. In the heterogametic sex (male mammals), the X and Y chromosomes 
pose a unique challenge for meiotic progression since they bear homology only at the pseudoauto-
somal region (PAR). The non- homologous arms of the sex chromosomes remain unsynapsed and must 
therefore undergo a sex- chromosome specific manifestation of MSUC, termed meiotic sex chromo-
some inactivation (MSCI) (Alavattam et al., 2018; Royo et al., 2010; Turner, 2007; Turner et al., 
2006). MSCI is critical for normal prophase I progression through two complementary mechanisms, 
the silencing of toxic Y- linked genes, such as Zfy1 and Zfy2, that enforce the pachytene checkpoint 
(Royo et al., 2010; Vernet et al., 2016) and through the accumulation of the DDR machinery at the X 
and Y chromosomes, away from the autosomes, during early pachynema (Abe et al., 2020).

The apical serine- threonine kinase ataxia telangiectasia mutated and Rad- 3 related (ATR) is a 
master regulator of DNA repair, checkpoints, and silencing during prophase I in spermatocytes. In 
response to DSBs and asynapsis, ATR activation promotes a range of downstream effects, including 
recombinational DNA repair, crossing over, chromosome synapsis, cell cycle arrest, and potentially 
apoptosis (Abe et al., 2022; Pacheco et al., 2018; Pereira et al., 2020; Royo et al., 2013; Widger 
et al., 2018). During leptonema and zygonema, shortly after DSB formation, ATR and its cofactor 
ATRIP are recruited to RPA- coated regions of single- stranded DNA (ssDNA) that accumulate upon 
5′–3′ resection of both ends of DSBs (Cimprich and Cortez, 2008; Fanning et al., 2006). ATR activa-
tion requires recruitment of TOPBP1 (topoisomerase 2 binding protein 1), a multi- BRCT (BRCA C- ter-
minus motif) domain protein that stimulates ATR kinase activity through its ATR- activation domain 
(AAD) (Cimprich and Cortez, 2008; Kumagai et al., 2006; Mordes et al., 2008; Zhou et al., 2013). 
In addition to activating ATR, TOPBP1 also serves as a scaffold for a range of DDR factors, inter-
acting with, and often recruiting them via its multiple BRCT domains (Bigot et al., 2019; Blackford 
et al., 2015; Cescutti et al., 2010; Delacroix et al., 2007; Leimbacher et al., 2019; Leung et al., 
2011; Liu et al., 2017; Pereira et al., 2022). TOPBP1 is composed of nine BRCT domains, which are 
protein- interacting modules that typically recognize phosphorylated motifs (Liu et al., 2017; Manke 
et al., 2003; Rodriguez et al., 2003). Through the recognition of phosphoproteins, TOPBP1 is able 
to assemble multisubunit complexes to promote discrete pathways (Bigot et al., 2019; Blackford 
et al., 2015; Cescutti et al., 2010; Delacroix et al., 2007; ElInati et al., 2017; Jeon et al., 2019; 
Leimbacher et al., 2019; Leung et al., 2011; Liu et al., 2017; Pereira et al., 2022; Pereira et al., 
2020; Perera et al., 2004). TOPBP1 interacts with the C- terminal tail of RAD9, a component of the 
9- 1- 1 PCNA- like clamp that is loaded at 5′ recessed junctions adjacent to DSBs (Parrilla- Castellar 
et al., 2004). The 9- 1- 1- TOPBP1 complex is essential for canonical ATR signaling during prophase I 
(ElInati et al., 2017; Jeon et al., 2019; Perera et al., 2004). The interaction of proteins with TOPBP1 
may facilitate their phosphorylation by ATR, suggesting a role for TOPBP1 in the control of ATR 
substrate selection.

As cells progress from zygonema into pachynema, ATR and TOPBP1 localize to the unsynapsed 
axes of the X and Y chromosomes (Broering et al., 2014; Moens et al., 1999; Reini et al., 2004), 
leading to phosphorylation of the histone variant H2AX on serine 139 (γH2AX), a major hallmark of 
MSCI (Royo et al., 2013; Widger et al., 2018). During establishment of MSCI, a phase- separated 
structure termed the sex body is formed (Monesi, 1965; Solari, 1974; Xu and Qiao, 2021), allowing 
the confinement of ATR signaling, DDR factors, and silencing to the X and Y (Abe et al., 2020; Turner, 
2007) as part of a checkpoint that may induce cell death if DDR proteins aberrantly accumulate and 
remain on autosomes (Abe et al., 2020). Recruitment of ATR and TOPBP1 to unsynapsed regions 
of the XY requires a distinct set of factors compared to their mode of recruitment to autosomal 
DSB sites mentioned above and involves factors such as BRCA1 and HORMAD (Shin et al., 2010; 
Turner et al., 2004). Activated ATR phosphorylates H2AX at the unsynapsed cores of the X and Y 
chromosomes, a signaling that is propagated to chromatin loops of the X and Y, via a feed- forward 
process mediated by recruitment of the MDC1 adaptor, which further recruits and mobilizes additional 
TOPBP1- ATR complexes, therefore spreading ATR signaling to promote the broad chromosome- wide 
silencing required for MSCI (Ichijima et al., 2011). It has also been proposed that the initiation of 
MSCI accumulates DDR proteins from autosomes to the X and Y chromosomes to prevent excessive 
DDR signaling at autosomes from activating cellular checkpoints that can stop meiotic progression 
(Abe et al., 2020).

https://doi.org/10.7554/eLife.90887
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Despite mounting evidence pointing to the importance of ATR and TOPBP1 for MSCI, the precise 
mechanisms by which they promote sex body formation and XY silencing remain unknown. More-
over, it remains unclear how these two processes are spatiotemporally coordinated and how ATR and 
TOPBP1 mediate such coordination. Since both proteins are essential for organismal viability (Brown 
and Baltimore, 2000; de Klein et al., 2000; Jeon et al., 2011; O’Driscoll, 2009; O’Driscoll et al., 
2007; Yamane et al., 2002; Zhou et al., 2013), conditional knockouts (ElInati et al., 2017; Royo et al., 
2013; Widger et al., 2018) or hypomorphic (Pacheco et al., 2018) models have been used to explore 
their roles during prophase I in spermatocytes. However, given the strong pleiotropic effects in these 
models, especially in DSB repair, synapsis, MSCI, and sex body formation, it is difficult to dissect the 
distinct molecular mechanisms involved and untangle direct versus indirect effects. Here we present 
a separation- of- function mouse mutant that deconvolutes TOPBP1- dependent ATR signaling in male 
meiosis. We generated mice bearing multiple mutations in BRCT- domain 5 (Topbp1B5/B5 mice) that 
are viable and grossly indistinguishable from wild- type littermates; yet, the males are sterile, having 
reduced testes size, reduced seminiferous tubule cellularity, and a complete loss of sperm. Strikingly, 
while Topbp1B5/B5 spermatocytes fail to progress into diplotene, they display largely normal chro-
mosome synapsis, sex body formation, recruitment of DDR proteins to the X and Y, and DNA repair 
during prophase I, in sharp contrast to previous models of TOPBP1 or ATR impairment (ElInati et al., 
2017; Widger et al., 2018). Single- cell RNA sequencing data showed that while MSCI is initiated in 
Topbp1B5/B5, the dynamics of silencing progression and reinforcement is defective, which is accom-
panied by a defect in the localization of the RNA:DNA helicase Senataxin to chromatin loops of the 
XY chromosomes. We propose that the Topbp1B5/B5 is a separation of function mutant that allows the 
untangling of XY silencing from sex body formation and DDR recruitment to the XY, representing a 
unique model to study the establishment, maintenance, reinforcement, and progression of MSCI.

Results
A TOPBP1 mutant separating its role in fertility from organismal 
viability
Topbp1 knockout mice exhibit strong defects early in embryonic development, reaching blastocyst 
stage but not progressing beyond embryonic day (E) 8, with embryos likely dying at the preimplanta-
tion stage (Jeon et al., 2011). In the context of meiosis, conditional knockout of Topbp1 in spermato-
cytes leads to pleiotropic effects, including defects in chromosome synapsis, impaired recruitment 
of DDR factors to XY chromosomes, defects in condensation of the XY chromosomes, abnormal 
formation of the sex body, lack of γH2AX spreading to chromatin loops, all of which contribute to a 
strong MSCI defect as indicated by the complete absence of downstream markers of MSCI, such as 
USP7, H3K9me3, poly- ubiquitination, and sumoylation (ElInati et al., 2017; Pereira et al., 2020). The 
availability of a separation of function mutant for Topbp1 is therefore needed to dissect its distinct 
roles in development, organismal maintenance, and multiple meiotic processes such as DNA repair, 
silencing, and sex body formation. To generate a separation of function mouse model, we inserted 
eight charge reversal point mutations in BRCT domain 5 of TOPBP1 (hereafter referred to as Topbp1B5/

B5) using CRISPR/Cas9 (Figure 1A). After validating the point mutations through Sanger sequencing, 
(Figure 1—figure supplement 1), we found that Topbp1B5/B5 mice were viable, with no difference in 
body mass when compared to WT littermates (Figure 1B and C), and no sensitivity to ionizing radi-
ation (IR) (Figure 1D). Strikingly, Topbp1B5/B5 mice displayed male- specific infertility (Figure 1E), with 
a threefold reduction in testis size (Figure 1F and G) and complete lack of spermatozoa (Figure 1H). 
H&E- stained histological testis sections revealed mainly spermatogonia and spermatocytes within 
the seminiferous epithelium (Figure 1I), together with an increased number of TUNEL- positive sper-
matocytes in seminiferous tubules (Figure 1J and K). Cytological evaluation of surface- spread sper-
matocytes from Topbp1B5/B5 revealed the presence of meiotic prophase I stages from leptonema 
to pachynema but a total absence of diplonema- staged spermatocytes (Figure 1L). Moreover, the 
staining of the synaptonemal complex proteins SYCP1 and SYCP3 revealed normal pachytene entry 
and no gross defects in chromosome synapsis, distinct from previous models of ATR and TOPBP1 
conditional depletion (ElInati et al., 2017; Widger et al., 2018). Furthermore, unlike reported DDR 
CKO (conditional knockouts) models such as Rad1 and Brca1 (Abe et al., 2020; Broering et al., 2014; 

https://doi.org/10.7554/eLife.90887
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Figure 1. A new TOPBP1 mutant separating its role in fertility from organismal viability. (A) Schematic showing mutations in the Topbp1 B5 allele. 
(B) Body mass (Topbp1+/+ mean = 25.26, SD = 2.38; Topbp1B5/B5 mean = 26.43, SD = 2.28, n = 9) and (C) appearance of Topbp1B5/B5 and Topbp1+/+ 
littermate mice. (D) Effect of full body ionizing radiation (IR) (7 Gy) on changes in body mass of Topbp1B5/B5 and Topbp1+/+ littermate mice (E) Breeding 
scheme and resulting litters. (F, G) Comparison of testes size (Topbp1+/+ mean = 0.038, SD = 0.006; Topbp1B5/B5 mean = 0.011, SD = 0.004, n = 9), and (H) 

Figure 1 continued on next page
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Pereira et al., 2022), Topbp1B5/B5 pachytene spermatocytes reach mid- pachynema, as demonstrated 
by the accumulation of signal for H1t (Inselman et al., 2003; Figure 1L).

Topbp1B5/B5 MEFs display no detectable DDR defects
To assess the possibility of a somatic phenotype, we derived mouse embryonic fibroblasts (MEFs) from 
Topbp1B5/B5 and wild- type littermates at E13.5. Consistent with the observed organismal viability and 
the lack of IR sensitivity, Topbp1B5/B5 MEFs showed no sensitivity to hydroxyurea (replication stress) 
or phleomycin (DSBs) in a long- term cell survival assay (Figure 2A–D, Figure 2—figure supplement 
1). Genotoxic stress activates the apical kinases ATR, ATM, and DNA- PKcs (Blackford and Jackson, 
2017; Falck et al., 2005; Maréchal and Zou, 2013) to trigger a signaling cascade that promotes 
DNA repair and cell cycle arrest via activation of the downstream checkpoint kinases CHK1 and CHK2 
(Hartwell and Kastan, 1994; Lanz et al., 2019; Shiloh, 2003). Similar to wild- type MEFs, Topbp1B5/

B5 MEFs were able to activate DDR signaling responses when challenged with hydroxyurea and phleo-
mycin as demonstrated by the induction of established damage- induced phosphorylation of CHK1, 
CHK2, RPA2, and KAP1 (Figure 2E). In addition, Topbp1B5/B5 MEFs were able to recruit MDC1 to 
γH2AX- marked DSB foci when subjected to IR (Figure 2F) and showed no increased number of micro-
nuclei, a known marker of defective DDRs (Kwon et al., 2020), when compared to Topbp1+/+ MEFs 
(Figure 2—figure supplement 2A and B).

