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Abstract Detailed characterization of interneuron types in primary visual cortex (V1) has greatly 
contributed to understanding visual perception, yet the role of chandelier cells (ChCs) in visual 
processing remains poorly characterized. Using viral tracing we found that V1 ChCs predominantly 
receive monosynaptic input from local layer 5 pyramidal cells and higher-order cortical regions. 
Two-photon calcium imaging and convolutional neural network modeling revealed that ChCs are 
visually responsive but weakly selective for stimulus content. In mice running in a virtual tunnel, ChCs 
respond strongly to events known to elicit arousal, including locomotion and visuomotor mismatch. 
Repeated exposure of the mice to the virtual tunnel was accompanied by reduced visual responses 
of ChCs and structural plasticity of ChC boutons and axon initial segment length. Finally, ChCs only 
weakly inhibited pyramidal cells. These findings suggest that ChCs provide an arousal-related signal 
to layer 2/3 pyramidal cells that may modulate their activity and/or gate plasticity of their axon initial 
segments during behaviorally relevant events.

eLife assessment
This important work shows compelling evidence that Chandelier cells in the visual cortex receive 
inputs most prominently from local layer 5 pyramidal neurons, only mildly inhibit L2/3 pyramidal 
neurons, and respond massively to visuomotor mismatch. It also indicates that visual experience 
in the virtual tunnel activates a plasticity mechanism in Chandelier cells which could be due to the 
particular visuo-motor coupling experienced in this setting, although a specific control is lacking 
for this conclusion. This study will be of interest to neuroscientists involved in cortical circuits, visual 
processing, and predictive coding research.
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Introduction
The neocortex contains a diverse set of inhibitory interneuron types. The characterization of their 
connectivity and functions has greatly contributed to our comprehension of cortical circuits and their 
role in visual perception. The realization that disinhibitory circuits can regulate visual responses based 
on context has helped to understand mechanisms underlying attention, visual segmentation, predic-
tive processing, and plasticity (Karnani et al., 2016; Kirchberger et al., 2023; Kirchberger et al., 
2021; Pfeffer et al., 2013; van Versendaal and Levelt, 2016; Zhang et al., 2014; Attinger et al., 
2017; Adesnik et al., 2012; Keller et al., 2020; Fu et al., 2014). While most cortical interneuron 
subsets in primary visual cortex (V1) are well characterized, much remains unknown about the axo-
axonic chandelier cells (ChCs) (Peters et al., 1982; Jones, 1975) due to the difficulty of genetically 
targeting them. The recent discovery that vasoactive intestinal peptide receptor 2 (Vipr2) is a marker 
for cortical ChCs and the availability of Vipr2-Cre mice have now made it possible to perform thor-
ough analyses of this enigmatic cell type (Schneider-Mizell et al., 2021; Tasic et al., 2018).

ChCs are unique among interneuron types in that they exclusively innervate pyramidal cells (PyCs) 
at their axon initial segment (AIS), the site where action potentials (APs) are generated (Somogyi, 
1977; Kole and Stuart, 2012). This anatomical organization has led to the idea that ChCs may exert 
powerful control over AP generation (Veres et  al., 2014). However, there is considerable contro-
versy about whether ChC innervation of the AIS causes inhibition or excitation of PyCs (Veres et al., 
2014; Pan-Vazquez et al., 2020; Szabadics et al., 2006; Woodruff et al., 2009; Woodruff et al., 
2011; Woodruff et al., 2010; Glickfeld et al., 2009; Molnár et al., 2008; Murata and Colonnese, 
2020; Lipkin and Bender, 2023). A recent study found that ChCs in primary somatosensory cortex 
(S1) depolarize the AIS during the first 2–3 weeks after birth, while they cause hyperpolarization or 
shunting in adult mice (Pan-Vazquez et al., 2020). Accordingly, the few studies that have manipulated 
ChC activity in adult mice in vivo also found an inhibitory effect on PyCs (Lu et al., 2017; Dudok et al., 
2021).

On top of the limited understanding of their impact on neuronal excitability, there is also little 
known about the connectivity of ChCs in V1 and their response properties (Jung et al., 2022). 
In prelimbic cortex, ChCs receive input from local and contralateral PyCs in deep layer 3, while 
they preferentially innervate more superficial amygdala-innervating PyCs (Lu et  al., 2017). This 
non-reciprocal connectivity pattern suggests that ChCs may establish a hierarchical relationship 
among cortical networks. Interestingly, superficial layer 2/3 (L2/3) PyCs in V1 also receive more 
ChC synapses than deep layer 3 PyCs (Schneider-Mizell et al., 2021), but whether connections are 
non-reciprocal remains unknown. Recent studies using in vivo two-photon calcium imaging in V1 
show that ChC activity is highly correlated with pupil size and locomotion (Schneider-Mizell et al., 
2021; Bugeon et al., 2022), indicating arousal-related ChC activity consistent with what has been 
observed in other brain regions (Dudok et al., 2021; Bienvenu et al., 2012; Massi et al., 2012). 
However, visually evoked activity has also been observed in V1 ChCs (Bugeon et al., 2022). This 
activity profile is similar to that of vasoactive intestinal peptide (VIP)+ interneurons and neurog-
liaform cells (Bugeon et  al., 2022), which are both known to receive strong top-down inputs 
from higher-order cortical areas. It is not known whether this is also true for ChCs, but if so, an 
interesting possibility would be that ChCs may establish a hierarchical relationship among cortical 
networks.

ChCs have also been implicated in regulating various forms of plasticity. In adult S1, it was found 
that ChCs increase the number of synapses at the AIS if their postsynaptic targets are chemogenet-
ically activated, suggesting that ChCs may play a role in homeostatic control of PyC activity (Pan-
Vazquez et al., 2020). A contribution to homeostatic scaling of neuronal output is consistent with 
the observation that the size of the PyC soma is proportional to the number of ChC synaptic contacts 
(Schneider-Mizell et al., 2021; Veres et al., 2014). Furthermore, in CA1 it was discovered that opto-
genetic suppression of ChCs during spatial exploration favors place field remapping (Dudok et al., 
2021). In premotor cortex it was found that suppressing the influence of ChCs reduced performance 
in a learned motor task (Jung et al., 2023). Finally, in the binocular zone of developing V1, elimination 
of ChCs during development was found to be crucial for the maturation of inputs from the ipsilateral 
eye and depth perception (Wang et al., 2021). Together, these studies suggest that ChCs may regu-
late plasticity by directly altering the excitability of their targets at the AIS or reducing the ability of 
PyCs to undergo changes of their excitatory synaptic inputs.

https://doi.org/10.7554/eLife.91153
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Here, we analyzed ChCs in L2/3 of V1 to understand their role in visual processing and plasticity. 
We find that ChCs receive inputs from local L5 PyCs and higher cortical regions and exhibit weak 
selectivity for visual stimulus content. Imaging ChC activity in mice running through a virtual tunnel 
showed that they respond to events that are known to increase arousal levels, such as locomotion and 
visuomotor mismatch. Surprisingly, visuomotor experience in the virtual tunnel strongly decreased 
ChC visual responses. It also resulted in plasticity of the length of PyC AISs and their innervation by 
ChCs. Finally, ChCs exerted only mild inhibitory influence on PyCs, affecting only a small proportion 
of cells. Our findings suggest that ChCs predominantly respond to arousal related to locomotion or 
unexpected events/stimuli, and act to weakly modulate activity and/or gate plasticity of L2/3 PyCs in 
V1.

Results
ChCs receive input from long-range sources and L5 PyCs in V1
We first identified the sources of synaptic input to ChCs in V1 using trans-synaptic retrograde rabies 
tracing. In order to label ChCs in layer 2/3, we made use of Vipr2-Cre mice, in which Cre recombinase 
is selectively expressed in cortical ChCs (Schneider-Mizell et al., 2021; Tasic et al., 2018; Daigle 
et  al., 2018). In superficial V1 of these mice, we injected Cre-dependent AAV vectors expressing 
the avian glycoprotein EnvA receptor TVA, rabies glycoprotein (G) and eYFP on day 1, followed by a 
glycoprotein-deleted (dG) rabies virus on day 27 (Lee and Kim, 2019; Figure 1A, B). Most labeled 
neurons were located on the border between L1 and L2/3 and displayed typical ChC morphology 
(Figure 1—figure supplement 1A, B). Quantification based on morphological properties (eYFP+ cell 
bodies at the L1/L2 border and L1 dendrites) revealed that 87% (287/329) of labeled neurons were 
ChCs (Figure 1—figure supplement 1A, B). This specificity matches that of Cre driver lines for other 
inhibitory types (Taniguchi et al., 2011). We tested the specificity of the rabies virus by injecting it 
without the AAV helper vectors and found no labeled neurons (Figure 1—figure supplement 1C). 
We then quantified neurons providing monosynaptic input to ChCs across the brain of four mice also 
injected with the AAV helper vectors. This revealed that ChCs received long-range inputs from various 
thalamic and cortical regions (e.g. dorsal lateral geniculate nucleus, lateral posterior nucleus, retro-
splenial cortex, and S1), matching long-range inputs described for other interneuron subsets in V1 
(Ma et al., 2021). The most abundant sources of presynaptic partners of ChCs, however, were found 
locally in L5 and to a lesser extent in L1–4 of V1 (Figure 1C). Labeled L5 neurons had pyramidal-shaped 
cell bodies and dendritic spines, indicating that L5 inputs to ChCs are excitatory (Figure 1—figure 
supplement 1D–F). This local innervation pattern is reminiscent of ChCs in S1 (Xu and Callaway, 
2009), but differs significantly from the innervation pattern of ChCs in the prefrontal cortex where 
they predominantly receive input from contralaterally projecting PyCs in deep layer 3 (Lu et al., 2017).

To test the monosynaptic nature of the long-range input cells observed with rabies tracing, we used 
optogenetic stimulation in combination with electrophysiological recordings in acute V1 slices. For 
these experiments we injected an AAV vector driving expression of ChR2-eYFP in retrosplenial cortex 
for optogenetic stimulation. This area was chosen because it contained more input neurons than any 
other brain area that was sufficiently distal from V1 to prevent potential leakage of the viral vector into 
V1 itself. We also injected a Cre-dependent AAV vector driving mCyRFP1 expression in V1 to label 
ChCs and performed whole-cell recordings in V1 slices 3 weeks later (Figure 1D–F). Local optogenetic 
activation of RSC boutons in V1 generated inward currents in ~85% (11/13) of voltage-clamped ChCs. 
The resulting excitatory postsynaptic potentials (PSPs) were abolished in the presence of tetrodotoxin 
(TTX), but reappeared upon additional application of the potassium-channel blocker 4-aminopyridine 
(4-AP) (Figure 1H), which facilitates optogenetically evoked synaptic release in absence of AP gener-
ation. These data corroborate the idea that RSC inputs onto V1 ChCs are monosynaptic (Cruikshank 
et al., 2010). Repeated optogenetic stimulation (20 Hz) resulted in synaptic depression (Figure 1I), 
indicating RSC synapses may have a high release probability (Zucker and Regehr, 2002).

