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Abstract Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and 
misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cogni-
tive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the 
trajectories of abnormal neural oscillations in AD progression and their relationship to neurode-
generation and cognitive decline are unknown. Here, we deployed robust event-based sequencing 
models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD 
stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in 
the delta-theta band and the decreases in the alpha and beta bands showed progressive changes 
throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both 
neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony 
abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects 
were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics 
involving multiple regions of the brain. These results demonstrate the evolution of functional 
neuronal deficits along the sequence of AD progression.

eLife assessment
This work presents important findings for the field of Alzheimer's disease, especially for the elec-
trophysiology subfield, by investigating the temporal evolution of different disease stages typically 
reported using M/EEG markers of resting-state brain activity. The evidence supporting the conclu-
sions is convincing and the methodology as well as the descriptions of the processes are of high 
quality, although a separation of individuals who are biomarker positive versus negative would have 
strengthened the results and conclusions of the study.

Introduction
AD is a neurodegenerative disease characterized by amyloid-β (Aβ) and neurofibrillary tangles of 
abnormally phosphorylated tau (DeTure and Dickson, 2019). Clinical and epidemiological studies 
have suggested that Aβ accumulation occurs early in the timeline of neuropathological changes in AD, 
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likely preceding the accumulation of tau, and subsequent neurodegeneration and cognitive decline 
(Jack et  al., 2010; Sperling et  al., 2011). The neuropathological changes of AD are, therefore, 
described as a continuum, starting from the presymptomatic stage of proteinopathy and continuing 
to progress during the symptomatic stage with increasing stages of disease severity (Sperling et al., 
2011; Jack et al., 2018). Transgenic mouse models of AD have shown that AD proteinopathy of Aβ 
and tau is associated with synaptic and circuit dysfunctions in neural networks (Busche et al., 2008; 
Ahnaou et al., 2017; Busche et al., 2019). However, the temporal change in synaptic and circuit 
dysfunction during disease progression in patients with AD remains largely unknown.

Functional deficits in neural networks, especially in the presymptomatic stage, have attracted atten-
tion in recent years with the rapidly evolving landscape of plasma biomarkers of early detection and 
novel therapeutics showing the benefits of early intervention (Dubois et al., 2016). In fact, abnormal 
neural oscillation synchrony has been reported not only in patients along the clinical spectrum of AD, 
including mild cognitive impairment (MCI) due to AD and AD-dementia (Jeong, 2004; Fernández 
et  al., 2006; Stam et al., 2006; Koelewijn et  al., 2017; Nakamura et  al., 2018; Hughes et  al., 
2019; Ranasinghe et al., 2020; Meghdadi et al., 2021; Schoonhoven et al., 2022) but also during 
the preclinical stages of AD (Nakamura et al., 2018; Ranasinghe et al., 2022a). Neuronal oscilla-
tions observed by noninvasive electrophysiological measures, such as electroencephalography (EEG) 
and magnetoencephalography (MEG), represent the synchronized activity of excitatory and inhibitory 
neurons and thus provide sensitive indices of altered neuronal and circuit functions in AD. As synaptic 
dysfunction is strongly associated with AD proteinopathy, altered neural oscillation synchrony may 
capture early functional deficits of neural networks even before clinical symptoms appear. However, it 
remains unknown which neurophysiological signature changes capture such deficits and the temporal 
evolution of these changes along the timeline of preclinical to MCI to AD dementia stages in clinical 
populations.

In this study, we investigated the trajectories of neurophysiological changes along the course 
of clinical progression of AD by examining long-range and local neural synchrony patterns in the 
resting brain. We hypothesized that frequency-specific long-range and local synchrony abnormali-
ties in neuronal oscillations may precede both neurodegeneration and cognitive deficits. To examine 
the temporal relationship amongst altered neural synchrony, neurodegeneration, and cognitive defi-
cits, we used data-driven disease progression models, specifically event-based sequencing models 
(EBM), which have been successfully used to predict AD progression from cross-sectional biomarker 
data (Fonteijn et al., 2012; Young et al., 2014; Young et al., 2018). In an EBM, disease progres-
sion is described as a series of discrete events defined as the occurrence of a particular biomarker 
reaching a threshold abnormal value, and the estimated likelihood of the temporal sequence of events 
defines disease progression. Modifying conventional EBMs to find neurophysiological trajectories, we 
developed a robust EBM framework that is less sensitive to the thresholds for the determination of 
abnormality thereby resulting in an unbiased estimation of disease stage probability for each study 
participant.

Leveraging the high spatiotemporal resolution of MEG imaging, we considered two representative 
neuronal oscillatory synchrony metrics: amplitude-envelope correlation (AEC) and regional spectral 
power. The AEC and spectral power quantify long-range and local neural synchrony, respectively. 
Recent test-retest studies of MEG resting-state metrics have revealed that both metrics are highly 
reliable (Colclough et  al., 2016; Wiesman et  al., 2022). To evaluate the frequency specificity of 
neurophysiological trajectories, three canonical frequency bands, delta-theta (2–7 Hz), alpha (8–12 
Hz), and beta (15–29 Hz) bands, were considered. For a metric of global cognitive ability, we used the 
mini-mental state examination (MMSE) score. Neurodegeneration, which is related to neuronal loss 
as well as synaptic loss and synapse dysfunction (Selkoe, 2002; Spires-Jones and Hyman, 2014), is 
detectable as brain atrophy on structural MRI, and therefore we evaluated neurodegeneration as loss 
of gray matter (GM) volume, specifically volume loss of the parahippocampal gyrus (PHG), extracted 
from individual T1 MRIs. We first deployed an Atrophy-Cognition EBM (AC-EBM) with only the neuro-
degeneration and cognitive decline measures, and then quantitatively examined metrics of long-
range and local synchrony of neuronal oscillations corresponding to each estimated disease stage. 
Next, we deployed two separate Synchrony-Atrophy-Cognition EBMs (SAC-EBMs) which respectively 
included long-range or local neural synchrony measures along with PHG volume and global cognition, 
and investigated how the synchrony metrics stratify AD progression. Consistent with our hypothesis, 
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we found that long-range and local neural synchrony in the alpha and beta bands, but not in the delta-
theta band, becomes abnormal at the earliest preclinical stages of AD, preceding both neurodegen-
eration and cognitive deficits.