The BRCT- 5 domain of TOPBP1 is known to interact with the DDR factors 53BP1 (Bigot et al., 
2019; Cescutti et al., 2010; Liu et al., 2017), MDC1 (Wang et al., 2011), and BLM (Blackford et al., 
2015) through phospho- protein binding modules. To investigate which, if any, of these interactions 
are disrupted upon mutating the eight BRCT5 residues, we ectopically expressed Flag- TOPBP1- WT 
or Flag- TOPBP1- B5 in HEK293T cells. We found that binding of Flag- TOPBP1- B5 to BLM and 53BP1 
was impaired, as expected (Figure  2—figure supplement 3A and B). Moreover, we noticed a 
twofold reduction in protein levels of Flag- TOPBP1- B5 compared to Flag- TOPBP1- WT, which could 
be explained by the loss of interaction with BLM (that was proposed to lead to protein stabilization; 
Balbo Pogliano et al., 2022; Wang et al., 2013) or by protein misfolding caused by the eight K to 
E/D mutations. In addition, the reduction in protein levels was detected on MEFs (Figure 2—figure 
supplement 4). In either case, the results presented here show that the TOPBP1- B5 mutant offers 
a unique model to separate roles of TOPBP1 in male meiosis from the canonical DDR functions of 
TOPBP1 in somatic cells.

Topbp1B5/B5 spermatocytes display normal markers of canonical ATR 
signaling, chromosome synapsis, DNA repair, sex body formation, and 
DDR protein localization at the X and Y
TOPBP1 and ATR play multiple roles in spermatocytes during prophase I. Mice conditionally depleted 
for TOPBP1 (ElInati et al., 2017) or ATR (Royo et al., 2013; Widger et al., 2018) display severe 
defects in chromosome synapsis, DNA DSB repair, sex body formation, and MSCI, as well as impaired 
recruitment of DDR factors to the XY (Pereira et al., 2020). Strikingly, analysis of Topbp1B5/B5 sper-
matocytes via meiotic spreads revealed normal repair of DNA DSBs, with γH2AX staining grossly 
unchanged at pachynema, being confined only to the XY chromosomes and being excluded from 
the autosomes (Figure 3A and B). RAD51 localized only to the X and Y chromosomes during mid- 
pachytene (Figure 3C and D), indicating normal DSB repair at the autosomes. We were unable to 
detect chromosome synapsis abnormalities in Topbp1B5/B5 spermatocytes as Topbp1B5/B5 mutant sper-
matocytes transit from zygotene into pachytene with normal patterns of HORMAD1 and HORMAD2 

sperm count, of Topbp1B5/B5 and Topbp1+/+ littermate mice (Topbp1+/+ mean = 2.1 × 107, SD = 6 × 106; Topbp1B5/B5 mean = 0.0, SD = 0.0, n = 9). (I) H&E- 
stained histological testes sections displaying loss of cellularity in Topbp1B5/B5. Green arrow = spermatogonia, red arrow = healthy spermatocyte, blue 
arrow = dying spermatocyte. (J, K) TUNEL assay performed on histological testes sections (Topbp1+/+ mean = 0.36, SD = 0.15; Topbp1B5/B5 mean = 4.80, 
SD = 0.43, n = 3). (L) Meiotic spreads stained for SYCP3, SYCP1, and H1t. ****p<0.0001, n = number of mice. p- Values were calculated using unpaired 
t- test.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Genotyping of Topbp1B5/B5 mice.

Figure 1 continued
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localization (Figure 3—figure supplement 1A and B) and with SYCP1 overlapping with SYCP3 on 
chromosome cores from all autosomal chromosomes during pachynema (Figures 1L and 3E). Since 
ATR orthologs regulate crossing over in budding yeast (Subramanian and Hochwagen, 2014) and in 
Drosophila melanogaster (Carpenter, 1979), we also investigated the localization of factors involved 
in regulating DNA crossovers, including MLH1 and MLH3. In Topbp1B5/B5 spermatocytes, while the 
number of MLH1 foci were significantly increased, the number of MLH3 foci did not differ significantly 
(Figure 3—figure supplement 2A and B). Due to the lack of diplotene cells, and any other stage after 
pachynema, we were not able to test whether Topbp1B5/B5 display defects in crossing over.

The sex body appeared normal in its shape and was normally formed in Topbp1B5/B5 spermatocytes 
(Figure 3A, Figure 3—figure supplements 3 and 4A), exhibiting only subtle defects/delays in the 
spreading of the γH2AX signal on the PAR and pericentromeric regions (Figure 3—figure supple-
ment 4B–G). Although the defect was subtle in its severity, it accounted for 56% of all γH2AX- stained 
mid- pachytene cells. Importantly, TOPBP1 was normally localized to X and Y chromosomes during 
prophase I (Figure 3—figure supplement 5, Figure 3F–H). Similarly, localization of the TOPBP1 inter-
actors ATR, BRCA1, MDC1, and 53BP1 in Topbp1B5/B5 spermatocytes spreads was also indistinguish-
able from that observed in Topbp1+/+ spermatocytes (Figure 4A–F, Figure 4—figure supplement 
1). Markers of ATR signaling were also mostly normal, as measured by its canonical targets pMDC1 
T4 (Figure 3—figure supplement 1C and D), pCHK1 S345 (Figure 3—figure supplement 1E and 
F), and pHORMAD2 (Figure 3—figure supplement 1G and H). Notably, we did observe that phos-
phorylation of CHK1 on S317 was significantly decreased in Topbp1B5/B5 when compared to Topbp1+/+ 
spermatocytes (Figure 4G and H). However, since Chek1 CKO spermatocytes complete prophase I 
and differentiate into spermatozoa, with only minor defects such as a delay in the removal of γH2AX 
from autosomes (Abe et al., 2018), the observed defect in CHK1 S317 phosphorylation is unlikely to 
be the cause of the infertility observed in Topbp1 B5 mutants. Overall, as summarized in Figure 4I, 
Topbp1B5/B5 spermatocytes appear to progress normally through early stages of prophase I up until 
the end of pachynema as demonstrated by largely normal localization of markers for DNA repair, 
chromosome synapsis, and ATR signaling. These findings are surprising because the lack of sex body 
formation, synapsis defects, or unrepaired DSBs, which are the expected causes of the drastic loss of 
diplotene cells and the lack of spermatozoa, were not observed.

Defective phosphorylation and XY localization of the RNA:DNA 
helicase SETX in Topbp1B5/B5 spermatocytes
With the exception of CHK1 phosphorylation at serine 317, the analysis of other canonical markers 
of ATR signaling on meiotic prophase I spreads did not reveal obvious defects in their distribution 
or intensity at the XY body (Figure 4G and H, Figure 3—figure supplement 1C–H). Since altered 
CHK1 regulation is unlikely to be the cause of the drastic defect in meiotic progression observed in 
Topbp1B5/B5 males, we investigated whether other branches of ATR signaling were altered in Topbp1B5/

B5 spermatocytes by performing unbiased quantitative phosphoproteomics based on TMT (Tandem 

The data from MEFs were performed using littermate pairs and validated using a second pair of Topbp1B5/B5 and Topbp1+/+ littermate mice. 
(F) Immunofluorescence of MDC1 and phosphoH2AX_S139- stained nuclei from Topbp1B5/B5 and Topbp1+/+ MEFs treated with ionizing radiation (IR) 
(7 Gy).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Original file for the western blot analysis in Figure 2E (anti- CHK1, anti- CHK2, and anti- GAPDH).

Figure supplement 1. Survival assays of Topbp1B5/B5 mouse embryonic fibroblasts (MEFs).

Figure supplement 2. Absence of an increased number of micronuclei in Topbp1B5/B5 mouse embryonic fibroblasts (MEFs).

Figure supplement 3. TOPBP1- B5 shows disruption in binding 53BP1 and BLM.

Figure supplement 3—source data 1. 

Figure supplement 4. Topbp1B5/B5 mouse embryonic fibroblasts (MEFs) show lower TOPBP1 protein abundance than Topbp1+/+ MEFs.

Figure supplement 4—source data 1. Original file for the western blot analysis in Figure 2—figure supplement 4 (anti- TOPBP1 and anti- TUBULIN).

Figure supplement 4—source data 2. PDF containing Figure 2—figure supplement 4 and original scans of the relevant western blot analysis (anti- 
TOPBP1 and anti- TUBULIN) with highlighted bands and labels.

Figure 2 continued

https://doi.org/10.7554/eLife.90887
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Figure 3. Markers of DNA repair, synapsis, sex body formation, and TOPBP1 localization are mostly normal in Topbp1B5/B5 spermatocytes. (A) Meiotic 
spreads showing Topbp1+/+ and Topbp1B5/B5 spermatocytes stained with SYCP3 and γH2AX, prepared as described in ‘Materials and methods’. 
(B) Quantification of γH2AX- stained pachytene spreads, upper graph XY body (each dot represents one pachytene cell measured; Topbp1+/+ number 
of cells = 386, number of mice = 8; Topbp1B5/B5 number of cells = 410, number of mice = 8; p- value=0.3063), bottom graph autosomal chromosomes 

Figure 3 continued on next page
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Mass Tag; Thompson et  al., 2003) labeling of whole testes. Following a similar approach previ-
ously used by our group (Sims et al., 2022), we analyzed the phosphoproteome of Topbp1B5/B5 and 
Topbp1+/+ testes, and then compared the results with our previously reported dataset comparing the 
phosphoproteome of testes from mice treated with vehicle or the ATR inhibitor AZ20 (Sims et al., 
2022; Figure 5A). The resulting plot revealed that ATR- dependent signaling is not drastically impaired 
in Topbp1B5/B5 testes, as opposed to the marked impairment of ATR signaling previously observed 
in testes of Rad1 CKO mice (Sims et al., 2022). This finding is in agreement with the results from 
meiotic spreads of Topbp1B5/B5 showing no detectable defects in canonical markers of ATR signaling 
described above. Nonetheless, our phosphoproteomic analysis did reveal phosphorylation sites mildly 
disrupted in Topbp1B5/B5 testes compared to Topbp1+/+ testes. In particular, we noticed that several 
phosphorylation sites in the RNA:DNA helicase, Senataxin (SETX) (Cohen et  al., 2018), including 
a phosphorylation in the preferred motif for ATR phosphorylation (S/T- Q), were downregulated in 
Topbp1B5/B5 mice (Figure 5B). Interestingly, SETX was previously associated with meiotic ATR func-
tions and found to be indispensable for MSCI (Becherel et al., 2013; Yeo et al., 2015). Moreover, 
we recently reported that mice treated with the ATR inhibitor AZ20 or lacking Rad1 display reduced 
phosphorylation of SETX at S/T- Q site and SETX mislocalization during pachynema (Sims et al., 2022). 
Based on our findings, we propose that TOPBP1 regulates SETX distribution and/or function during 
meiosis, and that defects in meiotic progression and fertility observed in Topbp1B5/B5 mice might be 
associated with SETX dysfunction. Consistent with this possibility, we found that pachytene spermato-
cytes from Topbp1B5/B5 display significantly decreased spreading of SETX to XY chromatin loops while 
still displayed SETX at the unsynapsed axes of the X and Y chromosomes (Figure 5C–F). Overall, 
these findings reveal that Topbp1B5/B5 spermatocytes display largely normal progression through mid- 
pachynema, as demonstrated by normal distribution of a range of markers of meiotic progression, 
including canonical markers of ATR signaling. However, in- depth phosphoproteomic and imaging 
analyses identify specific defects in the regulation of SETX, a target of ATR signaling during prophase 
I (Pereira et al., 2022; Sims et al., 2022) and a key factor required for MSCI (Becherel et al., 2013; 
Yeo et al., 2015).