Finally, we performed paired recordings of L2/3 PyCs and ChCs to test their local connectivity 
within V1 (Figure  1J–K). Inducing APs in ChCs generated postsynaptic responses in  ~45% (5/11) 
of PyCs. However, none of the 11 ChCs we recorded from responded to local PyC stimulation 
(Figure 1J–K), indicating a highly non-reciprocal connectivity motif. It also indicated that only few 
if any local L2/3 PyCs provide synaptic input to ChCs. It should be noted that the use of whole-cell 

https://doi.org/10.7554/eLife.91153
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Figure 1. Chandelier cells (ChCs) receive input from L5 pyramidal cells (PyCs) and innervate L2/3 PyCs. (A) Schematic with viral strategy for selective 
monosynaptic retrograde rabies tracing of L2/3 ChCs. (B) Overview of superficial V1 region (top) with starter ChCs (yellow), non-starter ChCs (green), 
and presynaptic partners (red). Scale bar, 50 µm. Bottom: example images of RSC (left; scale bar, 100 µm) and dLGN (right; scale bar, 200 µm) containing 
input cells in red. Number of starter ChCs = 7.5 ± 3.8 (mean ± SEM, with a total of 30 starter ChCs from 4 mice). (C) Quantification of input sources to 
ChCs (n=4 mice) represented as percentage (mean ± SEM) of the total number of presynaptic neurons observed brain wide. LM, lateromedial visual 
area; dLGN, dorsal lateral geniculate nucleus; PL, posterolateral visual area; RSC, retrosplenial cortex; S1, primary somatosensory area; LD, lateral 
dorsal nucleus of the thalamus; LPN, lateral posterior nucleus of the thalamus; RL, rostrolateral area; AL, anterolateral visual area. The image shows the 
distribution of input neurons selectively within V1. Scale bar, 200 µm. (D) Schematic with viral strategy for optogenetic activation of RSC inputs to L2 
ChCs. PyCs in RSC were labeled with ChR2-eYFP, ChCs in V1 were labeled with the red fluorophore mCyRFP1. (E) Confocal images showing the ChR2-
eYFP (cyan) injection location in RSC (bottom) and their projections to L1 in V1 (top). Scale bar, 500 µm. (F) Confocal images of the biocytin fill (red) of 
mCyRFP+neurons revealed L2 ChC identity. Insets depict putative RSC inputs on apical dendrites of ChC in layer 1 (cyan, top) as well as characteristic 
rows of ChC bouton cartridges (bottom). Yellow arrow indicates soma. Scale bars, 50 µm. (G) Schematic of whole-cell patch-clamp recordings from 
mCyRFP+neurons. Current injections evoked firing patterns characteristic of ChCs. Scale bars, 10 mV, 100 ms. Optogenetic activation of RSC boutons 
evoked inward currents of on average 29.8 pA (n=11/13 ChCs from 13 slices in 5 mice). Bar shows mean and SEM, dots represent individual cells. Scale 
bars, 20 ms, 10 pA. (H) Tetrodotoxin (TTX)/4-aminopyridine (4-AP) bath application confirmed monosynaptic RSC (470 nm optogenetically evoked, 
blue) inputs in ChCs. RM ANOVA **p=0.0035, Holm-Šídák’s multiple comparisons test, *p=0.012, **p=0.008. Bar shows mean ± SEM, dots represent 
individual cells, n=11 cells from 11 slices in 5 mice. Scale bars, 1 mV, 100 ms. (I) Optogenetic stimulation at 20 Hz revealed a reduction in postsynaptic 

Figure 1 continued on next page
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recordings with high chloride internal solution as performed here precludes determining whether 
ChC input on PyCs causes hyperpolarization or depolarization. These findings suggest that the rabies-
labeled L1–4 neurons providing monosynaptic input to ChCs may include many inhibitory neurons, 
in line with previous work showing that V1 ChCs receive local input from L2/3 SST+ interneurons as 
well as neurogliaform cells (L2/3 NGCs), but not from L2/3 PyCs (Jiang et al., 2015). This is further 
supported by the distributed localization of the neurons labeled by the rabies virus (mCherry+), their 
presence in L1 and the observation that they lacked spines and that the soma appeared non-pyramidal 
(Figure 1—figure supplement 1D–F). Taken together, these results show that ChCs in V1 receive 
substantial input from local L5 PyCs, inhibitory neurons and long-range sources, while they locally 
innervate L2/3 PyCs.

ChCs are modulated by arousal and show high correlations
Having studied their connectivity, we next looked at the in vivo response properties of ChCs and L2/3 
PyCs using two-photon calcium imaging in awake animals. We injected adult Vipr2-Cre mice with an 
AAV vector driving expression of GCaMP6f under the control of a short CaMKIIa promoter to label 
putative PyCs and a Cre-dependent AAV vector driving expression of mRuby2-GCaMP6f to label 
ChCs in V1. We implanted the mice with a cranial window and head ring to allow head fixation on a 
running wheel (Figure 2A).

We first assessed activity of ChCs and L2/3 PyCs during spontaneous behavior by tracking running 
speed and pupil size while mice were viewing a uniform gray screen (Figure 2A, Figure 2—video 1). 
We restricted our field of view to the border between L1 and L2/3, where superficial ChCs are posi-
tioned. In line with earlier work, correlation analysis between calcium activity and both running speed 
and pupil size revealed that ChCs were mostly active during states of high arousal, more so than 
L2/3 PyCs (Figure 2B–C, multilevel statistical analyses were performed using a linear mixed effects 
model [LMEM] to account for dependencies in the data and variance between mice, see Materials 
and methods) (Schneider-Mizell et al., 2021; Bugeon et al., 2022). In addition, ChCs within the same 
field of view were highly correlated with each other, much more so than L2/3 PyCs (Figure 2B–C), 
suggesting that ChCs distribute a synchronized signal during high arousal.

To test whether ChCs also responded to visual stimuli, we examined their orientation and direc-
tion tuning by showing mice 1 s moving oriented gratings (Figure 2D, Figure 2—video 2). Although 
both ChCs and L2/3 PyCs had strong visual responses, ChCs were weakly tuned and showed a lower 
orientation selectivity index (OSI) than L2/3 PyCs (Figure 2E–G). The direction selectivity index (DSI) 
was similar between cell types.

ChCs are weakly selective to visual information
The highly synchronized ChC activity, its correlation with arousal, and the relatively weak orientation 
tuning of ChCs suggested that while they signal behaviorally relevant events, they may only weakly 
encode visual stimulus features. To assess this more thoroughly, we assessed the visual response prop-
erties of ChCs. Artificial visual stimuli such as oriented gratings can reveal tuning to isolated stimulus 
parameters. However, experimental constraints limit the number of receptive field properties that can 
be tested this way. In addition, due to the nonlinear response selectivity of visual neurons, receptive 
field properties defined using gratings do not always generalize well to natural vision (Felsen and 
Dan, 2005). Therefore, to obtain a more complete picture of the cells’ visual receptive field prop-
erties, we used natural stimuli in combination with a pre-trained deep convolutional neural network 
(CNN) to model single-cell visual responses and visualize their putative most exciting inputs (MEIs): 
the visual stimuli that elicit the strongest response in each individual neuron (Cadena et al., 2019; 
Walker et al., 2019; Bashivan et al., 2019; Papale et al., 2021; Figure 3). For this experiment, we 

potential amplitudes. Circles show mean ± SEM. Scale bars, 2 mV, 50 ms. N=8 cells from 8 slices in 3 mice. (J) Voltage responses to a current injection 
steps in ChCs and PyCs during simultaneous recordings. Scale bars, 100 ms, 20 mV. (K) Action potentials were generated by brief current injections in 
ChCs (left) or PyCs (right). In n=5 out of 11 pairs, ChC stimulation generated postsynaptic responses in PyCs. In n=0/11 PyC were projecting back onto 
ChC. Scale bars 10 ms, 20 mV, and 0.5 mV for subthreshold responses, 11 pairs from 11 slices in 6 mice.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Morphology of labeled chandelier cells (ChCs) and putative GABAergic input neurons in L2/3.

Figure 1 continued
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Figure 2. Chandelier cells (ChCs) are modulated by arousal and show high correlations. (A) Schematic of approach. ChCs (selectively expressing Cre 
in Vipr2-Cre mice) were identified using the red fluorophore mRuby2 and neuronal activity of ChCs (yellow arrows) as well as L2/3 pyramidal cells (PyCs) 
was tracked using two-photon calcium imaging of GCaMP6f. Scale bar, 50 µm. Mice were allowed to freely run or rest while viewing a gray screen. 
(B) Example recording of PyCs (black box) and ChCs (red box) with tracking of running speed and pupil area (bottom two rows). Single-cell ΔF/F traces 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.91153


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Seignette et al. eLife 2023;12:RP91153. DOI: https://doi.org/10.7554/eLife.91153 � 7 of 34

used two new groups of mice. In one group, we injected Vipr2-Cre mice with an AAV vector driving 
expression of GCaMP8m (Zhang et al., 2023) (to label L2/3 PyCs and ChCs) and a Cre-dependent 
AAV vector driving expression of mCyRFP1 (to label ChCs). Since our rabies tracing results revealed 
that V1 L5 PyCs were the most abundant source of synaptic input to ChCs, we targeted L5 PyCs in a 
second group of mice. We selectively labeled L5 PyCs using a tail vein injection of a Cre-dependent 
PhP.eB-serotyped (Deverman et al., 2016) AAV vector driving expression of GCaMP6f in Rbp4-Cre 
mice (Gerfen et al., 2013; Figure 3A). We then recorded neural activity in both groups while mice 
were shown a set of 4000 natural images, with 40 of these images being shown 10 times each. We 
used the neural responses of individual neurons to determine their selectivity, and subsequently, to 
optimize a CNN and obtain an estimate of the cells’ MEIs (Figure 3A).

We first focused on properties derived from recorded neuronal responses (Figure  3B–E and 
Figure 3—figure supplement 1A). ChCs responded strongly to natural images, comparable to L2/3 
PyCs and L5 PyCs (Figure 3B). In order to test the selectivity of neurons for specific natural stimuli, we 
made use of the subset of 40 images that we presented 10 times. For each cell, we sorted the average 
responses to these images based on their strength, creating a ranked distribution that revealed differ-
ences in stimulus selectivity between cell types (Figure 3C). L2/3 PyCs and L5 PyCs responded strongly 
to only a few images, indicating high selectivity. In contrast, ChCs were weakly selective as shown by 
their strong responses to many images. We quantified image selectivity for each neuron by calculating 
sparsity (Zoccolan et al., 2007). High sparsity indicates strong responses to only a few images, while 
low sparsity indicates equal responsiveness to many images. As evident from their flattened curve in 
the ranked distribution, ChCs had significantly lower sparsity than L2/3 PyCs and L5 PyCs (Figure 3C, 
inset). Next, we reasoned that if ChCs are weakly selective for visual stimuli, their between-cell correla-
tion should remain high even during exposure to variable visual input. Indeed, correlations between 
ChCs were considerably higher than those for L2/3 PyCs and L5 PyCs (Figure 3D), similarly to the 
situation during spontaneous behavior (Figure 2C). Finally, to test whether ChC activity contained less 
information about the visual stimuli than L2/3 PyC activity, we performed population decoding on the 
40 images using linear discriminant analysis (LDA). We compared decoding accuracy using all ChCs 
(n=34) with that of a distribution of accuracies obtained from randomly subsampling equal numbers of 
L2/3 PyCs (see Materials and methods). Decoding accuracy of ChCs was significantly lower than that 
of L2/3 PyCs (Figure 3E). Together, these results show that ChCs are visually responsive, but weakly 
selective to visual information.

While orientation tuning and sparsity are useful measures of selectivity, they do not provide infor-
mation about the type of stimuli that excite the neurons most strongly. To determine the MEI of each 
neuron, we used the responses of individual ChCs, L2/3 PyCs, and L5 PyCs to optimize a pre-trained 
CNN (Cadena et al., 2019; Walker et al., 2019; Bashivan et al., 2019; Papale et al., 2021). First, we 
obtained predicted (artificial) responses from the pre-trained CNN to a batch of the natural images. 
We then fit a mapping function from predicted responses to neuronal responses (recorded from the 
mice). The mapping function consisted of a set of spatial weights to model the location and spatial 
extent of the RF and a set of feature weights to model the feature selectivity (e.g. orientation) of each 

were z-scored for display purposes. The inset highlights the correlated activity of six ChCs. Inset vertical scale bars, 4 z-score (ChCs), 10 cm/s (run), 
2000 a.u. (pupil). Horizontal scale bar, 10 s. (C) Average correlation coefficients for ΔF/F of PyCs and ChCs with running speed, pupil area, and within 
cell type. ChCs show higher correlation coefficients than PyCs across conditions (15 sessions from 8 mice, n=1883 PyCs and 95 ChCs, 19 ± 2.93 ChC 
pairs per field of view). Linear mixed effects model (LMEM) for all comparisons. ***: p<0.001, ns: not significant. Box plots represent median, quantiles, 
and 95% confidence interval (CI) over neurons. (D) Schematic of recording during visual stimulation with moving gratings (left) and responses to all 
directions, e.g., PyCs (middle) and ChCs (right). Vertical scale bars, 10% ΔF/F, horizontal scale bars, 1 s. (E) Average response of L2/3 PyCs and ChCs 
to moving gratings (1 s, brown bar). (F) Orientation and direction tuning curves. Curves represent mean ± SEM over neurons after aligning single-cell 
curves to their preferred direction. (G) Histograms and average orientation selectivity index (OSI) and direction selectivity index (DSI) (insets) for L2/3 
PyCs and ChCs. ChCs are more weakly tuned to orientation, but not direction of moving gratings than L2/3 PyCs.