Materials and methods
Participants
The present study included 78 patients who met National Institute of Aging–Alzheimer’s Asso-
ciation (NIA-AA) criteria (McKhann et al., 2011; Albert et al., 2011; Jack et al., 2018) and 70 
cognitively-unimpaired older adults. All participants were recruited from research cohorts at UCSF 
Alzheimer’s Disease Research Center (UCSF-ADRC). The diagnosis of AD patients was established 
by consensus in a multidisciplinary team. Among 78 AD patients, 20 had autopsy-confirmed AD 
neuropathology, other 41 patients were positive on the Aβ-PET scans, plus another nine patients 
showed cerebrospinal fluid (CSF) assays of amyloid and tau levels consistent with AD diagnosis. 
The remaining eight patients were clinically diagnosed, based on clinical evaluations and the char-
acteristic pattern of cortical atrophy on MRI. Control participants were recruited from an ongoing 
longitudinal study of healthy aging at UCSF-ADRC. The eligibility criteria for cognitively normal 
controls included normal cognitive performance, normal MRI, and absence of neurological, psychi-
atric, or other major medical diseases. Forty-seven (out of 70) controls were evaluated with Aβ-PET 
and 8 were read as positive (39 as negative). The remaining 23 control participants were not 
evaluated with Aβ-PET. All participants underwent MMSE and a structured caregiver interview to 
assess the clinical dementia rating scale (CDR). All control participants were identified at CDR 0, 
indicating cognitively-unimpaired status on the CDR scale. Patients with AD ranged from 0.5 to 2 
on the CDR scale. The results of demographic, functional, and cognitive assessments are shown 
in Supplementary file 1. Informed consent was obtained from all participants or their assigned 
surrogate decision makers. The study was approved by the Institutional Review Board of UCSF 
(UCSF-IRB 10–02245).

MRI acquisition and analyses
Structural brain images were acquired using a unified MRI protocol on 3T Siemens MRI scanners 
(MAGNETOM Prisma or 3T TIM Trio) at the Neuroscience Imaging Center (NIC) at UCSF, within an 
average of 1.05 years (range: -6.91–0.78) and 0.29 years (range: -2.13–1.29) of the MEG evaluation for 
controls and patients, respectively. The acquired MRI was used to generate the head model for source 
reconstructions of MEG sensor data and to evaluate GM volumes. The region-based GM volumes 
corresponding to the 94 anatomical regions included in the Automated Anatomical Labeling 3 (AAL3) 
atlas (Rolls et al., 2020, Supplementary file 2) were evaluated using the Computational Anatomy 
Toolbox [CAT12 version 12.8.1 (1987)] (Gaser et al., 2022), which is an extension of SPM12 (Penny 
et al., 2011); the regional GM volumes were calculated using the morphometry pipeline implemented 
in CAT12 with default parameters. The total intracranial volume (TIV), the sum of all segments classi-
fied as gray and white matter, and CSF, was also calculated for each subject.

Resting-state MEG
Data acquisition
Each participant underwent 10–60-min resting-state MEG at the UCSF Biomagnetic Imaging Labo-
ratory (BIL). MEG was recorded with a 275-channel full-head CTF Omega 2000 system (CTF MEG 
International Services LP, Coquitlam, British Columbia, Canada). Three fiducial coils for nasion and left 
and right preauricular points were placed to localize the position of the head relative to the sensor 
array and later co-registered with individual MRI to generate an individualized head shape. Data 
collection was optimized to minimize head movements within the session and to keep it below ‍0.5 cm‍. 
For analysis, a 10-min continuous recording was selected from each subject lying supine and awake 
with the eyes closed (sampling rate ‍fs = 600 Hz‍). From the continuous recordings, we further selected 
a 1-min continuous segment with minimal artifacts (i.e. minimal excessive scatter at signal amplitude) 
for each subject.

https://doi.org/10.7554/eLife.91044
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Pre-processing
Each 1-min sensor signal was digitally filtered using a bandpass filter of ‍0.5‍–‍55 Hz‍. The power spectral 
density (PSD) of each sensor signal was computed, and artifacts were confirmed by visual inspections. 
Channels with excessive noise within individual subjects were removed prior to the next process. 
When environmental noises larger than a few pT/‍

√
Hz‍ were observed around the 1–5-Hz range in a 

PSD, the dual signal subspace projection (DSSP) (Sekihara et al., 2016) with the lead field vectors 
computed for each individual subject’s head model was applied to the filtered sensor signal for the 
removal of environmental noise. As a parameter, we chose the dimension of pseudo-signal subspace 
μ as 50. DSSPs were needed to be applied to 13 of the total 148 subject signals. For the 13 data, 
the resulting dimension of the spatio-temporal intersection, that is, the degree of freedom to be 
removed, was 3 or 4. We also applied a preconditioned independent component analysis (ICA) (Ablin 
et al., 2018) to the signal to identify cardiac components and remove them. In each data set, one or 
two clear cardiac ICA-component waveforms with approximately 1 Hz rhythms were observed, which 
were easily identified by visual inspections.

Atlas-based source reconstruction
Isotropic voxels (5 mm) were generated in a brain region of a template MRI, resulting in 15,448 voxels 
within the brain region. The generated voxels were spatially normalized to individual MRI space, and 
subject-specific magnetic lead field vectors were computed for each voxel with a single-shell model 
approximation (Nolte, 2003). The voxels for each subject were indexed to 94 cortical/sub-cortical 
regions included in the AAL3 atlas.

Array-gain scalar beamformer (Sekihara et al., 2004) was applied to the 60 s cleaned sensor time 
series to obtain source-localized brain activity at the voxel level, i.e., voxel-level time courses. Lead 
field vectors were normalized to avoid the center-of-the-head artifact, and a generalized eigenvalue 
problem was solved to determine the optimal source orientation (Sekihara and Nagarajan, 2008). 
The beamformer weights were calculated in the time domain; a data covariance matrix was calculated 
using a whole 60 s time series, and a singular value truncation (threshold of ‍10−6 ×‍ maximum singular 
value) was performed when inverting the covariance matrix. Ninety-four regional time courses were 
extracted with alignment with the AAL3 atlas by performing a principal component analysis (PCA) 
across voxel-level time courses within each of the regions and taking a time course of the first prin-
cipal component. These pre-processing and source reconstructions were performed using in-house 
MATLAB scripts utilizing Fieldtrip toolbox functions (Oostenveld et al., 2011). We also used BrainNet 
Viewer toolbox (Xia et al., 2013) to obtain brain rendering images of regional MEG metrics and GM 
atrophy.

MEG resting-state metrics
Based on the regional time courses derived from MEG, we evaluated two measures of neural 
synchrony: the amplitude-envelope correlation (AEC) and spectral power, which describe long-range 
and local neural synchrony, respectively. Three canonical frequency bands were considered: delta-
theta, alpha, beta bands.

Amplitude-envelope correlation
The AECs are defined as Pearson’s correlation coefficients (PCCs) between any two amplitude 
envelopes of regional time courses (total ‍94 × 93/2 = 4371‍ pairs). Regional time courses were first 
processed by a band-pass filtering, and then their envelopes were extracted by the Hilbert transform. 
To discount spurious correlations caused by source leakages, we orthogonalized any two band-limited 
time courses before computing their envelopes by employing a pairwise orthogonalization (Hipp 
et al., 2012; Sekihara and Nagarajan, 2015). The AEC with leakage corrections is often expressed as 
AEC-c and is known as a robust measure (Briels et al., 2020b). The pairwise orthogonalization provides 
asymmetric values between two-time courses; the value depends on which time course is taken as 
a seed. Therefore, the PCCs between orthogonalized envelopes for both directions were averaged, 
resulting in a symmetric AEC matrix. Regional AECs, that represent the connectivity strengths of each 
ROI, were computed by averaging over row/column components of the symmetric AEC matrix.

https://doi.org/10.7554/eLife.91044
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Spectral power
The spectral power of a given band, which has often been used as a metric to discriminate patients 
with AD from controls (Jeong, 2004; Engels et  al., 2016; Wiesman et  al., 2021), is defined by 
the ratio of a band power to total power and was calculated from regional PSDs. Regional PSDs 
were calculated from the 94 regional time courses using Welch’s method (50% overlap) with 0.293-Hz 

‍(= fs/2048)‍ frequency steps.

