
Chen et al. eLife 2023;12:RP91512. DOI: https://doi.org/10.7554/eLife.91512 � 1 of 27

Accurate prediction of CDR-H3 
loop structures of antibodies with 
deep learning
Hedi Chen1, Xiaoyu Fan1†, Shuqian Zhu1†, Yuchan Pei2, Xiaochun Zhang1, 
Xiaonan Zhang3, Lihang Liu3, Feng Qian1*, Boxue Tian1*

1MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular 
Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; 
2Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 
Beijing, China; 3Department of Natural Language Processing, Baidu International 
Technology (Shenzhen) Co Ltd, Shenzhen, China

Abstract Accurate prediction of the structurally diverse complementarity determining region 
heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody 
modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal anti-
bodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein 
language model and provides a 2.24 Å average RMSDCα between predicted and experimentally 
determined CDR-H3 loops, thus outperforming other current computational methods in our non-
redundant high-quality dataset. The model was validated by experimentally solving three structures 
of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT 
through analyzing antibody surface properties and antibody–antigen interactions. This structural 
prediction tool can be used to optimize antibody–antigen binding and engineer therapeutic anti-
bodies with biophysical properties for specialized drug administration route.

eLife assessment
This article presents H3-OPT, a deep learning method that effectively combines existing techniques 
for the prediction of antibody structure. This work, supported by convincing experiments for vali-
dation, is important because the method can aid in the design of antibodies, which are key tools in 
many research and industrial applications.

Introduction
Antibodies protect the host by recognizing and neutralizing foreign microbes or viruses and provide 
immunity against future infections. Furthermore, the use of therapeutic antibodies is steadily increasing 
in clinical treatments for infectious diseases, cancers, and autoimmune disorders (Meganck and Baric, 
2021; Kaplon and Reichert, 2021). For example, anti-PD-L1 antibodies block PD-L1/PD-1 interac-
tions to inhibit tumor growth in patients (Brahmer et al., 2012). A typical monoclonal antibody (mAb) 
is composed of heavy and light chains, while a nanobody (Nb) has only a single-domain variable heavy 
chain. The CDR heavy chain 3 (CDR-H3) loop is the most variable region in both length and amino acid 
sequence, and it plays a central role in antigen binding for both mAbs and Nbs. The development of 
effective therapeutic antibodies requires the solved structures of candidate antibodies, including the 
CDR-H3. However, it is both costly and labor intensive to experimentally obtain structures, and thus 
computationally predicted structures are often used to guide antibody design (Aguilar Rangel et al., 
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2022). Despite major advances in computational methods, structure prediction for CDR-H3 loops 
remains challenging (Valdés-Tresanco et al., 2023).

Traditional template-based modeling methods, such as RosettaAntibody (Adolf-Bryfogle et al., 
2018), PIGS (Marcatili et al., 2008), ABodyBuilder (Leem et al., 2016), and MODELLER (Eswar et al., 
2006), often provide demonstrably inaccurate predictions for CDR-H3 sequences (Almagro et al., 
2014; Teplyakov et al., 2014; Almagro et al., 2011), and as a result, alternative artificial intelligence 
(AI)-based approaches, such as AlphaFold2 (AF2) (Jumper and Hassabis, 2022; Jumper et al., 2021), 
trRosetta (Du et al., 2021), and RoseTTAFold (Baek et al., 2021), are increasing in popularity. AF2 
has shown comparable accuracy to experimentally determined structures by capturing physical and 
biological information about protein folding, thus providing a versatile deep learning framework for 
structure prediction. Structure prediction methods using pre-trained protein language models (PLMs), 
for example, HelixFold-Single (Fang et al., 2022),OmegaFold (Wu et al., 2022a), and ESMFold (Lin 
et al., 2023), have shown comparable performance to AF2 with accelerated prediction speed. PLMs 
can be trained with datasets comprising tens of millions of unlabeled protein sequences in a self-
supervised manner and can be subsequently applied to a variety of downstream tasks, such as drug-
gable protein target prediction (Chen et al., 2023), predicting protein function, and protein design 
(Hie et al., 2024; Ferruz et al., 2022; Madani et al., 2023). Antibody-specific tools such as IgFold 
(Ruffolo et al., 2023), tFold-Ab (Wu et al., 2022b), DeepAb (Ruffolo et al., 2022), and NanoNet 
Cohen et al., 2022 have also been developed to improve accuracy in CDR-H3 prediction. Among 
them, IgFold leverages sequence representations from PLMs to efficiently predict antibody struc-
tures within seconds, and notably, IgFold can provide accuracy comparable to AF2, enabling high-
throughput prediction of antibody structures.

