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Abstract Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be 
resistant to the drug prior to exposure, that is, possess intrinsic drug resistance. However, we lack 
target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic 
drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology 
could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 
cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to 
bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer 
cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional 
single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- 
and computation-based profiling pipeline identified morphological features that differed between 
resistant and sensitive cells. We used these features to generate a morphological signature of 
bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 
clones (five resistant and five sensitive) that had not been included in the signature training dataset, 
and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. 
This signature predicted bortezomib resistance better than resistance to other drugs targeting the 
ubiquitin-proteasome system, indicating specificity for mechanisms of resistance to bortezomib. Our 
results establish a proof-of-concept framework for the unbiased analysis of drug resistance using 
high-content microscopy of cancer cells, in the absence of drug treatment.

Editor's evaluation
In this work, the authors have profiled the morphological signatures of the HCT116 cell line and 
correlated them with bortezomib treatment response, which could provide novel insight into the 
research of resistance in multiple myeloma from the perspective of morphology. The findings are 
supported by solid evidence and sufficient experimental validation.

Introduction
Targeted cancer therapies often fail due to drug resistance, which makes determining the drug sensi-
tivity of populations of cancer cells requisite for timely and effective treatment (Garraway and Jänne, 
2012; Pisa and Kapoor, 2020; Vasan et al., 2019). Resistance is complex and can be categorized as 
acquired, manifesting in the context of prolonged treatment, or intrinsic, pre-existing in the cancer cell 
population (Gottesman et al., 2016). Most studies of resistance focus on the drug’s known target(s) 
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or expression levels of drug efflux pumps (Garraway and Jänne, 2012; Gottesman et al., 2016). 
However, we currently lack unbiased methods of identifying drug resistance in cells especially prior 
to treatment.

Bortezomib is an anticancer drug commonly used to treat multiple myeloma and nearly half of 
multiple myeloma patients show no initial response to bortezomib therapy, indicating intrinsic resis-
tance (Chen et al., 2011; Gonzalez-Santamarta et al., 2020; Mitsiades et al., 2004; Hideshima 
et al., 2001; Vincenz et al., 2013). Bortezomib resistance can be attributed to targeted mechanisms 
such as mutations in the bortezomib-binding pocket of the proteasome subunit (PSMB5) and overex-
pression of proteasome subunits (Barrio et al., 2019; Franke et al., 2012; van de Ven et al., 2008; 
Wacker et al., 2012) as well as non-specific mechanisms, such as upregulation of prosurvival or anti-
apoptotic pathways and enhanced cell adhesion to the extracellular matrix (Gonzalez-Santamarta 
et al., 2020; Hideshima et al., 2007). A priori knowledge of tumor cells’ susceptibility to candidate 
therapeutics could aid in identifying effective treatment options, resulting in fewer relapses and failed 
treatments due to resistance. However, current methods for evaluating drug resistance depend on 
viability assays and sequencing, which may be limited in its usefulness without knowledge of the 
full spectrum of resistance-conferring genomic alterations (Wheler et al., 2014) or knowing specific 
mutations or indels in the target that suppress drug activity (Kapoor and Miller, 2017). Methods for 
determining tumor cell susceptibility prior to therapy are desirable.

A growing literature suggests that specific genomic alterations, treatment response, and prog-
nosis can be predicted from conventional hematoxylin and eosin tissue slides using machine learning 
(Cifci et al., 2022; Lee and Jang, 2022), indicating that image data holds promise for predicting 
drug resistance. High-content microscopy, which uses cell-based automated microscopy to capture 
information-rich images, has successfully categorized small molecule inhibitors by their mechanisms 
and targeted pathways (Ljosa et al., 2013; Perlman et al., 2004) and shown a relationship between 
morphological profiles and genetic perturbations (Rohban et al., 2017), including specific mutations 
associated with lung cancer (Caicedo et al., 2022). This profiling method often uses high-throughput 
microscopy, generating a large amount of image data from which thousands of quantitative, single-
cell morphological features can be extracted to characterize signals that could not be discovered 
using low-throughput methods and would otherwise be impossible to study by eye. However, high-
content microscopy has not been used to examine the features of resistance in the absence of drug 
treatment.

Here, we used Cell Painting (Bray et al., 2016), a multiplex, fluorescence microscopy assay that 
labels eight cellular components using six stains imaged in five channels, as an unbiased method to 
characterize the morphological differences between bortezomib-resistant and -sensitive cancer cells. 
We applied a reproducible imaging- and computation-based profiling pipeline to process the images 
and identify a high-dimensional cell morphology signature to predict bortezomib resistance that we 
evaluated using machine learning best practices. This morphological signature correctly predicted 
the bortezomib resistance of seven out of ten clones not included in the signature training dataset. 
Overall, our results establish a proof-of-concept framework for identifying unbiased signatures of 
drug resistance using high-content microscopy. The ability to identify drug-resistant cells based on 
morphological features provides a valuable method for characterizing resistance in the absence of 
drug treatment.

