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Abstract Structural and functional studies of the ATP- binding cassette transporter MsbA have 
revealed two distinct lipopolysaccharide (LPS) binding sites: one located in the central cavity and the 
other at a membrane- facing, exterior site. Although these binding sites are known to be important 
for MsbA function, the thermodynamic basis for these specific MsbA- LPS interactions is not well 
understood. Here, we use native mass spectrometry to determine the thermodynamics of MsbA 
interacting with the LPS- precursor 3- deoxy- D- manno- oct- 2- ulosonic acid (Kdo)2- lipid A (KDL). The 
binding of KDL is solely driven by entropy, despite the transporter adopting an inward- facing confor-
mation or trapped in an outward- facing conformation with adenosine 5’-diphosphate and vanadate. 
An extension of the mutant cycle approach is employed to probe basic residues that interact with 
KDL. We find the molecular recognition of KDL is driven by a positive coupling entropy (as large as 
–100 kJ/mol at 298 K) that outweighs unfavorable coupling enthalpy. These findings indicate that 
alterations in solvent reorganization and conformational entropy can contribute significantly to the 
free energy of protein- lipid association. The results presented herein showcase the advantage of 
native MS to obtain thermodynamic insight into protein- lipid interactions that would otherwise be 
intractable using traditional approaches, and this enabling technology will be instrumental in the life 
sciences and drug discovery.

eLife assessment
This is an important biophysical study combining native mass spectrometry with mutant cycles to 
estimate the thermodynamic components of lipid A binding to the ABC transporter MsbA. Solid 
evidence supports the binding energies for lipid- protein interactions to MsbA using this approach, 
which could be later applied to other membrane proteins in general.

Introduction
Most Gram- negative bacteria contain outer membrane lipopolysaccharide (LPS) that is crucial for 
maintaining structural integrity and protection from toxins and antibiotics (Simpson and Trent, 2019; 
Raetz and Whitfield, 2002; Raetz et al., 2007). The ATP- Binding Cassette (ABC) transporter MsbA 
flips an LPS- precursor, lipooligosaccharide (LOS), from the cytosolic leaflet to the periplasmic leaflet 
of inner membrane, a process powered by the hydrolysis of adenosine triphosphate (ATP). MsbA func-
tions as a homodimer and each subunit consists of a soluble nucleotide- binding domain (NBD) and 
a transmembrane domain containing six transmembrane helices (Rees et al., 2009). The proposed 
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mechanism of MsbA- mediated LOS transportation involves the binding of LOS to the interior binding 
site and a conformational change from an inward- facing conformation (IF) to an outward- facing 
conformation (OF).

Like other ABC transporters, the ATPase activity of MsbA can be stimulated in the presence of 
different substrates, particularly hexaacylated lipid A species. (Doerrler and Raetz, 2002; Eckford 
and Sharom, 2008; Siarheyeva and Sharom, 2009) Recent studies have illuminated the location and 
importance of several LOS binding sites on MsbA (Mi et al., 2017; Ho et al., 2018; Lyu et al., 2022; 
Padayatti et al., 2019). The interior binding site is located in the inner cavity, and mutations (R78A, 
R148A and K299A) engineered to disrupt binding at this site abolish lipid- stimulated ATPase activity 
and adversely affect cell growth. (Mi et al., 2017; Guo et al., 2021) More recently, the LPS- precursor 
3- deoxy- D- manno- oct- 2- ulosonic (Kdo)2- lipid A (KDL) was found to bind to an elusive exterior site on 
MsbA trapped in an OF conformation with adenosine 5’-diphosphate and vanadate (Doerrler and 
Raetz, 2002; Eckford and Sharom, 2008; Siarheyeva and Sharom, 2009). Similarly, introducing 
mutations to disrupt binding at the exterior site also abolishes lipid- induced stimulation of ATPase 
activity (Lyu et al., 2022).

In 1984, Fersht and colleagues introduced the biochemistry community to the application of 
double mutant cycles as means to quantify the strength of intramolecular and intermolecular inter-
actions. (Carter et al., 1984) The method has proven to be highly effective in examining pairwise 
interactions, as demonstrated by its notable application in determining the spatial orientation of 
potassium channel residues in relation to high- affinity toxin binding (Hidalgo and MacKinnon, 1995). 
More generally, the technique has been used to measure the strength and coupling for residues in 
protein- protein complexes, protein- ligand complexes, and stability of secondary structure. (Carter 
et al., 1984; Hidalgo and MacKinnon, 1995; Horovitz, 1996; Pagano et al., 2021; Horovitz et al., 
2019; Cockroft and Hunter, 2007; Otzen and Fersht, 1999; Schreiber and Fersht, 1995; Thomas- 
Tran and Du Bois, 2016) In general, mutant cycles analysis involves measuring the changes in Gibbs 
free energy for the wild- type protein (P), two single point mutations (PX and PY) and the double 
mutant protein (PXY) for a given process, such as for protein- protein interactions (for review see 
Horovitz, 1996). If residue X and Y are independent of each other, then the Gibbs free energy 
associated with the double mutant protein will be equal to the sum of changes in Gibbs free energy 
due to the single mutations relative to the wild- type protein. However, if the Gibbs free energy 
associated with the structural and functional properties of the double mutant protein differs from 
the sum of single mutant proteins, then the two residues are energetically coupled or co- operative. 
The coupling free energy (ΔΔGint) is the energy difference between double mutant and two single 
mutant proteins (see Materials and methods). The ΔΔGint values for pairwise interactions in proteins 
has revealed the contributions of salt bridges (4–20 kJ/mol), aromatic- aromatic interactions (4 kJ/
mol), and charge- aromatic interactions (4 kJ/mol) to protein stability. (Horovitz, 1996; Luisi et al., 
2003; Serrano et al., 1991) Prior work on mutant cycles often employed traditional approaches, 
but such approaches overlook contributions from conformational changes of the reactants as well 
as potential changes in the hydration of the complex, including the reacting ligand and the solvent 
(Pagano et al., 2021).

To demonstrate the utility of the mutant cycle approach, we highlight two well- known examples. 
First, the high- affinity interaction between barnase (an extracellular RNase of Bacillus amylolique-
faciens) and barstar (inhibitor of barnase) has been extensively studied by double mutant cycles. 
(Schreiber and Fersht, 1995) For example, pairwise interactions between residues that are less than 
seven angstrom in distance (based on crystal structures) have been shown to be co- operative. These 
interactions were shown to be important for stability of the barnase- barstar complex with coupling 
energies reaching as high as 7 kcal/mol. Another classical example involves the application of mutant 
cycles to guide docking and spatial arrangement of a high- affinity peptide inhibitor (scorpion toxin) 
binding to the Shaker potassium channel (Hidalgo and MacKinnon, 1995). Of the pairwise inter-
actions that underwent mutant cycle analysis, one pair (R24 from toxin and D431 from channel) in 
particular displayed an extraordinary coupling energy of 17 kJ/mol. This result indicates the two resi-
dues interact in the complex. Despite the absence of a structure of toxin- potassium channel complex, 
results from the mutant cycle analysis provided a strong constraint positioning the toxin relative to 
the potassium channel pore- forming region. In summary, these studies demonstrate how mutant 
cycle analysis can be used to determine the energetics of pairwise interactions, which is important 
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for understanding how these molecular interactions contribute to the overall stability of proteins in 
complex with other molecules, such as ligands and other proteins.

Native mass spectrometry (MS) is well suited to characterize the interactions between protein and 
other molecules, especially for membrane proteins (Bolla et al., 2019; Robinson, 2017; Tamara et al., 
2022). The technique is capable of maintaining non- covalent interactions and native- like structure in 
the gas phase (Ruotolo et al., 2005; Laganowsky et al., 2014), essential for studying biochemical 
interactions with small molecules, such as the binding of drugs, lipids, and nucleotides (Laganowsky 
et al., 2014; Allison et al., 2015; Barrera et al., 2008; Campuzano et al., 2019; Gupta et al., 2017; 
Marcoux et al., 2013; Yen et al., 2018; Zhou et al., 2011). In combination with a variable tempera-
ture nano electrospray ionization device, native MS has determined the thermodynamics for protein- 
protein and protein- ligand interactions (Daneshfar et al., 2004; Deng et al., 2013; Raab et al., 2020; 
Walker et al., 2023; Qiao et al., 2021; McCabe et al., 2021). For example, the molecular interaction 
between the signaling lipid 4,5- bisphosphate phosphatidylinositol and Kir3.2 is dominated by a large, 
favorable change in entropy (Qiao et al., 2021). Recently, native MS has been combined with mutant 
cycles analysis to determine the energetic contribution of pairwise inter- protein interactions for a 
soluble protein complex (Sokolovski et al., 2017; Cveticanin et al., 2018). Notably, the coupling 
energies determined by native MS and isothermal calorimetry are in agreement (Sokolovski et al., 
2017). Mutant cycle analysis is also being used to study cardiolipin binding to sites on AqpZ with 
native MS (Jayasekera et al., 2023).