In this study, we present H3-OPT, which combines features of AF2 and PLMs to predict antibody 
structures. We compare H3-OPT with several other antibody structure prediction methods and found 
that it can provide a lower average RMSDCα for CDR-H3 loops than other algorithms in three subsets 
of varying difficulty. To further validate our model, we experimentally solved the structures of three 
anti-VEGF nanobodies predicted by H3-OPT (Zhu et al., 2023). We examined the potential applica-
tions of H3-OPT through analyzing antibody surface properties and antibody–antigen interactions. 
We demonstrate the informative value of high-quality H3 loops for predicting binding affinity and 
further support the use of H3-OPT as a powerful and versatile tool for studying antigen–antibody 
interactions. This structural prediction tool can be used to optimize antibody–antigen binding and 
engineer therapeutic antibodies with biophysical properties.

Results
High-quality antibody crystal structures in benchmarks
To evaluate the performance of AF2 against currently available methods, we conducted two datasets 
(DB1 and DB2) with high-resolution (<2.5 Å) X-ray crystal structures from SAbDab (Raybould et al., 
2020). The CDR length distributions were similar in each dataset (Figure 1b). Additionally, we plotted 
sequence logos and identified the CDR loops of all heavy chain sequences (Figure 1c and d). These 
sequence logo plots revealed higher degree of sequence variability of CDR loops, particularly in the 
CDR-H3, with smaller residue letters than framework regions. Overall, high-quality and diverse anti-
body datasets allowed us to assess the quality of predicted models and evaluate the strengths and 
weaknesses of all alternative methods.

Accuracy of AF2 for the overall antibody structure predictions was 
remarkable
To assess the similarity between the predicted models generated by each method and the experi-
mentally determined structure, we first computed the template modeling scores (TM-scores) (Zhang 
and Skolnick, 2004) for all predicted models of each target. The TM-scores of AF2 predictions in 
different datasets were as follows: DB1, 0.93 ± 0.04; DB2, 0.94 ± 0.03 (Figure 1e). Although the 
average TM-score of AF2 was slightly lower than those of DeepAb in DB1, it outperformed DeepAb 
by a large margin in DB2 (0.94 vs 0.87, on average). Then, we used global distance test (GDT) scores 
(Zemla et al., 1999) to assess the similarity of predicted substructures at different structural cutoffs. 
The average GDT-TS scores of the models generated by AF2, ABodyBuilder, and DeepAb in DB1 were 

https://doi.org/10.7554/eLife.91512
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0.90, 0.88, and 0.91, respectively. In DB2, the GDT-TS scores of AF2, RoseTTAFold, and NanoNet all 
exceeded 0.90. Furthermore, we found that the models with high GDT-TS scores also exhibited higher 
GDT-HA scores compared to the models with low GDT-TS scores. We finally calculated the average 
Z-scores of GDT-TS, GDT-HA, and TM-score for all datasets to provide comprehensive scores for each 
method. AF2 outperformed other methods on both DB1 and DB2, with an average Z-score of 0.87 
and 1.08, respectively.

Figure 1. Accuracy of AF2 on antibody modeling. (a) Schematic for CDR heavy chain loops. (b) The CDR lengths of monoclonal antibodies (mAbs) (n 
= 47) and nanobodies (Nbs) (n = 78). The error bars represent the standard deviation of the data. (c) Sequence logo plots of VH fragments in DB1. (d) 
Sequence logo plots of VH fragments in DB2. The different colors of codes represent the hydrophobicity of amino acids. (e) The performance of AF2 on 
different datasets using various evaluation metrics. In the box plots, the lines at the center of the boxes represent the medians, and the top and bottom 
lines of the boxes represent the upper and lower quartiles.