Scalar neural synchrony metrics
To identify general trends in changes in long-range and local synchrony with the severity of AD, we 
performed group comparisons of the regional synchrony metrics between AD patients and controls. 
Based on the group contrasts of regional metrics observed, we introduced scalar synchrony metrics 
by calculating the averages within several regions where large region-level group contrasts were iden-
tified. The scalar MEG metrics were used in the SAC-EBMs.

Metric trajectory analyses
Event-based sequencing modeling
Imaging and neuropsychological biomarkers for AD are continuous quantities taking values from 
normal to severe, while the stages of the disease are discrete and are identified by estimating the 
values of biomarkers (Sperling et al., 2011). As a data-driven disease progression model, an event-
based sequencing model (EBM) has been proposed that allows us to make inferences about disease 
progression from cross-sectional data (Fonteijn et al., 2012; Young et al., 2014; Young et al., 2018). 
In an EBM, disease progression is described as a series of metric events, where events are defined as 
the occurrences of abnormal values of metrics, and the values of events act as thresholds to determine 
discrete stages of disease (Fonteijn et al., 2012). The model infers temporal sequences of the events 
from cross-sectional data.

It is also possible to set multiple events per metric by defining them as occurrences of taking certain 
‍z‍-scores within the range from initial to final ‍z‍-scores (‍[zinitial zfinal]‍), in which ‍z‍-scores for each metric 
linearly increase between all consecutive events and the stages are located at temporal midpoints 
between the two consecutive event occurrence times (Young et al., 2018). In this linear ‍z‍-score event 
model, a metric trajectory is described as a series of metric values evaluated at estimated stages.

We developed a robust EBM framework to quantify metric trajectories on the basis of the linear 
‍z‍-score model, employing the following form of a data likelihood:

	﻿‍
P(Z|S) =

J∏
j=1

N+1∑
k=1

p(tj = k)p(Zj|S, tj = k),
‍�

(1)

where ‍N ‍ denotes a total number of events, ‍S‍ denotes a sequence of the events, and ‍i‍, ‍j‍, and ‍k‍ 
are the indices of metric, subject, and stage, respectively. ‍J ‍ is the number of subjects (‍J = 148‍). ‍I ‍ is 
the number of metrics: ‍I = 2‍ for an AC-EBM and ‍I = 3‍ for an SAC-EBM, respectively. The symbol ‍tj‍ 
denotes stages for each subject ‍j‍, and a conditional probability, ‍p(Zj|S, tj = k)‍, describes the prob-
ability that a subject ‍j‍ takes biomarker values of ‍Zj‍ given a sequence of events ‍S‍ and that ‍tj = k‍ 
(that is, the subject ‍j‍ is in a stage ‍k‍). The symbol ‍Zj = [z1j, z2j, . . . , zIj]T

‍, where ‍zij‍ denotes the ‍z‍-score 
of a metric ‍i‍ for a subject ‍j‍, and the symbol ‍Z = [Z1, Z2, . . . , ZJ]‍ describing the data matrix with the 
‍I × J ‍ dimension. Since there are ‍N + 2‍ event occurrence times including initial and final times, ‍N + 1‍ 
stages are provided. When employing Equation 1, we assumed that the prior distribution in which the 
subject ‍j‍ is in a stage ‍k‍ is uniform: ‍p(tj = k) = (N + 1)−1

‍. We also assumed that the prior probability of 

‍p(Zj|S, tj = k)‍ arises from independent Gaussian distributions for each metric ‍i‍, resulting in a multivar-
iate factorized prior. Hence,

	﻿‍
p(Zj|S, tj = k) ∝

I∏
i=1

exp

(
−

(zij − µi(k))2

2

)
.
‍�

(2)

The symbol ‍µi(k)‍ denotes a value of the ‍z‍-score of a metric ‍i‍ at a stage ‍k‍ and is given by a linearly inter-
polated midpoint ‍z‍-score between two ‍z‍-scores evaluated at consecutive event occurrence times. The 
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goal of this formulation is to evaluate the posterior distribution that a subject ‍j‍ belongs to a stage ‍k‍, 

‍p(tj = k|Zj, S̄)‍, with the most likely order of events ‍̄S‍.
The most likely order of the events is given by the sequence of events, ‍S‍, which maximizes the 

posterior distribution ‍P(S|Z) = P(S)P(Z|S)/P(Z)‍. Under the assumption that the prior ‍P(S)‍ is uniformly 
distributed (Fonteijn et  al., 2012), the most likely sequence is obtained by solving the maximum 
likelihood problem of maximizing Equation 1. To solve the problem, for a given set of events, we 
performed Markov chain Monte Carlo (MCMC) sampling on sequences and chose the maximum like-
lihood sequence from 50,000 MCMC samples. In the generation of the MCMC samples, we initialized 
the MCMC algorithm with an initial sequence close to or equal to the maximum likelihood solution 
by running an ascent algorithm 10 times from different initialization points, i.e., randomly generated 
event sequences (Fonteijn et al., 2012).

z-scoring of metrics
We computed ‍z‍-scores of the PHG volume, MMSE score, and scalar neural synchrony metrics to utilize 
them in the EBM frameworks. Since a linear ‍z‍-score model assumes a monotonous increase in ‍z‍-scored 
metrics along disease progression (i.e. higher stage denotes more severity), ‘sign-inverted’ ‍z‍-scores 
were introduced to the metrics with decreasing trends along disease progression. Specifically, for GM 
volumes, MMSE score, and neural synchrony metrics in the alpha and beta bands, the ‍z‍-score of a 
metric ‍i‍ for a subject ‍j‍ was defined by ‍zij = (x̄C

i − xij)/σC
i ‍, where ‍xij‍ denotes a value of a metric ‍i‍ for 

a subject ‍j‍, and ‍̄x
C
i ‍ and ‍σ

C
i ‍ denote the mean and standard deviation (SD) of the metric values of the 

controls, respectively. For the delta-theta-band neural synchrony metrics, ‍z‍-scores were defined in a 
standard way as ‍zij = (xij − x̄C

i )/σC
i ‍. Using these ‍z‍-scored metrics, the initial and final events, ‍zinitial‍ and 

‍zfinal‍, for each metric were set as the bottom and top 10% average ‍z‍-scores, respectively.