Traditional mutant cycles focus on pairwise interactions, such as two interacting residues in a 
protein complex (Serrano et al., 1990). Single- and double- point mutations along with characterizing 
their impact on protein stability/assembly enable assessment of the energetic contribution for the 
pairwise interaction. If the two residues are independent (non- co- operative) then the change in free 
energy will be equal to the sum of the two single mutations. In contrast, if the two residues are depen-
dent on each other, then the coupling energy is a measure of their co- operativity. Although mutant 
cycles are often applied to protein- protein interactions, here we extend mutant cycle principles to 
study membrane protein- lipid interactions. It is established that MsbA has two high- affinity binding 
sites for the LPS- precursor KDL. Here, we examine each site independently followed by simultane-
ously probing both KDL sites. At present, there is limited availability of synthetic KDL derivatives, 
limiting this study to focus on residues that interact with KDL, such as basic residues coordinating the 
conserved phosphoglucosamine (P- GlcN) of KDL. Despite the limitation of commercially available 
KDL derivatives, the studies below demonstrate how residues energetically contribute to specific 
binding, providing insight into the driving forces underlying essential membrane protein- lipid inter-
actions. Recently, we reported results using native MS that reveal conformation- dependent lipid 
binding affinities to MsbA (Lyu et al., 2022). As these measurements were performed at a single 
temperature, we set out to perform a more detailed thermodynamic analysis to better understand 
the molecular driving forces that underpin specific MsbA- lipid interactions. Here, we report binding 
thermodynamics (ΔH, ΔS, and ΔG) for KDL binding to MsbA in IF and OF conformations. These results 
reveal the unique thermodynamic contributions of MsbA residues that engage KDL. We also report 
coupling energetics (ΔΔGint) for pairwise interactions, including, for the first time, the contributions 
from coupling enthalpy (ΔΔHint) and coupling entropy (Δ(- TΔSint)), providing rich molecular insight into 
specific protein- lipid interactions.

Results
MsbA residues selected for mutant cycles analyses
MsbA is known to bind KDL either in the inner cavity or at the two exterior sites (Figure 1). For both 
sites, a series of conserved arginine and lysine residues form specific interactions with the headgroup 
of KDL. To perform mutant cycles analysis, we introduced single mutations into MsbA to target KDL 
binding to the interior (MsbAR78A and MsbAR299A) and exterior (MsbAR188A, MsbAR238A, and MsbAK243A) 
sites. More specifically, R78 coordinates one of the characteristic phosphoglucosamine (P- GlcN) 
substituents of KDL whereas K299 interacts with a carboxylic acid group in the headgroup of KDL. 
The two P- GlcN constituents of LOS are coordinated by R238 and R188 +K243, respectively. R188 
also forms an additional hydrogen bond with the headgroup of KDL. In addition, we prepared double 
and triple mutants of MsbA for the various residues that were selected for mutagenesis.

https://doi.org/10.7554/eLife.91094


 Research article      Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Lyu et al. eLife 2023;12:RP91094. DOI: https://doi.org/10.7554/eLife.91094  4 of 29

Thermodynamics of MsbA-KDL interactions
We performed titrations to determine the equilibrium binding affinity for MsbA- KDL interactions at 
four different temperatures (288, 293, 298, and 303 K; Figure 2, Figure 2—figure supplements 1–3). 
These studies used optimized samples of MsbA that do not contain any co- purified LPS (for details 
see Lyu et al., 2022). The transporter was stable at the selected temperatures. For example, binding 
of KDL to MsbA was enhanced at higher temperatures (Figure 2a, Figure 2—figure supplements 
1–3), indicating a favorable entropy for the interaction. For a given temperature, the mass spectra 
from the titration series were deconvoluted and equilibrium dissociation constants (KD) were deter-
mined for MsbA binding up to three KDL molecules (Figure 2b, Figure 2—figure supplements 1–3 
and Table 1). It is important to note that, unlike traditional approaches that struggle to distinguish 
between free protein from that bound to ligand, (Jarmoskaite et al., 2020) native MS can resolve 
different ligand bound states, including the free concentration of protein and free concentration of 
ligand(s), in a single mass spectrum (Daneshfar et al., 2004; Cong et al., 2016; Cong et al., 2017; 
Patrick et al., 2018). Notably, the native MS approach has been cross validated using isothermal 
calorimetry and surface plasmon resonance (Daneshfar et al., 2004; Cong et al., 2016; Cong et al., 
2017). Interestingly, van’ t Hoff analysis showed a non- linear trend for three KDL binding reactions 
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Figure 1. The two distinct LPS binding sites of MsbA and their molecular interactions. (a) Two views of LPS bound to the interior site or central cavity 
of MsbA. The protein shown is also bound to the inhibitor G907 (PDB 6BPL) (Ho et al., 2018). The protein and lipid are shown in cartoon and stick 
representation, respectively. (b) Molecular details of the residues interacting with LPS at the interior site. Bonds are shown as dashed yellow lines along 
with residue labels. (c) Two views of the KDL molecules bound to the two exterior binding sites of MsbA that are symmetrically related (PDB 8DMM) 
(Lyu et al., 2022). Shown as described in panel A. (d) Molecular view of KDL bound to MsbA and shown as described in panel B. The asterisk denotes 
residues selected for mutant cycle analysis.
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(Figure 2c, Figure 2—figure supplements 1–3), indicating that over the selected temperature range, 
heat capacity is not constant (Prabhu and Sharp, 2005). The nonlinear form of the van't Hoff equa-
tion enabled us to determine the ΔH and change in heat capacity (ΔCp) at a reference temperature 
of 298  K (Figure 2c–d, Figure 2—figure supplements 1–3). In this case, ΔG was calculated directly 
from KD values, and entropy (ΔS) was back calculated using both ΔH and ΔG. ΔG values for binding 
KDL1- 2 range from –32.0±0.1 to -35.2±0.1 kJ/mol. The binding reaction has a positive ΔCp that alters 
the thermodynamic parameters at different temperatures. At the lowest temperature, KDL binding 
is driven by favorable enthalpy (–36±12 to -43±7  kJ/mol) with a small entropically penalty (- TΔS, 
2±11–12±7 kJ/mol at 288 K). In contrast, KDL binding at higher temperatures displays a large, favor-
able entropy (- TΔS, –123±12 to -146±7 kJ/mol at 303 K) that compensates a large enthalpic barrier 
(86±12–112±7 kJ/mol). These results highlight the role of entropy in KDL binding to MsbA that may 
stem from solvent reorganization.

KDL binding to the interior binding site of MsbA
We next determined the thermodynamics of KDL binding to MsbA containing single and double 
mutations at the interior binding site (Figure 2d, Figure 2—figure supplements 1–3). R78 of each 
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Figure 2. Thermodynamics of KDL binding at the interior site to wild- type and mutant MsbA. (a) Representative deconvoluted native mass spectra 
of 0.39 μM wild- type MsbA in C10E5 and in the presence of 0.6 μM KDL recorded at different solution temperatures. (b) Plot of mole fraction of MsbA 
(KDL)0- 3 determined from titration of KDL (dots) at 298 K and resulting fit from a sequential ligand binding model (solid line, R2=0.99). (c) van’ t Hoff plot 
for MsbA(KDL)1- 3 and resulting fit of a nonlinear van’ t Hoff equation. (d) Thermodynamics for MsbA and mutants (MsbAR78A, MsbAK299A and MsbAR78A,K299A) 
binding KDL at 298 K. (e) Mutant cycles for MsbA and mutants with (from left to right) ΔΔG (mutant minus wild- type), ΔΔH and Δ(- TΔS) values indicated 
over the respective arrows. Shown are values at 298 K. Reported are the average and standard deviation from repeated measurements (n = 3).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Representative native mass spectra of wild- type and mutant MsbA in the presence of 0.8 μM KDL.

Figure supplement 2. Determination of equilibrium dissociation constants (KD) for KDL binding wild- type and mutant MsbA.

Figure supplement 3. Determination of thermodynamic parameters for KDL binding wild- type and mutant MsbA.

https://doi.org/10.7554/eLife.91094
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Table 1. Equilibrium dissociation constants (KD) for KDL binding MsbA at various temperatures.
Reported are the mean and standard deviation (n=3).