Topbp1B5/B5 spermatocytes initiate MSCI but fail to promote full XY 
silencing
During mid- pachynema, spermatocytes that fail to properly silence the X and Y chromosomes arrest 
and trigger apoptosis- induced cell death (Abe et  al., 2020; Ichijima et  al., 2012; Turner, 2015; 
Turner, 2007). In mice, the MSCI process initiates in leptonema (Lau et al., 2020), and during early 
pachynema key events occur at the XY chromosomes, such as exclusion of RNA polymerase 2 (RNA 

(each dot represents the average of signal from all autosomes in each mouse, Topbp1+/+ number of cells = 160, number of mice = 8; Topbp1B5/B5 
number of cells = 161, number of mice = 8; p- value=0.5081). (C) Meiotic spreads showing Topbp1+/+ and Topbp1B5/B5 pachytene spermatocytes stained 
with SYCP3 and RAD51. (D) Quantification of RAD51 foci/cell of mid- pachytene meiotic spreads (each dot represents one pachytene cell measured; 
Topbp1+/+ number of cells = 149, number of mice = 3; Topbp1B5/B5 number of cells = 183, number of mice = 3; p- value=0.2174). (E) Meiotic spreads 
showing Topbp1+/+ and Topbp1B5/B5 pachytene spermatocytes stained with SYCP3 and SYCP1. (F) Meiotic spreads showing Topbp1+/+ and Topbp1B5/

B5 pachytene spermatocytes stained with SYCP3 and TOPBP1. (G) Quantification of TOPBP1 on X and Y chromosome cores from (F) (each dot 
represents one pachytene cell measured; Topbp1+/+ number of cells = 246, number of mice = 3; Topbp1B5/B5 number of cells = 233, number of mice = 
3; p- value=0.8546). (H) Quantification of TOPBP1 on X and Y chromatin loops from (F) (each dot represents one pachytene cell measured; Topbp1+/+ 
number of cells = 246, number of mice = 3; Topbp1B5/B5 number of cells = 233, number of mice = 3; p- value=0.6755). n = number of mice. p- Values were 
calculated using a linear mixed effect model (see ‘Materials and methods’ for details).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Topbp1B5/B5 mid- pachytene spermatocytes show normal HORMAD1, HORMAD2, pHORMAD2, and pCHK1_S345 localization and 
intensities.

Figure supplement 2. Topbp1B5/B5 mid- pachytene spermatocytes show an increased number of MLH1 foci/cell but no difference in the number of MHL3 
foci/cell.

Figure supplement 3. Topbp1B5/B5 mid- pachytene spermatocytes form a normal sex body.

Figure supplement 4. Topbp1B5/B5 mid- pachytene spermatocytes show subtle defects/delays in the spreading of γH2AX on XY chromosomes.

Figure supplement 5. TOPBP1 is normally localized in all stages of prophase I in Topbp1B5/B5.

Figure 3 continued
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Figure 4. Topbp1B5/B5 spermatocytes display normal localization of ATR, BRCA1, and MDC1. (A) Meiotic spreads showing Topbp1+/+ and Topbp1B5/

B5 pachytene spermatocytes stained with SYCP3 and ATR. (B) Quantification of ATR in pachytene spreads from (A). Left: ATR on X and Y chromosome 
cores (each dot represents one pachytene cell measured; Topbp1+/+ number of cells = 127, number of mice = 3; Topbp1B5/B5 number of cells = 
127, number of mice = 3; p- value=0.4068). Right: ATR on X and Y chromatin loops (each dot represents one pachytene cell measured; Topbp1+/+ 

Figure 4 continued on next page
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Pol2), recruitment of DDR proteins and chromatin remodelers, and establishment of heterochromatin 
marks (Abe et al., 2020; Khalil et al., 2004) to maintain the active silencing of the X and Y chromo-
somes (Abe et al., 2022). This process leads to the formation of a membrane- less phase separated 
structure termed the sex body (Alavattam et al., 2021; Xu and Qiao, 2021). Spermatocytes from 
Topbp1B5/B5 males formed a sex body of grossly normal appearance (Figure 3—figure supplement 
3), with undisrupted patterns of the sex body markers CHD4, SUMO, and USP7 (Figure 6—figure 
supplement 1). Topbp1B5/B5 pachytene spermatocytes also display normal patterns of a range of 
chromatin marks, including H3K9ac, H3K9me3, H3K27ac, H3K36me3, H3K4me3, H4K16ac, H4ac, 
H2AK116ub, H3K4me1, as well as proper exclusion of RNA Pol2 from the sex body (Figure 6—figure 
supplements 2–6). Collectively the evidence presented herein shows that Topbp1B5/B5 mutants are 
able to form grossly normal XY bodies, with proper localization of over 28 markers. The severe loss 
of diplotene cells and the reduction of SETX at the chromatin loops of the X and Y lead us to spec-
ulate that Topbp1B5/B5 spermatocytes may still have a defective MSCI. To investigate potential MSCI 
defects, we employed single- cell RNA sequencing (scRNAseq) in germ cells (Figure  6A) using a 
similar approach recently used to follow spermatogenesis progression and evaluate MSCI in mammals 
(Grive et al., 2019; Jung et al., 2019; Lau et al., 2020). Using the 10X platform, we performed 
scRNAseq on a germ cell- enriched population of cells extracted from adult Topbp1+/+ and Topbp1B5/

B5 testes (Figure 6A). The data were analyzed as previously described (Grive et al., 2019; Lau et al., 
2020) using signature genes as markers of different stages in spermatogenesis such as Sal4 and 
Dmrt1 for spermatogonia, Dazl for early spermatocytes, Id4, Sycp3 and Shcbp1l for late spermato-
cytes, Acrv1 for round spermatids, and Oaz3 and Prm2 for elongated spermatids (Figure 6—figure 
supplements 7 and 8). Col1a2, Acta2, Vcam1, Lnsl3, laptm5, Hbb- bt, Ptgds, and Wt1 were used as 
markers of somatic cells (Figure 6—figure supplement 9). Analysis of the testicular transcriptome of 
Topbp1+/+ males revealed 47 sub- clusters of cells covering spermatogonia, spermatocytes, sperma-
tids, and somatic cells (Figure 6B–D, Figure 6—figure supplements 10 and 11). In sharp contrast, 
analysis of Topbp1B5/B5 germ cell population revealed only somatic, spermatogonia, and the initial 
populations of spermatocytes (Figure 6D). This result corroborates the H&E- stained testes histolog-
ical sections (Figure 1I) and meiotic spreads (Figure 1L). Importantly, Pearson correlation values from 
all RNA reads between cell groups separated by cluster and genotype, demonstrated the similarity 
of spermatocytes from Topbp1+/+ and Topbp1B5/B5 (Figure 6—figure supplement 12). As shown in 
Figure 6E, we were able to monitor the dynamics of X chromosome silencing in the early- stage sper-
matocytes and compare the results between RNA from Topbp1+/+ and Topbp1B5/B5 males. Strikingly, 
Topbp1B5/B5 early- stage spermatocytes could initiate MSCI and promote robust, albeit incomplete, X 
chromosome silencing. Both X and Y chromosomes showed increased gene expression levels in the 
last spermatocyte stage captured in Topbp1B5/B5 males when compared to RNA from wild- type males 
(Figure 6E, Figure 6—figure supplement 13). Moreover, although certain X- genes from Topbp1B5/B5 
pachytene cells consistently demonstrated defects in silencing by being expressed in numerous cells, 
other genes were only expressed in a small number of cells. This highlights the non- uniformity of the 
MSCI defect in all pachytene cells (Figure 6—figure supplement 13). Notably, while we detected 
only a minor elevation in the levels of X- linked gene expression in Topbp1B5/B5 spermatogonia when 
compared to Topbp1+/+, the expression of X- linked genes at spermatocyte 3 stage was drastically 

number of cells = 127, number of mice = 3; Topbp1B5/B5 number of cells = 127, number of mice = 3; p- value=0.9396). (C) Meiotic spreads showing 
Topbp1+/+ and Topbp1B5/B5 pachytene spermatocytes stained with SYCP3 and BRCA1. (D) Quantification of BRCA1 in pachytene spreads from (C) 
(each dot represents one pachytene cell measured; Topbp1+/+ number of cells = 152, number of mice = 3; Topbp1B5/B5 number of cells = 140, number 
of mice = 3; p- value=0.6509). (E) Meiotic spreads showing Topbp1+/+ and Topbp1B5/B5 pachytene spermatocytes stained with SYCP3 and MDC1. 
(F) Quantification of MDC1 in pachytene spreads from (E) (each dot represents one pachytene cell measured; Topbp1+/+ number of cells = 696, 
number of mice = 8; Topbp1B5/B5 number of cells = 988, number of mice = 8; p- value=0.3603). (G) Meiotic spreads showing Topbp1+/+ and Topbp1B5/B5 
pachytene spermatocytes stained with SYCP3 and pCHK1- S317. (H) Quantification of pCHK1- S317 in pachytene spreads from (G) (each dot represents 
one pachytene cell measured; Topbp1+/+ number of cells = 223, number of mice = 3; Topbp1B5/B5 number of cells = 254, number of mice = 3; **p- 
value=0.0023). p- Values were calculated using a linear mixed effect model (see ‘Materials and methods’ for details). (I) Table summarizing the normal or 
disrupted ATR and TOPBP1- dependent events during male fertility accessed in Topbp1B5/B5. n = number of mice.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. 53BP1 localization in Topbp1B5/B5 mid- pachytene spermatocytes.

Figure 4 continued
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Figure 5. Defective Senataxin (SETX) phosphorylation and localization in Topbp1B5/B5 spermatocytes. (A) Scatter plot of phosphoproteomic datasets 
corresponding to Topbp1+/+/Topbp1B5/B (Y axis) and Topbp1+/+(vehicle)/Topbp1+/+(AZ20) (X axis) from whole testes of mice. (B) SETX phosphopeptides 
identified in the Topbp1+/+/Topbp1B5/B phosphoproteomic experiment shown in (A). Red: reduced in Topbp1B5/B mutant; blue: unchanged. (C) Meiotic 
spreads showing pachytene spermatocytes from Topbp1+/+ and Topbp1B5/B5 mice stained with SYCP3 and SETX in regular immunofluorescence. 
(D) 3D- SIM analysis of meiotic spreads described in (C). (E) Quantification of SETX on X and Y chromatin loops in pachytene spreads from (C) (each dot 
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calculated using a linear mixed effect model (see ‘Materials and methods’ for details).
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higher in Topbp1B5/B5 males when compared to Topbp1+/+ males. To improve the accuracy of the 
downstream analysis, the expression levels of X- linked genes were normalized by their respective 
expression level at the pre- leptotene stage.

MSCI is a dynamic process that involves the accumulation of DDR factors at the X and Y chromo-
somes as cells enter pachynema (Abe et al., 2022; Abe et al., 2020), as well as the inactivation of 
specific X and Y genes that lead to cell death if expressed at this stage (the so- called ‘killer genes’) 
(Royo et al., 2010; Vernet et al., 2016). Similar to previous reports based on mutants or treatments 
that impaired MSCI (Abe et al., 2022; ElInati et al., 2017; Hirota et al., 2018; Modzelewski et al., 
2012; Pereira et al., 2022; Royo et al., 2013; Widger et al., 2018), transcriptomics profiles from 
Topbp1B5/B5 testicular cells showed an increased number of stage 3 spermatocytes (SP3 – pachytene) 
expressing the spermatocyte- toxic genes Zfy1 and Zfy2 compared to Topbp1+/+ (Figure 6—figure 
supplements 14 and 15). Other genes typically used to illustrate MSCI defects, such as Kdm6a, 
lamp2, Zfx, Uba1y, and Rhox13, were also expressed in a higher number of SP3 cells in Topbp1B5/B5 
(Figure 6—figure supplements 14 and 15). In the case of Scml2, Topbp1B5/B5 cells not only displayed 
an increased number of SP3 (pachytene) cells expressing it but also displayed an increase in expres-
sion levels in these cells compared to Topbp1+/+ testes (Figure 6—figure supplements 14 and 15). 
In summary, various Y and X genes that had previously been shown to be expressed in other MSCI- 
defective mutants were found de- repressed in Topbp1B5/B5 spermatocytes.