The online version of this article includes the following video(s) for figure 2:

Figure 2—video 1. Example two-photon calcium imaging recording during spontaneous behavior.

https://elifesciences.org/articles/91153/figures#fig2video1

Figure 2—video 2. Example two-photon calcium imaging recording with visual stimulation.

https://elifesciences.org/articles/91153/figures#fig2video2

Figure 2 continued

https://doi.org/10.7554/eLife.91153
https://elifesciences.org/articles/91153/figures#fig2video1
https://elifesciences.org/articles/91153/figures#fig2video2
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Figure 3. Chandelier cells (ChCs) are weakly selective to visual information. (A) Schematic of experiment and 
convolutional neural network (CNN) model fitting. Mice expressing GCaMP8m in L2/3 pyramidal cells (PyCs) and 
ChCs (Vipr2-Cre mice) or GCaMP6f in L5 PyCs (Rbp4-Cre mice) were shown a set of 4000 images. We trained a 
CNN to predict single-cell responses to a range of visual stimuli and to derive most exciting inputs (MEIs). Traces 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.91153
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neuron. To fit the model, we compared the neuronal responses with the predicted responses made 
by the CNN. We repeated this process several times using different batches of natural images. On 
each iteration, we changed both the spatial and feature weights of the model to minimize the error 
between neuronal responses and predicted responses, until no further improvements were made. The 
result of this optimization was the final model, comprising an artificial copy of each individual neuron 
that could be used to predict visual responses which are highly representative of the neuron’s visual 
response properties (see Materials and methods and Figure 3—figure supplement 1B–C).

The CNN allowed us to obtain an MEI for each neuron by presenting artificial visual stimuli 
(Figure 3F, see Materials and methods) (Walker et al., 2019). MEIs can reveal complex nonlinear RF 
properties such as corners, curves, and textures that represent optimal visual input, which is otherwise 
difficult to quantify in a single metric. Inspection of the MEIs and quantification of predicted responses 
to simple artificial stimuli revealed striking differences between cell types. For instance, MEIs of L2/3 
PyCs often displayed clearly oriented edge-like patterns with sharp ON and OFF regions, which were 
much less apparent in ChCs (Figure 3F), while L5 PyCs showed a mixed form of selectivity, including 
both edge-like patterns as well as more complex textures. In line with this observation and in agree-
ment with our orientation tuning experiments (Figure  2D–E), the modeled ChCs had lower OSIs 
than L2/3 PyCs and L5 PyCs (Figure 3G and Figure 3—figure supplement 1D). Furthermore, ChC 
MEIs mostly lacked high-contrast patterns, containing high spatial frequencies (SFs). Accordingly, the 
quantification of contrast tuning and SF of modeled neurons revealed that ChCs were less contrast 
tuned than L2/3 PyCs and L5 PyCs (Figure 3H and Figure 3—figure supplement 1E) and preferred 
lower SFs than L5 PyCs (Figure 3I), which might be related to the interdependence between contrast 
sensitivity and SFs (Heimel et al., 2010; Boynton et al., 1999). The smooth and featureless MEIs of 
ChCs were further reflected by their larger RFs (Figure 3J).

Finally, given that ChCs receive most of their inputs from local L5 PyCs (Figure 1C), we asked 
whether ChC MEIs could be the result of combinations of L5 PyC inputs. We generated MEIs to 
maximize the response of combinations of L5 PyCs and found that many of the resulting MEIs were 
less structured and lacked clearly oriented edge-like patterns (Figure 3—figure supplement 1F). The 
similarity of these MEIs with those we found for ChCs is in line with the idea that ChCs are driven by 
input from large number of L5 PyCs (but does not exclude alternative explanations). Together with 
the observation that the activity of ChCs is strongly influenced by non-visual factors such as arousal, 
these results support a view in which ChCs are visually responsive but mostly invariant to the spatial 
and featural arrangement of visual stimuli.

(right) represent average responses to natural images (green) and the activity predicted by the CNN (purple) for 
an example neuron. Scale bars example field of view, 50 µm. (B) Average response strength to natural images 
for different neuronal cell types. Box plots represent median, quantiles and 95% confidence interval (CI) over 
neurons. n=1015 L2/3 PyCs, 1601 L5 PyCs and 34 ChCs. LMEM for all comparisons, ***: p<0.001, **: p<0.01, *: 
p<0.05, ns: not significant. (C) Average normalized response strength for different neuronal cell types on a subset 
of 40 natural images (compared to baseline, see Materials and methods). Images are ranked on the strength of 
the response they elicited for each neuron. ChCs curves are flatter than L2/3 PyCs and L5 PyCs, indicating lower 
stimulus selectivity. Inset: as in B, but for sparsity (a measure for stimulus selectivity). ChCs have lower sparsity than 
L2/3 PyCs and L5 PyCs. (D) As in B, but for correlation during visual stimulation. ChCs have higher within cell type 
correlations than L2/3 PyCs and L5 PyCs (21 ± 5.08 ChC pairs per field of view, mean ± SEM). (E) Natural image 
decoding accuracy for ChCs and L2/3 PyCs. ChC decoding accuracy (red line, 12.55%) was significantly lower than 
a distribution of decoding accuracies performed using equal numbers of subsampled L2/3 PyCs. Permutation test, 
***p<0.001. The brown dotted line indicates theoretical chance level (2.5%). (F) Single-cell MEIs sorted by response 
sparsity (highest 26 neurons, descending from top left to bottom right). Note the diffuse and unstructured patterns 
in ChC MEIs. (G) As in B, but for orientation selectivity (OSI). ChCs have lower OSI than L2/3 PyCs and L5 PyCs. 
(H) As in B, but for contrast sensitivity. ChCs have lower contrast sensitivity than L2/3 PyCs and L5 PyCs. (I) As in 
B, but for spatial frequency (SF) tuning. ChCs prefer lower SFs than L5 PyCs. (J) As in B, but for receptive field (RF) 
size. ChCs have bigger RFs than L2/3 PyCs.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Convolutional neural network (CNN) model performance and tuning curves obtained from 
CNN predictions.

Figure 3 continued

https://doi.org/10.7554/eLife.91153
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Activity of V1 ChCs and L2/3 PyCs in mice in a virtual tunnel paradigm
To determine how the interaction between behavior and visual input drives the activity of ChCs, we 
recorded their calcium responses in V1 of mice in a virtual tunnel paradigm. We designed the tunnel in 
a way that allowed us to examine L2/3 PyC and ChC activity in response to multiple variables, such as 
visual stimuli, locomotion, and visuomotor mismatch (errors between expected and perceived visual 
input) (Figure 4A, B). In the first, 1-m-long section of the tunnel (‘visual section’), two visual patterns 
(grating and checker) were repeated three times on a white noise background (Figure 4B, left). The 
second section (‘non-visual’) immediately followed the visual section. It consisted of an even, gray 
area and included an auditory cue predicting a reward (cue at t=1 s, reward at t=3 s) and a 6 s waiting 
period before the next trial started (Figure 4B, right). Mice were trained in a minimum of six training 
sessions, during which they became acquainted to the tunnel and learned to lick for a reward. After 
training, mice performed the task twice under the two-photon microscope, allowing us to record 1256 
PyCs and 38 ChCs from a total of 12 locations in 6 mice (Figure 4C).

ChCs were highly active at the onset of the visual section of the tunnel but became suppressed 
when the visual stimuli became visible to the mice (Figure 4C–D and Figure 4—figure supplement 
1A–B). Interestingly, while a large subpopulation of PyCs were activated by the visual stimuli, many 
others showed a similar activity profile as ChCs, suggesting functionally separate populations of PyCs 
(Figure 4C). In order to test this, we performed hierarchical clustering on z-scored average activity 
in the visual section of the tunnel. We used silhouette analysis to examine the separation distance 
between clusters for different numbers of clusters, which showed that the optimal number of clusters 
was two (Figure 4—figure supplement 1C). Examination of the two clusters of PyCs revealed that 
they had opposite activity patterns. Cluster 1 was activated by visual stimuli but suppressed in the 
non-visual section, while cluster 2 was suppressed by visual stimuli but activated in the non-visual 
section, like ChCs (Figure 4C–D). Thus, we named the PyCs in these clusters ‘visually responsive PyCs’ 
(V-PyCs) and ‘non-visually responsive PyCs’ (NV-PyCs) respectively.

Although the difference between the two clusters was striking, silhouette evaluation cannot rule 
out a lack of functional clustering: i.e., where the true number of clusters is one. Therefore, to test 
whether our data were better described by two clusters or one, we compared the separability of the 
visual response distributions obtained for the real V-PyCs and NV-PyCs to the separability of 1000 
random combinations using a permutation test (Figure 4—figure supplement 1C–F, see Materials 
and methods). The separability between V-PyCs and NV-PyCs was higher than expected by chance 
(Figure  4—figure supplement 1F), indicating that V-PyCs and NV-PyCs are functionally separate 
clusters in our tunnel paradigm.

Visuomotor mismatch responses in ChCs and non-visual PyCs
Previous research has demonstrated that a significant fraction of V1 PyCs exhibit strong visuomotor 
mismatch responses when the visual flow of the tunnel is abruptly stopped while the mice are still 
running (Attinger et al., 2017; Jordan and Keller, 2020; Keller et al., 2012; Zmarz and Keller, 
2016; Jordan and Keller, 2023; Muzzu and Saleem, 2021; O’Toole et al., 2023). Recent evidence 
suggests that PyCs with visuomotor mismatch responses may belong to a genetically distinct subpop-
ulation that is less visually responsive (O’Toole et al., 2023). Therefore, we assessed whether the two 
populations of PyCs we identified also differed in terms of their visuomotor mismatch responses. In a 
subset of trials, we briefly interrupted the visual flow for 0.5 s while the mice were running, to create 
a visuomotor mismatch. NV-PyCs displayed stronger responses to both the visuomotor mismatch and 
the onset of running compared to the V-PyCs (Figure 4E–F, I–J). These findings support the idea that 
different populations of PyCs in L2/3 exist, one primarily responding to visual stimuli and the other to 
locomotion and visuomotor mismatch.

ChCs showed a similar but more pronounced activity pattern compared to NV-PyCs: they were 
active at the start of the tunnel, while the visual stimuli in the tunnel suppressed their activity 
(Figure 4C, D, G, and H). Like NV-PyCs, ChCs were mostly driven by locomotion (Figure 4F) and 
showed strong responses to visuomotor mismatch (Figure 4E, I). In line with this, we found that ChCs 
were more strongly correlated with NV-PyCs than with V-PyCs (Figure 4K).

It is known that a subpopulation of ChCs express parvalbumin (PV) (Taniguchi et al., 2013). Indeed, 
ChCs in adult V1 can be selectively labeled using the combination of markers Vipr2 and PV (Tasic 
et al., 2018; Bugeon et al., 2022), but it is not known whether PV+-ChCs and Vipr2-ChCs (which 

https://doi.org/10.7554/eLife.91153
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Figure 4. Locomotion and visuomotor mismatch drive chandelier cell (ChC) activity in a virtual tunnel. (A) Schematic of approach. Vip2r-Cre mice were 
head-fixed on a running wheel in a visual virtual tunnel. ChCs were identified using the red fluorophore mRuby2 and neuronal activity of ChCs (yellow 
arrows) as well as pyramidal cells (PyCs) was tracked using two-photon calcium imaging of GCaMP6f. Scale bar, 50 µm. (B) Virtual tunnel design. Mice 
ran through a virtual tunnel consisting of a 1-m-long visual section (containing visual stimuli along the walls) immediately followed by a non-visual reward 
zone in gray screen conditions. In the non-visual section, an auditory cure predicted a water reward 2 s later. After a 6 s timeout the next trial started. 
(C) Single-cell z-scored average activity of all PyCs (blue/orange) and ChCs (red) during visual, non-visual, and visuomotor mismatch parts of the tunnel 
(n=1256 PyCs and 38 ChCs, 12 sessions from 6 mice). PyCs were clustered in two populations using hierarchical clustering based on their z-scored 

Figure 4 continued on next page
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includes both PV+ ChCs and PV- ChCs) are functionally different. We therefore tested whether PV+ 
ChCs had similar response properties as Vipr2-ChCs by repeating our tunnel experiments using two 
Vipr2-Cre X PV-FlpO × AI65(RCFL-tdTom) (Daigle et al., 2018) mice (Figure 4—figure supplement 
1G). In these mice, tdTomato was only expressed in cells expressing both Vipr2 and PV. We found 
that PV+-ChCs showed identical activity patterns as Vipr2-ChCs (Figure 4—figure supplement 1H–P). 
In addition, in this smaller sample of mice we found the same separation of V-PyCs and NV-PyCs as 
described in Figure 4.