https://doi.org/10.7554/eLife.91512
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AlphaFold2 accurately predicted the VH/VL orientations and CDR-H3 
loops of antibodies
Given the vital roles of CDR-H3 loops in antigen recognition, we assessed the local accuracy of 
CDR-H3 loops among all participants. We first superimposed the backbone atoms of the entire Fv 
regions to reference structures and calculated the heavy atom RMSDs of CDR-H3 loops (RMSDHA). 
The average RMSDHA values of AF2, DeepAb, and ABodyBuilder in DB1 were 3.92, 3.64, and 3.69 Å, 
respectively, which were lower than those of other methods (Figure 2a). Additionally, these RMSDHA 
values decreased slightly after superimposing the VH backbone heavy atoms, indicating that these 
methods could predict VH/VL orientations more accurately than other alternative methods (Figure 2b). 
Similar to TM-score, DeepAb performed better than AF2 in DB1, but its accuracy decreased substan-
tially in DB2 (Figure 2c). AF2, NanoNet, and ABodyBuilder outperformed other methods in DB2, with 
average RMSDHA values of 3.79, 3.44, and 4.37 Å, respectively.

To better understand the prediction results, we next conducted side-to-side comparisons for the 
abovementioned methods. The results showed that there were no significant differences in either the 
backbone or CDR-H3 RMSDs after superimposing the VH backbone heavy atoms between DeepAb 
and AF2 (Figure 2—figure supplement 1a). Additionally, AF2 accurately produced the Nb structures 
with lower backbone RMSDs (all below 4 Å), but provided comparative accuracy in CDR-H3 RMSDs 

Figure 2. Accuracy of AF2 on different antibody regions. (a) The performance of AlphaFold2 in DB1 relative to other methods after superimposing Fv 
backbones. (b) The performance of H3-OPT in DB1 relative to other methods after superimposing VH backbones. (c) The performance of H3-OPT in DB2 
relative to other methods.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Local accuracy of AlphaFold2 prediction.

https://doi.org/10.7554/eLife.91512
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with NanoNet (Figure  2—figure supplement 1b). We found that the main reason for this result 
was that NanoNet predicted wrong main-chain structures at the C-terminus. ABodyBuilder utilized 
homology modeling-based algorithm for structure prediction, providing similar or better backbone 
quality than AF2 (Figure 2—figure supplement 1c and d). However, it did not significantly improve 
the accuracy of the CDR3 loops because ABodyBuilder highly relied on the quality of templates (espe-
cially when modeling DB2). Taken together, these results indicated that AF2 was a highly effective tool 
for predicting antibody structures both in mAbs and Nbs, and it produced CDR-H3 loops that were 
comparable to those generated by AI-based antibody-specific methods.

Quantum mechanics-based optimization failed to optimize CDR-H3 
loops
Due to the lack of consideration of electronic effects in AF2, we hypothesized that the accuracy of 
CDR-H3 could be further improved by quantum mechanics (QM)-based methods. We applied two 
QM-based approaches to optimize AF2 models: the first was an energy-based re-ranking method, 
and the second was loop optimization with QM. For the first approach, we introduced a new dataset 

Table 1. The root mean square deviation (RMSD) results of PM6D3 level re-ranking method on 14 
same CDR-H3 antibodies.

PDB ID
Ranked 0 
RMSD Lowest energy RMSD Lowest RMSD ΔRMSD*

4kmt 1.06 1.14 1.05 –0.08

5i19 2.16 1.91 1.77 0.25

5i1l 3.80 3.20 3.19 0.60

5i17 2.86 3.71 2.86 –0.85

5i1d 2.10 2.10 2.02 0.00

5i1c 2.43 1.66 1.45 0.77

5i1a 2.37 0.85 0.59 1.52

5i1i 3.72 3.51 3.51 0.21

5i15 2.16 1.94 1.35 0.22

5i16 3.19 1.70 1.39 1.49

5i18 2.88 2.88 2.88 0.00

5i1e 1.62 1.13 0.92 0.49

5i1g 2.08 2.08 2.00 0.00

5i1h 1.58 1.84 1.32 –0.26

*ΔRMSD was calculated by subtracting the RMSD of predicted model from the RMSD of Ranked_0 model.

Table 2. Accuracy of quantum mechanics (QM)-based re-ranking methods.