Detailed analysis of the scRNAseq data for the X- linked genes monitored during the early sper-
matocyte stages revealed important differences in the silencing dynamics of these X genes between 
Topbp1B5/B5 and Topbp1+/+ spermatocytes. Out of the roughly 700 genes present on the X chromo-
some, 233 had reads detected from pre- leptotene to spermatocyte 3 clusters for both Topbp1+/+ and 
Topbp1B5/B5 cells, and therefore were used during the downstream analysis. As shown in Figure 7A, 
we clustered the X- linked genes into three distinct categories based on the change of RNA level 
between the stages: reduced, unaltered, or increased silencing (Figure 7A). SP1 (spermatocyte 1) was 

plots displaying the ratio of the average expression of X chromosome genes by the average expression of chromosome 9 genes at different stages of 
spermatogenesis for Topbp1+/+ and Topbp1B5/B5 cells. The level of X- genes expression in spermatocyte 3 is significantly higher in Topbp1B5/B5 cells when 
compared to Topbp1+/+ cells, with a p- value of 1.5e- 178 using a two- sided Wilcoxon rank- sum test.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Topbp1B5/B5 pachytene spermatocytes do not exhibit any difference in CHD4, Sumo2- 3, and USP7 intensities and localization 
compared to Topbp1+/+.

Figure supplement 2. Topbp1B5/B5 pachytene spermatocytes show no difference in H3K9ac or K3K9me3 staining compared to Topbp1+/+.

Figure supplement 3. Topbp1B5/B5 pachytene spermatocytes display no difference in H3K27ac, H3K36me3, or K3K4me3 staining compared to 
Topbp1+/+.

Figure supplement 4. Topbp1B5/B5 pachytene spermatocytes display no difference in H4K16ac, H4ac, or H2AK166ub staining compared to Topbp1+/+.

Figure supplement 5. From early pachytene to beginning of late pachytene, Topbp1B5/B5 spermatocytes exhibit the same localization pattern of 
H3K4me1 compared to Topbp1+/+.

Figure supplement 6. Topbp1B5/B5 pachytene spermatocytes exhibit no differences in the intensity or localization patterns of RNApol2, pRNApol2_Ser2, 
or pRNApol2_ser5 compared to Topbp1+/+.

Figure supplement 7. Genes used as markers to define the stages of the germ cells in the scRNAseq analysis.

Figure supplement 8. Genes used as markers to track spermatogenesis progression and form the 47 sub- cluster for all cells captured in the 10X 
platform in the scRNAseq analysis.

Figure supplement 9. Genes used as markers of somatic cells captured in the scRNAseq analysis.

Figure supplement 10. Analysis of sub- clusters of all cells captured in the 10X platform.

Figure supplement 11. Analysis of the main 24 sub- clusters captured in the germ cells- enriched scRNAseq analysis.

Figure supplement 12. Spermatocytes from Topbp1+/+ and Topbp1B5/B5 show correlation greater than 0.9.

Figure supplement 13. Topbp1B5/B5 pachytene spermatocytes show increased expression of X- linked genes.

Figure supplement 14. Topbp1B5/B5 pachytene spermatocytes show increased expression of XY ‘killer genes’ and other X and Y genes typically used to 
illustrate meiotic sex chromosome inactivation (MSCI) defects.

Figure supplement 15. Topbp1B5/B5 pachytene spermatocytes show increased expression of XY- linked genes.

Figure supplement 16. Quality control of the scRNAseq data.

Figure 6 continued
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Figure 7. TOPBP1 regulates silencing dynamics of X genes at the spermatocyte 3 stage. (A) Illustration of the gene markers used to define 
spermatocyte 1 as leptotene, spermatocyte 2 as zygotene, and spermatocyte 3 as pachytene; hypothetical examples illustrating the categorization 
of transitions in silencing dynamics between the stages of pre- leptotene (PL), spermatocyte 1 (SP1), spermatocyte 2 (SP2), and spermatocyte 3 (SP3). 
(B) Number of genes in each of the categories described in (A), during the different stage transitions and respective p- values above each graph (the 

Figure 7 continued on next page
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defined as leptonema using the gene marker Gm960 (Chen et al., 2018; Figure 7—figure supple-
ment 1), and SP2 (spermatocyte 2) as zygonema due to its profile of low expression of Gm960 and 
high expression of Dazl. SP3 (spermatocyte 3) was defined as pachynema due to its lower expression 
of Dazl and increased expression of Id4 and Shcbp1l. When comparing the distribution of genes 
in these clusters between Topbp1B5/B5 and Topbp1+/+ spermatocytes (RNA level normalized to pre- 
leptotene stage) (Figure 7B), we observed no major differences in the pre- leptotene to spermatocyte 
1 (PL to SP1) and in the spermatocyte 1 to spermatocyte 2 (SP1 to SP2) transitions. In contrast, when 
comparing the spermatocyte 2 to spermatocyte 3 (SP2 to SP3) transition between Topbp1B5/B5 and 
Topbp1+/+ spermatocytes we noticed a major difference in the distribution of the clusters, with 74 
genes in Topbp1B5/B5 versus 4 in Topbp1+/+ exhibiting reduced silencing (Figure 7B). Moreover, while 
134 genes showed unaltered silencing, and only 24 increased silencing in Topbp1B5/B5 spermatocytes 
during the SP2 to SP3 transition, 43 genes showed unaltered silencing and 185 increased silencing in 
Topbp1+/+ (Figure 7B). Xiap, Zc3h12b, and Cetn2 are examples of X- linked genes displaying altered 
silencing behaviors in Topbp1B5/B5 spermatocytes (Figure 7C). The difference of expression between 
Topbp1+/+and Topbp1B5/B5 was markedly higher in the SP2 to SP3 transition compared to the other 
transitions (Figure 7D and E) and was used to further split genes into three categories based on 
the severity of the silencing defect in Topbp1B5/B5: no defect (13 genes), mild (45 genes), or strong 
defect (170 genes) (Figure 7F). Notably, the severity of the silencing defect of a gene had some 
correlation with its RNA level in the pre- leptotene stage, with highly expressed genes having a higher 
tendency to have a more severe silencing defect (Figure 7G, Figure 7—figure supplement 2). Taken 
together, these data characterize the specific silencing defect in Topbp1B5/B5 spermatocytes and point 
to a specific role for TOPBP1 in ensuring proper silencing dynamics after an initial wave of MSCI, likely 
through later waves of silencing reinforcement. Our data is consistent with the notion that silencing 
of the X and Y chromosomes is a dynamic process that needs active and continuous engagement by 
the ATR- TOPBP1 signaling axis. Since the majority of the mouse models of male infertility accumulate 
pleiotropic defects, with disrupted MSCI and absence of sex body, the Topbp1B5/B5 mouse reported 
here provides a unique model of DDR impairment in which MSCI can be uncoupled from sex body 
formation (Figure 8).

Discussion
In male meiosis I, DDR factors such as ATR, TOPBP1, BRCA1, and the 9- 1- 1 complex play crucial roles 
in DNA repair, chromosome synapsis, recombination, sex body formation, and silencing (Broering 
et al., 2014; ElInati et al., 2017; Pacheco et al., 2018; Pereira et al., 2022; Royo et al., 2013; 
Turner et al., 2004; Widger et al., 2018). Conditional depletion of these factors results in pleiotropic 
phenotypes from compound effects in multiple processes, with cells ultimately undergoing apoptosis- 
induced cell death during the pachytene checkpoint. Here, we report a mutant mouse model capable 
of deconvoluting TOPBP1’s roles during meiosis I in males, separating its role in silencing from its roles 
in DNA repair, synapsis, and checkpoint signaling (Figure 8). While Topbp1B5/B5 spermatocytes initiate 
XY silencing with similar dynamics as observed in Topbp1+/+, these cells fail to complete silencing at 
the final steps of MSCI. Of note, Topbp1B5/B5 cells displayed slightly higher expression of X- linked 
genes than Topbp1+/+ cells in the earlier spermatogenic stages (from spermatogonia 1 to spermato-
cyte 3). Furthermore, not all X- linked genes in Topbp1B5/B5 spermatocytes were silenced; instead, some 
genes were only partially silenced while others exhibited increased expression after initial silencing. 

p- values were calculated using the Fisher’s exact test). (C) Examples of genes with altered silencing dynamics in the Topbp1B5/B5, red = reduced silencing, 
blue = unaltered silencing and green = increased silencing (D) Scatter plot showing the difference in RNA level between Topbp1+/+ and Topbp1B5/

B5 for each of the indicated stage transitions. (E) Scatter plot showing expression level of X- chromosome genes, normalized to pre- leptotene levels, 
in Topbp1+/+ (gray) and Topbp1B5/B5 (blue) at SP3. (F) Graph plotting expression levels of X- chromosome genes, normalized to pre- leptotene levels, in 
Topbp1+/+ (Y axis) and Topbp1B5/B5 (X axis) and split in three categories based on the severity of silencing defect. (G) Box plot showing PL expression 
levels of X- chromosome genes in each of the categories of silencing defect severity shown in (F).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Analysis of the gene marker used to define the zygotene stage.

Figure supplement 2. Expression levels of genes with no defects, mild defects, and strong defects in Topbp1B5/B5 and Topbp1+/+.

Figure 7 continued
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This is consistent with previous reports using mouse mutants with more severe MSCI defects, such as 
Ago4-/- and Topbp1 CKO, in which not all X- linked genes exhibited altered levels of expression (ElInati 
et al., 2017; Modzelewski et al., 2012). Interestingly, a sex body is formed that is morphologically 
indistinguishable from the sex body in wild- type animals. Several heterochromatin markers, as well 
as multiple canonical markers of sex body formation, localize properly in the sex body of Topbp1B5/

B5 mice. Overall, these findings suggest a non- canonical role for the ATR- TOPBP1 signaling axis in 
ensuring proper XY silencing dynamics during pachynema. This is the first DDR mutant that separates 
XY silencing from sex body formation, and that separates TOPBP1’s role in spermatogenesis from its 
roles in organismal viability.

The B5 allele reported here, which carries eight lysine to glutamic/aspartic acid substitutions in 
BRCT domain 5, is the first mutation shown to impair the meiotic silencing function of TOPBP1 in 
spermatocytes without severely disturbing TOPBP1’s role in synapsis and sex body formation. Consis-
tent with this being a separation of function mutant, Topbp1B5/B5 males are viable and grossly normal, 
while completely sterile, whereas Topbp1 null, or AAD mutated, mice are embryonic lethal (Jeon 
et al., 2011; Zhou et al., 2013). Moreover, depletion of TOPBP1 in mammalian cell lines triggers a 
robust G2/M arrest followed by cell senescence and loss of viability (Jeon et al., 2011) Topbp1B5/B5 
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Figure 8. A new TOPBP1 mutant separates XY silencing from sex body formation. Schematic of sub- stages of meiotic prophase I. In wild- type mice, 
meiotic sex chromosome inactivation (MSCI) initiates following the accumulation of the DNA damage response (DDR) proteins at the XY chromosomes. 
During mid- pachytene, the XY body is fully formed, and transcription is restricted to the autosomes. In Atr or Topbp1 CKOs, the sex body is not 
formed, and the DDR proteins are not sequestered to the XY. Asynapsis events and transcription of toxic genes at the sex chromosomes are observed, 
triggering mid- pachytene arrest. In Topbp1B5/B5, MSCI initiates, the sex body is normally formed with normal recruitment of DDR proteins to the X and Y 
chromosomes, yet cells fail in the reinforcement/maintenance of silencing. Cells progress through mid- pachytene but not into diplonema.
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MEFs do not display issues with cell proliferation or DDR defects. Based on these observations, and 
the finding of a silencing defect in Topbp1B5/B5 spermatocytes, it is likely that the role of TOPBP1 in 
silencing documented here could be specifically relevant in the context of male meiosis. It is important 
to note that other mutants previously reported to have XY silencing defects during meiotic prophase 
I, such as Ago4 null and Dicer CKO, do not result in complete loss of sperm production, but a sub- 
fertility phenotype (Greenlee et al., 2012; Modzelewski et al., 2012). Therefore, we speculate that 
the specific type of silencing defect in Topbp1B5/B5 spermatocytes is particularly toxic, similar to other 
mutations in the DDR pathway that result in MSCI defects, which would explain the highly penetrant 
defect in sperm production.