Finally, we assessed the activity of ChCs when visual flow was uncoupled from the running speed of 
the mouse (open loop condition). This revealed that responses to sudden halts in visual flow that were 
independent of locomotion were much weaker than responses to closed loop visuomotor mismatch 
(Figure 4—figure supplement 1Q). In addition, open loop onset of visual flow when the mouse was 
not running resulted in a suppression of ChC activity (Figure 4—figure supplement 1Q). We conclude 
that in mice trained in our virtual tunnel paradigm, ChCs responded predominantly to locomotion and 
visuomotor mismatch when visual flow stopped during running, while they were suppressed by visual 
stimuli or when visual flow started while mice were stationary.

Experience-dependent visual plasticity of ChCs and NV-PyCs
The observation that ChCs are suppressed by visual stimulation in the virtual tunnel was unexpected, 
as our grating (Figure 2) and natural image (Figure 3) experiments showed that ChCs are activated 
by oriented moving gratings and natural images. However, our passive viewing experiments were 
performed in mice largely naive to visual stimulation. In contrast, mice behaving in our tunnel para-
digm were repeatedly exposed to visual stimulation during the tunnel training phase before we started 
recording neural activity during behavior. We therefore hypothesized that the observed suppression 
of ChCs by visual stimulation in the tunnel was caused by experience-dependent plasticity induced by 
the repeated exposure to visual stimulation during training. To test this, we assessed visual responses 
in the same neurons to moving oriented gratings before and after training in the virtual tunnel, while 
mice were passively viewing the stimuli.

In naive mice, both PyCs and ChCs responded strongly to visual stimulation. Interestingly, the 
same ChCs showed weak or even suppressed visual responses after mice had been trained in the 
tunnel (Figure 5A–D). In contrast, the response strength of PyCs was only mildly and statistically non-
significantly reduced after training (Figure 5D). The OSI and DSI were unchanged after training (PyC 
OSI: p=0.1316, PyC DSI: p=0.9573, ChC OSI: p=0.2199, ChC DSI: p=0.9774, Supplementary file 1). 
Since ChCs showed similar activity patterns in the tunnel as NV-PyCs, we asked whether this subpop-
ulation also showed sensory-evoked plasticity. In a subset of mice, we matched neurons recorded in 
all three sessions (pre-training, tunnel, and post-training). We used the tunnel session to separate the 
PyCs in the same two functional clusters and then assessed their responses before and after training. 
This confirmed that visuomotor experience in the virtual tunnel significantly reduced responses in 
NV-PyCs (Figure  5E–G). Finally, as recent work showed that motor learning reduced correlated 
activity of ChCs in PFC (Jung et al., 2023), we tested whether visual experience had a similar effect in 
V1. Indeed, pairwise correlations of ChCs activity were also lower in mice trained in the virtual tunnel 
(R=0.54 ± 0.01 in naïve mice, R=0.46 ± 0.03 in trained mice, p<0.01). These results indicate that ChC 

activity in the visual section. Cells are sorted on cluster followed by peak activation location. Note the difference in activity between the visual (cluster 
1: V-PyCs, blue) and non-visual (cluster 2: NV-PyCs, orange) PyC populations. (D) Average population traces of V-PyCs, NV-PyCs, and ChCs in the visual 
(left) and non-visual (right) part of the tunnel. Normalized locomotion speed (right y-axis) is depicted in gray. The ChCs follow the activity profile of NV-
PyCs. Traces represent mean ± SEM over neurons for ∆F/F and mean ± SEM over sessions for locomotion speed. (E) Average population traces during 
visuomotor mismatch events. NV-PyCs and ChCs show strong mismatch responses. (F) Average population traces at locomotion onset in the non-visual 
section of the tunnel. NV-PyCs and ChCs show strong locomotion onset responses. (G) Average activity during visual stimuli (20–80 cm) compared to 
start of tunnel (0–20 cm). NV-PyCs and ChCs were strongly suppressed by visual stimuli. Box plots represent median, quantiles, and 95% confidence 
interval (CI) over neurons. LMEM for all comparisons, ***: p<0.001. (H) As in G, but for activity in the entire non-visual part of the tunnel. (I) As in G, but 
for visuomotor mismatch events. (J) As in G, but for locomotion onset events. (K) Average correlation coefficient of ChCs with PyCs in visual and non-
visual section of the tunnel. ChCs are more strongly correlated with NV-PyCs than V-PyCs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Open loop and PV+ chandelier cell (ChC) responses.

Figure 4 continued
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responses underwent sensory-evoked plasticity during the repeated visual exposure, even though the 
visual stimuli were different from those encountered during training in the virtual tunnel. This is in line 
with our observation that ChCs are weakly selective to visual stimuli.

Visuomotor experience in the virtual tunnel is accompanied by 
plasticity of ChC-AIS connectivity
Previous work has shown that prolonged chemogenetic activation of ChCs or PyCs results in plas-
ticity of ChC bouton numbers at the AIS (Pan-Vazquez et al., 2020). In addition, PyC activation also 
causes geometric plasticity of the AIS location and/or length (Kuba et al., 2010; Jamann et al., 2021; 
Grubb and Burrone, 2010; Gutzmann et al., 2014; Wefelmeyer et al., 2015). We therefore hypoth-
esized that, in addition to the changes in response properties of ChCs, the visuomotor experience 
in the virtual tunnel paradigm may induce axonal plasticity of ChCs. To test this hypothesis, we used 
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Figure 5. Experience-dependent visual plasticity of chandelier cells (ChCs) and non-visually responsive pyramidal cells (NV-PyCs). (A) Schematic of 
viral strategy and experimental setup. In the passive imaging sessions before and after training, mice were imaged while they passively viewed moving 
gratings. In-between those sessions mice were trained in the virtual tunnel where they were repeatedly exposed to visual stimuli. Yellow arrows point 
to ChCs. Scale bar, 50 µm. (B) Average population response traces to a 1 s (brown bar) moving grating for all PyCs and ChCs chronically imaged and 
matched in ‘naive’ and ‘trained’ sessions (n=411 PyCs and 51 ChCs, 8 sessions from 5 mice). Traces represent mean ± SEM over neurons. (C) Single-cell 
visual response magnitude pre and post training (averaged over 0.2–1.2 s after stimulus onset). (D) Average visual response magnitude in naive (N) and 
trained (T) conditions. ChCs, but not PyCs, show plasticity after training. LMEM for all comparisons, *: p<0.05, ns: not significant. Box plots represent 
median, quantiles, and 95% confidence interval (CI) over neurons. (E) As in B, but for all PyCs chronically imaged and matched in naive, tunnel, and 
trained sessions (n=68 V-PyCs and 71 NV-PyCs, 5 sessions from 3 mice). (F) As in C, but for PyC subtypes. (G) As in D, but for PyC subtypes. NV-PyCs 
show plasticity after training.

https://doi.org/10.7554/eLife.91153
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Figure 6. Training in the virtual tunnel induces plasticity of chandelier cell (ChC)-axon initial segment (AIS) connectivity. (A) Left: experimental design 
showing naive mice and mice trained in the virtual tunnel. Middle: confocal image showing V1 L2/3 after immunostaining to visualize ChC processes 
(α-RFP) and the AIS (α-βIV-spectrin). Scale bar, 30 µm. Right: example colocalization (white) of ChC (red) and AISs (cyan) in naive and trained mice. 
White arrows show putative ChC boutons on AISs. Yellow arrows point to uncontacted AISs. Scale bars, 10 µm. (B) The average number of boutons on 
all AISs is similar between naive and trained mice. Five naive and 3 trained mice, 2–3 slices per mouse, n=1802 AISs (N) and 1007 AISs (T). LMEM for all 
comparisons, ***: p<0.001, **: p<0.01, **: p<0.05, ns: not significant. Box plots represent median, quantiles, and 95% confidence interval (CI). (C) The 
number of boutons on AISs with at least 1 bouton is unaffected by training. Five naive and 3 trained mice, 2–3 slices per mouse, n=1200 AIS (N) and 738 
AIS (T). (D) Fraction of cells contacted by at least 1 ChC bouton increases with training. X2(1)=13.53, ***: p<0.001, 5 naive and 3 trained mice, 2–3 slices 
per mouse, n=1802 AIS (N) and 1007 AIS (T). (E) Histogram of AIS lengths in naive and trained mice. (F) AIS length is decreased by training. Five naive 
and 5 trained mice, 2–3 slices per mouse, n=1802 AISs (N) and 1556 AISs (T). (G) Bouton density on the AIS is increased by training. Five naive and 3 
trained mice, 2–3 slices per mouse, n=1200 AIS (N) and 738 AIS (T). (H) Histogram showing absolute location of boutons on the AIS. (I) Average bouton 
location on the AIS. Boutons in trained mice are located more closely to the start of the AIS. Five naive and 3 trained mice, 2–3 slices per mouse, n=3906 
boutons (N) and 2587 boutons (T). (J) Schematic model of the changes observed in trained mice vs naive mice.
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immunohistochemistry on V1 slices to visualize L2/3 PyC AISs and boutons of tdTomato-labeled ChCs 
in naive mice and mice after virtual tunnel training (Figure 6A).

We first quantified putative ChC boutons on the AIS of L2/3 PyCs (Figure 6A). While the average 
number of virally labeled ChC boutons per AIS remained constant (~2–3 ChC boutons/AIS, Figure 6B 
and C), we observed that visuomotor experience increased the fraction of AISs being contacted by 
ChCs (Figure 6D). We also found that the AIS of PyCs in trained mice were shorter than in naive mice 
(Figure 6E–F), resulting in an increased density of ChC boutons (i.e. ChC boutons per µm AIS length, 
Figure 6G). Finally, we found that ChC boutons were localized more closely to the base of the AIS 
(Figure 6H–I).

Taken together, these results show that after the mice were trained in the visuomotor task, not only 
response properties of ChCs in V1 had changed, but the number of AISs with putative ChC contacts 
had increased and activity-dependent AIS shortening of their post-synaptic PyC targets took place 
(Figure 6J).

ChCs weakly inhibit PyC activity independent of locomotion speed
There has been controversy on whether ChCs hyperpolarize or depolarize their postsynaptic PyC 
targets (Pan-Vazquez et al., 2020; Szabadics et al., 2006; Woodruff et al., 2009; Woodruff et al., 
2011; Woodruff et al., 2010; Glickfeld et al., 2009). However, recent work in adult mice has reported 
inhibitory effects in prelimbic cortex, S1, and hippocampus (Pan-Vazquez et  al., 2020; Lu et  al., 
2017; Dudok et al., 2021). In order to study postsynaptic effects of ChC activity on L2/3 PyCs in V1, 
we used inhibitory k-opioid receptor (KORD)-based chemogenetics (Vardy et al., 2015) to globally 
silence ChCs in V1. We expressed KORD-mCyRFP1 or tdTom (control group) in Vipr2-Cre mice along 
with GCaMP6f (Figure 7A). We then recorded 15 min of ChC and L2/3 PyC activity before and after 
injection of the KORD ligand Salvinorin B (SalB, 10 mg/kg, s.c.) while mice were allowed to freely run 
or rest in front of a gray screen. We first looked at the average activity of neurons in both sessions. 
Surprisingly, L2/3 PyCs showed only a mild increase in activity after SalB injection, even though ChC 
activity was strongly and significantly reduced (Figure 7B).

Considering the strong modulation of ChCs by arousal, we next looked at effects of ChC silencing 
on L2/3 PyC activity across different locomotion speeds. Binning activity based on locomotion speed 
again revealed the relationship between locomotion and ChC activity and to a lesser extent L2/3 PyC 
activity (Figure 7C). Although the locomotion modulation curve of ChCs decreased in both amplitude 
and steepness after SalB injection, only the amplitude was affected for PyCs. Indeed, a linear fit of 
activity as a function of locomotion speed before and after SalB injection confirmed that the intercept 
but not the slope of the fit was increased for PyCs (Figure 7D–E). We found no differences in the 
control group (Figure 7H–K).

We also quantified the percentage of PyCs that significantly altered their overall activity level upon 
ChC silencing. Significantly more neurons increased their activity after SalB injection than in the control 
group (KORD: 21%, control: 13%, χ2-test p<0.001), while in contrast fewer neurons decreased their 
activity (KORD: 7%, control: 11%, χ2-test p<0.001). Finally, to test whether the effect of silencing ChCs 
preferentially affected PyCs that were weakly or strongly modulated by locomotion, we correlated the 
locomotion modulation index (LMI) for each PyC with the change in ∆F/F due to ChC silencing (after 
minus before). The correlation was weak and not significant (r=0.0068, p=0.7827), showing that ChCs 
do not differentially target PyCs based on locomotion modulation.

In contrast to the idea that ChCs exert powerful control over AP generation, these results suggest 
that ChCs only weakly modulate PyC activity, affecting only a relatively small population of cells.