Results
Isolating and capturing Cell Painting profiles for HCT116-based 
bortezomib-resistant clones
We first isolated and characterized drug-resistant cells (Figure 1A). To isolate drug-resistant clones, 
we used an approach we have described previously (Kasap et al., 2014; Wacker et al., 2012) and 
the HCT116 cell line. These cancer cells express multidrug resistance pumps at low levels and are 
mismatch repair deficient, providing a genetically heterogeneous polyclonal population of cells (Papa-
dopoulos et al., 1994; Teraishi et al., 2005; Umar et al., 1994) allowing for isolation of drug-resistant 
clones in ~2–3 weeks. We hypothesized that a rapid selection of resistance could favor the isolation 
of clones with intrinsic resistance. To determine the appropriate drug concentrations to use in order 
to isolate drug-resistant clones, we performed proliferation assays on HCT116 parental cells with 
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our drugs of interest: bortezomib, ixazomib, or CB-5083 (Figure 1—figure supplement 1A–C and 
Figure 1—source data 1). We also isolated bortezomib-sensitive (wild-type; WT) clones by dilution 
of the HCT116 parental cell line and acquired two published bortezomib-resistant clones (BZ clones 
A and E) both with mutations in PSMB5 identified by RNA sequencing performed in previous work 
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Figure 1. Experimental design for using Cell Painting to examine morphological profiles of drug-resistant cells. 
(A) Graphic of the experimental workflow: we isolated drug-resistant clones by treating parental HCT116 cells 
with the desired drug and then expanded them for experiments. We isolated drug-sensitive clones by diluting 
HCT116 cells and then expanded them for experiments. We then performed proliferation assays on select 
clones to evaluate them for multidrug resistance. Next, we performed Cell Painting on both drug-resistant and 
-sensitive clones, using multiplexed high-throughput fluorescence microscopy of fixed cells followed by feature 
extraction and morphological profiling to search for features that contribute to a signature of drug resistance. (B) 
One representative field of view of cells labeled with six fluorescent dyes and captured in five channels used for 
morphological profiling with Cell Painting. Scale bars, 50 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. LD50s for HCT116 cells.

Source data 2. Cell line descriptions.

Figure supplement 1. Proliferation assays of HCT116 parental cells in drugs used to isolate resistant clones.

Figure supplement 2. Bortezomib-resistant clones do not display strong features of multidrug resistance.

https://doi.org/10.7554/eLife.91362


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Kelley et al. eLife 2023;12:e91362. DOI: https://doi.org/10.7554/eLife.91362 � 4 of 18

(Figure 1—source data 2; Wacker et al., 2012). We characterized the bortezomib-resistant clones 
and found that the median lethal doses (LD50s) for bortezomib were ~2.8- to ~9-fold that of HCT116 
parental cells (Figure 1—figure supplement 2B). In contrast, bortezomib-sensitive clones had LD50s 
for bortezomib that ranged from ~0.7- to~1.2-fold that of HCT116 parental cells (Figure 1—figure 
supplement 2A). Together these methods provided a total of twelve bortezomib-resistant, five 
ixazomib-resistant, five CB-5083-resistant, and twelve bortezomib-sensitive clones as well as HCT116 
parental cells for our experiments.

To screen for multidrug resistance, which might convolute a specific signature of bortezomib resis-
tance, we measured proliferation of the bortezomib-resistant and -sensitive clones in the presence 
of two drugs with different mechanisms of action: taxol (a microtubule poison) and mitoxantrone (a 
topoisomerase inhibitor) (Liu, 1989). Bortezomib-resistant and -sensitive clones treated with taxol 
had LD50s ranging from ~0.6- to~1.9-fold that of HCT116 parental cells (Figure 1—figure supple-
ment 2C and D). Treating cells with mitoxantrone, we found that the bortezomib-sensitive clones 
(Figure 1—figure supplement 2E) and most of the bortezomib-resistant clones had similar LD50s 
(Figure 1—figure supplement 2F). There was one exception (BZ06) that had an LD50 nearly 14-fold 
higher than that of HCT116 parental cells.

We next applied the Cell Painting assay to all these drug-sensitive and -resistant clones. Cell 
Painting captures signal in five imaging channels from six fluorescent dyes that stain cells for eight 
cellular components including mitochondria, actin, Golgi, plasma membrane, cytoplasmic RNA, 
nucleoli, endoplasmic reticulum, and DNA (Figure 1B; Bray et al., 2016). With these images, we 
used CellProfiler (Stirling et al., 2021) to extract single-cell morphological features from individual 
cells. The signal from each of the five channels was analyzed in the nucleus, cytoplasm, and total cell 
and characterized based on features (object parameters) such as signal intensity, shape of the object, 
texture of the staining pattern, etc. yielding a total of ~3500 features. These cellular features were 
combined and analyzed on a per well basis (well profiles) and then compared across cells and exper-
imental conditions to determine whether morphological features of drug resistance could be reliably 
detected in the absence of drug treatment.

A subset of morphological features contribute to the signature of 
bortezomib resistance
To examine whether there were any clear qualitative morphological differences between bortezomib-
resistant and -sensitive cells we chose HCT116 parental cells, bortezomib-sensitive clones WT01-
WT05, and bortezomib-resistant clones A, E, and BZ01-BZ05 for our initial studies. We treated 
cells with 0.1% DMSO (to allow for comparison with future experiments using drug-treated cells) 
and performed Cell Painting, staining fixed cells and imaging as per the published protocol (Bray 
et al., 2016). We observed cellular heterogeneity within each clone as well as between clones with 
similar bortezomib sensitivities (Figure 2A and Figure 2—figure supplement 1). This heterogeneity 
obscured any potential morphological differences between clones and prevented us from qualita-
tively distinguishing bortezomib-resistant from -sensitive clones by eye, supporting the need for high-
content quantitative analysis.

We then pre-processed profiles to remove low-variance and highly correlated features, and 
population-averaged single cell measurements at the well level to generate well profiles (see Mate-
rials and methods). The morphological profiles of bortezomib-resistant and bortezomib-sensitive cells 
did not cleanly distinguish clones based on bortezomib resistance (Figure 2—figure supplement 2A). 
We saw a similar failure to distinguish clones based on bortezomib sensitivity after a short, 4 hr treat-
ment with 7 nM bortezomib (Figure 2—figure supplement 2B), suggesting that if there is a morpho-
logical difference between bortezomib-resistant and -sensitive cells, further feature refinement would 
be needed for its identification.