Temperature(K) KD1(μM) KD2(μM) KD3(μM) R2* Χ2*

WT

288 0.69±0.06 2.64±0.16 6.60±0.54 0.99 0.01

293 0.75±0.04 2.86±0.23 6.94±0.56 0.99 0.01

298 0.68±0.05 2.53±0.17 6.01±0.40 0.99 0.01

303 0.43±0.05 1.36±0.10 3.30±0.23 0.96 0.06

R78A

288 1.91±0.17 6.18±0.80 0.98 0.04

293 1.87±0.18 6.18±0.37 0.98 0.05

298 2.00±0.20 5.23±0.47 0.98 0.04

303 7.68±0.47 5.72±0.21 1 0

R188A

288 2.21±0.17 11.01±1.95 0.99 0.03

293 2.28±0.12 11.62±2.17 0.99 0.03

298 1.98±0.07 8.92±0.73 0.99 0.03

303 1.32±0.05 4.37±0.13 0.95 0.12

R238A

288 2.48±0.12 4.74±0.45 0.99 0.02

293 3.55±0.10 6.21±0.40 1 0.01

298 4.70±0.07 9.66±0.82 1 0.01

303 4.71±0.20 9.94±0.40 1 0.02

K243A

288 1.24±0.07 7.28±0.78 0.99 0.03

293 1.41±0.09 7.38±0.53 0.99 0.02

298 1.28±0.05 6.65±0.50 0.99 0.02

303 0.74±0.07 3.73±0.32 0.97 0.06

K299A

288 2.32±0.06 6.07±0.33 17.54±6.77 1 0.01

293 2.35±0.07 5.75±0.07 16.03±3.18 0.99 0.02

298 2.12±0.09 5.07±0.12 14.01±1.59 0.99 0.02

303 1.38±0.01 2.91±0.02 5.91±0.55 0.97 0.05

R78A K299A

288 2.56±0.17 7.77±0.11 0.98 0.06

293 3.08±0.13 8.92±0.39 0.99 0.03

298 3.17±0.17 6.78±0.82 0.99 0.02

303 6.91±0.66 11.96±2.83 0.99 0.03

R188A R238A

288 5.55±0.87 0.99 0.02

293 8.51±0.67 1 0.01

298 13.01±0.43 1 0

303 11.14±0.23 1 0

R188A K243A

288 1.06±0.02 5.84±0.29 0.99 0.01

293 1.07±0.02 6.07±0.13 0.99 0.01

298 1.05±0.02 5.82±0.06 0.99 0.02

303 0.75±0.01 4.35±0.17 0.99 0.03

Table 1 continued on next page

https://doi.org/10.7554/eLife.91094
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subunit interacts with one of the P- GlcN moieties of LPS whereas one of the K299 residues interacts 
with a carboxylic acid group of LPS molecule in the inner cavity. Therefore, introducing the R78A 
mutation will impact symmetrically equivalent binding sites. MsbAR78A showed a reduction in binding 
KDL1- 2 with ΔG ranging from –30.2±0.2 to -32.5±0.2 kJ/mol. At 298 K, KDL binding is enthalpically 
and entropically favorable whereas binding of the second KDL is similar to the wild- type protein 
(Figure 2d, Figure 2—figure supplements 1–3). The binding thermodynamics for MsbAK299A is remi-
niscent of the wild- type protein with a large, favorable change in entropy (- TΔS, –75±2 to -86±1 kJ/
mol at 298 K) and unfavorable enthalpy (43±2–53±1 kJ/mol) (Figure 2d, Figure 2—figure supple-
ments 1–3). The double mutant MsbAR78A,K299A protein shows a reduction in opposing entropic and 
enthalpic terms leading to an increase in ΔG by ~4 kJ/mol relative to wild- type MsbA (Figure 2d). 
Mutant cycle analysis indicates a coupling energy (ΔΔGint) of 1.7±0.4 kJ/mol that contributes to the 
stability of KDL- MsbA complex (Figure 2e, Figure 2—figure supplements 1–3 and Tables 2 and 
3). More generally, ΔΔ with a positive sign means favorable cooperation. Interestingly, the coupling 
enthalpy (ΔΔHint of –26±15 kJ/mol) and coupling entropy (Δ(- TΔS)int of 28±15 kJ/mol at 298 K) indi-
cating that these residues contribute to KDL binding through an entropy driven process that over-
comes an enthalpic barrier (Figure 2e, Figure 2—figure supplements 1–3 and Table 3).

KDL binding to the exterior binding site of MsbA
The recently discovered exterior KDL binding site (Lyu et al., 2022) located on the cytosolic leaflet 
of inner membrane has not been thoroughly investigated, prompting us to characterize this site by 
a triple mutant cycle (Figure 3, Figure 3—figure supplements 1–6). We first investigated R188 and 
K243, residues that both interact with one of the P- GlcN moieties of LOS. Like mutants targeting 
the interior LPS binding site, introducing mutants at the exterior site will impact binding at the 
two exterior sites. Both MsbAR188A and MsbAK243A single mutants marginally weakened the inter-
action by about 2 kJ/mol (Figure 3a, Figure 3—figure supplements 1–6). Enthalpy and entropy 
for KDL binding MsbAR188A and MsbAK243A was largely similar to the wild- type protein (Figure 3a, 
Figure  3—figure supplements 1–6). However, the R238A mutation significantly weakened the 
interaction with KDL, increasing ΔG by nearly 5  kJ/mol compared to the wild- type transporter 
(Figure 3b, Figure 3—figure supplements 1–6 and Table 3) and resulted in an distinct thermo-
dynamic pattern with negative enthalpy changes for both the first and second KDL binding events 
(Figure  3a, Figure  3—figure supplements 1–6). ΔG for MsbAR188A,K243A was comparable to the 
K243A single mutant form of the protein (Figure 3a, Figure 3—figure supplements 1–6). The posi-
tive coupling energy of 3.2±0.4 kJ/mol with contributions from a coupling enthalpy of 19±11 kJ/

Temperature(K) KD1(μM) KD2(μM) KD3(μM) R2* Χ2*

R188A K299A

288 13.86±0.85 13.83±3.23 0.99 0.04

293 12.55±0.64 14.29±2.18 0.99 0.03

298 9.82±0.70 11.50±1.04 0.98 0.05

303 4.86±0.44 8.56±0.20 0.99 0.04

R238A K243A

288 2.79±0.20 7.93±0.47 0.98 0.06

293 3.26±0.09 7.39±0.50 0.99 0.03

298 6.53±0.2 8.97±0.15 1 0

303 7.63±0.26 10.78±2.19 1 0.01

R188A R238A K243A

288 20.53±2.25 1 0

293 21.09±2.84 1 0

298 19.80±1.71 1 0

303 13.12±0.81 1 0

These values represent the replicates with the poorest fits.

Table 1 continued
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Table 3. Double mutant cycle analysis of the first KDL binding to wild- type and mutant MsbA.
The ΔΔ values mutant relative to the wild- type protein. Reported are the mean (n=3).

Temperature
(K)

ΔΔG
(kJ/mol)

ΔΔH
(kJ/mol)

Δ(- TΔS)
(kJ/mol)

ΔΔGint

(kJ/mol)
ΔΔHint

(kJ/mol)
Δ(-ΔTS)int

(kJ/mol)