Discussion
In this study we investigated the connectivity and function of ChCs in V1. We find that ChCs receive 
input from local L5 PyCs and higher-order cortical regions and show strong arousal-related activity. 
While they are also visually responsive, ChCs are weakly selective for stimulus content but respond 
strongly to visuomotor mismatch events. Furthermore, we found that repeated exposure to a virtual 
tunnel induces plasticity of the visual responses of ChCs as well as their axo-axonic synapses at L2/3 
PyC AISs. Finally, ChCs only weakly inhibit PyCs.

https://doi.org/10.7554/eLife.91153
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Figure 7. Chandelier cells (ChCs) weakly inhibit pyramidal cell (PyC) activity independent of locomotion speed. (A) Viral strategy and experimental 
design for chemogenetic silencing of ChCs (yellow arrows) in awake mice. Activity of ChCs and PyCs was recorded before and after an s.c. injection of 
Salvinorin B (SalB) (10 mg/kg). Bottom right: example traces of two ChCs and two L2/3 PyCs before and after injection of SalB. Scale bar example field 
of view, 50 µm. (B–G) Activity and locomotion modulation fit parameters in mice expressing KORD-tdTom in ChCs. (B) Average ChC activity decreases, 
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Recent EM reconstructions have shown that although most L2/3 PyCs in V1 receive ChC input, 
the number of ChC boutons on the AISs of PyCs varies significantly and correlates with their size and 
laminar depth (Schneider-Mizell et al., 2021). Accordingly, we found that ChCs provided GABAergic 
inputs to many of the L2/3 PyCs in their vicinity. Unexpectedly, our retrograde rabies virus tracing 
experiments showed that ChCs receive most of their input from local L5 PyCs. In keeping with the 
identified circuits, we did not detect L2/3 PyCs providing inputs to ChCs using dual-patch clamp 
recordings, suggesting that the rabies labeled neurons in layers 1–4 were predominantly interneurons, 
in line with previous work (Jiang et al., 2015). ChCs also received long-range inputs from various 
thalamic and cortical regions (e.g. dLGN, LP, RSC, S1), matching those innervating other interneuron 
subsets in V1 (Ma et al., 2021). Optogenetic activation of cortical feedback induced responses in 
almost all V1 ChCs and repeated stimulation caused synaptic depression, indicating a high release 
probability, which is usually seen in strong cortical inputs to V1 interneurons (Ma et al., 2021). Taken 
together, the connectivity pattern of ChCs in V1 thus appears to be non-reciprocal, as is also observed 
in prelimbic cortex (Lu et al., 2017). However, in contrast to prelimbic cortex where ChCs receive 
input from deep layer 3 PyCs, we show here that V1 ChCs receive most of their input from layer 5.

Although ChCs in V1 are sparse and the number of starter ChCs in our rabies tracing experiments 
was relatively low, we found large numbers of L5 PyCs providing monosynaptic input to them. This 
means that each ChC receives input from many L5 PyCs. This convergence of L5 PyC inputs, if not 
strongly organized, could explain the low selectivity of ChC responses we observed to natural images 
compared to those of L2/3 and L5 PyCs. This is also supported by the MEIs we obtained from the pre-
trained CNN. MEIs of L5 PyCs were often high-contrast oriented patterns, like those of L2/3 PyCs, or 
more complex textures. Instead, MEIs of ChCs were of lower contrast and less structured and similar 
to MEIs created to maximally drive large numbers of L5 PyCs. Combined inputs from L5 PyCs with 
diverse tuning properties are also expected to result in tuning to low SFs, large RFs, and low orienta-
tion tuning, matching the modeled ChCs. Finally, modeled ChCs also displayed weak contrast tuning. 
This is an expected consequence of the preference for low SFs, as these require lower contrast to be 
detected (Heimel et al., 2010; Boynton et al., 1999).

In our virtual tunnel paradigm, ChCs were active during locomotion but even more so during 
visuomotor mismatch caused by halting the tunnel while the mice were running. Surprisingly, ChC 
activity was suppressed by the visual stimuli in the tunnel, or when the visual flow started while the 
mice were stationary. We found that this apparent discrepancy with the strong responses to natural 
stimuli could be explained by experience-dependent plasticity of ChC activity: while ChCs responded 
vigorously to oriented-bar stimuli in naive mice, these responses were almost absent after training in 
the virtual tunnel. While the underlying plasticity mechanisms remain to be investigated, there are 
several possibilities. First, it could be caused by reduced excitatory synaptic transmission of visual 
input to ChCs or increased visually driven inhibition. Second, the plasticity could involve changes in 
the response properties of L5 PyCs providing input to ChCs. Interestingly, recent evidence shows that 
during visuomotor behavior, intratelencephalic (IT) L5 PyCs respond in a similar fashion as ChCs in 
that they respond to running and visuomotor mismatch but are suppressed by unexpected visual flow 
(Heindorf and Keller, 2022). Whether L5 IT PyCs are the main L5 PyC subset providing input to ChCs 
remains to be investigated. A third option is that the experience-dependent changes in ChC activity 
are related to arousal. ChCs were previously shown to display arousal-related activity in various brain 
regions (Schneider-Mizell et al., 2021; Dudok et al., 2021; Bugeon et al., 2022; Bienvenu et al., 
2012; Massi et al., 2012), which matches our observation that their activity is highly correlated with 

while PyC activity increases after injection of SalB. LMEM for all comparisons, ***: p<0.001, **: p<0.01, *: p<0.05, ns: not significant (n=84 ChCs and 1669 
PyCs, 12 sessions from 12 mice). Box plots represent median, quantiles, and 95% confidence interval (CI) over neurons. (C) Activity of ChCs and PyCs as 
a function of locomotion speed before and after injection of SalB. Points and error bars represent mean ± SEM, respectively. (D) Average intercept of 
locomotion modulation fit before and after injection of SalB. The intercept decreases for ChCs but increases for PyCs. (E) Average slope of locomotion 
modulation fits before and after injection of SalB. The slope decreases for ChCs but remains unchanged in PyCs. (F) Pie chart with the percentage 
of neurons that showed significantly increased (green), significantly decreased (red), or unchanged (gray) activity after SalB injection. (G) Scatter plot 
showing for each neuron its activity pre and post SalB injection. (H–M) Activity and locomotion modulation fit parameters in mice expressing tdTom in 
ChCs (control group). (H) As in B, but for the control group (n=37 ChCs and 968 PyCs, 7 sessions from 7 mice). (I) As in C, but for control group. (J) As in 
D, but for the control group. (K) As in E, but for the control group. (L) As in F, but for the control group. (M) As in G, but for the control group.

Figure 7 continued
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running and pupil size. In addition, the neuromodulator acetylcholine is involved in axonal arborization 
of developing ChCs, further underlining the relationship between ChCs and arousal (Steinecke et al., 
2022). During training in the virtual tunnel, mice become acquainted with visual stimuli and learn 
that running consistently results in visual flow. After training, visual stimuli may thus cause less arousal 
while unexpected visual flow halt during running may cause more. In line with this idea, it was recently 
shown that visuomotor mismatch induces strong noradrenergic input to V1 (Jordan and Keller, 2023). 
Noradrenergic input has been shown to depolarize ChCs in frontal cortex (Kawaguchi and Shindou, 
1998). However, in contrast to experiments performed in prelimbic cortex (Lu et al., 2017), we did 
not identify neuromodulatory inputs to ChCs in our rabies tracing experiments. Possibly, these inputs 
act predominantly through extrasynaptic receptors and are less efficiently labeled by the transsynaptic 
rabies approach. As ChCs appear to have a higher prevalence in prelimbic cortex (Lu et al., 2017), 
transsynaptic labeling may be more effective here than in V1. Future experiments may reveal to what 
extent plasticity of ChC responses is stimulus specific or arousal related.

When examining how neurons respond to expected or unexpected visual input, it is useful to 
consider the concept of predictive coding (Friston, 2012; Rao and Ballard, 1999; Shipp, 2016; 
Summerfield et al., 2011; den Ouden et al., 2012; Lee and Mumford, 2003; Keller and Mrsic-
Flogel, 2018; Egner and Summerfield, 2013). In this framework, an internal representation of the 
world is compared with sensory inputs and updated based on prediction errors: the differences 
between the expected and actual sensory inputs. These prediction errors can be negative, signaling 
the absence of an expected visual stimulus, or positive, signaling the presence of an unexpected 
visual stimulus. It has been suggested that prediction errors may be computed by L2/3 PyCs, while 
the internal representation is encoded by local L5 PyCs and top-down inputs from higher-order brain 
regions (Heindorf and Keller, 2022; Keller and Mrsic-Flogel, 2018; Bastos et al., 2012). Previous 
work has shown that in V1, L2/3 PyCs indeed respond to mismatches between visual flow and locomo-
tion (Attinger et al., 2017; Jordan and Keller, 2020; Keller et al., 2012; Zmarz and Keller, 2016). 
Recent evidence suggests that two genetically defined subpopulations of L2/3 PyCs preferentially 
respond to (unexpected) visual stimuli, which could be considered positive prediction errors, or visuo-
motor mismatch, which could be seen as negative prediction errors (O’Toole et al., 2023). In line with 
these findings, we observed two functional clusters of PyCs in L2/3, one responding predominantly to 
visual stimuli (V-PyCs) and the other to visuomotor mismatch (NV-PyCs).

Prediction error responses require inhibitory neurons to compute the difference between expec-
tation and actual visual input. As ChCs receive input from L5 and higher-order cortical regions, they 
might contribute to calculating positive prediction errors by subtracting the internal representation 
(i.e. the predicted stimulus) from the actual visual input. However, as ChCs only mildly inhibited L2/3 
PyCs, they may not be well suited for this function. Moreover, given that we and others (Schneider-
Mizell et al., 2021; Dudok et al., 2021; Jung et al., 2023) have found that ChCs are highly correlated 
in their activity, it seems unlikely that they contain high-dimensional prediction error information. 
Predictive coding also involves updating of the internal representation based on prediction errors. 
Recent evidence suggests that this plasticity requires a gating signal that is provided by noradrenergic 
input (Jordan and Keller, 2023). One option is therefore that ChCs also encode arousal and play a 
role in the regulation of plasticity.

An intriguing possible mechanism through which ChCs could regulate plasticity is by controlling 
geometric modifications of the AIS of L2/3 PyCs. We found that visuomotor experience in the virtual 
tunnel resulted in AIS shortening and more AISs with putative ChC contacts. This is in agreement with 
previous studies revealing modifications in the density distribution of ChC boutons on PyC AISs in 
premotor cortex upon motor learning, and in S1 upon chemogenetically activating L2/3 PyCs (Pan-
Vazquez et al., 2020; Jung et al., 2023). Changes in ChC innervation may alter the excitability of 
PyCs by reducing AP generation. Considering our observation that in vivo chemogenetic silencing of 
ChCs only mildly increased L2/3 PyC activity, their electrical contribution to vetoing AP output seems, 
if anything, limited and affects only a small proportion of cells. These findings are thus in contrast with 
the general notion that ChCs exert powerful control over PyC output (Jung et al., 2022; Gallo et al., 
2020), but consistent with computational simulations predicting a relatively small inhibitory effect 
of GABAergic innervation of the AIS, possibly involving shunting inhibition (Douglas and Martin, 
1990; Shang et al., 2023). One explanation for the weak effects we observed is the high variability 
in the number of GABAergic boutons that PyCs receive at their AISs. Possibly, only a smaller fraction 
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of PyCs with high numbers of AIS synapses are inhibited when ChCs are active. Indeed, we find that 
only a small fraction of PyCs increased their activity upon chemogenetic silencing of ChCs, in line with 
findings by others showing that manipulating ChC activity in vivo has relatively weak effects on small 
populations of PyCs (Lu et al., 2017; Dudok et al., 2021).

Increasing L2/3 PyC activity, like visuomotor experience, also decreased AIS length (Jamann et al., 
2021), which is known to reduce PyC excitability (Jamann et al., 2021) and likely represents a homeo-
static plasticity mechanism. Whether such geometric AIS plasticity is regulated by ChCs is not known. 
Interestingly, ChC boutons face postsynaptic sites where cisternal organelles are located with microm-
eter precision (Schneider-Mizell et al., 2021; Benedeczky et al., 1994). As cisternal organelles are 
implicated in calcium signaling and AIS plasticity (Schlüter et al., 2017), ChCs may thus effectively 
influence these events. In this scenario, ChC activation could prevent homeostatic AIS shortening of 
L2/3 PyCs if their activity occurs during behaviorally relevant, arousal-inducing events. Testing this 
hypothesis would require, for example, studying the consequences of synchronous or asynchronous 
activation of ChCs and PyCs on AIS plasticity. The emerging availability of mouse models to genet-
ically target ChCs (Schneider-Mizell et al., 2021; Tasic et al., 2018; Lu et al., 2017; Dudok et al., 
2021; Daigle et al., 2018) and novel live markers of the AIS (Thome et al., 2023) are making such 
experiments possible.