Each observed morphological measurement results from a combination of both technical and 
biological variables. It is therefore important to control and test for technical variables as these can 
confound subtle biologically relevant signatures. Using bortezomib-sensitive clones WT01-05 and 
bortezomib-resistant clones BZ01-05 to quantify and reduce the impact of technical variables, we 
fit a linear model to each morphological feature adjusting for technical variables (experimental run/
batch, incubation time, cell count/density, clone ID) and biological variables (resistance status) (see 
Materials and methods). We then discarded morphological features with variances that correlated 

https://doi.org/10.7554/eLife.91362
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with experimental run (batch), incubation time (4 or 13 hours with 0.1% DMSO), cell density, or those 
features that varied between two or more pairs of bortezomib-sensitive clones (clone ID) (Figure 2—
figure supplement 3A-E). Of the remaining morphological features, we only considered those 
that varied based on the resistance status of a clone (Figure 2B). This resulted in 45 morphological 
features that significantly contributed to a clone’s bortezomib resistance (Figure 2—source data 1). 
We used these 45 features to compute a rank-based resistance score or ‘Bortezomib Signature’ for 
each well profile based on the direction-sensitive method called singscore (Foroutan et al., 2018). 
Singscore ranks these 45 resistance-related features on a per sample basis and calculates a normal-
ized score between –1 and 1, with higher values expected for bortezomib-resistant clones and lower 
values expected for bortezomib-sensitive clones. With the exception of some texture-based features, 
the Bortezomib Signature features were largely independent, displaying low pairwise correlation 
(Figure 2—figure supplement 4). We then examined the grouping of features across compartments 
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Figure 2. A subset of morphological features contributes to the signature of bortezomib resistance. (A) Representative fixed fluorescence microscopy 
images of two bortezomib-sensitive (WT02 and WT03) and two bortezomib-resistant (BZ02 and BZ03) clones stained and imaged as per the Cell 
Painting protocol. Channels are labeled as mito (mitochondria; magenta), AGP (actin, golgi, plasma membrane; yellow), RNA (ribonucleic acid; green), 
ER (endoplasmic reticulum; orange), and DNA (deoxyribonucleic acid; blue). See Figure 2—figure supplement 1 for single-channel images. Scale bars, 
50 μm. (B) Volcano plot of the variability of morphological features (β) by resistance status. Y-axis -log10p values are from Tukey’s Honestly Significant 
Difference test score (see Materials and methods). Red circles are features included in the final signature of resistance and gray circles are features 
excluded from the final signature. Features above the red dashed line (-log10[0.05/number of unique features]) were considered significantly varying and 
those that had not been excluded as technical variables (Figure 2—figure supplement 3) were included in the signature of bortezomib resistance. n = 
6 independent experiments (biological replicates).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. A subset of CellProfiler features contribute to the signature of bortezomib resistance.

Figure supplement 1. Individual channels of bortezomib-sensitive and -resistant clones imaged by Cell Painting.

Figure supplement 2. Similarity clustering is insufficient to distinguish bortezomib-resistant from -sensitive clones.

Figure supplement 3. Technical variables are controlled for and excluded from analyses.

Figure supplement 4. Features contributing to the Bortezomib Signature do not universally correlate.

Figure supplement 5. Bortezomib Signature visualized by CellProfiler features.

Figure supplement 6. Well location does not strongly correlate with Bortezomib Signature.

Figure supplement 7. Bortezomib Signature identifies resistant clones and not technical variables.

https://doi.org/10.7554/eLife.91362
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and channels and found radial distribution features were higher in resistant cells (Figure 2—figure 
supplement 5). Anticipating well location as a possible technical artifact, we plated our cells in a 
repeating serpentine pattern, ensuring that each clone would be imaged in multiple locations on a 
plate (Figure 2—figure supplement 6A). We found that the pattern of Bortezomib Signatures did not 
correspond to well position relative to the plate (Figure 2—figure supplement 6B), indicating that 
the well position for each clone was not strongly contributing to its Bortezomib Signature. In addition, 
we found that the Bortezomib Signature correlated with the resistance status of clones and not tech-
nical variables (Figure 2—figure supplement 7). These data suggest that our analysis pipeline and 
signature building process minimized technical artifacts.

Cell morphology predicts the bortezomib response of multiple clones 
across datasets
To evaluate the performance of the Bortezomib Signature, we used machine learning best practices, 
separating our data into training, validation, test, and holdout datasets (Figure 3—source data 
1; see Materials and methods). The data initially used to create the Bortezomib Signature, which 
included well-based morphological profiles from clones WT01-05 and BZ01-05, was designated as 
the training dataset. The validation dataset was composed of well profiles from clones WT01-05 
and BZ01-05 that were not used to generate the Bortezomib Signature but were collected on the 
same plates as the well profiles used for the training dataset. The test dataset was composed of well 
profiles from HCT116 parental cells and bortezomib-resistant clones A and E; these cells were not 
included in the training dataset, but their well profiles were collected on the same plates as those 
used for the training dataset. The holdout dataset was a separate plate and contained HCT116 
parental cells, bortezomib-sensitive clones WT01-05, and bortezomib-resistant clones A, E, and 
BZ01-05. These datasets allowed us to test generalizability across clones and plates for the Borte-
zomib Signature.

