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ROOT GROWTH

Orchestrating pH levels 
in plants
The growth of a plant root relies on careful control of root surface pH.

ELKE BARBEZ

Cell elongation is a crucial process in the 
growth of plants, both above and below 
ground. An old theory from the 1970s 

postulates that plant cells can stretch when the 
pH of the apoplast, the space outside of the cell 
membrane, is low (Rayle and Cleland, 1970). 
A plant hormone, called auxin, mediates this 
process by activating proton pumps in the cell 
membrane, leading to an increase in the number 
of protons into the apoplast and thus a lower pH. 
This in turn, activates specific enzymes that help 
to loosen the cell wall and thus cell expansion 
(Rayle and Cleland, 1970).

In the following decades, scientists remained 
intrigued to unravel the molecular mechanism 
behind this ‘acid growth theory’. Now, in eLife, 
Matyas Fendrych and colleagues – including 
Nelson Serre and Daša Wernerová as joint first 
authors – report new insights into the role of pH in 
the growth of plant roots in the model organism 
Arabidopsis thaliana (Serre et al., 2023).

Serre et al. used a pH-sensitive fluorescent 
dye in combination with vertical spinning disk 
microscopy to visualize and quantify the surface 
pH of the root organs. This revealed a distinct 
pattern of pH variation on the root surface: acidic 
domains in the meristem (where cells divide) and 

the differentiation zone (where cells mature), and 
a pronounced alkaline domain in the transition 
zone (where cells stop dividing and prepare for 
elongation; Figure 1).

Moreover, the researchers – who are based at 
Charles University in Prague, the Czech Academy 
of Science, and the Heinrich-Heine-University in 
Düsseldorf – were able to demonstrate that the 
cellular auxin import is essential for the formation 
of the alkalic root surface area in the transition 
zone. The plant hormone auxin is necessary for 
plant growth and development and its optimal 
functionality depends on its precise distribution 
across plant organs and tissues (Vanneste and 
Friml, 2009). Serre et al. found that mutants 
lacking the cellular auxin importer AUX1 were 
unable to establish an alkalic surface domain.

Previous research has shown that once inside 
the cytoplasm, auxin binds to specific recep-
tors and triggers either a slow response (which 
involves changes in the expression of downstream 
genes) or a fast response which does not require 
altered gene transcription (Dubey et al., 2021). 
Serre et al. revealed that the correct establish-
ment of the root surface pH pattern requires the 
fast auxin response machinery involving the auxin 
receptor AFB1.

The regulation of membrane-based proton 
pumps is central in the acid growth theory. Serre 
et al. show, however, that the auxin-induced 
alkaline root zonation was not caused by altered 
proton pump activity, suggesting a distinct mode 
of action. Interestingly, one of the known fast 
auxin responses involves an intracellular increase 
in calcium signaling (Shih et  al., 2015). Such a 
signaling increase has been shown to go hand 
in hand with pH regulation in cells (Monshausen 
et al., 2011; Behera et al., 2018). In particular, 
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the calcium channel CNGC14, which enables 
calcium import as a fast response to auxin, has an 
important role in helping roots to grow along the 
gravity vector (Fendrych et al., 2018; Shih et al., 
2015). Serre et al. found that CNGC14 was also 
important to establish the alkalic surface domain 
in the transition zone.

A rapid auxin response and its link to calcium 
signalling may enable the roots to adapt swiftly 
to auxin fluctuations and environmental cues. 
Indeed, Serre et al. showed that mutant seedlings 
with altered pH zones were less able to navigate 
their roots in response to external cues.

The work of Serre et al. provides new insights 
into the mystery of pH-driven root growth and 
opens further fascinating questions. While the pH 
in the apoplast of root epidermal cells is acidified 

in the transition zone, the surface pH above is 
alkaline (Barbez et  al., 2017; Moreau et  al., 
2022; Monshausen et  al., 2011; Serre et  al., 
2023). This suggests that plants can spatially 
differentiate the pH within and at the surface of 
their root organ. A cell type-specific assessment 
of the molecular players, such as AUX1, AFB1 
and CNGC14, will provide more insight into how 
these variations are jointly orchestrated. It will 
also be interesting to see if and how environ-
mental factors, such as external pH fluctuations 
or other abiotic stresses, affect the root surface 
pH landscape.

In summary, Serre et al. illustrate that the root 
surface of A. thaliana features distinct pH zones, 
particularly highlighting the alkaline region in the 
transition zone. By identifying three molecular 
players in this process – AUX1, AFB1 and CNGC14 
– they provide further molecular evidence to 
support the role of fast auxin responses in the 
pH-dependent regulation of root growth.
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Figure 1. Variation in the plant root surface pH. In A. thaliana, the pH of the surface of the 
root (black line) varies with distance from the tip of the root. In the meristem – the region 
nearest the tip – the surface pH is acidic, but it increases to become alkalic in the transition 
zone, before falling again to become more acidic in most of the elongation zone and in all of 
the differentiation zone.
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