Events-setting optimization
In addition to the initial and final events of the ‍z‍-score, ‍zinitial‍ and ‍zfinal‍, we set three events for each 
metric because various possible curves of the metric trajectories were supposed to be well expressed 
by three variable points with two fixed points. For example, in an AC-EBM analysis, that is, a two-
metric trajectory analysis for PHG volume loss and MMSE decline, a total of six events were considered 

‍(N = 6)‍. The metric trajectory as a series of stage values ‍µi(k)‍ is sensitive to event settings because 
predefined events do not necessarily capture appropriate boundaries between disease stages. To 
determine disease stages less sensitive to specifications of the ‍z‍-score events, we tried several sets of 
events and selected the set of events with the highest data likelihood among the trials. Specifically, we 
searched for the set of events that better fits the data ‍Z ‍ by trying all combinations of three ‍z‍-scores 
from ‍{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}‍-quantiles for each metric. The number of combinations of events for 
each metric was accordingly ‍(7C3 =)35‍. Therefore, MCMC samplings (50,000 samples for each set of 
events) were performed 1225 times for an AC-EBM and 42,875 times for an SAC-EBM, respectively, 
to find the set of events and their sequence ‍̄S‍ with the highest data likelihood. This exhaustive search 
for optimal event settings, which was not implemented in a conventional linear z-score EBM (Young 
et al., 2018), is shown schematically in Figure 1—figure supplement 1.

Although it is tractable to directly evaluate ‍P(Z|S)‍ for all ordered arrangements of ‍z‍-score events 
when the number of the permutations for each set of ‍z‍-score events is just ‍20(=6 C3)‍ for ‍I = 2‍ (Supple-
mentary file 3) and ‍1680(=9 C3 ×6 C3)‍ for ‍I = 3‍, such a direct evaluation is not tractable when ‍I > 3‍ 
and requires MCMC sampling. Furthermore, MCMC enables the computation of sequence statistics. 
Therefore, we used MCMC sampling from which we could compute the positional variance estimates 
for each event (see Figure 1—figure supplement 1 and Figure 1—figure supplement 2).

Trajectory computations
Given the most likely sequence ‍̄S‍ as a result of the exhaustive search, the probabilities that a subject 

‍j‍ falls into a stage ‍k‍ are evaluated by the posterior distribution:

	﻿‍
pj(k) ≡ p(tj = k|Zj, S̄) =

p(Zj|S̄, tj = k)∑
k′ p(Zj|S̄, tj = k′)

.
‍�

(3)

https://doi.org/10.7554/eLife.91044
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These probabilities describe the contribution of a subject ‍j‍ to stage ‍k‍, allowing us to evaluate the 
stage value of any metric ‍x‍ of ‍i‍ at a stage ‍k‍ as a weighted mean:

	﻿‍
x̄i(k) =

∑J
j=1 pj(k) · xij∑J

j=1 pj(k)
.
‍�

(4)

Then, we represented the trajectory of the metric ‍i‍ by a series of the stage values, ‍̄xi(k)‍. The standard 
error (SE) of the weighted mean at stage ‍k‍ was evaluated by

	﻿‍

SE(k) = σi ·

�����
∑J

j=1 pj(k)2

(∑J
j=1 pj(k)

)2 ,

‍�

(5)

where ‍σi‍ is a standard deviation of a metric ‍i‍. This definition of SE provides an usual expression of the 
standard error of the mean, ‍σi/

√
J ‍, if all subjects contributed equally to all stages.

These formulations of trajectories were applied to several metrics. In the AC-EBM, the metrics 
‍i‍ denote the PHG volume loss ‍z‍-score and the MMSE scores. In the SAC-EBM, they denote each 
scalar neural synchrony metric in addition to the PHG volume loss ‍z‍-score and the MMSE score. We 
also used Equation 4 to evaluate the progressions of the regional neural synchrony metrics and the 
regional GM volume loss ‍z‍-scores along the estimated EBM stages. When evaluating the propor-
tion of subjects classified into each stage, we treated ‍(xi1, xi2, . . . , xiJ)‍ as a vector in which a metric ‍i‍ 
represents a category of subjects provided by the CDR scale. For example, when evaluating the ratio 
of subject with CDR ‍0.5‍, ‍xij = 1‍ only when a subject ‍j‍ has CDR scale of 0.5, otherwise ‍xij = 0‍.

Statistical analyses
To test demographic differences between AD patients and controls, the unpaired ‍t‍-test was used for 
age and the chi-square test for sex. The age was defined at the time of the MEG scan date. In statis-
tical analyses, p-values below 0.05 were considered statistically significant. For group comparisons 
of GM volumes, MMSE scores, and neural synchrony metrics, two-sided significance tests (against 
a null value of zero) were performed using the general linear model (GLM). For statistical tests on 
GM volumes, TIV, age, and the difference between MRI and MEG dates were included as covari-
ates. For statistical tests on MMSE scores, age and the difference between MMSE and MEG dates 
were included as covariates. For statistical tests of neural synchrony metrics, age was included as a 
covariate. The problem of multiple comparisons between 94 regions was solved by controlling the 
Benjamini-Hochberg false discovery rate (FDR) (Benjamini and Hochberg, 1995). The FDR-adjusted 

‍p‍-value (i.e., ‍q‍-value) below 0.05 or 001 was considered statistically significant.
A non-parametric test was performed to statistically compare metrics between stages, i.e., to test 

statistical significance of the difference between stage values represented by weighted means [e.g. 
stage ‍k‍ vs ‍k′ : δx = x̄i(k) − x̄i(k′)‍]. For a metric ‍i‍, we used bootstrap resampling (50,000 samples) of 
an original data set, ‍xi = (xi1, xi2, . . . , xiJ)‍, to generate new data sets, ‍(x

⋆
i1, x⋆i2, . . . , x⋆iJ)‍, using a random 

number generator, where each ‍x
⋆
ij‍ is one of the components of the original data set ‍xi‍. We then calcu-

lated the weighted means ‍̄x
⋆
i (k)‍ (Equation 4) for each sample. The same procedures were performed 

for stage ‍k′‍, obtaining weighted means ‍̄x
⋆
i (k′)‍ for each sample. We then tested the null hypothesis that 

a weighted mean in stage ‍k‍, ‍̄xi(k)‍, is equal to a weighted mean in stage ‍k′‍, ‍̄xi(k′)‍, evaluating the null 
distribution of differences in the weighted mean values, ‍δx⋆ = x̄⋆i (k) − x̄⋆i (k′)‍. The problem of multiple 
comparisons across stages was solved by controlling the FDR. The ‍q‍-value below 005 was considered 
statistically significant.

Results
Participant demographics
This study included a cohort of 78 patients with AD (50 female; 28 male) including 35 patients with 
AD dementia and 43 patients with MCI due to AD, and also included 70 cognitively-unimpaired 
older adults as controls (41 female; 29 male). The CDR scales were 0 for the cognitively-unimpaired 
controls, 0.5 for patients with MCI, and ‍1 (n = 27)‍ or ‍2 (n = 8)‍ for patients with AD dementia. There 
were no differences in sex distribution between the AD and control groups [‍χ

2(1) = 0.477; p = 0.49‍]. 

https://doi.org/10.7554/eLife.91044
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The average age at the time of MEG was slightly higher in the control group than patients with AD 
(controls, mean ± SE: ‍70.5 ± 0.99‍, range: 49.5–87.7; AD, mean ± SE: ‍63.9 ± 1.01‍, range: 49.0–84.4) 
[unpaired ‍t‍-test: ‍t(146) = −4.708; p < 0.001‍]. The mean MMSE in patients with AD was ‍22.7 ± 0.43‍ 
(mean ± SE) while the mean MMSE in the controls ‍29.2 ± 0.48‍. MMSE scores were adjusted for age 
and time differences between MMSE administration and MEG scan using a GLM (Figure 1—figure 
supplement 3B). MMSE-decline ‍z‍-scores, ‍zMMSE‍, were standardized by adjusted MMSE scores of the 
control group and sign-inverted (Figure 1B).