We next examined whether the Bortezomib Signature was able to predict the bortezomib resistance 
of a clone based on morphological profiling data (Figure 3A–E and Figure 3—figure supplement 1A 
and B). We called the clone bortezomib-resistant if the median Bortezomib Signature of all replicate 
well profiles was greater than zero and bortezomib-sensitive if the median Bortezomib Signature was 
less than zero. In the training dataset, the Bortezomib Signature correctly predicted the bortezomib 
resistance of all ten clones, with median Bortezomib Signatures for eight out of ten clones beyond the 
95% confidence interval for the randomly permuted data (Figure 3A). The accuracy of the Bortezomib 
Signature was 88% while the average precision was 81% for the training dataset (Figure 3—figure 
supplement 1A and B) (see Materials and methods). The signature performed similarly well in the 
validation dataset (Figure 3B), with an accuracy of 92% and an average precision of 89% (Figure 3—
figure supplement 1A and B). In the test dataset the Bortezomib Signature correctly predicted the 
bortezomib resistance of all clones, although only HCT116 parental cells had a median Bortezomib 
Signature outside the 95% confidence interval for the randomly permuted data (Figure  3C). The 
test dataset had an accuracy of 80% and an average precision of 68% (Figure 3—figure supple-
ment 1A and B). Similarly, in the holdout dataset the Bortezomib Signature had an accuracy of 78% 
and an average precision of 69% (Figure 3—figure supplement 1A and B), and correctly predicted 
the bortezomib resistance of twelve out of thirteen clones, with WT01 misclassified as bortezomib-
resistant (Figure 3D). In the holdout dataset, four of the twelve correctly characterized clones had 
median Bortezomib Signatures outside the 95% confidence interval for the randomly permuted data. 
The Bortezomib Signature performed better than random chance in all testing conditions, as demon-
strated by comparison with the mean accuracy and average precision for the randomly shuffled data 
(Figure 3—figure supplement 1A and B), and as reflected in receiver operating characteristic (ROC) 
curves, which describe the classification trade-off between true positive and false positive rates in 
predicting bortezomib resistance (Figure 3E). We then compared our linear-modeling approach to 
feature selection against other feature spaces and found that the Bortezomib Signature clusters same-
type clones (bortezomib-resistant vs. bortezomib-sensitive) with higher enrichment compared to the 
full feature space, standard feature selection (see Materials and methods), or a random selection of 
45 features (Figure 3—figure supplement 2). These data are consistent with the Bortezomib Signa-
ture being able to distinguish bortezomib-resistant from -sensitive clones better than random chance 
across datasets.

https://doi.org/10.7554/eLife.91362
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Bortezomib Signature has moderate specificity for bortezomib over 
other ubiquitin-proteasome system inhibitors
To examine whether the Bortezomib Signature was specific to the drug bortezomib or was a general 
signature of UPS-targeting drug resistance we performed Cell Painting on HCT116 clones that 
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Figure 3. Cell morphology predicts the bortezomib sensitivity of clones across datasets. Box plots of Bortezomib Signatures for clones in the (A) 
training, (B) validation, (C) test, and (D) holdout datasets. Plots show values for individual well profiles (points), range (error bars), 25th and 75th 
percentiles (box boundaries), and median. Dashed vertical black line is Bortezomib Signature = 0, dashed vertical red lines are the 95% confidence 
interval for Bortezomib Signatures of 1000 random permutations of the data. (E) ROC curves for the performance of the Bortezomib Signature on the 
indicated dataset (solid line) or its shuffled counterpart (dashed line). Datasets are designated by color: training (magenta), validation (orange), test 
(teal), and holdout (purple). Colored points are the corresponding false positive and true positive rates at the absolute minimum thresholds for each 
respective dataset. Black dotted line is the identity line where false positive rate = true positive rate. AUROC values reported for data and shuffled data. 
See Figure 3—source data 1 for breakdown of profiles and experiments per dataset.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Datasets for Bortezomib Signature generation and evaluation.

Figure supplement 1. Accuracy and average precision of the Bortezomib Signature.

Figure supplement 2. Benchmarking linear-modeling feature selection to separate clones by bortezomib resistance.

https://doi.org/10.7554/eLife.91362
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were resistant to either ixazomib (another proteasome inhibitor that targets the PSMB5 subunit) or 
CB-5083 (a p97 inhibitor that acts upstream of the proteasome). If the Bortezomib Signature were 
a general signature of UPS-targeting drug resistance, we would expect it to perform equally well 
at characterizing the drug sensitivity of bortezomib-, ixazomib-, and CB-5083-resistant clones. The 
Bortezomib Signature performed better than chance at identifying ixazomib-resistant and CB-5083-
resistant clones (Figure 4A), correctly identifying four of five ixazomib-resistant clones (Figure 4B) 
and three of five CB-5083-resistant clones (Figure 4C). However, only two of the four correctly identi-
fied ixazomib-resistant clones and one of the three CB-5083-resistant clones had median Bortezomib 
Signatures outside the 95% confidence interval of the randomly permuted data. The area under the 
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Figure 4. Bortezomib Signature has limited ability to characterize clones resistant to other UPS-targeting drugs. (A) ROC curves for ixazomib-resistant 
(magenta) and CB-5083-resistant (blue) experimental data. Colored solid lines are the actual data while colored dashed lines are the shuffled data for 
each set of clones. Colored points are the corresponding false positive and true positive rates at the absolute minimum thresholds for each respective 
cell type. Black dotted line is the identity line where false positive rate = true positive rate. AUROC reported for the data and shuffled data. Box plots of 
Bortezomib Signatures for (B) ixazomib-resistant and bortezomib-sensitive clones (n = 18 profiles, 3 independent experiments) and (C) CB-5083-resistant 
and bortezomib-sensitive clones (n = 24 profiles, 4 independent experiments). Plots show values for individual well profiles (points), range (error bars), 
25th and 75th percentiles (box boundaries), and median. Dashed vertical black line is Bortezomib Signature = 0, dashed vertical red lines are the 95% 
confidence interval for Bortezomib Signatures of 1000 random permutations of the data.

https://doi.org/10.7554/eLife.91362
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ROC (AUROC) curve for ixazomib-resistant and CB-5083-resistant clones (0.63 and 0.60, respectively) 
was lower than those calculated for the training, validation, test, and holdout datasets for bortezomib-
resistant clones. In addition, many of the Bortezomib Signatures for well profiles of ixazomib- and 
CB-5083-resistant clones, particularly those for CB-5083-resistant clones, landed within the 95% confi-
dence interval of the randomly permuted data. These results suggest that the Bortezomib Signature 
is not a general signature of UPS-targeting drug resistance, nor of our cloning protocol, and instead 
has some specificity for bortezomib.