The model that distinct TOPBP1 interactions mediate distinct ATR signaling pathways offers a 
potential explanation for why Topbp1B5/B5 have specific defects in silencing without noted effects in 
other key processes regulated by ATR, such as synapsis. In addition to binding and activating ATR 
through its AAD domain (Mordes et al., 2008; Pereira et al., 2020), TOPBP1 can bind to several 
proteins through its BRCT domains (Yamane et al., 2002) and act as a scaffolding protein to bring 
substrates in close proximity to ATR, thus facilitating the propagation of specific ATR signaling path-
ways. Experiments using ectopic expression of Flag- tagged TOPBP1 in HEK293T cells revealed that 
the set of mutations in B5 disrupt the ability of TOPBP1 to interact with 53BP1 and BLM, as expected 
from previous reports (Bigot et al., 2019; Blackford et al., 2015; Cescutti et al., 2010; Liu et al., 
2017; Wang et al., 2013). However, it is unclear whether the same interactions are also disrupted in 
spermatocytes or whether additional TOPBP1 interactions mediated by its BRCT5 specifically during 
meiotic prophase I are also disrupted. Apart from disrupting protein interactions, it is also possible 
that the observed changes in TOPBP1 protein stability in the Topbp1 B5 mutant can contribute to 
impairing its roles in silencing. Such change in protein stability is consistent with a previous report 
showing that the TOPBP1- BLM interaction contributes to protein stabilization (Balbo Pogliano et al., 
2022; Wang et al., 2013). Further work will be necessary to determine if the phenotypes observed in 
Topbp1B5/B5 spermatocytes are caused specifically by disruption of specific protein interactions or by a 
combination of disrupted interactions and reduced protein abundance. It is worth mentioning that the 
Topbp1B5/B5 phenotype is distinct from the Topbp1 CKO despite the reduction in protein abundance.

Our finding that SETX localization to chromatin loops of the XY is impacted in Topbp1B5/B5 pachytene 
spermatocytes, together with our previous report that SETX undergoes ATR- dependent phospho- 
regulation in spermatocytes (Sims et al., 2022), suggest that an ATR- TOPBP1- SETX signaling axis 
is important for the silencing reinforcement in late MSCI. Genetic data support that impairment of 
this specific signaling axis would impact silencing without impacting synapsis. For example, Topbp1 
CKO, Rad1 CKO, and Atr CKO spermatocytes display strong synapsis defect and defective entry in 
pachynema (ElInati et al., 2017; Widger et al., 2018), whereas Setx null spermatocytes complete 
autosomal synapsis, while still displaying MSCI defects. On the other hand, is it likely that ATR 
signaling is controlling a specific aspect of SETX function since Topbp1B5/B5 spermatocytes do not 
share all defects observed in Setx null spermatocytes, as noted by the localization of γH2AX, sumoy-
lation events, ubH2A and ATR at chromatin loops, which are defective in Setx null spermatocytes 
but normal in Topbp1B5/B5 spermatocytes. Moreover, Topbp1B5/B5 pachytene spermatocytes, but not 
Setx null spermatocytes, are able to reach the stage of crossover designation with MLH1 positive 
cells. Taken together, these observations suggest that Topbp1B5/B5 pachytene spermatocytes progress 
further in pachynema when compared to Setx null spermatocytes and are consistent with a model 
in which a ATR- TOPBP1 control only specific(s) mode of SETX regulation (Pereira et al., 2022; Sims 
et al., 2022).

The model involving SETX as a potential factor by which ATR controls silencing late in MSCI 
opens exciting directions to explore the interface of ATR- TOPBP1 with RNA processing. Given the 
established role for SETX in the resolution of R- loops (Bennett and Spada, 2018), it is tempting to 
speculate that silencing defects in Topbp1B5/B5 mutant may be related to aberrant accumulation of 
RNA- DNA hybrids that may affect removal of nascent mRNAs that is necessary for imposing silencing. 
This hypothesis assumes that the silencing of X and Y genes is a dynamic process involving ongoing 
mechanisms of exclusion of RNA polymerase II and nascent RNA, as proposed recently (Abe et al., 
2022; Sims et al., 2022). Moreover, the model predicts that SETX function is specifically affected 
in the sex body, which is consistent with the observed defect in SETX localization. In support of 
this model, R- loops affect chromatin architecture at promoters and interfere with the recruitment of 

https://doi.org/10.7554/eLife.90887
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transcription factors and chromatin remodelers, as observed in regions harboring CpG islands where 
R- loops prevent the action of DNA methyltransferases, thus preventing silencing (Santos- Pereira and 
Aguilera, 2015). Notably, highly transcribed genes, which tend to accumulate more R- loops (Marnef 
and Legube, 2020), displayed increased silencing defects in the Topbp1B5/B5 mutant.

While we have provided strong evidence to suggest a defect in later stages of MSCI as the cause 
of the cell death observed in Topbp1B5/B5 spermatocytes, we cannot exclude the potential contribution 
of other defects, beyond silencing, to the loss of diplotene cells. The increased number of MLH1 foci 
suggested an altered recombination pattern, possibly impairing the ratios of class I and class II cross-
overs. The BRCT 5 domain of TOPBP1 interacts with the BLM helicase (Balbo Pogliano et al., 2022; 
Blackford et al., 2015), which has been found to play a role in meiotic recombination in yeast and 
mice (Holloway et al., 2010; Rockmill et al., 2003). Blm CKO mice display severe defects in prophase 
I progression in spermatocytes, including, incorrect pairing and synapsis of homologs, and defective 
processing of recombination intermediates, leading to increased chiasmata (Holloway et al., 2010). 
These observations raise the possibility that impaired meiotic progression and cell death in Topbp1B5/

B5 spermatocytes is a combination of defects in MSCI and recombination. Topbp1B5/B5 spermatocytes 
do not progress beyond pachytene hence we were not able to visualize chiasmata and directly infer 
whether or not Topbp1B5/B5 is defective in crossing over. Of note, MLH1 and MLH3 are known to form 
a heterodimer in the context of meiotic recombination (Lipkin et al., 2000; Svetlanov et al., 2008). 
While our data show increased MLH1 foci counts in Topbp1B5/B5, MLH3 foci counts were not different 
from Topbp1+/+, thus, we cannot exclude the possibility that the imbalance between MLH1 and MLH3 
might affect the loss of diplotene cells in Topbp1B5/B5 through processes not related to crossing over. 
Importantly, while MLH3 works exclusively as a heterodimer with MLH1, MLH1 can function in a 
heterodimeric complex with other MutL homologs (Nakagawa et al., 1999).

Our findings showing that TOPBP1 plays a specific role in silencing reinforcement after the first wave 
of MSCI are consistent with the recently proposed notion that the establishment and maintenance of 
MSCI is a dynamic process (Abe et al., 2022; Sims et al., 2022). Also consistent with this notion is 
our recent finding showing that ATR signaling is itself also highly dynamic and constantly being cycled 
(Sims et al., 2022). For example, using mice treated with the ATR inhibitor (ATRi) AZ20 for 4 hr, we 
found that such a short treatment is already sufficient to cause a complete loss of γH2AX, pMDC1, and 
SETX localization from the XY chromosomes (Abe et al., 2022; Sims et al., 2022). Furthermore, germ 
cells subjected to ATRi for 24 hr showed complete recovery of γH2AX only 3 hr after release from 
ATRi treatment (Abe et al., 2022). We propose that TOPBP1 acts on this phospho- cycle to ensure 
proper silencing reinforcement and maintenance, potentially by counteracting the engagement of 
anti- silencing factors that dynamically enter the sex body and need to be actively antagonized at the 
XY. Future work involving the characterization of possible unknown interactors of the BRCT domain 
5 of TOPBP1, as well as functional dissection of ATR targets in MSCI, is essential to understand how 
TOPBP1 modulates the silencing machinery and shapes silencing dynamics. Interestingly, while we 
propose that the lack of silencing maintenance is the major defect causing the pachytene cell death in 
Topbp1B5/B5 spermatocytes, we cannot exclude the possibility that the expression of XY- linked genes 
could represent a regulated response to meiotic defects more than a mere consequence of a defec-
tive MSCI. If this latter hypothesis is true, the cell death caused by defects in the XY chromosomes 
would be independent of MSCI. Notably, this hypothesis could not have been conceptualized prior to 
this work given that the majority of prophase I mutants characterized to this date are unable to reach 
the stage where MSCI is properly established. Thus, the Topbp1B5/B5 is a unique model allowing future 
studies that may uncouple MSCI from XY- triggered cell death during pachynema.

In summary, our study presents a unique model for investigating the role of DDR factors in XY 
silencing. By allowing the uncoupling of MSCI progression from sex body formation, the Topbp1B5/B5 
mutant enables the study of MSCI dynamics during key stages late in pachynema. Notably, the inability 
of Topbp1B5/B5 to sustain or reinforce silencing opens the possibility of uncovering new insights into 
the MSCI- dependent pachytene checkpoint.

Materials and methods
Materials availability
This study generated a unique antibody, RPA.
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Mice, genotyping, and treatment of mice with IR
All mice used in this work were handled following federal and institutional guidelines under a protocol 
approved by the Institutional Animal Care and Use Committee (IACUC protocol number 2011- 0098) 
at Cornell University. CRISPR/Cas9 editing was used to engender the Topbp1B5 allele and performed 
by the Cornell Mouse Modification core facility. To this end, the online tools CRISPR gold and Chop-
Chop were used to generate high- quality (guide score >9) CRISPR guide RNAs targeting the intronic 
sequences neighboring the genomic sequence of Mus musculus topbp1 exon 13. The CRISPR crRNAs 
(purchased from IDT) harboring the sequences ccaactc aggt cggc cgct cttg  and cctcgat tagt cctc aagg 
cgag  (PAM sites are underlined), both targeting the reverse strand, the repair template (below), and 
CAS9 RNA, were injected on embryos from super- ovulated, plugged C57BL/6J female mice crossed 
to C57BL/6J stud males. Two cell stage embryos were then implanted on pseudo pregnant females 
and pups were genotyped after 1 week old.

Repair template
acag cagg gctt ctct gtgt aacc ctct ctcc gtag acca gttt ggcc ttga tcgaactc aggt cggc cgct cttg cctc taga gtcc tggg 
atta aagg cgtg cact gcca ccac ccag agta tgtt tctc tgac atta acca tgct atta tttt ttta aaat gagc taat tgtg tgtt catt 
tgct ttat ttcc atgt aaaa tttt ag TG  TTCA  AGAA  TTCT  TTGT  T GA CGAA  GCCA  ATGC  A G AG G AA GGCA  TGCT  
CGCC  AGCA  CACA  TCTT  ATAG  TG G AG GAAC  CGAC  TGGT  TCC GA A TACG  AAGC  TGCA  G AG G AA TGGA  
GTTT  GCCG  GCAG  TTAA  CATT  TCAT  GGCT  CTTA  GAAA  CTGC  G GA A ATCG  GG G AG GA A GCAG  ATGA  
AAAC  CATT  TTCT  GGTT  GACA  ACGC  ACCT  AAAC  AAGg ttag aagt cctt gttt tttt ttta tgta tttt acaa cttg atgg 
tttc tgaa atag ggat gttc cagt actt gctt taaa acat ttgt atga ccct aacc tcag tcag tggt gctt actt caga accc ctga gtga 
aaca cgga aagc agat caat gaag aagc gcat cagg gtca acggtcgat tagt cctc aagg cgag tgac gaga aggt gacc cccg a 
at ggct gtta gaag cagt tttt ata (purchased from IDT as a G- block).