Group comparisons of GM volumes for each of the anatomical regions included in the AAL3 atlas 
showed that GM volumes in the temporal regions are significantly smaller in AD patients than in 
controls (Figure 1—figure supplement 4; Supplementary file 4). Among temporal GM volumes, we 
focused on a volume of PHG as a key indicator of neurodegeneration in AD progression. The PHG 
includes the perirhinal and entorhinal cortices of the medial temporal lobe (MTL), and MRI-based 
studies have reported that MTL volume decreases, especially in the perirhinal and entorhinal cortices, 
in the early stages of typical AD (Teipel et al., 2006; Echávarri et al., 2011; Matsuda, 2016). In 
this study, PHG volume was defined as a sum of the volumes of left- and right-hemisphere PHGs. 
The average volume of PHG in AD patients (‍7.99 ml ± 0.09‍) was significantly lower than in controls 
(‍9.28 ml ± 0.11‍) [unpaired ‍t‍-test: t(143) = -9.508; ***p < 0.001] (Figure 1—figure supplement 3A); 
the PHG volumes were adjusted for TIV, age, and the difference between MRI and MEG dates by 
including them in a GLM as covariates. PHG volume loss ‍z‍-scores, ‍zPHG‍, were standardized by the 
adjusted PHG volumes of the control group and sign-inverted (Figure 1A).

Abnormal frequency-specific long-range and local neural synchrony in 
AD
We performed group comparisons of MEG metrics. Three canonical frequency bands were consid-
ered: ‍2 − 7 Hz‍ (delta-theta), ‍8 − 12 Hz‍ (alpha), and ‍15 − 29 Hz‍ (beta) bands (Figure 2—figure supple-
ment 1). For regional long-range synchrony (AEC), increases in delta-theta-band synchrony in patients 
with AD were identified in frontal regions, and reductions in alpha- and beta-band synchrony were 
identified in the whole brain (Figure 2—figure supplement 2C, E; Supplementary file 5). These 
regional contrasts were similar to those observed between AD dementia and subjective cognitive 
decline (SCD) in MEG/EEG studies (Schoonhoven et al., 2022; Briels et al., 2020a). For regional local 
synchrony (spectral power), increases in delta-theta-band power in patients with AD were identified 
in the whole brain, and reductions in alpha- and beta-band power were identified in temporal regions 
and the whole brain, respectively (Figure 2—figure supplement 2D, F; Supplementary file 6). These 
regional contrasts were similar to those observed between MCI and controls in a multicenter study of 
MEG (Hughes et al., 2019).

Based on the group contrasts of regional metrics observed, we introduced six scalar metrics to 
quantify long-range and local synchrony: [i] frontal delta-theta-band AEC, [ii] whole-brain alpha-band 
AEC, [iii] whole-brain beta-band AEC, [iv] whole-brain delta-theta-band spectral power, [v] temporal 
alpha-band spectral power, and [vi] whole-brain beta-band spectral power. We computed the average 
within several regions where large group contrasts were identified at the region level (the temporal 
and frontal regions of interest (ROI) are illustrated in Figure 2—figure supplement 3). Consistent 
with regional group comparisons, the long-range and local synchrony scalar metrics in delta-theta 
band increased in AD patients compared to controls, and the long-range and local synchrony scalar 
metrics in alpha and beta bands were reduced in AD patients compared to controls (Figure 2—figure 
supplement 2A, B). We also calculated the ‍z‍-scores, ‍zMEG‍, of each scalar metric that was used in the 
SAC-EBMs.

PHG volume loss precedes the MMSE decline in AD progression
An AC-EBM analysis with the two metrics, PHG volume loss, ‍zPHG‍, and MMSE decline, ‍zMMSE‍, was 
performed for six events (‍N = 6‍; three events for each metric). Robust event thresholds were deter-
mined by the exhaustive search of multiple event thresholds (‍z‍-score thresholds) and choosing the 
set of event thresholds that maximize the data likelihood (Equation 1). The AC-EBM provided seven 
stages, each located between consecutive event occurrence times. The resulting posterior probabil-
ities, ‍pj(k)‍, that a subject ‍j‍ belongs to a stage ‍k‍ are shown in Figure 1C. Based on the probabilities, 
the ratio of subjects classified into each stage was calculated as the probability-based weighted mean 

https://doi.org/10.7554/eLife.91044
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Figure 1. Atrophy-cognition event-based sequencing model (EBM) staging of Alzheimer’s disease (AD) progression. (A) Histogram of parahippocampal 
gyrus (PHG) volume loss ‍z‍-scores, ‍zPHG‍. (B) Histogram of mini-mental state examination (MMSE)-decline ‍z‍-scores, ‍zMMSE‍. The ‍z‍-scores for PHG 
volume loss and MMSE were standardized by the adjusted scores of the control group and sign-inverted so that higher ‍z‍-scores denote more severity. 
(C) Posterior probabilities, ‍pj(k)‍, that a subject ‍j‍ belongs to a stage ‍k‍ evaluated by the Atrophy-Cognition EBM (AC-EBM). (D) The ratio of subjects 
classified to each stage; blue: Control (clinical dementia rating, CDR 0), orange: MCI due to AD (CDR 0.5), pink: mild AD dementia (CDR 1), and red: 
moderate AD dementia (CDR 2). (E) Distribution of the stages in the space spanned by PHG volume loss and MMSE score. Each subject ‍j‍ was distinctly 
assigned to one of the stages with the highest posterior probability, ‍argmaxkpj(k)‍. The colors of the dots denote the seven stages. A star symbol 
denotes the probability-based weighted means of ‍zPHG‍ and MMSE scores at stage 4 and MMSE ‍= 26.3 (±0.82)‍. The values in parentheses denote 
the standard error (SE; Equation 5) of the weighted means. (F) Trajectories of PHG volume loss and MMSE score as a function of the seven stages. 
Probability-based weighted means (± SE) are shown. The initial and final ‍z‍-scores used in the AC-EBM were: ‍(zinitial, zfinal) = (−1.372, 3.804)‍ for PHG 
volume loss and ‍(−0.902, 12.712)‍ for MMSE decline, respectively. (G) Progression of GM volume loss (‍z‍-scores) from stage 1–7. Regional gray matter 
(GM) atrophy in the predicted stage of mild cognitive impairment (MCI) (stage 4) was circled with a dotted line.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Steps for computing metric trajectories.

Figure supplement 2. An example of positional variance diagram of ‍z‍-score events.

Figure supplement 3. Group comparisons of parahippocampal gyrus (PHG) volumes and mini-mental state examination (MMSE) scores.