R78A

288 2.4±0.2 45.6±12.5 –43.2±12.4

293 2.2±0.2 –7.8±7.5 10.0±7.5

298 2.7±0.2 –61.7±11.3 64.4±11.3

R188A

288 2.8±0.2 13.0±14.2 –10.2±14.0

293 2.7±0.1 5.2±6.5 –2.5±6.5

298 2.7±0.2 –3.0±6.9 5.6±7.0

303 2.9±0.4 –11.2±14.7 14.1±14.9

R238A

288 3.1±0.2 –30.9±12.1 33.9±11.9

293 3.8±0.1 –46.9±6.7 50.7±6.7

298 4.8±0.1 –62.9±7.5 67.7±7.6

303 6.1±0.4 –78.8±13.5 84.9±13.7

K243A

288 1.4±0.2 –12.5±13.7 13.9±13.5

293 1.5±0.2 –2.7±6.5 4.3±6.5

298 1.6±0.2 7.2±7.0 –5.6±7.1

303 1.4±0.4 17.3±14.5 –15.9±14.8

K299A

288 2.9±0.2 13.8±15.1 –10.9±14.8

293 2.8±0.1 5.7±6.6 –2.9±6.7

298 2.8±0.2 –2.4±6.1 5.2±6.2

303 3.0±0.4 –10.3±14.3 13.3±14.6

R78A K299A

288 3.2±0.2 –0.8±12.9 4.0±12.6 2.2±0.5 60.2±23.4 –58.0±23.1

293 3.4±0.1 –19.2±6.1 22.7±6.1 1.6±0.4 17.1±11.6 –15.6±11.8

298 3.8±0.2 –38.2±6.9 42.0±7.1 1.7±0.4 –25.8±14.6 27.5±14.7

R188A R238A

288 5.0±0.5 –57.4±19.1 62.4±18.7 0.9±0.6 39.5±26.7 –38.7±26.2

293 5.9±0.2 –57.5±10.7 63.5±10.5 0.6±0.4 15.8±14.2 –15.2±14.1

298 7.3±0.2 –56.6±7.5 64.0±7.5 0.1±0.4 –9.2±12.6 9.3±12.7

303 8.2±0.4 –55.1±13.5 63.4±13.7 0.7±0.5 –34.9±24.0 35.6±24.5

R188A K243A

288 1.0±0.2 15.7±13.1 –14.6±12.9 3.2±0.5 –15.1±23.8 18.3±23.4

293 0.9±0.1 0.3±6.2 0.6±6.2 3.4±0.2 2.2±11.1 1.2±11.1

298 1.1±0.2 –14.9±6.0 16.0±6.2 3.2±0.4 19.1±11.5 –16.0±11.8

303 1.4±0.4 –29.9±12.7 31.4±13.0 2.8±0.6 36.0±24.2 –33.2±24.7

R188A K299A

288 7.2±0.2 20.6±20.0 –13.4±19.7 –1.5±0.5 6.2±28.8 –7.7±28.4

293 6.9±0.1 25.2±7.5 –18.3±7.5 –1.4±0.2 –14.4±11.9 13.0±11.9

298 6.6±0.2 30.2±9.6 –23.6±9.6 –1.1±0.4 –35.5±13.2 34.3±13.3

303 6.1±0.4 35.3±23.3 –29.2±23.5 –0.3±0.6 –56.8±31.0 56.5±31.5

R238A K243A

288 3.4±0.2 –6.4±14.3 9.8±14.1 1.1±0.5 –36.9±23.3 38.0±22.8

293 3.6±0.1 –51.1±8.1 54.7±8.1 1.8±0.2 1.5±12.4 0.3±12.4

298 5.6±0.2 –93.4±7.0 99.0±7.2 0.8±0.4 37.7±12.4 –37.0±12.7

303 7.3±0.4 –134.4±12.5 141.6±12.9 0.2±0.6 72.8±23.4 –72.6±24.0

https://doi.org/10.7554/eLife.91094
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mol and a coupling entropy of –16±12 kJ/mol at 298 K (Figure 3b, Figure 3—figure supplements 
1–6 and Table 3). Combining mutation R238A with R188A, MsbAR188A,R238A decreased ΔH by 57 kJ/
mol at the cost of increasing -TΔS by 64 kJ/mol at 298 K (Figure 3b, Figure 3—figure supplements 
1–6 and Table  3). The coupling energy for R188A and R238A is approximately zero as a result 
of equal coupling enthalpy and entropy of different signs. Compared to the wild- type protein, 
MsbAR238A,K243A results in an inversion of the thermodynamic signature with binding now being driven 
by enthalpy. More specifically, this inversion is accompanied by ΔΔH and Δ(- TΔS) of –93±7 kJ/mol 
and 99±7 kJ/mol at 298 K (Figure 3b, Figure 3—figure supplements 1–6 and Table 3). Again, 
the coupling enthalpy and entropy (at 298 K) of equal magnitude but opposite signs give rise to a 
coupling energy of zero for R238A and R243A (Figure 3b, Figure 3—figure supplements 1–6 and 
Table 3). Introduction of the R188A mutation into MsbAR238A,K243A, results in reversal of the thermo-
dynamic signature to mirror that of MsbAR188A,K243A (Figure 3a, Figure 3—figure supplements 1–6). 
The coupling energy, coupling enthalpy, and coupling entropy for R188A, R238A, and R243A are 
3.4±0.5 kJ/mol, 100±16 kJ/mol, and –97±16 kJ/mol at 298 K (Table 4), respectively. Taken together, 
these results demonstrate KDL binding to MsbA is sensitive to mutations at both the interior and 
exterior sites.
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Figure 3. Triple mutant cycle analysis of the exterior LPS binding site of MsbA. (a) Thermodynamics for MsbA and 
mutants (MsbAR188A, MsbAR238A, MsbAK243A, MsbAR188A,R243A, MsbAR188A,K243A, MsbAR238A,R243A, and MsbAR188A,R238A,K299A) 
binding KDL at 298 K. (b) Triple mutant cycles for MsbA and mutants with (from left to right) ΔΔG, ΔΔH and Δ(- TΔS) 
values indicated over the respective arrows. Shown are values at 298 K. Reported are the average and standard 
deviation from repeated measurements (n = 3).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Representative native mass spectra MsbA mutants in the presence of 0.8 μM KDL.

Figure supplement 2. Representative native mass spectra MsbA double mutants in the presence of 0.8 μM KDL.

Figure supplement 3. Determination of equilibrium dissociation constants (KD) for MsbA mutants binding KDL.

Figure supplement 4. Determination of equilibrium dissociation constants (KD) for MsbA mutants binding KDL.

Figure supplement 5. Determination of thermodynamic parameters for KDL binding wild- type and mutant MsbA.

Figure supplement 6. Determination of thermodynamic parameters for KDL binding wild- type and mutant MsbA.

https://doi.org/10.7554/eLife.91094
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Table 4. Triple mutant cycle analysis of the first KDL binding to wild- type and mutant MsbA.
Shown as described in Table 3.

Temperature
(K)

ΔΔG
(kJ/mol)

ΔΔH
(kJ/mol)

Δ(- TΔS) 
(kJ/mol)

ΔΔGint

(kJ/mol)
ΔΔHint

(kJ/mol)
Δ(-ΔTS)int

(kJ/mol)

R188A

R238A

288 2.2±0.2 –70.4±8.9 72.6±8.7

293 3.2±0.1 –62.7±5.4 65.9±5.3

298 4.7±0.1 –53.7±6.1 58.3±6.1

303 5.4±0.1 –43.9±10.2 49.3±10.3   

K243A

288 –1.8±0.2 2.6±11.0 19.9±10.8   

293 –1.8±0.2 –4.9±5.0 –6.4±5.0

298 –1.6±0.1 –11.9±5.4 10.4±5.4

303 –1.4±0.2 –18.7±11.5 17.3±11.8   

R238A K243A

288 5.3±0.4 –2.2±10.0 7.5±9.7 –4.9±0.5 –65.6±17.4 85.0±16.9

293 5.4±0.4 –2.9±5.1 8.4±4.9 –4.0±0.5 –64.7±8.9 51.2±8.8

298 5.7±0.2 –3.2±3.8 8.9±3.7 –2.6±0.2 –62.4±8.9 59.8±8.9

303 5.8±0.2 –3.2±8.9 9.0±8.9 –1.8±0.4 –59.5±17.8 57.7±18.0

R238A

R188A

288 1.9±0.2 –26.5±8.9 28.4±8.7

293 2.1±0.1 –10.6±5.4 12.8±5.3

298 2.5±0.1 6.3±6.1 –3.7±6.1

303 2.2±0.1 23.7±10.2 –21.5±10.3   

K243A

288 0.3±0.2 24.4±8.0 –24.1±7.8   

293 –0.2±0.1 –4.2±5.3 4.0±5.3

298 0.8±0.1 –30.5±6.2 31.3±6.2

303 1.2±0.2 –55.5±9.9 56.7±10.2   

R188A K243A

288 5.1±0.2 41.7±6.6 –36.6±6.4 –2.9±0.4 –43.8±13.7 40.9±13.3

293 4.3±0.4 49.1±5.4 –44.8±5.1 –2.4±0.4 –64.0±9.3 61.6±9.1

298 3.6±0.2 56.7±4.9 –53.2±4.9 –0.2±0.2 –81.0±10.0 80.8±10.0

303 2.6±0.2 64.5±6.7 –61.9±6.9 0.8±0.4 –96.3±15.7 97.1±16.0

K243A

R188A

288 –0.4±0.2 28.1±11.0 –28.5±10.8   

293 –0.7±0.2 3.0±5.0 –3.7±5.0

298 –0.5±0.1 –22.1±5.4 21.6±5.4

303 0.1±0.2 –47.2±11.5 47.3±11.8   

R238A

288 1.9±0.2 6.1±8.0 –4.1±7.8

293 2.0±0.1 –48.4±5.3 50.4±5.3

298 4.0±0.1 –100.6±6.2 104.6±6.2   

303 5.9±0.2 –151.6±9.9 157.5±10.2   

R188A R238A

288 6.7±0.2 23.3±9.2 –16.6±8.9 –5.2±0.4 10.9±16.4 –16.0±16.0

293 6.6±0.4 5.0±5.1 1.6±4.9 –5.2±0.5 –50.4±8.9 45.1±8.8

298 6.8±0.2 –13.3±3.9 20.1±4.0 –3.3±0.2 –109.4±9.2 106.1±9.2

303 7.3±0.2 –31.6±8.7 38.9±8.9 –1.3±0.4 –167.2±17.5 165.9±17.9

https://doi.org/10.7554/eLife.91094
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Dissecting KDL binding to the interior and exterior site(s) of MsbA
An open question is if the interior and exterior LOS binding sites of MsbA are allosterically coupled? 
We focused on the R188A and K299A mutants located at the exterior and interior binding sites, 
respectively. Results for both single mutants were presented above. MsbA containing the R188A 
and K299A mutations drastically reduced the binding of KDL (Figure 4a). The ΔG for MsbAR188A,K299A 
increased by more than 6 kJ/mol compared to the wild- type protein (Figure 4b). This approximately 
doubles compared to MsbA containing either of the single point mutations. Mutant cycle analysis 
revealed a negative coupling energy of –1.1±0.4 kJ/mol that partitioned into a coupling enthalpy 
of –36±13 kJ/mol and coupling entropy of 34±13 kJ/mol at 298 K (Figure 4b and Table 3). In short, 
mutations at either LOS binding site have a negative impact on binding that is accompanied by a gain 
in both favorable entropy and unfavorable enthalpy.