Bortezomib Signature characterizes bortezomib sensitivity of clones 
not included in the training dataset
To examine whether the Bortezomib Signature could correctly characterize the bortezomib sensitivity 
of clones not included in the training, validation, holdout, or test datasets, we imaged bortezomib-
sensitive (WT10, WT12-WT15) and bortezomib-resistant clones (BZ06-BZ10) using the Cell Painting 
protocol. The Bortezomib Signature had an AUROC of 0.75, compared to 0.55 for the shuffled data 
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Figure 5. Bortezomib Signature correctly characterizes bortezomib sensitivity of seven out of ten clones not included in the training, validation, test, or 
holdout datasets. (A) ROC curve for the Bortezomib Signature of clones in (B) and (C) (solid line) and shuffled data (dashed line). Colored point is the 
corresponding false positive and true positive rate at the absolute minimum threshold. Black dashed line is the identity line where false positive rate = 
true positive rate. AUROC reported for the data and shuffled data. (B) Box plots of Bortezomib Signatures for bortezomib-resistant clones A and E (n = 
16 profiles each) and HCT116 parental cells (n = 48 profiles). (C) Box plots of Bortezomib Signatures for bortezomib-sensitive clones WT10, WT12-15 (n 
= 16 profiles each) and bortezomib-resistant clones BZ06-10 (n = 8 profiles each). Plots show values for individual well profiles (points), range (error bars), 
25th and 75th percentiles (box boundaries), and median. Dashed vertical black line is Bortezomib Signature = 0, dashed vertical red lines are the 95% 
confidence interval for Bortezomib Signatures of 1000 random permutations of the data. 4 independent experiments (biological replicates).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Examining the accuracy of clone classification and misclassification of clones.

https://doi.org/10.7554/eLife.91362
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(Figure 5A) and correctly characterized the bortezomib resistance of HCT116 parental cells and our 
bortezomib-resistant clones A and E, which we included as controls (Figure  5B). The Bortezomib 
Signature also correctly characterized the bortezomib resistance of four out of five bortezomib-
resistant clones and three out of five bortezomib-sensitive clones not included in the training 
dataset (Figure 5C). In addition, the majority of Bortezomib Signatures for these well profiles landed 
outside the 95% confidence interval for the randomly permuted data. While the Bortezomib Signa-
ture correctly characterized the bortezomib sensitivity of most clones, it consistently misclassified 
others (WT10, WT15, and BZ06; Figure 5—figure supplement 1A). Proliferation assays conducted 
in earlier experiments showed that WT10 and WT15 were sensitive to bortezomib while BZ06 was 
resistant (Figure 1—figure supplement 2A and B). By comparing these incorrect predictions with 
high-confidence correct predictions, we observed differences that varied by clone type, suggesting 
unique morphology may be driving each of these misclassifications (Figure 5—figure supplement 
1B and C). These results are consistent with the Bortezomib Signature being generalizable to clones 
not included in the training dataset and suggest that morphological profiling has the potential to 
identify bortezomib-resistant clones based on the morphological features of cells in the absence of 
drug treatment.

Discussion
We used Cell Painting, a high-throughput, high-content image acquisition and analysis assay, as a 
target-independent method to capture the morphological profiles of cells that were either resistant 
or sensitive to the UPS-targeting anticancer drug, bortezomib, in the absence of drug treatment. 
After processing profiles to reduce the impact of technical variables, we generated a signature of 
bortezomib resistance and characterized the performance of this signature using machine learning 
best practices. This Bortezomib Signature correctly predicted the bortezomib resistance of seven 
out of ten clones not included in the training dataset and was more specific to bortezomib-resistance 
given its limited ability to identify clones that were resistant to other UPS-targeting drugs, ixazomib 
and CB-5083. All three drugs tested target the UPS, however bortezomib and ixazomib both bind 
the same subunit of the proteasome, albeit with potentially non-overlapping spectrums of off-targets 
(Baggish et al., 2010). These data suggest that the Bortezomib Signature may be specific to the drug 
bortezomib and not a general signature of resistance to UPS-targeting drugs. The Bortezomib Signa-
ture is conceptually similar to the on-disease/off-disease score (Heiser et  al., 2020). Both require 
three phenotypic measurements: a target phenotype representing ideal, a disease phenotype, and a 
new phenotype to classify. However, our approach is technically different (non-parametric compared 
to linear projection) and our goals are different (phenotypic classification compared to perturbation 
alignment). Other methods also enable phenotype labeling, but they focus on single-sample annota-
tion without regard to a target phenotype (Nyffeler et al., 2020; Rohban et al., 2017; Simm et al., 
2018; Wawer et al., 2014). Our work demonstrates that there are morphological features of drug 
resistance in cells that can be identified using Cell Painting and provides a reproducible pipeline for 
generating morphological signatures of drug resistance.

The Bortezomib Signature’s performance was not perfect; it misclassified three clones not included 
in the training dataset. Interestingly, one of the misclassified clones (BZ06) had reduced sensitivity to 
mitoxantrone as well as bortezomib. Given the considerable genetic heterogeneity in this mismatch 
repair-deficient HCT116 cell line (Glaab and Tindall, 1997; Umar et al., 1994), it is possible that some 
misclassified clones have orthogonal mechanisms of resistance or unrelated mutations contributing to 
their morphological profiles. Targeted sequencing of the PSMB5 proteasome subunit in bortezomib-
resistant clones may provide information regarding origins of these misclassifications, as multiple 
mutations have been identified in bortezomib-resistant clones (Wacker et al., 2012). Determining 
the underlying reason for the misclassification of bortezomib-sensitive clones would require further 
studies.