Intronic sequence is shown in lower case, exon 13 sequence is shown in capital letters, underline 
represents the mutated residues, blue represents the mutated PAM residues, purple shows the guide 
RNA sequences, and red shows the targeted amino acid sequences. Of note, although this repair 
template encodes for 11 amino acid changes, only 8 were successfully inserted into the mouse topbp1 
exon 13 locus. For mice genotyping, the following primers were used: 5′- tgca tttc catt aacc aacc tc-3′ and 
5′- ggta gagt tcaa atgt gtgt catg -3′ (also shown in Key Resources Table).

For irradiation, Topbp1+/+ and Topbp1B5/B5 mice were placed in a 137 cesium- sealed source irradi-
ator (J.L. Shepherd and Associates) with a rotating turntable and irradiated with 7 Gy IR.

MEFs and cell survival assays
MEFs were prepared from E13.5 mouse embryos as previously described (Balmus et al., 2012). Briefly, 
embryos were dissected and mechanically disrupted using pipette aspiration until homogeneous. 
Cells were allowed to settle, and the supernatant was transferred into Dulbecco’s modified medium 
supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 1% nonessential 
amino acids. Following 4 days of growth, cells were then immortalized by transduction with a large- T 
antigen lentivirus. Subsequently, cells were selected with 10 µg/mL puromycin.

For colony survival assays, 500 cells were seeded per 10 cm dish, allowed to adhere for 24 hr, and 
treated with phleomycin or hydroxyurea for 24 hr (drug concentrations are displayed in Figure 2A–D 
and Figure 2—figure supplement 1). In the following day, cells were released and let to form colonies 
for 10–15 days. Cells were then washed once with PBS, fixed in 100% methanol for 1 hr, stained with 
0.1% crystal violet (MP Biomedicals, 152511) solution overnight, and then washed with distilled water 
before imaging and counting.

For accessing DDR and checkpoint responses via western blot, 2 × 106 cells were seeded on a 
60 cm dish, allowed to adhere for 24 hr, and treated with phleomycin or hydroxyurea for 3 hr (drug 
concentrations are displayed in Figure 2).

Cell culture
HEK- 293T cells were cultured in Dulbecco’s modified medium supplemented with 10% fetal calf serum, 
1% penicillin/streptomycin, and 1% nonessential amino acids. Immortalized MEFs were cultured in 
Dulbecco’s modified medium supplemented with 10% fetal calf serum, 1% penicillin/streptomycin, 
1% nonessential amino acids, and 1% glutamine supplementation. All cells were kept at 37°C and 
5% CO2. All the cell lines were regularly tested for mycoplasma contamination with the Universal 
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Mycoplasma Detection Kit (ATCC). HEK- 293T cells were transfected using homemade polyethyleni-
mine (Polysciences, Inc). Then, 36 hr after transfection, cells were treated with 1 mM HU (hydroxyurea) 
and then harvested for immunoprecipitation experiments.

Plasmids
The full- length TOPBP1 CDS was cloned on a p3xflag vector (Milipore/Sigma E7658) using Gibson 
assembly (NEB) following the manufacturer’s instructions. The p3xflag- TOPBP1 was used as a template 
to generate p3xflag- TOPBP- K155A, p3xflag- TOPBP- K250A, p3xflag- TOPBP- K704A, p3xflag- TOPBP- 
K1317A through site- directed mutagenesis using prime STAR master mix (Takara) and Gibson assembly 
to generate p3xflag- TOPBP- KE, using the following G- block (IDT) containing the eight charge- reversal 
point mutations at the BRCT 5 domain of TOPBP1:

 AACG  AATC  CAAT  GCAG  AAGA  AGGC  ATGT  TTGC  CAGT  ACTC  ATCT  TATA  CTGG  AAGA  ACGT  GGTG  
GCTC  TGAA  TATG  AAGC  TGCA  AAGA  AGTG  GAAT  TTAC  CTGC  CGTT  ACTA  TAGC  TTGG  CTGT  TGGA  
GACT  GCTA  GAAC  GGGA  GAAG A.

All primers used for the cloning are shown in the Key Resources Table.

Immunoblotting
Cells were harvested and lysed in modified RIPA buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1% 
tergitol, 0.25% sodium deoxycholate, 5 mM ethylenediaminetetraacetic acid [EDTA]) supplemented 
with complete EDTA- free protease inhibitor cocktail (Roche), 1  mM phenylmethylsulfonyl fluoride 
(PMSF), and 5 mM NaF. Whole- cell lysates, after sonication, were cleared by 15 min centrifugation at 
17,000 × g at 4°C. Then, 20 µg of protein extract were mixed with 3× sodium dodecyl sulfate sample 
buffer and resolved by SDS- PAGE. Gels were transferred on polyvinylidene difluoride membranes 
and immunoblotted using standard procedures. Western blot signal was acquired with a Chemidoc 
Imaging System (Bio- Rad). Antibody information is provided in the Key Resources Table.

Immunofluorescence
MEFs were grown on coverslips and then submitted to IR, 5 Gy and allowed to recover for 1.5 hr at 
37°C and 5% CO2. Cells were then fixed using 3.7% formaldehyde in phosphate- buffered saline (PBS) 
for 10 min at room temperature (RT). Fixed cells were then washed 3× with PBS, permeabilized for 
5 min with 0.2% Triton X- 100/PBS at RT and blocked in 10% bovine serum albumin/PBS for 20 min at 
RT. Coverslips were incubated first with primary antibodies for 2 hr at RT, followed by three washes 
with PBS, and then for 1 hr with relative secondary antibodies. After incubation with secondary anti-
bodies, coverslips were washed three times with PBS and then mounted on glass microscope slides 
using DAPI–Vectashield mounting medium (Vector Laboratories). Slides were imaged on a Leica DMi8 
Microscope with a Leica DFC9000 GTC camera using the LAS X (Leica Application Suite X) software 
with a ×100 objective. For micronuclei scoring, ∼ 50 cells/replicate were counted. Two- tailed Student’s 
t- test was used for statistical analysis. Antibody information is provided in the Key Resources Table.

Meiotic spreads
Meiotic surface spreads were performed from 8- to 12- week- old mice as described by Kolas et al., 
2005. Briefly, decapsulated testis from mice were incubated on ice in a hypotonic extraction buffer 
for 45 min. Tubules were then minced into single- cell suspension in 100 mM sucrose, and cells were 
spread on slides coated with 1% PFA with 0.15% TritionX- 100 and incubated in a humidifying chamber 
for 4 hr. For immunostaining, slides were blocked using 10% goat serum and 3% BSA, followed by 
incubation overnight with primary antibody (listed in the Key Resources Table) at 4°C in a humidifying 
chamber. Secondary antibodies were incubated at 37°C for 2 hr in the dark, and slides were then 
cover- slipped using antifade mounting medium (2.3% DABCO, 20 mM Tris pH 8.0, 8 µg DAPI in 90% 
glycerol). Slides were imaged on a Leica DMi8 Microscope with a Leica DFC9000 GTC camera using 
the LAS X software. For every condition, a minimum of 50 images from at least two independent mice 
were acquired. To quantify fluorescence intensity, the LAS X software quantification tool was used as 
previously described (Sims et al., 2022). Antibody information is provided in the Key Resources Table. 
p- Values were calculated in Prism–GraphPad using a linear mixed effect model (Nested t- test) that 
takes into account the variability in cells within each mouse when comparing mice between groups 
(Topbp1+/+ vs Topbp1B5/B5).
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3D-structured illumination super-resolution microscope (3D-SIM)
Higher resolution images were acquired using an ELYRA 3D- structured illumination super- resolution 
microscopy (3D- SIM) from Carl Zeiss with ZEN Black software (Carl Zeiss AG, Oberkochen, Germany). 
Images are shown as maximum intensity projections of z- stack images. To reconstruct high- resolution 
images, raw images were computationally processed with ZEN Black. The brightness and contrast 
of images were adjusted using ImageJ (National Institutes of Health, USA). Antibody information is 
provided in the Key Resources Table.

Fertility assays
For fertility testing, 8- week- old Topbp1B5/B5 females and C57BL/6  males or C57BL/6  females and 
Topbp1B5/B5 males were singly housed, where pregnancies were monitored for a period of 1 month. 
Viable pups were counted on the first day of life. For Topbp1B5/B5 males, breeding cages remained 
active for a period of 6 months at no time pregnant females nor birth of pups were detected. No 
noticeable defects were found on fertility of Topbp1B5/+, males or females (data not shown).

TUNEL
TUNEL assay was conducted using the Apoptag kit (EMD Millipore) following the manufacturer’s 
instructions. The data were quantified in Image Scope by counting the number of positive cells per 
tubule for 100 tubules of each genotype, three mice each. Statistical differences between Topbp1+/+ 
and Topbp1B5/B5 were analyzed using Welch’s unpaired t- test in GraphPad.

Hematoxylin and eosin staining
Adult testes – from 12- week- old mice – were dissected and incubated in Bouin’s fixative overnight, 
washed during 30 min each in 30%, then 50% and then 70% ethanol. The 70% ethanol wash was 
repeated three times more. Testes were then embedded in paraffin. 5 µm sections were mounted on 
slides. After rehydration in Safe Clear Xylene Substitute followed by decreasing amounts of ethanol, 
slides were stained with hematoxylin followed by eosin. The slides were then gradually dehydrated by 
incubation in increasing concentrations of ethanol before mounting using toluene mounting medium.

Epididymal sperm counts
Caudal and epididymides from 8- to 12- week- old mice were minced with fine forceps at 37°C in a Petri 
dish containing Dulbecco’s modified medium supplemented with 10% fetal calf serum, 1% penicillin/
streptomycin, 4% BSA, and 1% nonessential amino acids. Samples were then incubated at 37°C for 
30 min allowing sperm to swim out into the media, then fixed in 10% neutral- buffered formalin (1:25 
dilution). Sperm cells were counted using a hemocytometer and analyzed statistically using two- tailed 
Student’s t- test between Topbp1+/+ and Topbp1B5/B5.

Enrichment of testes phosphopeptides and TMT labeling
The enrichment of testes phosphopeptides and TMT labeling were done as described previously 
(Sims et al., 2022). Briefly, whole decapsulated testes were collected from 8- to 12- week- old mice 
after which tissue was subject to lysis, protein quantification, and normalization, denaturation, alkyla-
tion, precipitation, digestion, and solid- phase extraction (SPE) C18 cartridge clean up as described 
by Sims et al., 2022. Lyophilized tryptic peptides were then subject to phosphopeptide enrichment 
using a High- Select Fe- NTA Phosphopeptide Enrichment Kit according to the manufacturer’s protocol 
(Cat# A32992, Thermo Scientific). Phosphopeptide samples were dried in silanized glass shell vials, 
resuspended in 50  mM HEPES, and labeled with 100  µg of TMT sixplex Isobaric Label Reagents 
(Thermo Scientific) using three TMT channels for each condition (Topbp1+/+ and Topbp1B5/B5). The 
TMT- labeling reaction was done at RT for 1 hr and quenched with 5% hydroxylamine for 15 min. After 
quenching, TMT- labeled peptides from all six channels were pooled, acidified with 0.1% TFA, and 
desalted using a SPE 1cc C18 cartridge (Sep- Pak C18 cc vac cartridge, 50 mg Sorbent, WAT054955, 
Waters). Bound TMT- labeled phosphopeptides were eluted with 80% acetonitrile, 0.1% acetic acid in 
water before being dried via vacuum concentrator.

Mass spectrometric analysis of TMT-labeled phosphopeptides
The dried TMT- labeled phosphopeptides were prefractionated using offline HILIC HPLC prior to being 
analyzed by mass- spectrometry as described by Sims et al., 2022. The LC- MS/MS was performed on 
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an UltiMate 3000 RSLC nano chromatographic system coupled to a Q- Exactive HF mass spectrometer 
(Thermo Fisher Scientific). The chromatographic separation was achieved via a 35- cm- long 100 µm 
inner diameter column packed in- house with 3 µm C18 reversed- phase resin (Reprosil Pur C18AQ 
3 μm). The Q- Exactive HF was operated in data- dependent mode with survey scans acquired in the 
Orbitrap mass analyzer over the range of 380–1800 m/z with a mass resolution of 120,000. MS/MS 
spectra were performed after selecting the top 7 most abundant +2, +3, or +4 ions and a precursor 
isolation window of 0.7 m/z. Selected ions were fragmented by higher- energy collisional dissociation 
(HCD) with normalized collision energies of 28, with fragment mass spectra acquired in the Orbitrap 
mass analyzer with a monitored first mass of 100 m/z, mass resolution of 15,000, AGC target set to 1 
× 105, and maximum injection time set to 100 ms. A dynamic exclusion window of 30 s was specified.