Mutant cycle analysis of KDL binding to vanadate-trapped MsbA
As MsbA, like other ABC transporters, is highly dynamic, we sought to trap the transporter in an OF 
conformation using ADP and vanadate to interrogate binding at the exterior lipid binding site. We 
characterized the binding of KDL to vanadate- trapped MsbA and proteins containing single R188A, 
R238A, and K243A mutations (Table 5). Here, we focused on the binding of the first and second lipid, 
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Figure 4. Mutant cycle of MsbA residues located within the interior and exterior LOS binding sites. 
(a) Thermodynamic signatures for MsbA and mutants binding KDL at 298 K. (b–c) Double mutant cycle analysis for 
R188 and K299. Shown are results for the first (panel b) and second (panel c) KDL binding to MsbA. Shown from left 
to right is ΔΔG, ΔΔH and Δ(- TΔS) and the values indicated over the respective arrows at 298 K. Reported are the 
average and standard deviation from repeated measurements (n = 3).
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since MsbA has two, symmetrically related KDL binding sites in the open, OF conformation. Thermo-
dynamics of MsbA(KDL)1- 2 binding is like the non- trapped transporter, wherein entropy (- TΔS ranging 
from –58±1 to -69±1 kJ/mol at 298 K) is more favorable than a positive enthalpic term (ΔH ranging 
from 22±1–35±1 kJ/mol) (Figure 5a, Figure 5—figure supplements 1–6 and Table 6). The single 
mutant proteins (MsbAR188A, MsbAR238A, and MsbAK243A) showed a slight increase in ΔG (at most 5 kJ/
mol) (Figure 5a, Figure 5—figure supplements 1–6). Notably, we found MsbAR238A and MsbAK243A 
had about a four- fold increase in ΔH and favorable entropy was about two- fold higher (Figure 5a, 
Figure 5—figure supplements 1–6). Double mutant cycle analysis of the pairwise mutants revealed 
a positive coupling energy of ~2 kJ/mol for MsbA binding one and two KDLs (Figure 5b, Figure 5—
figure supplements 1–6 and Table 7). Focusing on the first KDL binding event, the coupling enthalpy 
and coupling entropy at 298 K for R188 and K238 was 89±7 kJ/mol and –87±7 kJ/mol, respectively 

Table 5. Equilibrium dissociation constants (KD) for KDL binding MsbA trapped with ADP and vanadate at various temperatures.
Reported are the mean and standard deviation (n=3).

Temperature(K) KD1(μM) KD2(μM) KD3(μM) R2* Χ2*

WT

293 0.51±0.04 1.16±0.07 0.97 0.08

298 0.44±0.02 0.93±0.09 0.94 0.17

303 0.38±0.02 0.73±0.05 0.94 0.15

310 0.31±0.01 0.53±0.04 0.92 0.2

R188A

293 1.56±0.09 3.46±0.15 10.98±1.15 0.98 0.07

298 1.53±0.11 3.40±0.21 10.15±1.62 0.98 0.06

303 1.35±0.10 2.90±0.26 9.02±1.11 0.98 0.05

310 0.93±0.09 1.89±0.24 5.50±1.10 0.97 0.07

R238A

293 1.67±0.23 6.71±1.38 0.99 0.05

298 0.91±0.10 3.15±0.12 0.98 0.06

303 0.34±0.04 1.09±0.23 3.75±0.60 0.95 0.11

310 0.10±0.02 0.33±0.11 0.92±0.38 1 0

K243A

293 2.01±0.06 5.26±0.85 0.99 0.02

298 1.46±0.01 3.90±0.48 0.99 0.03

303 0.60±0.02 1.54±0.12 3.72±0.54 0.98 0.04

310 0.25±0.02 0.46±0.02 1.06±0.04 0.89 0.2

R188A R238A

293 1.24±0.10 4.82±0.16 0.99 0.03

298 1.17±0.11 4.65±0.92 0.99 0.02

303 0.87±0.06 3.05±0.26 0.98 0.04

310 0.39±0.05 1.28±0.09 6.36±1.07 0.98 0.04

R188A K243A

293 3.64±0.28 15.66±4.76 0.99 0.03

298 2.23±0.07 6.68±0.17 0.99 0.03

303 1.06±0.05 3.10±0.33 19.33±3.70 0.99 0.03

310 0.66±0.02 1.56±0.04 5.70±0.93 0.98 0.04

R238A K243A

293 1.31±0.04 4.35±0.07 0.99 0.03

298 1.03±0.09 3.65±0.15 0.99 0.02

303 0.48±0.05 1.97±0.09 0.97 0.09

310 0.10±0.02 0.58±0.06 0.74 0.93

These values represent the replicates with the poorest fits.
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 Research article      Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Lyu et al. eLife 2023;12:RP91094. DOI: https://doi.org/10.7554/eLife.91094  16 of 29

WT

R238A

R188A

R188A
K243A

R238A
K243A

R188A
R238A

K243A

WT

R238A

R188A

R188A
K243A

R238A
K243A

R188A
R238A

K243A

WT

R238A

R188A

R188A
K243A

R238A
K243A

R188A
R238A

K243A

3.2

2.11.
5

0.9

-0
.8

-0.4

4.0

0.6

2.4 49.9

60.2

5.3 -47.8

-56.2

-2.8

3.4

4.9

3.9 21.1

79.7

-3.1 -17.7

-74.8

7.0

2.5

1.50.8

-10.6

10
4.

9

-99.6

15
.9

-24.4

-55.0

74.3

-14.170.8

13.7

-1
03

.4

100.6

-1
6.

5 24.0

55.6

-71.8

15.6-69.9

WT

R238A

R188A

R188A
K243A

R238A
K243A

R188A
R238A

K243A

WT

R238A

R188A

R188A
K243A

R238A
K243A

R188A
R238A

K243A

WT

R238A

R188A

R188A
K243A

R238A
K243A

R188A
R238A

K243A

3.2

2.
7

1.2

0.
7 0.5

0.7

2.9

2.01.7

-21.6

10
2.

7

-105.8

18
.5

-55.6

-81.6

76.7

3.0
101.3

24.8

-1
00

.0

107.0

-1
7.

8 56.1

82.3

-73.8

-1.0-99.6

a

b

c

ΔΔG (kJ/mol) ΔΔH (kJ/mol) Δ(-TΔS) (kJ/mol)

ΔΔG (kJ/mol) ΔΔH (kJ/mol) Δ(-TΔS) (kJ/mol)

0

50

100

150

-50

-100

-150

-200

kJ
/m

ol

1x 2x 1x 2x 1x 2x 1x 2x 1x1x 2x 1x1x 2x

WT R188A R238A K243A
R188A
K238A

R188A
K243A

R238A
K243A

ΔG -TΔSΔH

Figure 5. Double mutant cycles reveal thermodynamic insight into KDL binding vanadate- trapped MsbA. 
(a) Thermodynamic signatures for MsbA and mutants binding KDL at 298 K. (b–c) Double mutant cycle analysis 
for pairs of R188, R238, and K243 with a total of three combinations. Shown are results for the first (panel b) and 
second (panel c) KDL binding to MsbA trapped in an open, OF conformation with ADP and vanadate. Within 
each panel, ΔΔG, ΔΔH and Δ(- TΔS) are shown from left to right and their values at 298 K are indicated over the 
respective arrows. Reported are the average and standard deviation from repeated measurements (n = 3).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Representative native mass spectra wild- type and mutant MsbA trapped with vanadate and 
ADP in the presence of 0.8 μM KDL.

Figure supplement 2. Representative native mass spectra MsbA double mutants trapped with vanadate and ADP 
in the presence of 0.8 μM KDL.

Figure supplement 3. Determination of equilibrium dissociation constants (KD) for KDL binding wild- type and 
mutant MsbA trapped with ADP and vanadate.

Figure supplement 4. Determination of equilibrium dissociation constants (KD) for KDL binding MsbA double 
mutants trapped with ADP and vanadate.

Figure 5 continued on next page
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(Figure 5b, Figure 5—figure supplements 1–6 and Tables 7 and 8). Likewise, R238 and K243 showed 
129±11 kJ/mol of coupling enthalpy and –127±11 kJ/mol of coupling entropy at 298 K (Figure 5b, 
Figure 5—figure supplements 1–6 and Tables 7 and 8). However, the R188 and K243 pair revealed 
a relatively low coupling enthalpy and coupling entropy at 298 K of 3.5±7 kJ/mol and 2±7 kJ/mol, 
respectively (Figure 5b, Figure 5—figure supplements 1–6 and Tables 7 and 8). These results high-
light the importance of entropic and enthalpic contributions that underpin specific lipid binding sites.