In conclusion, our comprehensive study of the function and connectivity of ChCs in V1 reveals 
that ChC activity is primarily driven by arousal-inducing events such as unexpected visual stimuli, 
visuomotor mismatch, and locomotion. We also observed remarkable plasticity of ChC responses 
by visuomotor experience, as well as in their innervation of the AIS. Interestingly, our results indicate 
that in vivo, ChCs do not exert strong control over AP generation at the AIS, but only provide a weak 
inhibitory influence on PyC activity. Future experiments may reveal whether ChCs provide a gating 
signal for AIS plasticity and elucidate the underlying mechanisms.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers
Additional 
information

Strain, strain background (Mus musculus, 
male and female) Vipr2-Cre; C57BL/6J Jackson Laboratories 031332

Strain, strain background (Mus musculus, 
male and female) Pvalb-T2A-FLpO-D; C57BL/6J Jackson Laboratories 022730

Strain, strain background (Mus, musculus, 
male and female) AI65(RCFL-tdT)-D; C57BL/6J Jackson Laboratories 021875

Strain, strain background (Mus musculus, 
male and female) Rbp4-Cre; C57BL/6J GENSAT project KL100

Strain, strain background (Mus musculus, 
male and female) CBA/JRj Janvier Labs

Transfected construct (adeno-associated 
virus) AAV9-CaMKIIa-GCaMP6f Addgene 100834-AAV9

Transfected construct (adeno-associated 
virus) AAV1-CAG-flex-mRuby2-GCaMP6f Addgene 6719-AAV1

Transfected construct (adeno-associated 
virus) AAV1-hSyn1-GCaMP6f Addgene 100837-AAV1

Transfected construct (adeno-associated 
virus) AAV9-CaMKIIa-jGCaMP8m VVF Zurich v630-9

Transfected construct (adeno-associated 
virus)

AAV-PHP.eB-shortCAG-dlox-
GCaMP6f(rev)-dlox VVF Zurich v657-PHP.eB

Transfected construct (adeno-associated 
virus) AAV5-hDlx-DIO-eYFP-t2A-TVA Dr. Seungho Lee

Transfected construct (adeno-associated 
virus) AAV9-hDlx-DIO-oG Dr. Seungho Lee
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Reagent type (species) or resource Designation Source or reference Identifiers
Additional 
information

Transfected construct (rabies virus) Rbv-∆G-mCherry Charite Berlin BRABV-001

Transfected construct (adeno-associated 
virus)

AAV1-hDlx-dlox-hKORD-mCyRFP1(rev)-
dlox VVF Zurich v326-1

Transfected construct (adeno-associated 
virus) AAV1-hDlx-dlox-mCyRFP1(rev)-dlox VVF Zurich v313-1

Transfected construct (adeno-associated 
virus) AAV9-CaMKIIa-ChR2-eYFP Addgene 26969-AAV9

Transfected construct (adeno-associated 
virus)

AAV1-hDlx-dlox-ChrimsonR-
tdTomato(rev)-dlox VVF Zurich v674-1

 Continued

Mice
All experiments were approved by the institutional animal care and use committee of the Royal Neth-
erlands Academy of Arts and Sciences under Central Committee Animal experiments (CCD) licenses 
AVD 80100 2017 1045, AVD 80100 2022 15934, and AVD 80100 2022 15935, Academy of Arts and 
Sciences. We used both male and female mice for all experiments. For a subset of tunnel experiments, 
we used Vipr2-Cre mice crossed with Pvalb-T2A-FlpO-D and AI65(RCFL-tdT)-D (Jackson Laborato-
ries, https://www.jaxmice.jax.org/, strain 031332, 022730, and 021875, respectively, Schneider-Mizell 
et al., 2021; Daigle et al., 2018). For experiments with natural images (Figure 3), we used Vipr2-Cre 
mice crossed with CBA/JRj (Janvier labs) mice for targeting ChCs and L2/3 PyCs and Rbp4-Cre mice 
(line KL100, GENSAT project) for targeting L5 PyCs. We used Vipr2-Cre mice for all other experiments. 
Mice were group housed under a 12 hr reversed day/night cycle and provided with ad libitum access 
to food. Mice were water-deprived during the training and imaging phase for the virtual tunnel task. 
Before and after the training phase mice had ad libitum access to water. Experiments were performed 
in the dark phase. Mice had access to a running wheel in their home cage throughout the duration of 
the experiment.

Viral injections and window surgery
For all cranial surgical procedures, mice were anesthetized with isoflurane (4% induction, 1.6% main-
tenance in oxygen). During the surgeries, temperature was maintained at 37 degrees with euthermic 
pads and eyes were protected from light and drying using Cavasan eye ointment. For viral injec-
tions targeting L2/3 in all experiments except those used for CNN modeling, the skull was exposed, 
three small craniotomies were drilled in the skull overlying right V1 (centered around 2.9 mm lateral, 
0.5 mm anterior to lambda), and one injection of 70–120 nl virus (titer ~10E12 viral genomes per 
ml) in each craniotomy at a depth of approximately 250 µm was made. We used one or more of 
the following viruses as indicated in the figures: AAV9-CaMKIIa-GcaMP6f, AAV1-CAG-flex-mRuby2-
GcaMP6f, AAV1-hSyn1-GcaMP6f, AAV-PHP.eB-shortCAG-dlox-GcaMP6f(rev)-dlox, AAV5-hDlx-DIO-
eYFP-t2A-TVA, AAV9-hDlx-DIO-oG, Rbv-∆G-mCherry, AAV1-hDlx-dlox-hKORD-mCyRFP1(rev)-dlox, 
AAV1-hDlx-dlox-ChrimsonR-tdTomato(rev)-dlox, AAV9-CaMKIIa-ChR2-eYFP (also see Key resources 
table). For L2/3 CNN model experiments (Figure  3) we drilled 7 holes across the visual cortex 
(centered around 2.9 mm lateral, 0.5 mm anterior to lambda) and injected 70–120 nl virus (AAV9-
CaMKIIa-GcaMP6f and AAV1-hDlx-dlox-mCyRFP1(rev)-dlox, titer ~0.7 × 10E12 viral genomes per ml) 
across two depths (200 and 400 µm). For L5 CNN model experiments (Figure 3), we performed i.v. 
injections in the tail vein of awake body-restrained mice using 125 µl virus (AAV-PHP.eB-shortCAG-
dlox-GcaMP6f(rev)-dlox, titer ~3.4 × 10E12 viral genomes per ml). All mice were allowed to recover 
from viral injections for 2 weeks.

For the cranial window surgery, mice were implanted with a double (3+4 mm diameter) or triple 
(4+4+5 mm diameter, for L2/3 CNN experiments) glass window on the center of V1. To allow head 
fixation, mice were implanted with a custom metal head ring. The glass window and head ring were 
fixed to the skull using dental cement. At least 1 week after surgery, mice were handled and habituated 

https://doi.org/10.7554/eLife.91153
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to being head immobilized in our setup until they sat comfortably and started running regularly on 
their own (typically ~5 sessions).

Visual stimuli and virtual tunnel
All visual stimuli for two-photon imaging were presented on a gamma-corrected full HD LED monitor 
using OpenGL and Psychophysics Toolbox 3 running on MATLAB (Mathworks). The monitor was posi-
tioned 15 cm from the mouse. For passive visual stimulation before and after training, we used full 
screen square gratings (0.05 cpd) of different contrasts (0.05–0.1–0.2–0.4–0.6–0.8–1) moving in one 
of eight different directions (45 degrees apart, 1 cps). Stimuli were presented for 1 s with a random 
inter-trial interval of 4–6 s and repeated a minimum of eight times each.

To model visual RF selectivity using the CNN model, we used 3600 unique images from 720 classes 
taken from the THINGS database (Hebart et al., 2019). In order to test reliability across repetitions 
of the same stimuli and model cross-validated correlations, an additional 40 unique images were 
repeated 10 times. Individual images were composed of two square images from the same category, 
blended to cover the whole screen. Images were shown for 0.5 s, followed by a delay of 0.5 s where 
mice viewed a gray screen. CNN experiments were performed on naive mice.

For our virtual reality setup, we measured absolute running speed via a rotary encoder, which 
enabled real-time rendering of the virtual corridor. The left half of the corridor was displayed on a 
monitor positioned at a 45 degree angle and viewed through a mirror, giving the perception of a 
symmetrical tunnel. The virtual environment was created using Psychophysics Toolbox 3 and OpenGL 
running on MATLAB. The corridor was 100 cm long and its walls were covered in a black and white 
Gaussian noise texture, with visual stimuli superimposed. This included three vertical gratings and 
three checkerboard stimuli placed 11 cm apart between the distances of 22 and 77 cm (Figure 4B). 
Following a run through the visual part of the corridor, mice were exposed to a luminance-matched 
gray screen, followed by an 8 kHz auditory cue after 1 s, and then received a 5 µl water reward 2 s later. 
Mice were trained over a minimum of six sessions, with one session per day, until they consistently 
completed over 70 trials. Mice continued to be trained in-between imaging sessions until the exper-
iment was completed. For open loop experiments, visual flow speed was set at a constant 20 cm/s. 
Visuomotor mismatches were only introduced during the experimental sessions and were achieved 
by briefly halting the visual flow for 0.5 s at random locations in the visual section of the tunnel where 
visual stimuli appeared (between 20 and 80 cm). Mismatches were restricted to periods where the 
mouse was running during closed loop sessions and periods where the mouse was stationary during 
open loop sessions.

Two-photon calcium imaging
Data collection
Two-photon imaging experiments were performed on a two-photon microscope (Neurolabware) 
equipped with a Ti-sapphire laser (Mai-Tai ‘Deepsee’, Spectraphysics; wavelength, 920  nm) and a 
16×, 0.8 NA water immersion objective (Nikon) at a zoom of 1.6× for L2/3 imaging and a zoom of 
2× for L5 imaging. The microscope was controlled by Scanbox (Neurolabware) running on MATLAB. 
Images were acquired at a frame rate of 15.5 or 31 Hz. In some sessions, we performed dual-plane 
imaging at 31 Hz using an electrically tunable lens (OptoTune), resulting in an effective frame rate of 
15.5 Hz per plane. For L2/3 experiments, somatic imaging was performed at ~150–300 µm depth. 
For L5 experiments, we recorded apical dendrites at a depth of ~200 µm. Pupil size and position was 
tracked at the imaging frame rate using an IR camera (Dalsa Genie).

Preprocessing
We used the SpecSeg toolbox for preprocessing as described in detail before (de Kraker et  al., 
2022). In short, we performed rigid motion correction using NoRMCorre (Pnevmatikakis and Giovan-
nucci, 2017) followed by automated region-of-interest (ROI) selection based on cross-spectral power 
across pixels. After manual refinement, raw ROI signals were extracted and corrected for neuropil 
as described before (de Kraker et  al., 2022) by subtracting the average pixel values in an area 
surrounding each ROI multiplied by 0.7. ΔF/F traces were calculated as ΔF/F = (F – F0)/F0, in which 
F0 represents a moving baseline (10th percentile over 5000 frame windows). Matching of chronically 
recorded neurons was performed using the chronic matching module of SpecSeg.

https://doi.org/10.7554/eLife.91153
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Passive sessions
For comparing single-cell responses between conditions we first matched neurons that we chronically 
imaged across multiple sessions. For subsequent analyses we only selected neurons that we found 
back in all sessions relevant for that analysis (e.g. pre-post or pre-tunnel-post). For statistical analyses, 
we took the mean ΔF/F trace over all stimuli and computed the baseline-corrected average from 0.2 
to 1.2 s after stimulus onset for each cell. Baseline correction (here and below) was performed by 
subtracting the average ΔF/F before stimulus onset (t<0 s) from the average trace. We removed all 
trials in which the running speed exceeded 1 cm/s anywhere from 1 s before until 4 s after stimulus 
onset.

To correlate activity with estimates of arousal, mice were allowed to freely run or rest in front of 
a gray monitor for ~10 min. We computed the correlation coefficient between calcium activity of 
each cell with running speed and pupil size using the ‘corr’ function in MATLAB. For pairwise correla-
tions between neurons within each cell type, we computed the average correlation coefficient during 
stationary periods (running speed <1 cm/s) for each cell with all other cells of that type within the field 
of view. For displaying purposes (Figure 2B), we z-scored single-cell traces over the entire 10 min 
session.