Together, our work demonstrates the potential for morphological profiling with Cell Painting to be 
used as an unbiased method to characterize resistance in the absence of drug treatment. Our results 
indicate that different mechanisms of bortezomib resistance may generate distinct morphological 
profiles; with larger and broader training datasets, it may be possible to identify signatures for distinct 
mechanisms of bortezomib resistance as well as signatures of resistance to other drugs. Although it 
is unclear whether this method can be extended to patient samples, where identifying intrinsic drug 

https://doi.org/10.7554/eLife.91362
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resistance in cells prior to treatment has the potential to improve targeted cancer therapy, our results 
are an encouraging proof of concept. We expect that further refinement may develop Cell Painting 
as a tool for identifying drug-resistant cells, perhaps even guiding strategies to overcome resistance.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens) HCT116 ATCC CCL-247; RRID:CVCL_0291

Chemical compound, drug bortezomib LC Laboratories cat # 1408

Chemical compound, drug taxol Sigma cat # T7402

Chemical compound, drug mitoxantrone TOCRIS cat # 4250

Chemical compound, drug ixazomib ApexBio cat # A4007 batch 2

Chemical compound, drug CB-5083 MedChemExpress cat # HY-12861 batch 19554

Other MitoTracker Deep Red Invitrogen cat # M22426

Other Phalloidin AF568 Invitrogen cat # A12380

Other Concanavalin A AF488 Invitrogen cat # C11252

Other Hoechst 33342 ThermoFisher cat # 62249

Other Hoechst 33342 Invitrogen cat # H3570

Other Wheat-germ agglutinin AF555 Invitrogen cat # W32464

Other SYTO14 Green Invitrogen cat # S7576

Cell culture
HCT116 cells (RRID: CVCL_0291) were purchased from ATCC (CCL-247) and were maintained in 
McCoy’s 5 A Medium (Gibco) supplemented with 10% (v/v) FBS (Sigma) and cultured at 5% CO2 
and 37 °C. Cells were determined to be mycoplasma-free using a PCR-based method (Uphoff and 
Drexler, 2013). Bortezomib-resistant, ixazomib-resistant, and CB-5083-resistant clones were isolated 
as previously described (Wacker et al., 2012). Briefly, HCT116 cells were plated in 150 mm dishes and 
grown in the presence of the desired drug at a concentration that resulted in the death of the majority 
of cells (selection concentrations: bortezomib [LC Laboratories], 12 nM; ixazomib [ApexBio], 150 nM; 
CB-5083 [MedChemExpress], 600 and 700 nM). The locations of single surviving cells were identified 
using brightfield microscopy and marked on the plate. Cells were allowed to expand into colonies 
over 2–4  weeks and colonies were isolated using cloning rings. Bortezomib-sensitive clones were 
generated by diluting HCT116 cells into 96-well plates and wells containing single cells as identified 
by brightfield microscopy were marked. Colonies that grew in these marked wells were expanded and 
used for experiments. Bortezomib-resistant clones A and E were provided by the Kapoor laboratory 
having been previously published (Wacker et al., 2012).

Proliferation assays
Cell proliferation was evaluated using an Alamar Blue assay (O’Brien et al., 2000). Briefly, cells were 
plated in duplicate or triplicate in sterile 96-well Clear Microplates (Falcon) under described culture 
conditions, with 1000 cells in 100 μL per well and allowed to adhere overnight. After cells attached to 
the plate, 50 μL of media containing drug (bortezomib, ixazomib, CB-5083, taxol [Sigma], or mitoxan-
trone [TOCRIS]) was added to each well. The final DMSO concentration was 0.1% for all wells, including 
three wells with media only as background measurements. Plates were incubated for 72 hr at 5% CO2 
and 37 °C before adding Alamar Blue (resazurin sodium salt, final concentration 50 μM). Cells were 
incubated with Alamar Blue for 3–4 hr and then imaged with a Synergy Neo plate reader using exci-
tation: 550 nm and emission: 590 nm (Agilent). The average plate background (media only with 0.1% 
DMSO) was subtracted from the average fluorescence for each condition and the resulting value was 
normalized by dividing by the background-subtracted value for each condition’s control (cells treated 

https://doi.org/10.7554/eLife.91362
https://identifiers.org/RRID/RRID:CVCL_0291
https://identifiers.org/RRID/RRID:CVCL_0291
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with 0.1% DMSO). Using the data from our proliferation assays, we calculated the median lethal dose 
(LD50) for each of our drugs of interest by fitting data of normalized growth vs. log[drug concentra-
tion] to a sigmoidal dose-response curve using GraphPad Prism (v.9.2.0) (Figure 1—source data 1).

Cell Painting
High-throughput imaging was performed according to the published Cell Painting protocol (Bray 
et al., 2016). HCT116 cells were plated at concentrations of 2.5 or 5x103 cells/mL in 96-well glass-
bottomed tissue culture dishes (Greiner Bio-One) and allowed to adhere for 48–72 hr prior to fixation. 
At either 4 or 13 hr prior to fixation, cells were treated with either 0.1% DMSO or 7 nM bortezomib 
and 30 min prior to fixation cells were treated with MitoTracker Deep Red (500 nM, Invitrogen). 16% 
paraformaldehyde (EMS) was added to each well for a final concentration of 3.2% and cells were 
fixed in the dark at room temperature for 20 min. Wells were washed with HBSS (Invitrogen), perme-
abilized with 0.1% Triton-X for 15  min, and then washed twice with HBSS before incubating with 
staining solution (5 U/mL phalloidin AF568 [Invitrogen], 100 μg/mL concanavalin A AF488 [Invitrogen], 
5 μg/mL Hoechst 33342 [ThermoFisher or Invitrogen], 1.5 μg/mL wheat-germ agglutinin AF555 [Invi-
trogen], 3 μM SYTO14 Green [Invitrogen], and 1% bovine serum albumin [BioWorld] in HBSS) in the 
dark for 30 minutes. Wells were then washed twice with HBSS and imaged using an ImageXpress 
high-content imaging system (Molecular Devices) with a 20x0.45 NA S Plan Fluor ELWD objective 
(Nikon) and captured with a Zyla 5.5 sCMOS detector (Andor Technology). Each well was imaged 
at 12–17 non-overlapping sites in five channels using Semrock filters (mito: Cy5-4040B-NTE-ZERO, 
AGP: TxRed-4040C-NTE-ZERO, RNA: Cy3-4040C-NTE-ZERO, ER: FITC-3540C-NTE-ZERO, and DNA: 
DAPI-5060C-NTE-ZERO).