Figure supplement 4. Group comparison of gray matter (GM) volumes.

https://doi.org/10.7554/eLife.91044
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(Figure 1D). The ratio of subjects with CDR 05 was highest in stage 4, and the ratio of controls with 
CDR 0 in stage 4 was small compared to those in less severe stages of 1–3, indicating that stage 4 
corresponds best to clinical MCI due to AD.

The trajectory of PHG volume loss preceded that of MMSE decline (Figure 1F), consistent with 
the relationship between brain atrophy and cognitive decline described in a hypothetical model of 
biomarker trajectories (Jack et al., 2010; Sperling et al., 2011). Figure 1E visualizes the distribution 
of the seven stages in the PHG volume loss versus MMSE score. At stage 4, the value of ‍zPHG‍ of 
‍1.33 ± 0.258‍ was in the range of 1–2. This ‍z‍-score range of PHG volume loss corresponds to a mild-
atrophy range representing approximately the MCI stage, e.g., in the voxel-based specific regional 
analysis system for AD (VSRAD) software (Hirata et al., 2005; Matsuda et al., 2012). Furthermore, 
the MMSE score of ‍26.3 ± 0.82‍ at stage 4 was in the range of 23–27. This range of MMSE scores is 
considered typical for MCI due to AD (Tsoi et al., 2015). Stage 4, therefore, corresponds to MCI stage, 
whereas stages 3 and 5 correspond to preclinical-AD and mild AD-dementia stages, respectively.

The GM volume ‍z‍-scores as a function of the seven stages showed that prominent atrophy with 
‍z > 1‍ is observed in the temporal regions starting at stage 4 (Figure 1G). This trajectory of GM volume 
approximated the evolution of brain atrophy in the typical progression of AD reported in MRI-based 
studies; GM volume loss in AD starts in the MTL in the MCI stage, spreads to the lateral temporal 
and parietal lobes in the mild AD-dementia stage, and spreads further to the frontal lobe in moderate 
AD-dementia (Scahill et al., 2002; Tondelli et al., 2012; Jack et al., 2013).

These results of the AC-EBM indicate that the PHG volume loss precedes the MMSE decline, and 
their metric changes track the stages of AD from preclinical AD to moderate AD-dementia. The order 
of events for GM volume loss and cognitive decline was consistent with the observation that cognitive 
decline in the early stage of AD progression reflects neuronal loss in the medial temporal regions 
(Jack et al., 2018; DeTure and Dickson, 2019).

Neural synchrony progressively changes throughout the AD stages 
estimated by AC-EBM
For the seven stages determined by the AC-EBM (Figure  1E–G), long-range and local neural 
synchrony profiles were estimated (Figure 2). Along the EBM stages, the delta-theta-band synchrony 
was consistently increased and the alpha and beta-band synchrony was consistently decreased. Neural 
synchrony showed prominent changes around stage 4 (clinical stage of MCI due to AD). The long-
range synchrony in the alpha and beta bands decreased steadily in stages 1–3 and then decreased 
further in stage 4 (Figure 2A). Local synchrony in the beta band also decreased by half from 1 to 4 
(Figure 2B). On the contrary, there were little changes in delta-theta-band long-range synchrony and 
delta-theta- and alpha-band local synchrony from stage 1 to 3 but these changes became prominent 
after stage 3.

Regional patterns of long-range and local synchrony as a function of the seven stages indicated 
that prominent changes manifest themselves at stage 4 (Figure 2E and F; Supplementary file 7 and 
Supplementary file 8). The regions with prominent deviations overlapped with the regions where 
a significant increase and decrease in neural synchrony was observed in the group comparisons 
(Figure 2—figure supplement 2E, F).

The changes in neural synchrony metrics with AD progression indicate that neural synchrony is a 
sensitive indicator of functional change along AD progression. To further investigate the temporal 
association of functional deficits with neurodegeneration and cognitive decline, we included neural 
synchrony in addition to the PHG volume loss and MMSE decline in the EBM frameworks, performing 
SAC-EBMs.

Long-range synchrony changes in the alpha and beta bands precede 
PHG volume loss and MMSE decline
SAC-EBMs that include PHG volume loss, ‍zPHG‍, MMSE decline, ‍zMMSE‍, and long-range synchrony 
metric ‍z‍-scores, ‍zMEG‍, were performed setting a total of nine events (‍N = 9‍). SAC-EBMs separately 
included long-range neural synchrony metrics in the delta-theta, alpha, and beta bands. Each EBM 
determined the order of nine events, thus defining ten stages (Figure 3—figure supplement 1; for 
the corresponding positional variance diagrams of the optimal set of ‍z‍-score events in the SAC-EBMs, 

https://doi.org/10.7554/eLife.91044
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see Figure 3—figure supplement 2 and Figure 3—figure supplement 3). The resulting posterior 
probabilities, ‍pj(k)‍, that a subject ‍j‍ belongs to a stage ‍k‍ are shown in Figure 3—figure supplement 4.

For all frequency bands, around stages 5 and 6, the weighted means of PHG volume loss ‍z‍-scores 
were in the range of 1–2 and the MMSE scores were in the range of 23–27 (Figure 3B, F and J). 
Furthermore, the ratio of subjects with CDR 05 was high around stage 5 (Figure  3A, E1). These 
indicated that stage 5 best represents the onset of clinical MCI stage, and stages 1-4, where MMSE 
scores remain almost constant at or near 30, correspond to the preclinical stages of AD. Changes in 

Figure 2. Profiles of neural synchrony as a function of the Alzheimer’s disease (AD) stages estimated by Atrophy-Cognition EBM (AC-EBM). (A,B) Profiles 
of amplitude-envelope correlation (AEC) (A) and spectral power (B) as a function of the seven stages, showing probability-based weighted means 
(± SE). Neural synchrony increased monotonously with AD progression in the delta-theta band and decreased monotonously in the alpha and beta 
bands. (C,D) Regional AEC (C) and spectral power (D) as a function of the seven stages. Deviations from the neural-synchrony spatial patterns averaged 
over the controls are displayed. The deviations were evaluated using the probability-based weighted means of ‍z‍-scores standardized by the controls. 
Spatial patterns in the mild cognitive impairment (MCI) stage (stage 4) were circled with dotted lines. (E,F) Changes in neural synchrony during the 
preclinical stages. Regional comparisons between two stages (stages 4 vs 1) are shown based on non-parametric tests of weighted mean differences ‍δz‍. 
Differences that exceed the threshold (‍q < 0.05‍) are displayed. There were no significant differences in long-range synchrony in the delta-theta band.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Normalized power spectral densities (PSDs) for the Alzheimer’s disease (AD) and control groups.

Figure supplement 2. Group comparisons of magnetoencephalography (MEG) metrics.

Figure supplement 3. Frontal and temporal regions of interest.

https://doi.org/10.7554/eLife.91044
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Figure 3. Trajectories of long-range neural synchrony in delta-theta, alpha, and beta-bands from SAC-EBMs. (A, E, I) The ratio of subjects classified to 
each stage. The ratio was evaluated on the basis of the probabilities that each subject will be assigned to each of the ten stages. (B, F, J) Trajectories 
of long-range synchrony, parahippocampal gyrus (PHG) volume loss, and mini-mental state examination (MMSE) score as a function of the ten stages, 
showing probability-based weighted means (± SE). The asterisks (*q < 0.05 and ***q < 0.001, false discovery rate - FDR corrected) denote statistical 

Figure 3 continued on next page
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long-range synchrony during the preclinical stages are shown as statistical bars, and the region-level 
changes are shown in Figure 3C–D, G–H, and K–L.