For orientation and direction tuning we took the baseline-corrected average from 0.2 to 1.2  s 
after stimulus onset for each cell. For tuning calculations in Figure 2 and Figure 5, we only included 
contrasts higher than 0.7. For orientation tuning, the mean responses to the eight orientations (θ) 
were fit with a single circular Gaussian using nonlinear least-squares fitting as follows:
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where R(θ) is the response to the grating of orientation θ, C is an offset term, Rp is the response to 
the preferred orientation, angori(x)=min[abs(x), abs(x –180),abs(x+180)] wraps angular differences to 
the interval 0 to 90 degrees, and σ is the standard deviation of the Gaussian. For direction tuning, the 
mean responses to the eight directions (θ) were fit with a double circular Gaussian:
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where Rp is the fitted response at the preferred direction, Rn is the fitted response at the non-preferred 
direction, angdir(x)=min[abs(x), abs(x-360),abs(x+360)] wraps angular differences to the interval 0 to 
180 degrees.
Orientation tuning strength was calculated using 1-CircVar:
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where R(θk) is the response to the orientation θk (in radians). Direction tuning strength was also assessed 
using 1-CircVar using the following equation for directional data:
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where θk is the direction of the grating (in radians). Orientation and direction tuning responses were 
normalized to their maximum response before calculating 1-CircVar. Orientation and direction tuning 
curves used for plotting were computed by shifting the average tuning curve to the cell’s fitted 
preferred direction, followed by averaging across cells to compute cell type averages.

CNN model
As input to our CNN model we used spike probabilities generated using CASCADE (Rupprecht et al., 
2021) from neuronal responses to 3600 natural images. We took the single-cell average spike prob-
ability between 0 and 0.5 s after stimulus onset as the response to each natural image. To model the 
neuronal responses we employed a pre-trained CNN (Szegedy et al., 2014) (‘Inception v1’) and fit a 
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mapping function to the activations of a target layer (Bashivan et al., 2019). In brief, for each neuron 
we learned a set of 2D spatial weights (‍Ws‍) with size equal to the size of a channel of the target CNN 
layer (i.e. the pixels) and a set of feature weights (‍Wf ‍) with size equal to the number of channels of 
the target CNN layer. The ‍Ws‍ learned the spatial RF of each neuron, while the ‍Wf ‍ learned their feature 
selectivity as a weighted sum over the features of the pre-trained CNN layer. Thus, the predicted 
response of a neuron ‍n‍ (i.e. ‍

⌢yn‍) was computed according to:

	﻿‍
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∗ W

(
n
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where ‍Xl‍ are the batch-normalized activations from the target CNN layer ‍l‍. The weights were jointly 
optimized across all neurons to minimize the prediction error ‍Lerror‍ regularized by a combination of a 
smoothing Laplacian loss (‍LLaplace‍: see below) over ‍Ws‍ (Bashivan et al., 2019), to encourage smooth 
spatial RFs, a L1 loss (‍L1‍: see below) over ‍Wf ‍ to encourage sparsity/selectivity of the features (Cadena 
et al., 2019; Walker et al., 2019) and a L2 loss (‍L2‍: see below) over both parameters (Walker et al., 
2019; Bashivan et al., 2019). Thus the cost function was computed as follows:
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	﻿‍ L = Lerror + LLaplace + L1 + L2‍� (10)

where ‍yn‍ is the response of neuron ‍n‍. The hyper-parameters (‍l‍, ‍λs‍ , ‍λf ‍ , ‍λ2‍ and the learning rate) were 
selected using a grid search and then selecting the combination yielding the highest correlation in 
the training set. For all cell types, the best target CNN layer (‍l‍) was ‘conv2d2’. The model was imple-
mented in PyTorch (Paszke et al., 2021) and optimized with Adam (Kingma and Ba, 2017) in 600 
epochs with a batch size of 128 and early stopping (every 200 epochs, decay factor = 3).

After training, we generated the MEIs by optimizing the pixels in the input to maximize the response 
of each model neuron independently. To ensure the stability and interpretability of the MEIs, we 
introduced preconditioning and regularizations to avoid high-frequency artifacts (Olah et al., 2017), 
and specifically frequency penalization and transformations (padding, jittering, rotation, and scaling). 
Optimization of the MEIs was done using Lucent (i.e. PyTorch implementation of Lucid, Olah et al., 
2017) with Adam (learning rate = 1e-2, weight decay = 1e-3) in 50 epochs. To generate MEIs for 
combinations of L5 PyCs (Figure 3—figure supplement 1F), we first randomly chose 10 starter L5 
PyCs. On each iteration we then added five random L5 PyCs (except for the first iteration, where we 
added four) and optimized a ‘composite MEI’ by maximizing the summed responses from all neurons.

Furthermore, for each neuron we computed a few metrics either directly on the data or by analyzing 
model responses to novel stimuli. The response strength of each neuron was computed by taking the 
maximum response of the time course averaged over all images, divided by the standard deviation 
of the response in the 200 ms before the stimulus onset. In addition to the 3600 images used for 
training, we also recorded responses to 40 images that were presented 10 times each (4000 images 
in total) to test the generalization performance of the model. We computed the selectivity to visual 
input as the sparsity of their response distribution (Zoccolan et al., 2007), going from 0 (not sparse) 
to 1 (maximally sparse) as follows:
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where ‍Ri‍ is the response to ith image and ‍N ‍ is the number of test images (40 here).
For population decoding, we performed LDA using the ‘fitcdiscr’ function in MATLAB on the 

neuronal responses to the 40 test images. For each decoding run, we trained an LDA decoder by 
randomly selecting 80% of the trials and then testing the decoder on the remaining 20% of trials. We 
repeated this procedure 50 times to account for variability between trials. For ChCs, we used the total 
population (n=34) and averaged the resulting 50 decoding accuracies. For L2/3 PyCs, we performed 
1000 iterations of 50 runs each by randomly subsampling 34 neurons on each iteration. For each iter-
ation we then averaged the 50 runs, resulting in a distribution of 1000 decoding accuracies. Statistical 
significance was determined using a permutation test of the average ChC decoding accuracy (12.55%) 
versus the distribution of 1000 L2/3 PyC accuracies. Chance level decoding was at 2.5% (40 images 
total).

We also computed the oracle correlation of each neuron by correlating the responses to multiple 
repetitions of the same 40 test images and then taking the average correlation (Walker et al., 2019). 
Only neurons with an oracle correlation higher than zero were included in the model. In order to test 
the performance of the model we correlated the predicted responses with the recorded neuronal 
responses to the 40 test images (not used for training). The resulting ‘cross-validation correlations’ 
were largely identical to the oracle correlations for all cell types (Figure 3—figure supplement 1B–C).

We computed the RF size as the full width at half maximum of a 2D Gaussian fitted to ‍Ws‍ of each 
neuron. Neurons with RF size >40 degrees were excluded from analysis.

We determined the orientation tuning by showing to the model neurons full-contrast Gabor grat-
ings with 8 different orientations (22.5 degrees apart), 5 SFs (from 0.02 to 0.08 cycles per degree), and 
2 phases (0 and 90 degrees). The OSI was computed using 1-CircVar as above.

For SF tuning we used 12 SFs (0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.6). The 
preferred SF was defined as the SF at which the max response for each neuron occurred.

We measured contrast sensitivity using full-screen gratings of increasing contrast (0.05, 0.1, 0.2, 
0.4, 0.6, 0.8, 1) followed by calculating a linear fit across the contrast tuning responses. We took the 
slope of the fit as the contrast sensitivity for each neuron.

For pairwise correlations of spike probabilities between neurons within each cell type, we computed 
the average correlation coefficient during stationary periods (running speed <1 cm/s) for each cell 
with all other cells of that type within the field of view.

Virtual tunnel
For the analysis of tunnel data, we removed trials that took longer than 15 s from start until reward 
delivery. To compute activity as a function of location in the tunnel (0–100 cm) we divided the tunnel 
into 50 bins of 2 cm each and averaged activity of all frames occurring in a bin, followed by averaging 
over trials for each cell. Activity for each cell in the non-visual part of the tunnel was time-locked to exit 
from the visual part until 9 s later and subsequently averaged over trials. For this analysis we removed 
all trials containing visuomotor mismatch events. Locomotion traces were made by averaging locomo-
tion speed across all trials for each session, followed by averaging normalized traces (between 0 and 
1) over mice. For single-cell average activity in the visual part of the tunnel we took the mean activity 
between 20 and 80 cm and subtracted the mean activity between 0 and 20 cm. For the non-visual 
part, we averaged the entire trace for each cell.

For clustering, we z-scored trial-averaged traces in the visual section of the tunnel from all PyCs 
as input for the ‘linkage’ function in MATLAB with ‘ward’ as method. We then performed clustering 
using the ‘cluster’ function with the optimal number of clusters as determined by silhouette evaluation 
of the traces. Since the result of silhouette evaluation could not exclude the possibility that only one 
cluster was optimal, we tested the separability of the V-PyCs and NV-PyCs clusters using a permutation 
test. In order to do this, we first computed an average trace combined for the visual and non-visual 
section for each cell. We then z-scored this trace, and computed the visual response by averaging the 
z-scored values between 20 and 80 cm in the visual section of the tunnel. This procedure therefore 
gave us a single visual responsiveness value for each cell. Next, we binned this distribution of visual 
responsiveness over neurons into n bins, and normalized the sum of all counts to 1, such that P and Q 
describe the discretized probability mass functions for the V-PyCs and NV-PyCs respectively. We then 
calculated the separability in visual responsiveness between the V-PyCs and NV-PyCs clusters using 
the Bhattacharyya distance (BD):

https://doi.org/10.7554/eLife.91153
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Here, Pi and Qi are the frequencies of samples in ‘visual response’ bin i. The real data we observed 
gave a BD of 0.4262. Finally, we quantified whether this separability value was higher than could be 
expected by chance, and therefore whether the V-PyCs and NV-PyCs groups indeed represented 
distinct clusters. To this end, we generated a distribution of 1000 randomized BD values obtained by 
shuffling the visual and non-visual responses of all cells, and repeating the procedure as described 
above. Statistical significance was determined using a permutation test of 0.4262 versus the distribu-
tion of 1000 shuffle-randomized populations.

We calculated mismatch responses after correcting for location of the mismatch events, as spatial 
location in the tunnel can modulate activity of V1 cells even when visual input is identical (Saleem 
et al., 2018; Fiser et al., 2016). First, we averaged activity across mismatch trials for each cell. For 
each mismatch event we then randomly subsampled from control trials (without mismatch events) 
at identical locations in the tunnel. We repeated this 100 times and subtracted the average trace 
over repetitions from the real mismatch trace before baseline-correcting for each neuron. Mismatch 
amplitude was calculated by taking the average of the corrected trace between 0.2 and 1.2 s after 
mismatch onset. We z-scored each neuron’s visual, non-visual, and visuomotor mismatch trace for 
display purposes only (Figure 4C).

Locomotion onset traces were based on running onsets in the non-visual part of the tunnel. Onsets 
were defined as the first frame in the non-visual section (and after reward delivery) where the average 
running speed was less than 5 cm/s in a 0.5 s interval preceding the frame, and more than 5 cm/s in 
the 2 s following the frame. Responses were defined as the baseline-corrected average between 0 
and 2 s after onset.

Closed loop visual flow onset traces were made by time-locking (rather than distance) each trial to 
the start of the visual section. Responses were quantified as the baseline-corrected average between 
0.5 and 2 s after trial onset, as the first 20 cm of the tunnel contained no visual stimuli. Only trials that 
took less than 10 s in the visual section were included in this analysis.

During open loop sessions, the running speed of the mice was uncoupled from visual flow speed, 
which was fixed at 20 cm/s and followed the regular trial structure. Open loop visual flow onsets were 
defined as the start of the visual section in trials where the mouse was stationary throughout the visual 
section. Open loop VF halts were defined as 0.5 s pauses in the VF during stationary trials in open loop 
condition. For comparison of closed loop mismatch with open loop VF halt we only included trials in 
closed loop condition during which locomotion speed at mismatch onset was between 5 and 30 cm/s 
such that the average onset speed was similar as during open loop VF halts (20 cm/s).

Correlations of ChC activity with V-PyCs and NV-PyCs were performed by computing a correlation 
coefficient on the average ΔF/F trace of the visual and non-visual section combined between pairs 
of cells. For each ChC, we then averaged the correlation coefficients of that ChC with all V-PyCs or 
NV-PyCs in that session.