Image data processing
We used CellProfiler versions 3.1.8 and 3.1.9 (Caicedo et  al., 2018) to perform the standard 
processing pipeline of illumination correction, single-cell segmentation, and morphology feature 
extraction. We performed per-plate illumination correction to adjust for uneven background inten-
sity that commonly impacts microscopy images. We also developed per-plate analysis pipelines for 
single-cell segmentation and feature extraction. We extracted 3,528 total cell morphology features 
from all 25,331,572 cells we captured in this experiment. The 3528 features represent stain intensities, 
stain co-localization, textures, areas, and other patterns extracted from all five imaging channels and 
different segmentation objects (nuclei, cytoplasm, total cells). Feature details are described in the 
documentation for CellProfiler (https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.1.9/help/​
output_measurements.html). We include all image analysis pipelines at https://github.com/broadinsti-
tute/profiling-resistance-mechanisms (Way et al., 2023).

Following feature extraction, we applied an image-based analysis pipeline to generate our final 
analytical set of treatment profiles (Caicedo et al., 2017). We first used cytominer-database to ingest all 
single-cell, per-compartment CellProfiler output files (comma separated) to clean column names, eval-
uate integrity of CellProfiler output CSVs, and output single-cell SQLite files for downstream processing. 
Next, we used pycytominer (github hash c1aa34b641b4e07eb5cbd424166f31355abdbd4d) for all 
image-based profiling pipeline steps. In the first step, we median aggregated all single cells to form 
well-level profiles (Way et al., 2022). Next, we performed a step called annotation, which merges 
the consistent platemap metadata with the well-level profiles. Third, we performed standard z-score 
normalization to ensure all features are measured on the same scale with zero mean and unit variance. 
Lastly, we performed feature selection, which removed features with low variance, high correlation 
(>0.9 Pearson correlation), features with missing values, features on our blocklist (Way, 2020), and 
features with outliers greater than 15 standard deviations, which we suspected were measured in 
error. For developing our final analytical datasets (see section, Constructing the resistance signature) 
we performed normalization within each plate but performed a combined feature selection across all 
plates per analytical dataset using the same procedures described previously, which resulted in 782 
features. We applied the same pipeline uniformly across all plates. We did not detect large differences 
in variance that could be attributed to well position and batch and therefore did not apply batch effect 
correction. Our full image data processing pipeline is publicly available at https://github.com/broadin-
stitute/profiling-resistance-mechanisms (Way et al., 2023).

https://doi.org/10.7554/eLife.91362
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.1.9/help/output_measurements.html
https://cellprofiler-manual.s3.amazonaws.com/CellProfiler-3.1.9/help/output_measurements.html
https://github.com/broadinstitute/profiling-resistance-mechanisms
https://github.com/broadinstitute/profiling-resistance-mechanisms
https://github.com/broadinstitute/profiling-resistance-mechanisms
https://github.com/broadinstitute/profiling-resistance-mechanisms
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Constructing the resistance signature
After processing all images and forming normalized and feature selected profiles per well, we 
performed additional analyses to explore the results and discover a morphology profile of bortezomib 
resistance. We performed initial comparisons of morphological profiles using Morpheus (https://soft-
ware.broadinstitute.org/morpheus) to create similarity matrix heatmaps.

We aimed to discover a generalizable signature of bortezomib resistance from the normalized 
profiles. Our approach was to identify features that were significantly different by resistance status 
and not significantly impacted by technical covariates. To do so, we carefully constructed datasets for 
training and evaluating signature performance (Figure 3—source data 1). To generate our training 
dataset, we selected a set of six plates consisting of five bortezomib-sensitive and five bortezomib-
resistant clones that we collected on three different days, which showed high within-replicate reproduc-
ibility (technical replicates; data not shown). A seventh plate was held-out from signature generation 
in order to analyze generalizability between plates (holdout dataset). We evaluated the signature in 
five scenarios: (1) clones held-out on the same plates used to generate the training dataset (validation 
dataset, Figure 3B), (2) HCT116 parental cells and clones with PSMB5 mutations known to confer 
resistance to bortezomib (test dataset, Figure 3C; Wacker et al., 2012), (3) clones held-out on a 
separate plate (holdout dataset, Figure 3D), (4) clones selected to be resistant to other drugs (ixaz-
omib and CB-5083, Figure 4), and (5) bortezomib-resistant clones not included in the training dataset 
(Figure 5). All cells on these plates were incubated with 0.1% DMSO for either 4 or 13 hours.

Using data from the ten clones in our training dataset (20–21 technical replicates per clone, see 
Figure 3—source data 1), we fit two linear models for all 782 CellProfiler features (post normaliza-
tion and feature selection) to discover features that varied strongly with technical variants (batch, 
cell count, incubation time, or clone ID) and features that varied strongly with resistance status 
(bortezomib-sensitive or bortezomib-resistant). In the first linear model, we quantified the per feature 
variance contribution of resistance status (βresistance status), batch (βbatch), incubation time (βincubation time), and 
clone (βclone ID) to each CellProfiler feature (Yj) where ‍ε‍ is the error term:

	﻿‍

Yj = βintercept + βresistance statusXresistance status + βbatchXbatch + βincubation timeXincubation time +

βclone IDXclone ID + ε ‍�

Fitting this model produced a goodness of fit R2 value per feature and individual beta coefficients 
per covariate. Furthermore, we calculated a Tukey’s Honestly Significant Difference (Tukey’s HSD) post 
hoc test per model to determine which categorical covariate comparison contributed to a significant 
finding and to control for within-covariate-group multiple comparisons through a family-wise error 
rate (FWER) adjustment that accounts for different within-group sizes (e.g. three different batches in 
the comparison, two different resistance statuses, etc.) (Tukey, 1949).