Discussion
Thermodynamics provide unique insight into the molecular forces that drive specific MsbA- KDL inter-
actions. A recurring thermodynamic strategy for specific KDL- MsbA interactions is a large, favorable 
entropic term that opposes a positive enthalpic value. The human G- protein- gated inward rectifier 
potassium channel (Kir3.2) also used a similar thermodynamic strategy to engage phosphoinositides 
(PIPs) (Qiao et al., 2021). The large, positive entropy could stem from solvent reorganization of the 
lipid with a carbohydrate containing headgroup, and desolvation of hydrated binding pockets on the 
membrane protein. The release of ordered solvent to the bulk solvent would contribute favorably to 
entropy. These experiments are performed in detergent and reorganization of detergent may also 
play a role. Previous work has shown soluble protein- ligand interactions can be driven by a large, posi-
tive entropy term that outweighs a large, positive enthalpic penalty (Frederick et al., 2007; Tzeng 
and Kalodimos, 2009; Tzeng and Kalodimos, 2012; Caro et al., 2017). In these cases, the reaction 
is mainly driven by conformational entropy originating in enhanced protein motions. However, it is 
unclear if the conformational dynamics of MsbA are enhanced when bound to KDL.

Most of the van’ t Hoff plots followed non- linear trends, indicating Cp is not constant over the 
selected temperature range (Prabhu and Sharp, 2005). In nearly all cases, a positive ΔCp was observed 
that ranged in value from 4 to 12 kJ/mol·K (Tables 2 and 6). Solvation of polar groups in aqueous 
solvent has been ascribed to positive heat capacities whereas the collapse of apolar residues from 
their solvated state is accompanied by a negative change in heat capacity (Prabhu and Sharp, 2005; 
Makhatadze and Privalov, 1995). Reorganization of the hydrated, polar headgroups of KD is consis-
tent with the positive heat capacity observed here. However, change in heat capacity could also be 
ascribed to temperature- dependent conformational changes in MsbA and/or KDL. Notably, vanadate- 
trapped MsbA locked in an open, OF conformation should be less conformationally dynamic than 
the apo protein, which is known to adopt a number of open, IF conformations where the NBDs 
are separated by different distances. Similar positive heat capacities were observed for the different 
conformations, suggesting the dynamics of MsbA marginally contribute to the observed non- linear 
trends. Notably, the headgroup of KDL is nestled in a hydrophilic, basic patch of MsbA in the open, 
OF conformation. Similarly, the headgroup of PIP binds a hydrophilic, basic pocket in Kir3.2. These 
hydrophilic patches will be highly solvated, which will be desolvated upon binding lipids contributing 
favorably to entropy.

Thermodynamics of MsbA- lipid interactions contrast those observed for a different membrane 
protein. Phospholipid binding to the bacterial ammonia channel (AmtB) were largely driven by enthalpy 
and, in most cases, entropy was unfavorable (Cong et al., 2016). Another interesting observation 
for AmtB- lipid interactions was significant enthalpy- entropy compensation for each sequential lipid 
binding event. Here, enthalpy- entropy compensation is not as pronounced. This result may reflect the 
much higher affinity and specific MsbA- KDL interactions compared to the weaker AmtB- lipid interac-
tions, sometimes referred to as non- annular lipids (Bolla et al., 2019). Moreover, we have focused the 
titration here to characterize the binding of the first three KDL molecules to MsbA. While we can’t rule 
out that the resolved lipid bound states of MsbA represent binding of lipid to one or multiple site(s) on 
the transporter, the mole fraction plots are suggestive of binding to distinct sites, that is smooth inflec-
tions. In a previous study, (Qiao et al., 2021) we observed abnormal binding curves for some PIPs 

Figure supplement 5. Determination of thermodynamic parameters for KDL binding wild- type and mutant MsbA 
trapped with ADP and vanadate.

Figure supplement 6. Determination of thermodynamic parameters for KDL binding MsbA double mutants 
trapped with ADP and vanadate.

Figure 5 continued
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binding to Kir3.2 that we rationalized by the presence of high- affinity binding and low- affinity binding 
sites. A revised equilibrium binding model including the two- site model dramatically improved the 
fits, leading to dissection of at least two lipid binding sites. Further studies are warranted to better 
understand the binding sites of KDL to MsbA in different conformations.

Results of this study begin to draw a connection between LPS binding at the interior and exterior 
sites of MsbA. It is presently thought that flipping of LOS occurs at interior MsbA site, and the exte-
rior LOS binding site enables feedforward activation, wherein binding of LOS and precursors thereof 
stimulates ATPase activity (Mi et al., 2017; Ho et al., 2018; Lyu et al., 2022; Gorzelak et al., 2021; 
Ward et al., 2007; Zou and McHaourab, 2009; Dong et al., 2005). It is also thought that binding 
of LOS and ATP promotes dimerization of the NBDs. Here, we find mutations at either the interior or 
exterior sites have a direct impact of KDL binding to MsbA, which under these conditions is presum-
ably adopting an open, IF conformation. Of the mutant proteins, MsbA containing single mutations 
(MsbAR188A,K299A) at both LOS binding sites resulted in the greatest change in ΔG. This result implies 
that these sites are allosterically coupled and further investigation is warranted to better understand 
how the exterior LOS binding sites influence MsbA dynamics.

Table 7. Double mutant cycle analysis of the first KDL binding to wild- type and mutant MsbA 
trapped with ADP and vanadate.
Shown as described in Table 3.

Temperature
(K)

ΔΔG
(kJ/mol)

ΔΔH
(kJ/mol)

Δ(- TΔS)
(kJ/mol)

ΔΔGint

(kJ/mol)
ΔΔHint

(kJ/mol)
Δ(-ΔTS)int

(kJ/mol)

R188A

293 2.7±0.1 –28.5±3.1 31.2±3.1

298 3.1±0.2 –10.6±2.9 13.7±3.1

303 3.2±0.2 7.3±2.9 –4.1±2.9

310 2.8±0.2 32.4±2.9 –29.7±3.1

R238A

293 3.2±0.2 104.9±6.0 –101.7±6.0

298 1.5±0.4 104.9±6.0 –103.4±6.1

303 –0.3±0.4 104.9±6.0 –105.1±6.2

310 –2.8±0.5 104.9±6.0 –107.6±6.4

K243A

293 3.7±0.1 74.3±5.4 –70.7±5.3

298 2.5±0.1 74.3±5.4 –71.8±5.3

303 1.3±0.1 74.3±5.4 –73.0±5.4

310 –0.5±0.2 74.3±5.4 –74.8±5.5

R188A R238A

293 2.2±0.2 –32.1±3.3 34.2±3.4 3.8±0.4 108.5±7.0 –104.7±7.2

298 2.4±0.2 5.3±2.9 –2.8±2.9 2.2±0.5 89.0±6.9 –86.9±7.1

303 2.1±0.2 42.6±7.5 –40.5±7.3 0.8±0.5 69.6±9.6 –68.7±9.8

310 0.5±0.4 95.0±16.5 –94.5±16.8 –0.5±0.6 42.4±17.6 –42.8±18.1

R188A K243A

293 4.8±0.2 70.5±8.7 –65.7±8.6 1.6±0.2 –24.7±10.4 26.3±10.3

298 4.0±0.1 60.2±4.7 –56.2±4.5 1.6±0.2 3.5±7.2 –1.9±7.2

303 2.6±0.1 51.5±1.5 –48.8±1.3 1.9±0.2 30.1±5.8 –28.2±5.9

310 1.9±0.1 33.7±5.9 –31.8±5.9 0.4±0.4 73.0±8.1 –72.7±8.3

R238A K243A

293 2.3±0.1 –13.0±14.3 15.3±14.2 4.6±0.2 192.2±16.2 –187.7±16.2

298 2.1±0.2 49.9±7.3 –47.8±7.6 1.9±0.4 129.3±10.5 –127.4±10.9

303 0.6±0.2 113.4±16.3 –112.7±16.4 0.4±0.5 65.8±17.9 –65.4±18.2

310 –3.0±0.9 200.5±35.8 –203.5±36.5 –0.4±1.0 –21.3±36.6 21.1±37.5

https://doi.org/10.7554/eLife.91094
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A defining feature of this work is the use of mutant cycles to not only characterize specific 
membrane protein- lipid interactions but define the coupling energies of specific residue- lipid inter-
actions in terms of enthalpic and entropic contributions. Traditionally, mutant cycles have been used 
to understand pairwise interactions of residues, such as in protein- protein complexes, in terms of 
coupling free energy. Here, we extend mutant cycles to understand how pairs of residues contribute to 
specific MsbA- KDL interactions. Double mutants targeting the interior site reveal a positive coupling 
energy of nearly 2 kJ/mol for R78 and K299. These stabilize the MsbA- KDL complex largely through 
nearly 17 kJ/mol of favorable coupling entropy, which outweighs a negative coupling enthalpy. This 
phenomenon extends to nearly all mutant cycles investigated in this work, even when the trans-
porter is trapped with vanadate. The largest coupling energy is observed from the triple mutant cycle 
of R188A, R238A, and R243A, which again stabilization of the complex was achieved via favorable 
coupling entropy. While we focused on results at 298 K, the coupling energetics among these three 
residues show 3.4±0.5 kJ/mol. Taken together, mutant cycle analysis reveals that entropy drives high- 
affinity KDL binding to MsbA and solvent reorganization contributes to KDL binding (Figure 6). There 
are many factors that contribute to the change in entropy of the system, beyond solvation entropy, 
and deciphering the entropic contributions of the various components warrants additional studies.