Phosphoproteomic data analysis
Trans Proteomic Pipeline (TPP) version 6.0.0 was used for phosphopeptide identification and quanti-
fication. MS data were converted to mzXML using msConvert as packaged with the TPP, after which 
spectral data files were searched using the Comet search engine (v2021 rev 1) (Eng et al., 2013). 
Peptide identifications were validated using PeptideProphet, phosphorylation site localization was 
performed using PTM Prophet, and TMT channel quantification was performed using Libra. Results 
from Libra were exported as tab- delimited files for further processing via R scripts as previously 
described (Sims et al., 2022). The mass spectrometry phosphoproteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE (Perez- Riverol et al., 2022) a partner repository 
with the dataset identifier PXD042199.

Immunoprecipitation
The immunoprecipitation (IP) experiments were performed as described by Liu et al., 2017. Briefly, 
cell pellets were lysed in 50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1% tergitol, 0.25% sodium deoxy-
cholate, and 5 mM EDTA, supplemented with EDTA- free protease inhibitor cocktail, 5 mM sodium 
fluoride, 10 mM β-glycerolphosphate, 1 mM PMSF, and 0.4 mM sodium orthovanadate. The protein 
extracts were cleared by 10 min centrifugation and then incubated with anti- FLAG agarose beads 
(Sigma- Aldrich) for 16 hr at 4°C. The beads were then washed four times with the same buffer used 
for IP and then eluted using three resin volumes of the elution buffer (100 mM Tris–HCl, pH 8.0, and 
1% SDS, and 1 mM DTT).

Mass spectrometric analysis of immunoprecipitates
HEK- 293T cells were grown in stable isotope labeling with amino acids in cell culture (SILAC) as previ-
ously described (Liu et al., 2017) and transfected as described above. Cells were treated with 1 mM 
HU for 16  hr before harvesting. Flag- TOPBP1 was immunoprecipitated using anti- FLAG agarose 
beads. Immunoprecipitates were then prepared for mass spectrometry analysis by reduction, alkyla-
tion, precipitation, and digestion by trypsin. The peptides were desalted, dried, and then fractionated 
by hydrophilic interaction chromatography as previously described (Liu et al., 2017). Fractions were 
dried and analyzed by liquid chromatography–tandem mass spectrometry using a mass spectrom-
eter (Q- Exactive HF Orbitrap; Thermo Fisher Scientific). The capillary column was 35 cm long with a 
100 µm inner diameter, packed in- house with 3 µm C18 reversed- phase resin (Reprosil Pur C18AQ 
3 μm). Peptides were separated over an 70 min linear gradient of 6–40% acetonitrile in 0.1% formic 
acid at a flow rate of 300 nL/min as described previously (Bastos de Oliveira et al., 2015). Xcalibur 
2.2 software (Thermo Fisher Scientific) was used for the data acquisition, and The Q- Exactive HF was 
operated in data- dependent mode with survey scans acquired in the Orbitrap mass analyzer over 
the range of 380–1800 m/z with a mass resolution of 120,000. The maximum ion injection time for 
the survey scan was 100 ms with a 3e6 automatic gain- control target ion. Tandem mass spectrometry 
spectra were performed by selecting up to the 20 most abundant ions with a charge state of 2, 3, or 4 
and with an isolation window of 1.2 m/z. Selected ions were fragmented by higher energy collisional 
dissociation with a normalized collision energy of 28, and the tandem mass spectra were acquired 
in the Orbitrap mass analyzer with a mass resolution of 17,500 (at m/z 200). The TPP version 6.0.0 
was used for peptide identification and SILAC quantification. MS data were converted to mzXML 
using msConvert as packaged with the TPP, after which spectral data files were searched using the 
Comet search engine (v2021 rev 1) (Eng et al., 2013). The following parameters were used in the 
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database search: semitryptic requirement, a mass accuracy of 15 ppm for the precursor ions, a differ-
ential modification of 8.0142 D for lysine and 10.00827 D for arginine, and a static mass modification 
of 57.021465 D for alkylated cysteine residues. Peptide identifications were validated using Pepti-
deProphet and SILAC quantification was performed using XPRESS as described previously (Bastos 
de Oliveira et al., 2015; Sims et al., 2022). The mass spectrometry data have been deposited to the 
ProteomeXchange Consortium via the PRIDE (Perez- Riverol et al., 2022) partner repository with the 
dataset identifier PXD042199.

Total germ cells preparation
Mice testis were collected from 8- to 12- week- old mice (n = 5 mice, 10 testis for Topbp1+/+, and n 
= 20–30 mice, 40–60 testis for Topbp1B5/B5), and dissociated using standard protocols for germ cell 
extraction (Grive et al., 2019). Briefly, decapsulated testes were held in 10 mL of preheated (35°C) 
DMEM- F12 buffer containing 2 mg of Collagenase 1A and DNAse 7 mg/mL, on a 50 mL conical tube. 
The collagenase digestion was performed at a 35°C shaker water bath, 150 rpm during 5 min. The 
collagenase digestion was stopped by the addition of 40 mL of DMEM- F12 and the tubules were let to 
decantate for 1 min. The supernatant was removed and added another 40 mL of DMEM- F12 to further 
wash the residual collagenase and remove somatic and excessive sperm cells. Next, the tubules were 
digested using 10 mL of DMEM- F12 buffer containing 5 mg of trypsin (Thermo Fisher 27250018) on 
a 50 mL conical tube and the reaction was carried out on a 35°C shaker water- bath, 150 rpm during 
5 min. Digested tubules were strained on a 100 μm strainer containing 3 mL of FBS (100% FBS, heat- 
inactivated, Sigma F4135- 500mL). Total germ cells were centrifuged at 300 × g for 5 min, 4°C and 
checked for single cells and viability.

Flow cytometry analysis
Total germ cell extracts were stained with Vybrant dye cycle (VDG) (Invitrogen) 100 μM for 30 min at 
RT, kept on dark, and rocking. After staining, cells were sorted as previously described (Rodríguez- 
Casuriaga et al., 2014) aiming to enrich for spermatocytes and using the Sony MA900 fluorescent- 
activated cell sorter (FACS), tuned to emit at 488 nm and with a 100 μm nozzle. Laser power was set 
to collect VDG- emitted fluorescence in FL1. Sorted cells were collected on 1.5 mL tubes containing 
0.5 mL of DMEM- F12 buffer + 10% FBS. The FACS was done at the Flow Cytometry Facility, Cornell 
University.

Single-cell RNA sequencing
Flow- sorted cells were submitted to the Cornell DNA Sequencing Core Facility and processed on 
the 10X Genomics Chromium System targeting 5000–7000 cells per sample as described previously 
(Grive et al., 2019) using the 10X Genomics Chromium Single Cell 3′ RNA- seq v2 kit to generate the 
sequencing libraries, which were then tested for quality control on an ABI DNA Fragment Analyzer 
and ran on a NextSeq platform with 150 base- pair reads. The sequencing was carried out to an 
average depth of 98M reads (range 77–124M); on average, 91% of reads (range 89%–92%) and then 
mapped to the reference genome.

Single-cell RNA sequencing data analysis
Count matrices were generated for each sample using the Cell Ranger counts function and then 
imported into Seurat and integrated. Cells were filtered based on gene number, UMI, counts, and 
mitochondrial percentage. Cells with less than 500 genes, less than 1000 UMIs, or more than 5% of 
mitochondrial reads were excluded from further analysis (Figure  6—figure supplement 16). Raw 
counts were normalized using Seurat NormalizeData using default parameters and the top 4000 vari-
able features were identified using the FindVariableFeatures function using ExpMean for the mean 
function and LogVMR for the dispersion function. Principal components were calculated from variable 
genes and used with Harmony to correct for batch effect. Harmony embeddings dimensions 1–20 
were used for a Shared Nearest Neighbor graph with k = 30, unsupervised clustering with a resolution 
of 4, and Uniform Manifold Approximation and Projection (UMAP) analysis. Cell types were manually 
identified by use of marker genes, and the SingleR package was used to confirm cell identity. Chro-
mosome X/autosome 9 ratios were calculated by taking the mean gene expression of all genes on 
chromosome 9 or X for a cell and dividing it by the mean gene expression for all autosomal genes in 
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a cell. Ratios were visualized using ggplot and the introdataviz package geom_split_violin function. 
The single- cell heatmap was generated using the DoHeatmap function. The clustered analysis of 
the X- linked genes shown in Figure 7A was done by splitting the detected 233 X- linked genes into 
three distinct categories based on the difference of RNA level between the spermatocyte stages and 
normalized by pre- leptotene: reduced silencing (>1), unaltered silencing (≥ –1 or ≤1), or increased 
silencing (< –1). To further split the X- linked genes into three categories based on the severity of the 
silencing defect (detected at spermatocyte 3 stage) in Topbp1B5/B5 – no defect (13 genes), mild (45 
genes), or strong defect (170 genes) – the difference in expression between SP3 genes from Topbp1+/+ 
or from Topbp1B5/B5 was calculated. The categories were defined as strong > 2.5, mild ≥ 1 or ≤ 2.5, and 
no defect < 1. The single- cell RNAseq data generated in this study have been deposited in the NCBI 
GEO database under accession number GSE232588.
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Independently of Sex Body 
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Ascencao CFR, 
Sims JR, Dziubek A, 
Comstock W, Fogarty 
EA, Badar J, Freire R, 
Grimson A, Weiss RS, 
Cohen PE, Smolka 
MB
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Meiosis to Ensure Male 
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nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
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NCBI Gene Expression 
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ID= PXD023803

ProteomeXchange, 
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence- 
based reagent

p3xflag- TOPBP1- Flag- N- 
terminal- F IDT PCR primer

attcatcgatagatctgataAT 
GTCCAGAAATGACAAAGA

Sequence- 
based reagent

p3xflag- TOPBP1- Flag- N- 
terminal- R IDT PCR primer

tagagtcgactggtaccgatttag 
TGTACTCTAGGTCGTT

Sequence- 
based reagent TOPBP1_K1317A_R IDT

Site- directed 
mutagenesis

tgccactgaggctaaatacg 
cctcgtttcgaagtggatgt

Sequence- 
based reagent TOPBP1_K1317A_F IDT

Site- directed 
mutagenesis

acatccacttcgaaacgagg 
cgtatttagcctcagtggca

Sequence- 
based reagent TOPBP1_K155A_F IDT

Site- directed 
mutagenesis

caggtttgcagcaactaaat 
atgctttgctaccaacttctcctgca

Sequence- 
based reagent TOPBP1_K155A_R IDT

Site- directed 
mutagenesis

tgcaggagaagttggtagcaaa 
gcatatttagttgctgcaaacctg

Sequence- 
based reagent TOPBP1_K250A_R IDT

Site- directed 
mutagenesis

tctcttggcacactcatacg 
cctgaccttttggttcttgc

Sequence- 
based reagent TOPBP1_K250A_F IDT

Site- directed 
mutagenesis

gcaagaaccaaaaggtcagg 
cgtatgagtgtgccaagaga

Sequence- 
based reagent

Topbp1_BRCT5- Fwd 
genotyping IDT PCR primer tgcatttccattaaccaacctc

Sequence- 
based reagent

Topbp1_BRCT5 Rev 
genotyping IDT PCR primer ggtagagttcaaatgtgtgtcatg

Antibody

Anti- phospho H2A.X 
(Ser139)
(mouse monoclonal) Millipore

Cat# 05- 636; 
RRID:AB_309864

IF (meiotic spreads) 1:50,000
IF 1:2000

Antibody
Anti- SCP3 antibody
(mouse monoclonal) Abcam

Cat# ab97672; 
RRID:AB_10678841 IF (meiotic spreads) 1:1000

Antibody
Anti- SYCP3
(rabbit polyclonal)