Separately, we fit another linear model on continuous features to adjust for features that were 
significantly impacted by well confluence (βcell count) as it is expected that dense wells will impact certain 
morphology features, which we want to avoid in the resistance signature:

	﻿‍ Yj = βintercept + βresistance statusXresistance status + βcell countXcell count + ε‍�

By fitting these models, we quantified the variance contribution of four technical covariates (incu-
bation time, batch, clone ID, and cell count) and our biological variable of interest (resistance status), 
and, based on the first linear model, we have knowledge of which group comparisons were significant 
in each category (via Tukey’s HSD). We further refined the signature by filtering features that did not 
pass a Bonferonni adjusted alpha threshold calculated across all 782 features (0.05/782 = 6.4x10–6).

We next applied an exclusion criterion to isolate features that contributed to resistance status. We 
excluded features that were significantly different across incubation times, batches, and cell counts. 
We also excluded features that were different within clone type (features varying between two or 
more pairs of bortezomib-sensitive clones) to reduce the contribution of features that may mark 
generic inter-clone differences nonspecific to resistance status. This procedure resulted in a total of 
45 features that were significantly different by resistance status and not significantly impacted by any 
of the technical covariates we considered. Of the 45 features, 14 had higher values in resistant clones 
and 31 had lower values in resistant clones (Figure 2—source data 1).

https://doi.org/10.7554/eLife.91362
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https://software.broadinstitute.org/morpheus
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We were also interested in comparing the ability of different feature spaces to cluster clones of 
the same type (resistant vs. sensitive). This analysis would determine if the Bortezomib Signature 
features, which we derived using linear modeling to isolate biological from technical variables, had a 
greater ability to cluster. We compared the Bortezomib Signature against three other feature spaces: 
(1) the full feature space, (2) standard feature selection (see Image data processing methods), and (3) 
45 randomly selected features. We performed two analyses using these four feature spaces including 
Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) and k-means clus-
tering. For UMAP, we used default umap-learn parameters to identify two UMAP coordinates per 
feature space. We then visualized the clusters by their resistance status and Bortezomib Signature 
score. The UMAP analysis represents a qualitative analysis. Next, we applied k-means clustering with 
25 initializations across a range of 2–14 clusters (k). Prior to clustering and for each feature space, 
we applied principal component analysis (PCA) and transformed each feature space into 30 principal 
components. This step was necessary to compare k-means clustering metrics, which are sensitive to 
the feature space dimensionality. We applied a Fisher’s exact test to each cluster using a two-by-two 
contingency matrix that specified cluster membership for each clone classification (resistant vs. sensi-
tive). We visualized the mean odds ratio and max cluster odds ratio for each feature space across k. A 
high odds ratio tells us that the feature space effectively clusters clones of the same resistance status. 
Lastly, we calculated Silhouette width (the average proximity between samples in one cluster to the 
second nearest cluster) for each feature space across k.

Applying the signature
We used the singscore method (Foroutan et al., 2018) to characterize individual profiles of different 
clones as either bortezomib-resistant or bortezomib-sensitive. Singscore is a rank-based method that 
was originally developed to analyze the direction and significance of previously defined molecular 
signatures on transcriptomic data. The method calculates a two-part signature for each direction 
list (14 up and 31 down) and calculates an internal rank per profile of how highly ranked and lowly 
ranked each of the up and down features are, respectively. The method then adds the up and down 
rank scores to form a total singscore per sample, which ranges between –1 and 1 and represents a 
rank-based normalized concordance score that can be directly compared across profiles that may 
have been normalized differently. Therefore, the score is robust to outliers and different normalization 
procedures. In addition to calculating the singscore per sample, we also calculated singscore with 
1,000 random permutations, in which we randomly shuffled feature rankings to derive a range in 
which a sample may be scored by chance. Some profiles were consistently predicted incorrectly with 
high confidence but in the opposite direction (see Figure 5—figure supplement 1). For a well-level 
profile to be categorized as high-confidence (in either the correct or incorrect directions), it needed 
to score beyond the 95% confidence interval of the randomly permuted data range. For example, 
a high-confidence incorrect resistant profile would have a Bortezomib Signature below 95% confi-
dence interval of the randomly permuted data. To evaluate the features driving the differences in 
these samples, we applied two-sample Kolmogorov–Smirnov (KS) tests per Bortezomib Signature 
feature. We applied these tests to two separate groups: (1) misclassified bortezomib-sensitive vs. 
high-confidence accurate bortezomib-sensitive and (2) misclassified bortezomib-resistant vs. high-
confidence accurate bortezomib-resistant.

Signature evaluation
We used several metrics to evaluate signature quality across five different evaluation scenarios (valida-
tion, test, holdout, other UPS-targeting drugs, and clones not included in the training dataset [biolog-
ical replicates]). Because we are measuring a binary decision in a balanced dataset (roughly the same 
amount of positive as negative classes), we used accuracy (total correct / total chances) to quantify 
performance. We also calculated mean average precision using sci-kit learn, averaging over samples 
along the precision recall curve (Varoquaux et al., 2011), which is a measure of separation between 
the two resistance classes (higher being more separation). We also calculated receiver operating char-
acteristic (ROC) curves and area under the ROC curve (AUROC) using sci-kit learn. AUROC compares 
the ability to distinguish positive samples across signatures.
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Data availability
All data generated during this study are provided in the dataset cpg0028-kelley-resistance, avail-
able in the Cell Painting Gallery on the Registry of Open Data on AWS (https://registry.opendata.​
aws/cellpainting-gallery/). Processed data, source data files, and code to reproduce this analysis 
are available at https://github.com/broadinstitute/profiling-resistance-mechanisms (Way et  al., 
2023).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Kelley ME, Berman 
AY, Stirling DR, Cimini 
BA, Han Y, Singh S, 
Carpenter AE, Kapoor 
TM, Way GP

2023 Cell Painting images to 
produce a high-content 
phenotypic signature of 
Bortezomib resistance

https://​registry.​
opendata.​aws/​
cellpainting-​gallery/

Registry of Open Data 
on AWS, cpg0028-kelley-
resistance/
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