Long-range synchrony in the alpha and beta bands decreased markedly during the preclinical 
stages of AD, preceding both PHG volume loss and MMSE decline. Specifically, between stages 1 
and 4, the alpha- and beta-band long-range synchrony decreased by more than 80% of the total 
drop seen from stage 1 to 10. The whole brain, but especially the temporal area, was involved in 
these prominent preclinical changes (Figure 3H and L). In contrast, the trajectory of delta-theta-band 
long-range synchrony (Figure 3B and C) was almost identical to the evolution of the PHG volume 
loss throughout the stages, but a large variation occurred around the MCI stages (stages 5 and 6) as 
was found in the AC-EBM (Figure 2A). There were no significant increases in region-level synchrony 
in delta-theta band during the preclinical stages (Figure 3D), consistent with an observation seen in 
the AC-EBM (Figure 2F).

The trajectory shapes of the PHG volume loss (almost linear) and MMSE scores (half parabola) were 
similar to those obtained in the AC-EBM (Figure 1G). This indicates that prominent changes in alpha- 
and beta-band long-range synchrony during preclinical stages can be utilized to stratify the preclinical 
stages determined only by neurodegeneration and cognitive deficits.

Local synchrony changes in the alpha and beta bands precede PHG 
volume loss and MMSE decline
SAC-EBMs including PHG volume loss, MMSE decline, and local synchrony metric ‍z‍-scores were 
performed, separately considering delta-theta-, alpha-, and beta-band local synchrony metrics. When 
considering delta-theta and alpha bands, around stages 6 and 7, the PHG volume loss ‍z‍-scores were 
in the range of 1–2 and the MMSE scores were in the range of 23–27 (Figure 4B and F), indicating 
that stage 6 best represents the onset of the MCI stage. Furthermore, the ratios of subjects with CDR 
0.5 were high in stages 6 and 7 (Figure 4A and E). For the beta band, based on similar observations, 
stage 6 best represented the MCI stage (Figure 4I and J). For all frequency bands, stages 1-5, where 
MMSE scores remain almost constant at or near 30, corresponded to the preclinical stages of AD. The 
changes in local synchrony during the preclinical stages are shown as statistical bars, and the corre-
sponding region-level changes are shown in Figures 4C–D, G–H and K–L.

Local synchrony in the alpha and beta bands decreased during the preclinical stages of AD, 
preceding both PHG volume loss and MMSE decline (Figure 4F and G and Figure 4J and K). On the 
contrary, the local synchrony in the delta-theta band increased, lagging the evolution of PHG volume 
loss (Figure 4B and C). Specifically, the alpha-band local synchrony decreased considerably by the 
onset of the MCI stage, showing significant reductions in the temporal regions (Figure 4H) during 
the preclinical stages (stages 6 vs 1). It is noted that these trends were inconsistent with those found 
in the AC-EBM (Figure 2B), especially within the preclinical stages, where there was little change 
found in the alpha-band local synchrony. This can be interpreted as evidence that early stages in AD 
progression may be better characterized by including neurophysiological markers as AD indicators. 
Beta-band local synchrony also decreased during the preclinical stages, preceding PHG volume loss 

significance in comparisons between stages 5 vs 1. All stage pairs with significant weighted mean differences are listed in Supplementary file 9. Initial 
and final ‍z‍-scores of long-range synchrony used in the SAC-EBMs were: ‍(zinitial, zfinal) = (−1.083, 2.811)‍, ‍(−1.542, 1.605)‍, and ‍(−1.624, 1.641)‍ in the 
delta-theta, alpha, and beta bands, respectively. (C, G, K) Regional amplitude-envelope correlation (AEC) along the stages. The deviations from the 
regional patterns of the control group are shown. The regional patterns at the onset of the mild cognitive impairment (MCI) stage were circled with 
dotted lines. (D,H,L) Changes in regional patterns during the preclinical stages. Regional comparisons between two stages are shown based on non-
parametric tests of weighted mean differences ‍δz‍. Differences exceeding threshold (‍q < 0.05‍, FDR corrected) are displayed. The top 10 regions with 
significant differences are listed in Supplementary file 10.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Event sequences and trajectories determined by SAC-EBMs.

Figure supplement 2. Positional variance diagrams of the ‍z‍-score events in SAC-EBMs.

Figure supplement 3. Markov chain Monte Carlo (MCMC) samples of the sequence of the optimal set of ‍z‍-score events in the SAC-EBM including 
alpha-band amplitude-envelope correlation (AEC).

Figure supplement 4. Posterior probabilities evaluated by the SAC-EBMs.

Figure 3 continued
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Figure 4. Trajectories of local neural synchrony in delta-theta, alpha, and beta bands from SAC-EBMs. (A, E, I) The ratio of subjects classified to 
each stage. (B, F, J) Trajectories of local synchrony, parahippocampal gyrus (PHG) volume loss, and mini-mental state examination (MMSE) score as 
a function of the 10 stages, show the weighted mean (± SE). Asterisks (***q < 0.001, FDR corrected) denote statistical significance in comparisons 
between stages 6 vs 1. All stage pairs with significant weighted mean differences are listed in Supplementary file 11. The initial and final ‍z‍-scores of 

Figure 4 continued on next page
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and MMSE decline; by stage 5, the beta-band power decreased by approximately 55% of the total 
drop seen throughout the stages, and the reductions were observed in the whole brain (Figure 4L). 
Unlike the local synchrony trajectories in the alpha and beta bands, the local synchrony in the delta-
theta band increased. The hyper-synchrony lagged the evolution of the loss of PHG volume in the 
preclinical stages and made a large jump around the stages 6 and 7 (Figure 4D).

As shown in the previous section, large alpha- and beta-band hypo-synchrony during the preclinical 
stages was also observed in long-range synchrony (Figure 3F and J). Notably, the decreases in the 
long-range metrics were much greater than those in the local metrics, especially in the early stages 
during the phase of preclinical AD (stages 1–3).

Discussion
We demonstrated that functional deficits of frequency-specific neural synchrony show progressive 
changes across AD stages. Both long-range and local neural synchrony in the alpha and beta bands, 
but not in the delta-theta band, was found to decrease in preclinical stages of AD, preceding neuro-
degeneration and cognitive decline, with more robust findings for long-range neural synchrony. These 
findings highlight the frequency-specific manifestations of neural synchrony in AD and that synchrony 
reductions in the alpha and beta bands are sensitive indices reflecting functional deficits in the earliest 
stages of disease progression.