Method
Freeze 
terminal Cα CDR* Phase

Ranked 0 
RMSD

Lowest 
energy 
RMSD

Lowest 
RMSD ΔRMSD

PM6D3 Y H3 Gas 2.64 2.76 2.16 –0.12

PM6D3 N H3 Gas 2.53 2.67 2.03 –0.14

PM6D3 N H1, H2, H3 Gas 2.50 2.64 2.00 –0.14

B3LYP N H3 Gas 2.66 2.87 2.30 –0.21

B3LYP N H3 Water 2.66 2.68 2.30 –0.02

RMSD = root mean square deviation.
*CDR means the energy of which loop is used to re-rank AF2 models.

https://doi.org/10.7554/eLife.91512
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containing 14 antibody sequences with the same CDR-H3 and then run QM optimization for all AF2 
models. These models were re-ranked according to the QM energies. As shown in Table 1, our results 
demonstrated that this method outperformed the default ranking criteria for 8 out of 14 targets, 
achieving an average RMSD improvement of 0.69 Å. However, this re-ranking method did not yield 
more accurate results when applied to a larger database (DB3) (Table 2). We also made additional 
attempts to improve the re-ranking process by removing constraints on terminal atoms, altering 
re-ranking criteria, and considering solvent effects. However, these methods did not improve the 
accuracy of AF2 (ΔRMSDs < 0). Moreover, the QM-based optimization methods also failed to improve 
the accuracy of H3 loops (Table  3). We finally generated structures based on the conformational 
proportions using Boltzmann distribution of the QM energies, but the accuracy of these structures did 
not match that of Ranked_0, with all ΔRMSD below 0. In conclusion, although QM-based methods 
may not improve the accuracy of CDR-H3 loops in general cases, it still provided opportunities for 
loop modeling as the development of more accurate physics-based methods.

Molecular dynamics (MD) simulations could not provide accurate 
CDR-H3 loop conformations
MD simulations were extensively used to explore stable conformations of proteins in a water envi-
ronment (Pan and Aller, 2018) and were also introduced to loop modeling (Barozet et al., 2021). 
We used MD simulations to search for representative CDR-H3 loop conformations. The simulation 

Table 3. Accuracy of quantum mechanics (QM)-based optimization methods.

Method
Freeze terminal 
Cα

Structure generation 
method Phase

Ranked 0 
RMSD

Lowest energy RMSD/opted 
RMSD Lowest RMSD ΔRMSD

PM6D3 Y / Gas 1.69 1.74/1.87 1.37 –0.05

B3LYP N / Gas 1.63 1.65/2.55 1.38 –0.02

B3LYP N / Water 1.63 1.58/2.25 1.38 0.05

B3LYP N Boltzmann Gas 1.56 2.05 1.28 –0.49

B3LYP N Boltzmann Water 1.56 1.81 1.28 –0.25

B3LYP N Boltzmann, minimized Gas 1.56 1.96 1.28 –0.40

B3LYP N Boltzmann, minimized Water 1.56 1.84 1.28 –0.28

RMSD = root mean square deviation.

Figure 3. Molecular dynamics (MD) generated conformations for benchmark target 7N0R. (a) Comparison of CDR-H3 loops of MD (gray), AF2 (pink), 
and experimentally determined structure (cyan). (b) Root mean square fluctuation (RMSF) of antibody residues during simulation. CDR-H3 loop is 
located in residue number ranging from 98 to 109.

https://doi.org/10.7554/eLife.91512
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systems consist of antibody structures, water, and ions. We selected the top 10 challenging-to-predict 
targets from the DB1 and DB2 to investigate the dynamic conformations of CDR-H3 loops. The first 
target was 7N0R, a single-domain antibody that binds the SARS-CoV-2 Nucleocapsid protein with a 
12-residue CDR-H3 loop (Ye et al., 2021). We found that MD successfully generated conformations 
with lower CDR-H3 Cα-RMSDs (average value is 5.62 Å, achieving an improvement of 5.30 Å over 
the AF2 prediction) by correcting the orientation of the CDR-H3 loop (Figure 3a). Additionally, the 
conformations of 7N0R indicated that the CDR-H3 loop was more flexible than framework regions 
and other CDR loops, demonstrated by root mean square fluctuation (RMSF) of every residue during 
simulation (Figure 3b). Despite these promising results for 7N0R, the high CDR-H3 Cα-RMSDs of all 
10 targets (>5 Å) and poor performance in other cases (ΔCα-RMSD < 1.5 Å) (Table 4) both suggested 
that the conformation search method based on MD simulations failed to generate CDR-H3 loops 
that closely matched native structures. However, the accuracy of these antibodies with relative long 
CDR-H3 loops could be improved by H3-OPT through incorporating latent structural information of 
loop folding from ESM2 or enhanced sampling techniques (Feng et al., 2021).