Lenzi et al., 
2005 Custom IF (meiotic spreads) 1:10,000

Antibody
Anti- SCP1
(rabbit polyclonal) Abcam ab15090 IF (meiotic spreads) 1:1000

Antibody
Anti- Rad51
(rabbit polyclonal) Millipore PC130 IF (meiotic spreads) 1:1000

Antibody
Anti- ATR
(rabbit polyclonal) Cell signaling 2790 IF (meiotic spreads) 1:1000

Antibody
Anti- TOPBP1
(rabbit polyclonal)

Danielsen 
et al., 2009 Custom

IF (meiotic spreads)
1:500
Western blot 1:1000

Antibody

Anti- phospho- Chk1 
(ser317)
(rabbit monoclonal) Cell Signaling 12302

IF (meiotic spreads)
1:100
Western blot 1:1000

Antibody
Anti- H1T
(guinea pig polyclonal)

A gift from 
Dr. Mary 
Ann Handel; 
Inselman et al., 
2003 Custom

IF (meiotic spreads)
1:500

Antibody
Anti- HORMAD2
(rabbit polyclonal)

Wojtasz et al., 
2012 Custom

IF (meiotic spreads)
1:500

Antibody
Anti- HORMAD1
(rabbit polyclonal)

Wojtasz et al., 
2012 Custom

IF (meiotic spreads)
1:500
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody

Phospho HORMAD2 
(S271)
(rabbit polyclonal)

Wojtasz et al., 
2009 Custom

IF (meiotic spreads)
1:500

Antibody
Anti- GAPDH
(mouse monoclonal)

Thermo Fisher 
Scientific AM4300 Western blot 1:5000

Antibody
Anti-β-actin
(rabbit polyclonal) Cell Signaling 4967 Western blot 1:5000

Antibody
Anti- phospho MDC1 (T4)
(rabbit polyclonal) Abcam Ab35967

IF (meiotic spreads)
1:500

Antibody
Anti- SETX
(rabbit polyclonal) Abcam Ab220827

IF (meiotic spreads)
1:100

Antibody
Anti- MLH1
(mouse monoclonal) BD Biosciences 550838

IF (meiotic spreads)
1:200

Antibody
Anti- MLH3
(guinea pig polyclonal)

Holloway et al., 
2014 Custom

IF (meiotic spreads)
1:200

Antibody
Anti- CHK1
(mouse monoclonal) Santa Cruz sc- 8408 Western blot 1:1000

Antibody
Anti- CHK2
(mouse monoclonal) Millipore 05- 649 (clone7) Western blot 1:1000

Antibody
Anti- phospho CHK1 (S345)
(rabbit polyclonal)   Cell Signaling 2341

IF (meiotic spreads)
1:200
Western blot 1:1000

Antibody
Anti- phospho RPA (S4/S8)
(rabbit polyclonal) Bethyl A300- 245A Western blot 1:1000

Antibody

RPA (made against full 
length RPA2 expressed 
and purified in E. coli, and 
injected to rabbit)
(rabbit polyclonal) N/A Custom Western blot 1:1000

Antibody
Anti- KAP1
(rabbit monoclonal) Bethyl a700- 014- T Western blot 1:1000

Antibody
Anti- phospho KAP1 (S824)
(rabbit polyclonal) Bethyl A300- 767A- T Western blot 1:1000

Antibody
Anti- 53BP1
(rabbit polyclonal) Cell Signaling 4937 Western blot 1:1000

Antibody
Anti- 53BP1
(rabbit polyclonal)

Novus 
Biologicals NB100- 304

IF (meiotic spreads)
1:200

Antibody
Anti- BLM
(rabbit polyclonal) Abcam ab2179 Western blot 1:500

Antibody
Anti- Rad9
(rabbit polyclonal) Bethyl A300- 890A- T Western blot 1:1000

Antibody
Anti- BRCA1
(rabbit polyclonal)

Kakarougkas 
et al., 2013 Custom

IF (meiotic spreads)
1:200

Antibody
Anti- BRCA1
(rabbit polyclonal) Proteintech 22362- 1- AP Western blot 1:1000

Antibody
Anti- MDC1
(rabbit polyclonal)

Modzelewski 
et al., 2015 Custom

IF (meiotic spreads)
1:200
IF
1:200

Antibody
Anti- RNA pol 2
(mouse monoclonal) Millipore 05- 623

IF (meiotic spreads)
1:2000
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody

Anti- phospho RNA pol 2 
(Ser2)
(rat monoclonal) Millipore 04- 1571

IF (meiotic spreads)
1:400

Antibody

Anti- phospho RNA pol 2 
(Ser5)
(rat monoclonal) Millipore 04- 1572

IF (meiotic spreads)
1:400

Antibody
Anti- H3K9ac
(rabbit polyclonal) Abclonal A7255

IF (meiotic spreads)
1:200

Antibody
Anti- H3K9me3
(rabbit polyclonal) Active Motif 39766

IF (meiotic spreads)
1:200

Antibody
Anti- H3K4me1
(rabbit polyclonal) Abclonal A2355

IF (meiotic spreads)
1:200

Antibody
Anti- CHD4
(rabbit polyclonal) Abclonal A10557

IF (meiotic spreads)
1:200

Antibody
Anti- Sumo_2/3
(rabbit polyclonal) Proteintech 11251- 1- AP

IF (meiotic spreads)
1:200

Antibody
Anti- USP7
(mouse monoclonal) Proteintech 66514- 1- Ig

IF (meiotic spreads)
1:200

Antibody
Anti- H3K27ac
(rabbit polyclonal) Active Motif 39134

IF (meiotic spreads)
1:200

Antibody
Anti- H3K36ac
(rabbit polyclonal) Active Motif 61102

IF (meiotic spreads)
1:200

Antibody
Anti- H3K4me3
(rabbit polyclonal) Active Motif 39160

IF (meiotic spreads)
1:200

Antibody
Anti- H4K16ac
(rabbit polyclonal) Abclonal A5280

IF (meiotic spreads)
1:200

Antibody
Anti- H4c
(rabbit polyclonal) Millipore 06- 598

IF (meiotic spreads)
1:200

Antibody
Anti- H2AK199ub
(rabbit monoclonal) Abcam Ab193203

IF (meiotic spreads)
1:200

Antibody

Goat anti- rabbit IgG (H+L) 
highly cross- adsorbed 
secondary antibody, Alexa 
Fluor 488
(goat polyclonal)

Thermo Fisher 
Scientific A- 11034

IF (meiotic spreads)
1:1000

Antibody

Goat anti- mouse IgG (H+L) 
antibody, Alexa Fluor 488 
conjugated
(goat polyclonal)

Thermo Fisher 
Scientific A- 11017

IF (meiotic spreads)
1:1000

Antibody

Goat anti- rabbit IgG (H+L) 
antibody, Alexa Fluor 594 
conjugated
(goat polyclonal)

Thermo Fisher 
Scientific A- 11012

IF (meiotic spreads)
1:1000

Antibody

Goat anti- mouse IgG (H+L) 
highly cross- adsorbed 
secondary antibody, Alexa 
Fluor Plus 594
(goat polyclonal)

Thermo Fisher 
Scientific A32742

IF (meiotic spreads)
1:1000

Antibody

Goat anti- guinea pig 
IgG (H+L) highly cross- 
adsorbed secondary 
antibody, Alexa Fluor 647
(goat polyclonal)

Thermo Fisher 
Scientific A- 21450

IF (meiotic spreads)
1:1000

Commercial 
assay or kit

ApopTag Plus Peroxidase 
In Situ Apoptosis Kit Millipore S7101
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Software, 
algorithm GraphPad Prism 9 GraphPad Prism RRID:SCR_002798

Software, 
algorithm Cellranger v7.0.0 10X Genomics

https://support. 
10xgenomics.com/ 
single-cell-gene- 
expression/software/ 
downloads/3.1

Software, 
algorithm R v4.2.1 R Foundation RRID:SCR_001905

Software, 
algorithm Seurat v4.3.0

Hao et al., 
2021 RRID:SCR_007322

Software, 
algorithm sva v3.44.0

Leek et al., 
2023 RRID:SCR_012836

Software, 
algorithm SingleR v1.10.0

Aran et al., 
2019 RRID:SCR_023120

Software, 
algorithm Reshape2 v1.4.4 Wickham, 2007 RRID:SCR_022679

Software, 
algorithm biomaRt v2.52.0

Durinck et al., 
2009 RRID:SCR_019214

Software, 
algorithm ggpubr v0.5.0

Kassambara, 
2019 RRID:SCR_021139

Software, 
algorithm Tidyverse v1.3.2

Wickham et al., 
2019 RRID:SCR_019186

Software, 
algorithm ggnewscale v0.4.8 Campitelli

https://eliocamp. 
github.io/ggnewscale/ 
index.html

Software, 
algorithm Harmony v0.1.1

Korsunsky 
et al., 2019 RRID:SCR_022206

Software, 
algorithm  Org. Mm. eg. db v3.15.0

Carlson et al., 
2019 RRID:SCR_023488

Software, 
algorithm Corrplot v0.92

Wei and Simko, 
2017 RRID:SCR_023081

Software, 
algorithm SeuratWrappers v0.3.1 Satija Lab RRID:SCR_022555

Software, 
algorithm gghalves v0.1.4

Tiedemann, 
2022

https://github.com/ 
erocoar/gghalves

Appendix 1 Continued

https://doi.org/10.7554/eLife.90887
https://identifiers.org/RRID/RRID:SCR_002798
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.1
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.1
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.1
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.1
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.1
https://identifiers.org/RRID/RRID:SCR_001905
https://identifiers.org/RRID/RRID:SCR_007322
https://identifiers.org/RRID/RRID:SCR_012836
https://identifiers.org/RRID/RRID:SCR_023120
https://identifiers.org/RRID/RRID:SCR_022679
https://identifiers.org/RRID/RRID:SCR_019214
https://identifiers.org/RRID/RRID:SCR_021139
https://identifiers.org/RRID/RRID:SCR_019186
https://eliocamp.github.io/ggnewscale/index.html
https://eliocamp.github.io/ggnewscale/index.html
https://eliocamp.github.io/ggnewscale/index.html
https://identifiers.org/RRID/RRID:SCR_022206
https://identifiers.org/RRID/RRID:SCR_023488
https://identifiers.org/RRID/RRID:SCR_023081
https://identifiers.org/RRID/RRID:SCR_022555
https://github.com/erocoar/gghalves
https://github.com/erocoar/gghalves

	A TOPBP1 allele causing male infertility uncouples XY silencing dynamics from sex body formation
	eLife assessment
	Introduction
	Results
	A TOPBP1 mutant separating its role in fertility from organismal viability
	Topbp1B5/B5 MEFs display no detectable DDR defects
	Topbp1B5/B5 spermatocytes display normal markers of canonical ATR signaling, chromosome synapsis, DNA repair, sex body formation, and DDR protein localization at the X and Y
	Defective phosphorylation and XY localization of the RNA:DNA helicase SETX in Topbp1B5/B5 spermatocytes
	Topbp1B5/B5 spermatocytes initiate MSCI but fail to promote full XY silencing

	Discussion
	Materials and methods
	Materials availability
	Mice, genotyping, and treatment of mice with IR
	Repair template

	MEFs and cell survival assays
	Cell culture
	Plasmids
	Immunoblotting
	Immunofluorescence
	Meiotic spreads
	3D-structured illumination super-resolution microscope (3D-SIM)
	Fertility assays
	TUNEL
	Hematoxylin and eosin staining
	Epididymal sperm counts
	Enrichment of testes phosphopeptides and TMT labeling
	Mass spectrometric analysis of TMT-labeled phosphopeptides
	Phosphoproteomic data analysis
	Immunoprecipitation
	Mass spectrometric analysis of immunoprecipitates
	Total germ cells preparation
	Flow cytometry analysis
	Single-cell RNA sequencing
	Single-cell RNA sequencing data analysis

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Ethics
	Peer review material

	Additional files
	Supplementary files

	References
	Appendix 1