Chemogenetic experiments
For passive chemogenetic experiments we used naïve mice injected with AAV9-CaMKIIa-GCaMP6f 
along with the inhibitory DREADD AAV1-hDlx-dlox-KORD-mCyRFP1 (KORD group) or AAV1-hDlx-
dlox-ChrimsonR-tdTomato (control group). We recorded activity of PyCs and ChCs for 15 min under 
gray screen conditions, after which mice were injected with SalB (10 mg/kg in saline, s.c.). Five minutes 
later, we again recorded activity for 15 min. Mice were allowed to run or rest freely. For the analysis of 
overall activity before and after injection of SalB, we calculated the average ΔF/F of all frames in both 
recordings for each cell, before averaging over cells for each type. Locomotion modulation curves 
were computed for each cell by averaging activity over all frames during which the mouse was running 
at defined speeds within a range. The first bin contained frames during which the mouse was fully 
stationary (speed =0 cm/s). All subsequent bins contained frames during which the running speed was 
between that bin and the previous bin (i.e., bin ‘10’ contained speeds 5–10 cm/s). Speeds >20 cm/s 
were not included in the analysis as several mice did not reach those speeds in either of the sessions. 
To get the final population curves we averaged over cells for each type. We computed a linear fit over 
all samples of activity and running speeds for each cell and session and took the coefficients estimates 
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as the intercept and slope. We then averaged over cells for each type. The LMI was calculated for 
each cell as follows:

	﻿‍
LMI = ∆F/Frun −∆F/Fstat

∆F/Frun + ∆F/Fstat ‍�
(13)

where ‍∆F/Frun‍ is the average activity during frames when the mouse was running (>1  cm/s) and 
‍∆F/Fstat‍ is the average activity during frames when the mouse was not running (<1 cm/s). We then 
computed a correlation coefficient between the LMI and the difference in ∆F/F due to ChC silencing.

To calculate whether individual neurons were significantly affected by the SalB injection, we 
compared activity before and after injection for each neuron by comparing the within-session differ-
ences in activity (random fluctuations within the pre-session) with the between-session differences in 
activity (pre versus post) using a permutation test as follows. First, to reduce the correlations between 
subsequent frames, we averaged activity in 30 frame (~2 s) bins, resulting in ‘n’ bins. Next, to calculate 
within-session differences in activity, we split the binned pre-session in two halves and calculated the 
difference in activity between both halves. We repeated this procedure ‘n’ number of times, circularly 
shifting the starting point for splitting the data by one bin on each iteration, resulting in a permuta-
tion distribution of n-bin intra-differences in activity. To calculate the between-session differences in 
activity, we used the same procedure but instead compared the first halves of the pre- and the post-
session. In addition, we randomized the starting point for splitting the data of the post-session. We 
computed significance for each cell using a permutation test on the averaged inter-difference activity 
values versus the intra-difference permutation distribution.

In vitro electrophysiology
At ~3 months of age, mice were sacrificed for preparation of acute brain slices containing V1. Mice 
were deeply anesthetized by application of pentobarbital s.p. (60 mg/kg bodyweight). They were 
perfused with oxygenated N-methyl-D-glucamine containining artificial cerebrospinal fluid (NMDG-
ACSF) containing (in mM) 92 NMDG, 30 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 20 HEPES, 25 glucose, 
0.5 CaCl2, 10 MgCl2 (saturated with 95% O2 and 5% CO2, pH 7.4) and subsequently decapitated. The 
brain was swiftly removed and submerged in NMDG-ACSF (composition, see above). 300-μm-thick 
coronal slices were cut using a Leica VT 1200S vibratome (Leica Biosystems, Wetzlar Germany). Slices 
were allowed to recover for 15 min at 35°C in NMDG-ACSF. They were subsequently transferred to 
a holding chamber and kept at room temperature in holding ACSF containing (in mM) 125 NaCl, 25 
NaHCO3, 1.25 NaH2PO4, 3 KCl, 25 glucose, 1 CaCl2, 6 MgCl2, and 1 kynurenic acid (saturated with 95% 
O2 and 5% CO2, pH 7.4) until recordings began. Recordings were carried out at ~32°C. Slices were 
transferred to an upright microscope (BX61WI, Olympus Nederland BV) and constantly perfused with 
oxygenated ACSF containing (in mM) 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 3 KCl, 25 mM glucose, 2 
CaCl2, and 1 MgCl2. The chamber was perfused at a rate of 3 ml/min. Cells were visualized with a 40× 
water immersion objective (Achroplan, NA 0.8, IR 40×/0.80 W, Carl Zeiss Microscopy) with infrared 
optics and oblique contrast illumination. Patch pipettes were pulled from borosilicate glass (Harvard 
Apparatus) to an open tip resistance of 4–5 MΩ and filled with intracellular solution containing (in mM) 
130 K-gluconate, 10 KCl, 10 HEPES, 4 Mg-ATP, 0.3 Na2-GTP, and 10 Na2-phosphocreatine (pH 7.25, 
~280 mOsm) for recordings of ChCs. Patch-clamp recordings were either performed with an Axopatch 
200B (Molecular Devices) or a Dagan BVC-700A (Dagan Corporation). Signals were analogue low-pass 
filtered at 10 kHz (Bessel) and digitally sampled at 50 kHz using an A-D converter (ITC-18, HEKA 
Elektronik Dr. Schulze GmbH) and the data acquisition software Axograph X (v.1.5.4, Axograph Scien-
tific). Bridge-balance and capacitances were fully compensated in current clamp. Series resistance 
was compensated to >75% in voltage clamp. The ChCs were identified as mCyRFP-positive neurons 
in L2/3 of V1 which had a characteristic high-frequency firing pattern (Figure 1G). Biocytin (3 mg/ml, 
Sigma-Aldrich) was routinely added to the intracellular solution to allow for post hoc confirmation of 
cell morphology and localization (Figure 1F).

Optogenetic stimulation
For mapping of RSC inputs to ChCs, we patched ChCs that were surrounded by a high density of 
eYFP+ axons. We flashed brief pulses of blue light (10% laser power, resulting in an output intensity 
of 5.7 mW) with the 470 nm laser line of a laser diode illuminator (LDI-7, 89 North, USA) through the 
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imaging objective above the cell soma and apical dendrites. We recorded the postsynaptic currents in 
voltage-clamp mode with a –60 mV holding potential and PSPs were acquired in current clamp mode 
at I=0 holding. For confirmation of monosynaptic inputs (Cruikshank et al., 2010), we first washed in 
TTX to the bath (5 min) to block all AP-induced synaptic release and measured the optogenetically 
induced PSPs. Next, we applied for 5 min the specific sodium channel blocker TTX (500 nM, Tocris) 
in combination with potassium channel blocker 4-AP (1 mM, Tocris) to facilitate transmitter release at 
monosynaptic connections from RSC to ChC and recorded the PSP amplitudes (Figure 1H). For char-
acterization of the synaptic connection type (facilitating or depressing), we stimulated with a series of 
five pulses (5 ms, 20 Hz). We made use of an AAV9-serotyped vector, which has been shown to prevent 
the artificial synaptic depression during repeated optogenetic stimulation that can occur using other 
AAV serotypes (Jackman et al., 2014).

Paired recordings
For paired recordings, we first established a ChC recording and then made patch-clamp recording 
from a nearby PyCs within <50 µm which showed also visually identified bouton cartridges. Pyramidal 
neurons were filled with high chloride internal solution containing (in mM) 70 K-gluconate, 70 KCl, 0.5 
EGTA, 10 HEPES, 4 MgATP, 4 K-phosphocreatine, 0.4 GTP, pH 7.3 adjusted with KOH, 285 mOsmol. 
Next, we evoked single APs in one cell type with brief current injections (3 ms) and recorded PSPs in 
the other at their resting membrane potential (I=0). Afterward the stimulation of APs was switched 
to the other neuron to determine reciprocal connectivity. Only responses with 2× the SD of baseline 
noise (typically 50 µV) were considered being connected.

Histology and AIS plasticity quantification
For ChC bouton quantification we used five naive and three trained mice injected with AAV9-CaMKII-
GCaMP6f and AAV5-hSyn1-flex-ChrimsonR-tdTomato. For AIS quantification, we used an additional 
two trained mice injected with AAV9-CaMKII-GCaMP6f and AAV1-CAG-flex-mRuby2-GCaMP6f. Mice 
were perfused with 15 ml of ice-cold PBS followed by 30 ml of 4% paraformaldehyde (PFA). The brains 
were extracted and post-fixed for 2 hr in 4% PFA at 4°C. Brain were cut in 50 µm slices and selected 
for staining such that there was ~200 µm between slices. A total of two to three slices containing V1 
were used for staining per mouse. We used the following antibodies: Guinea pig-anti-RFP (Synaptic 
Systems, #390004, 1:500), Rabbit-β-IV-Spectrin (Biotrend, provided by Maren Engelhardt, 1:500), 
Goat-anti-guinea pig Alexa Fluor 594 (Thermo Fisher, #A11076, 1:1000), Goat-anti-rabbit Alexa Fluor 
647 (Thermo Fisher, #A32733, 1:1000). For the staining, slices were blocked for 90 min in 10% normal 
goat serum (NGS) and 0.5% Triton in PBS followed by incubation in primary antibodies overnight (5% 
NGS and 0.5% Triton in PBS). After three washing steps, the slices were incubated with secondary 
antibodies for 120 min at room temperature. After three more washing steps, slices were mounted 
on SuperFrost Plus glass slides (Fisher Scientific) using fluorescence-preserving mounting medium 
(Vectashield). Imaging was performed with a Leica SP8 confocal microscope using a 63× N.A. 1.40 
oil-immersion objective at a frame size of 1024×1024 pixels. We collected z-stack images at 0.5 µm 
steps. Z-stacked images were processed in Neurolucida (MBF Bioscience) and AISs and ChC boutons 
were manually traced under blinded conditions. ChC varicosities were defined as a bouton wherever 
the axon showed clear thickening alongside the AIS. We only included AISs that had a clear beginning 
and end.

Retrograde tracing
Adult Vipr2-Cre mice were unilaterally injected with 90  nl of AAV5-hDlx-DIO-eYFP-t2A-TVA and 
AAV9-hDlx-DIO-oG (Lee and Kim, 2019) in V1 (2.8 mm lateral and 0.5 mm anterior from lambda at a 
depth of 300 µm) followed by RabV-envA-mCherry 26 days later. After 7 days, mice were perfused as 
described above and their brains post-fixed overnight in 4% PFA at 4°C. After cryoprotection (48 hr in 
30% sucrose at 4°C) and snap freezing in liquid nitrogen slices were stored at –80°C before sectioning. 
We made 75-µm-thick coronal slices using a cryostat (CM3050 S, Leica) and mounted sections on 
superFrost Plus glass slides (Fisher Scientific) using Vectashield mounting medium. Imaging for quan-
tification was performed with an Axioscan.Z1 slide scanner (ZEISS, Germany) at 20× and a Leica SP8 
confocal microscope using a 40× (NA 1.4) and 63× (NA 1.40) oil-immersion objective at a resolution 
of 1024×1024.
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To quantify the mCherry+ input cells, we followed the QUINT workflow (Yates et al., 2019). First, 
we manually inspected and organized individual images using QuPath and converted them from .czi 
to .png and .tif in MATLAB. Next, we trained a pixel/object classifier in Ilastik (Berg et al., 2019) on 
a representative subset of images from each mouse and used it to subsequently segment all images 
for all mice. The output from Ilastik was then recolored using ImageJ. Finally, we registered the slice 
images to the Allen Brain Reference Atlas using quickNII (Puchades et al., 2019) and quantified them 
using Nutil and MATLAB.

Statistical analysis
All statistical details for each experiment are shown in figures and figure legends and in Supple-
mentary file 1. Statistics on slice physiology experiments were performed using Prism9 (GraphPad 
Software). All other statistical analyses were performed using LMEM (‘fitlme’ function in MATLAB) or 
permutation tests. For LMEM, we considered the response parameter (e.g. visual response magni-
tude) as a fixed effect and session/mouse as random effect. LMEM takes into account that samples 
(e.g. neurons) might not be fully independent (e.g. they were obtained from the same session/mouse). 
We performed a one-way ANOVA on the LMEM followed by a post hoc coefTest using Tukey’s HSD 
to correct for multiple comparisons. Box plots represent the median, the 0.25 and 0.75 quantiles, and 
the 95% confidence interval of the distributions.
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