Table 8. Double mutant cycle analysis of the second KDL binding to wild- type and mutant MsbA 
trapped with ADP and vanadate.
Shown as described in Table 3.

Temperature
(K)

ΔΔG
(kJ/mol)

ΔΔH
(kJ/mol)

Δ(- TΔS)
(kJ/mol)

ΔΔGint

(kJ/mol)
ΔΔHint

(kJ/mol)
Δ(-ΔTS)int

(kJ/mol)

R188A

293 2.7±0.2 –42.2±2.4 44.9±2.6

298 3.2±0.2 –21.6±3.3 24.8±3.4

303 3.5±0.4 –0.9±4.4 4.3±4.5

310 3.2±0.4 28.0±5.9 –24.8±6.1

R238A

293 4.4±0.5 102.7±10.8 –98.2±10.8

298 2.7±0.5 102.7±10.8 –100.0±11.0

303 1.0±0.5 102.7±10.8 –101.6±11.1

310 –1.3±0.7 102.7±10.8 –104.0±11.4

K243A

293 4.2±0.4 76.7±6.9 –72.5±6.6

298 2.9±0.2 76.7±6.9 –73.8±6.7

303 1.7±0.2 76.7±6.9 –75.0±6.9

310 –0.1±0.4 76.7±6.9 –76.8±7.1

R188A R238A

293 3.5±0.2 –43.2±30.4 46.7±30.3 3.6±0.4 103.7±32.3 –100.0±32.2

298 3.9±0.5 –3.1±13.7 7.0±14.2 2.0±0.6 84.2±17.8 –82.3±18.2

303 3.6±0.4 37.5±4.9 –33.9±4.8 0.9±0.6 64.3±12.6 –63.3±13.0

310 2.2±0.2 92.7±25.8 –90.5±25.8 –0.3±0.9 38.0±28.7 –38.3±28.9

R188A K243A

293 6.3±0.7 100.4±44.8 –94.1±44.1 0.6±0.7 –65.9±45.4 66.5±44.7

298 4.9±0.2 79.7±25.2 –74.8±25.2 1.2±0.2 –24.6±26.3 25.8±26.3

303 3.6±0.4 59.5±5.8 –55.9±5.6 1.5±0.4 16.3±9.9 –14.7±9.9

310 2.7±0.2 29.4±22.9 –26.7±22.9 0.4±0.4 75.3±24.6 –74.9±24.7

R238A K243A

293 3.2±0.2 –28.5±2.2 31.7±2.2 5.4±0.5 207.9±13.0 –202.4±12.9

298 3.4±0.2 21.1±2.2 –17.7±2.3 2.2±0.4 158.3±13.0 –156.1±13.1

303 2.5±0.2 71.2±5.4 –68.7±5.5 0.2±0.5 108.2±13.8 –107.9±14.2

310 0.2±0.4 139.4±10.5 –139.2±10.8 –1.6±0.9 40.0±16.5 –41.6±17.3

https://doi.org/10.7554/eLife.91094


 Research article      Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Lyu et al. eLife 2023;12:RP91094. DOI: https://doi.org/10.7554/eLife.91094  21 of 29

While the use of mutant cycles was prominent a few decades ago, native mass spectrometry opens 
new opportunities to revisit the classical approach, diving deeper into the energetics of non- covalent 
interactions, such as dissecting energetics in terms of enthalpic and entropic contributions. Native MS 
coupled with a variable- temperature nanoelectrospray ionization (nESI) apparatus (McCabe et al., 
2021; Cong et al., 2016) has been used to ascertain equilibrium binding constants and thermody-
namic properties of protein- protein and protein- ligand interactions. The results obtained align closely 
with those obtained through other biophysical techniques, such as isothermal titration calorimetry 
(ITC) and surface plasmon resonance (SPR) (Cong et al., 2017; Daneshfar et al., 2004; Daneshfar 
et al., 2004; Cong et al., 2016). The approach has also uncovered that specific protein- lipid interac-
tions can allosterically modulate other interactions with protein, lipid, and drug molecules (Marcoux 
et al., 2013; Yen et al., 2018; Cong et al., 2017; Patrick et al., 2018; Bolla et al., 2018; Gault et al., 
2016). More recently, native MS has proved useful in dissecting the thermodynamics of individual 
nucleotide binding events to GroEL, a 801 kDa tetradecameric chaperonin (Walker et al., 2023). In 
contrast to traditional approaches, such as ITC and SPR, native MS can resolve and dissect individual 
binding events enabling the measurement of binding thermodynamics, which is of paramount impor-
tance to understanding the molecular driving forces of non- covalent interactions.

In summary, we demonstrate the utility of native MS to determine the thermodynamic origins of 
specific KDL- MsbA interactions. Combined with the classical mutant cycle approach, (Carter et al., 
1984) the thermodynamic contribution of specific interactions with lipids is illuminated. More specif-
ically, MsbA binding KDL is solely driven by entropy, which overcomes an enthalpic penalty. A similar 
thermodynamic strategy was also observed for Kir3.2- PIP interactions, where entropy plays a central 
role in the wild- type channel recognizing PIP (Qiao et al., 2021). It is tempting to speculate that favor-
able entropy is a common theme enabling membrane proteins to specifically engage carbohydrate- 
containing lipids. We envision thermodynamics and mutant cycles will be invaluable in not only better 
understanding high- affinity lipid binding sites but also in the development of inhibitors, such as those 
that may target specific protein- lipid binding site(s). In closing, these studies provide deeper insight 
into the thermodynamic strategies membrane proteins exploit to achieve high- affinity lipid binding 
site(s).

1. Solvated 2. Solvent Reorganization 3. Protein-Lipid Complex

Figure 6. The role of solvent in contributing to the molecular recognition of membrane protein- lipid complexes. The lipid headgroup and binding 
pocket (basic patch illustrated in blue) on the membrane protein are solvated. The ordered solvent (shown in light blue) is then displaced upon lipid 
binding the membrane protein leading to solvent reorganization. The displacement of ordered solvent (show in light green) contributes to favorable 
entropy. This process enables the formation of a high affinity, stable membrane protein- lipid complex.
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Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Escherichia coli) BL21- AI Invitrogen C607003 Chemically Competent E. coli

Strain, strain background 
(Escherichia coli) 5- alpha NEB C2987H Chemically Competent E. coli

Recombinant DNA reagent pCDF- His_TEV_MsbA (plasmid)
DOI: 10.1038 /s41467- 022- 
34905- 2 MsbA expression construct

Sequence- based reagent MsbA_R78A_F This Paper PCR primers gcgGGTATCACCAGCTATGTC

Sequence- based reagent MsbA_R78A_R This Paper PCR primers CAAA ATCA TCAG CCCG ATC

Sequence- based reagent MsbA_R188A_F
DOI: 10.1038 /s41467- 022- 
34905- 2 PCR primers gcgTTTCGCAACATCAGTAAAAAC

Sequence- based reagent MsbA_R188A_R
DOI: 10.1038 /s41467- 022- 
34905- 2 PCR primers CTTC GATA CTAC GCGA ATC

Sequence- based reagent MsbA_R238A_F
DOI: 10.1038 /s41467- 022- 
34905- 2 PCR primers gcgCTTCAGGGGATGAAAATG

Sequence- based reagent MsbA_R238A_R
DOI: 10.1038 /s41467- 022- 
34905- 2 PCR primers  CATT  CGGT  TGCT  GACT  TTAT C

Sequence- based reagent MsbA_K243A_F
DOI: 10.1038 /s41467- 022- 
34905- 2 PCR primers gcgATGGTTTCAGCCTCTTCC

Sequence- based reagent MsbA_K243A_R
DOI: 10.1038 /s41467- 022- 
34905- 2 PCR primers CATC CCCT GAAG ACGC AT

Sequence- based reagent MsbA_K299A_F This Paper PCR primers gcgTCGCTGACTAACGTTAACGC

Sequence- based reagent MsbA_K299A_R This Paper PCR primers CAGC GGAC GCAT CAGT GC

Commercial assay or kit DC Protein Assay Bio- Rad 5000112

Chemical compound, drug Kdo2- Lipid A (KLA) Avanti 699500

MsbA expression constructs
MsbA and mutants were essentially expressed and purified as previously described (Lyu et al., 2022). 
In detail, the MsbA gene (from Escherichia coli genomic DNA) was amplified by polymerase chain 
reaction (PCR) using Q5 High- Fidelity DNA Polymerase (New England Biolabs, NEB) and subcloned 
into a modified pCDF- 1b plasmid (Novagen) resulting in expression of MsbA with an N- terminal TEV 
protease cleavable His6 fusion protein. Primers for generating mutations for MsbA were designed 
using the online tool NEBaseChanger (NEB) and carried out using the KLD enzyme mix (NEB) as 
described by the manufacturer. All plasmids were transformed into E. coli 5- alpha (NEB) competent 
cells for plasmids propagation before confirmed by DNA sequencing.