Electrophysiological metrics of neural synchrony precede volume loss 
and cognitive decline
A key finding of the current study is that functional deficits as depicted by reduced neural synchrony 
precede structural volume loss and cognitive deficits. The EBMs on cross-sectional data clearly 
demonstrated that alpha- and beta-band synchrony within the inferior temporal and posterior parieto-
occipital regions show significant deficits in the early disease stages–stages where volumetric and 
clinical deficits are still not significantly deviated from their baseline trajectory. This is consistent with 
the finding that functional changes occur earlier in the time course than structural changes in AD (Jack 
et al., 2010; Sperling et al., 2011).

Previous functional MRI studies have demonstrated disrupted connectivity especially between the 
hippocampus and several areas of the cortical default mode network (DMN) in subjects with amyloid 
deposition but without cognitive impairment (Sperling et al., 2014). This disruption in DMN has also 
been observed in clinically normal older individuals without prominent brain atrophy in MTL that 
preserves hippocampal activity (Miller et al., 2008; Hedden et al., 2009), indicating altered functional 
connectivity during the preclinical period of AD. In contrast to such fMRI data reflecting the cascade 
of neural, metabolic, hemodynamic events in AD, our findings from MEG, which captures the synaptic 
physiology as the collective oscillatory spectra, demonstrate direct observations of AD-related altered 
neuronal activity.

Frequency-specific manifestations of neural synchrony deficits along 
the progression of the disease
We demonstrated that oscillatory deficits and their temporal association with neurodegeneration and 
cognitive decline are frequency-specific. In particular, it is the alpha and beta hyposynchrony that 
precedes PHG atrophy and MMSE decline, whereas the delta-theta hypersynchrony does not seem 
to show such a precedence. This is consistent with previous findings that alpha and beta hyposyn-
chrony is more tightly associated with tau accumulation, which is closely allied to neurodegeneration 
and cognitive decline (Pusil et al., 2019; Ranasinghe et al., 2020; Ranasinghe et al., 2021). Neural 

local synchrony used in the SAC-EBMs were: ‍(zinitial, zfinal) = (−1.329, 6.097)‍, ‍(−1.461, 2.866)‍, and ‍(−1.810, 2.784)‍ in the delta-theta, alpha, and 
beta bands, respectively. (C, G, K) Regional spectral power along the stages. Deviations from the regional patterns of the control group are shown. 
The regional patterns at the onset of the mild cognitive impairment (MCI) stages were circled with dotted lines. (D, H, L) Changes in regional patterns 
during the preclinical stages. Regional comparisons between two stages are shown based on nonparametric tests of weighted mean differences ‍δz‍. 
Differences exceeding threshold (‍q < 0.05‍, false discovery rate - FDR corrected) are displayed. The top 10 regions with significant differences are listed in 
Supplementary file 12.

Figure 4 continued
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hyposynchrony in the alpha and beta bands may, therefore, represent harbingers of altered synaptic 
physiology associated with tau accumulation in AD. In fact, in human postmortem studies, the stron-
gest correlate of cognitive deficits in AD patients is loss of synapse (DeKosky and Scheff, 1990; 
Terry et al., 1991). A study using transgenic AD mice has also shown that synaptotoxicity is an early 
phenomenon in AD pathophysiology (Zhou et al., 2017). In the context of fluid biomarkers to detect 
plasma amyloid, alpha and beta hyposynchrony can detect and quantify tau-associated neurodegen-
erative mechanisms, and hence may provide crucial information for early therapeutic interventions.

Previous studies have also shown that delta-theta oscillatory activity increases in AD and is strongly 
associated with amyloid accumulation (Ranasinghe et al., 2020; Ranasinghe et al., 2022b). In partic-
ular, increased delta-theta activity is a robust signal in individuals who are amyloid positive and cogni-
tively unimpaired as well as those who harbor APOE-‍ϵ4‍ allele and an increased risk of AD (Cuesta 
et al., 2015; Nakamura et al., 2018). These previous findings indicate that delta-theta hypersyn-
chrony is an early change in the AD spectrum and may even precede neurodegeneration and cogni-
tive deficits. However, in the current results, the trajectory of the delta-theta hypersynchrony was 
identical to or lagged that of the PHG volume loss. This apparent controversy may be due to the 
possibility that oscillatory changes in the delta-theta band are more closely related to amyloid accu-
mulations in AD, which become saturated early in the disease course and have a poor association with 
neurodegeneration and cognitive trajectories. It would be worth exploring how the trajectory of early 
saturated variables may be captured by EBM approaches.

Distinction between long-range and local synchrony deficits in disease 
progression
The decrease in alpha and beta-band long-range metrics in the preclinical stages was much greater 
than that in the local metrics. This is consistent with the fact that AD-related abnormal brain activities 
are observed as disruptions of functional networks. Long-range cross-regional metrics, such as AECs, 
directly capture network disruptions involving all brain regions, while local metrics capture features 
of individual regions. From the definition, local synchrony describes collective neuronal oscillations 
in each local region, and thus the change along AD progression may depend mainly on long-term, 
slowly changing regional neuronal loss. On the other hand, long-range synchrony describes temporal 
coherence amongst regional collective neuronal oscillations and is vulnerable to altered neuronal 
oscillations. Therefore, long-range metrics are more sensitive to abnormal rhythms, collecting local 
abnormalities.

Preclinical neurophysiological markers that indicate the pathophysiology of AD are clinically 
important but have not been established. Aβ accumulation in preclinical stages is just a necessary 
condition for AD, and additional preclinical markers are required to fully predict the progression of 
AD. From this point of view, the present study indicates that alpha- and beta-band MEG metrics, 
especially long-range synchrony metrics (AEC), which were found to be sensitive to preclinical stages, 
could be promising candidates as additional markers.

Limitations
A limitation of the current study is that there were differences in age between controls and AD patients. 
Although we adjusted the age of each metric using GLMs, age trajectories in neurophysiological 
measures have been reported to be nonlinear even in healthy aging (Sahoo et al., 2020). Age-related 
changes in brain atrophy have also been reported to follow a nonlinear time course depending on the 
brain areas (Coupé et al., 2019). These studies indicate that it may be better to employ a non-linear 
method beyond GLM to perfectly correct aging effects.

Another limitation is that we have not performed independent validations of the predicted trajec-
tories and also have not examined the heterogeneity in AD progression, although we clarified for 
the first time the time courses of MEG neurophysiological metrics in AD progression. In fact, AD is a 
heterogeneous multifactorial disorder with various pathobiological subtypes (Jellinger, 2022). In this 
context, an EBM called Subtype and Stage Inference (SuStaIn) capable of capturing spatio-temporal 
heterogeneity of diseases (Young et al., 2018) has been proposed to subtyping neurodegenerative 
diseases including typical AD and has been applied to find different spatio-temporal trajectories of 
longitudinal tau-PET data in AD (Vogel et al., 2021). Since oscillatory rhythms are thought to depend 
on AD subtypes (Ranasinghe et al., 2017; Ranasinghe et al., 2022a), an extended trajectory analysis 
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considering spatial and temporal variations of the MEG/EEG metrics is warranted in the future, and 
such analyses would provide distinct neurophysiological trajectories depending on AD subtypes. As 
a validation of the predicted trajectories, it would be necessary to investigate whether the predicted 
EBM stages are reliable and predictive of conversions (e.g. from control to MCI) while taking the AD 
subtypes into account.
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