Protein expression and purification
MsbA expression plasmids were transformed into E. coli (DE3) BL21- AI competent cells (Invitrogen). 
A single colony was picked and used to inoculate 50 mL LB media to be grown overnight at 37 °C 
with shaking. The overnight culture was used to inoculate to terrific broth (TB) media and incubated 
at 37 °C until the OD600nm ≈ 0.6–1.0. After which, the cultures were induced with final concentration 
of 0.5 mM IPTG (isopropyl β-D- 1- thiogalactopryanoside) and 0.2% (w/v) arabinose. After overnight 
expression at 25 °C, the cultures were harvested at 4000 x g for 10 minutes and the resulting pellet 
was resuspended in lysis buffer (20  mM Tris, 300  mM NaCl and pH at 7.4 at room temperature). 
The resuspended cells were centrifuged, and the pellet was then resuspended in lysis buffer. Cells 
were lysed by four passages through a Microfluidics M- 110P microfluidizer operating at 25,000 psi 
with reaction chamber emersed in an ice bath. The lysate was clarified by centrifugation at 20,000 x 
g for 25  min and the supernatant was centrifuged at 100,000  x g for 2  hr to pellet membranes. 
Resuspension buffer (20 mM Tris, 150 mM NaCl, 20% (v/v) glycerol, pH 7.4) was used to homoge-
nize the resulting pellet and 1% (m/v) DDM was added for protein extraction overnight at 4 °C. The 
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extraction was centrifuged at 20,000 x g for 25 min and the resulting supernatant was supplemented 
with 10 mM imidazole and filtered with a 0.45 µm syringe filter prior to purification by immobilized 
metal affinity chromatography. The extraction containing solubilized MsbA was loaded onto a column 
packed with 2.5 mL Ni- NTA resin pre- equilibrated in NHA- DDM buffer (20 mM Tris, 150 mM NaCl, 
10 mM imidazole, 10% (v/v) glycerol, pH 7.4 and supplemented with 2 x the critical micelle concentra-
tion (CMC) of DDM). After the loading, the column was washed with 5 column volumes (CV) of NHA- 
DDM buffer, 10 CV of NHA- DDM buffer supplemented with additional 2% (w/v) nonyl-ß-glucoside 
(NG), and 5 CV of NHA- DDM buffer. The immobilized protein was eluted with the addition of 2 CV 
of NHB- DDM buffer (20 mM Tris, 150 mM NaCl, 250 mM imidazole, 10% (v/v) glycerol, 2 x CMC of 
DDM, pH 7.4). The eluted MsbA was pooled and desalted using HiPrep 26/10 desalting column (GE 
Healthcare) pre- equilibrated in desalting buffer (NHA- DDM with imidazole omitted). TEV protease 
(expressed and purified in- house) was added to the desalted MsbA sample and incubated overnight 
at room temperature. The sample was passed over a pre- equilibrated Ni- NTA column and the flow- 
through containing the cleaved MsbA protein was collected. The pooled protein was concentrated 
using a centrifugal concentrator (Millipore, 100 kDa) prior to injection onto a Superdex 200 Increase 
10/300 GL (GE Healthcare) column equilibrated with 20 mM Tris, 150 mM NaCl, 10% (v/v) glycerol and 
2 x CMC C10E5. Peak fractions containing dimeric MsbA were pooled, flash frozen in liquid nitrogen, 
and stored at –80 °C prior to use.

Preparation of MsbA for native MS studies
MsbA samples were incubated with 20 µM copper (II) acetate, to saturate the N- terminal metal binding 
site, (Lyu et al., 2022) prior to buffer exchange using a centrifugal buffere exchange device (Bio- Spin, 
Bio- Rad) into 200 mM ammonium acetate supplemented with 2 x CMC of C10E5. To prepare vanadate- 
trapped MsbA, ATP and MgCl2 were added to MsbA at a final concentration of 10 mM. After incuba-
tion at room temperature for 10 min, a freshly boiled vanadate solution (pH 10) was added to reach 
final concentration of 1 mM followed by incubation at 37 °C for an additional 10 min. The sample was 
then buffer exchanged as described above.

Native Mass Spectrometry
Samples were loaded into gold- coated glass capillaries made in- house (Laganowsky et al., 2013) and 
introduced into at a Thermo Fisher Scientific Exactive Plus Orbitrap with Extended Mass Range (EMR) 
using native electrospray ionization source modified with a variable temperature apparatus (McCabe 
et al., 2021). For native mass analysis, the instrument was tuned as follow: source DC offset of 10 V, 
injection flatapole DC to 8.0 V, inter flatapole lens to 4, bent flatapole DC to 3, transfer multipole DC 
to 3 and C trap entrance lens to 0, trapping gas pressure to 6.0 with the in- source CID to 65.0 eV and 
CE to 100, spray voltage to 1.70 kV, capillary temperature to 200 °C, maximum inject time to 200ms. 
Mass spectra were acquired with a setting of 17,500 resolution, microscans set to 1 and averaging set 
to 100.

Determination MsbA-lipid equilibrium binding constants
KDL (Avanti) stock solution was prepared by dissolving lipid powder in water. The concentration of 
MsbA and KDL were determined by a DC protein assay (BioRad) and phosphorus assay, respectively 
(Chen et al., 1956; Fiske and Subbarow, 1925). MsbA was incubated with varying concentrations of 
KDL before loading into a glass emitter and mounted on a variable- temperature electrospray ioniza-
tion (vT- ESI) source (McCabe et al., 2021). Samples were incubated in the source for two minutes at 
the desired temperature before data acquisition. All titration data were collected in triplicate (n=3), 
with a 20 min interval between each measurement. Reported are the mean and standard deviation. 
At a given temperature, the mass spectra were deconvoluted using Unidec (Marty et al., 2015) and 
the peak intensities for apo and KDL- bound species were determined and converted to mole fraction. 
The sequential ligand binding model was applied to determine the mole fraction of each species in 
measurement:

 PLn−1 + L KA⇔ PLn  

where:

https://doi.org/10.7554/eLife.91094
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KAn =

[
PLn

]
[
PLn−1

] [
L
]
  

To calculate the mole fraction of a particular species (Cong et al., 2016):

 

FPLn =

[
L
]n

free
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j=1 KAj

1 +
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[
L
]i
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∏n

j=1 KAj   

For each titrant in the titration, the free concentration of lipid was computed as follows:

 

[
L
]

free =
[
L
]

total −
[
P
]

total

n∑
i=0

iFPLi
  

The sequential ligand binding model was globally fit to the mole fraction data by minimization of 
pseudo-  χ

2
  function:

 
χ2 =

m∑
j=1

d∑
k=1

(
Fi,j,exp − Fi,j,calc

)2

  

where n is the number of bound ligands and d is the number of the experimental mole fraction data 
points.

Van’t Hoff analysis (van’t Hoff, 1884) was applied to determine the Gibbs free energy change (ΔG), 
enthalpy change (ΔH) and entropy change (ΔS) based on the equation:

 
ln KA = −∆H

R
· 1

T
+ ∆S

R   

For non- linear trends, the non- linear form of the Van’t Hoff equation was applied to determine the 
thermodynamic parameters (Liu and Sturtevant, 1996):

 
ln KA =

∆HT0 − T0∆Cp
R

(
1

T0
− 1

T

)
+

∆Cp
R

ln
(

T
T0

)
+ ln K0

  

where KA is the equilibrium association constant, K0 is the equilibrium association constant at the 
reference temperature (T0),  ∆HT0  is the standard enthalpy at T0, ΔCp is the change in heat capacity at 
constant pressure, and R is the universal gas constant.

Mutant cycle analysis
If the two mutated residues are interacting, then the coupling free energy (ΔΔGint) will not be 0 and 
the value may be positive or negative depending upon whether the interactions between mutated 
residues enhance or weaken the functional property measured. (Wells, 1990) ΔΔGint can be computed 
given the change in Gibbs free energy for the wild- type protein (P), two single mutants (PX and PY), 
and double mutant (PXY) as follows:

 ∆∆Gint = ∆∆GPX→P + ∆∆GPY→P −∆∆GPXY→P  

where  ∆∆GPX→P = ∆GPX −∆GP  ,  ∆∆GPY→P = ∆GPY −∆GP  and  ∆∆GPXY→P = ∆GPXY −∆GP.  
Analogously, the contributions from coupling enthalpy (ΔΔHint) and coupling entropy (Δ(- TΔSint)) can 
be computed as follows:

 ∆∆Hint = ∆∆HPX→P + ∆∆HPY→P −∆∆HPXY→P  

 ∆
(
−T∆Sint

)
= ∆

(
−T∆SPX→P

)
+ ∆

(
−T∆SPY→P

)
−∆

(
−T∆SPXY→P

)
  

where T is temperature in K. As an example,  ∆∆HPX→P = ∆HPX −∆HP  and 

 ∆
(
−T∆GPX→P

)
= T∆SP − T∆SPX  .
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