The H3-OPT workflow
Prior to training H3-OPT, we first conducted a thorough evaluation of currently available antibody 
structure prediction tools, including AF2, RoseTTAFold, trRosetta, NanoNet, DeepAb, MODELLER, 
and ABodyBuilder. AF2 provided high-accuracy predictions for the overall structures of both mAbs 
and Nbs, with TM-scores and GDT scores >0.9. Based on the relatively higher accuracy of AF2 in struc-
tural predictions, its prediction was used to extract structural features of CDR-H3 loops for further 
optimization by H3-OPT. Using a mAb/Nb sequence and its Fv model structure from AF2 as input, 
H3-OPT was then used to generate a refined structure. As data quality has large effects on prediction 
accuracy, we constructed a non-redundant dataset (sequence identity < 0.8) with 1286 high-resolution 
(<2.5 Å) antibody structures from SAbDab (Dunbar et al., 2014; Figure 4a). The dataset was then 
divided into training, validation, and test sets based on amino acid sequence identity, which was done 
by using the UCLUST (Edgar, 2010) software. To assess the prediction results, the test set was split 
into three subgroups according to the differences in AF2 accuracy (RMSD, a measure of the differ-
ence between the predicted structure and an experimental or reference structure) stemming from the 
length of CDR-H3 sequence: easy-to-predict targets (0–2 Å, Sub1); moderate-difficulty targets (2–4 Å, 
Sub2); and challenging-to-predict targets (>4 Å, Sub3), with average CDR-H3 loop sequence lengths 
of 9.12, 11.08, and 16.43, respectively.

The workflow of H3-OPT is depicted in Figure 4b. H3-OPT consists of a template module and a 
PLM-based structure prediction module (PSPM). The template module determines whether to use 
PSPM to optimize CDR-H3 and comprises two submodules: a confidence-based module (CBM) and 

Table 4. The accuracy of molecular dynamics (MD)-based CDR-H3 loop optimization in the 10 worst 
cases of AF2.

PDB ID Cα-RMSDRanked_0 Cα-RMSDMD_opt ΔCα-RMSD

7n0r 10.92 5.62 ± 0.97 5.30

3juy 6.37 5.71 ± 0.23 0.66

5y80 6.61 7.59 ± 0.47 –0.98

7a4t 6.19 7.48 ± 0.29 –1.29

4nzr 6.57 7.73 ± 0.26 –1.16

6xzu 7.45 6.34 ± 0.94 1.11

6x05 6.32 7.48 ± 0.63 –1.16

3c08 6.68 7.01 ± 0.11 –0.33

4z9k 9.04 8.01 ± 0.37 1.03

6oca 7.61 8.01 ± 0.34 –0.40

RMSD = root mean square deviation.

https://doi.org/10.7554/eLife.91512
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a template-grafting module (TGM). The CBM calculates an AF2 confidence score to evaluate the 
reliability of CDR-H3 loop sequence inputs through MSA and template searching. The TGM then 
identifies a template from the H3 template database and grafts the CDR-H3 loop onto the AF2 model 
if such a template is available (Figure 4c).

Figure 4. H3-OPT architecture. (a) Schematic for dataset preparation. Structures were screened from the SAbDab database based on resolution and 
sequence identity. Clustering of the filtered, high-resolution structures yielded three datasets for training (n = 1021), validation (n = 134), and testing (n 
= 131). (b) The workflow of H3-OPT includes two modules. The template module determines whether to use PLM-based structure prediction module 
(PSPM), while the PSPM module optimizes the AF2 input structures. (c) The template module retains AF2-predicted loops when the confidence score is 
>0.8 and grafts CDR-H3 loops onto AF2 models for structures with an available template. (d) In the PSPM, the network extracts residue-level information 
and pairwise residue representations from the AF2-predicted models, which are subsequently updated using weight-sharing blocks and concatenated 
with sequence representations from ESM2. The resulting data is used to predict the 3D coordinates of the H3 loops.

https://doi.org/10.7554/eLife.91512
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The PSPM contains a series of attention-based components to ensure that the complete structural 
context is extracted from the input sequences. Specifically, the PSPM employs a row-wise gated atten-
tion layer that updates residue-level information and exchanges information within residue pair repre-
sentations and residue features to infer relationships between the spatial and residue representations. 
Additionally, by leveraging sequence-level representations from PLMs along with residue-level infor-
mation, the PSPM can integrate high-information features, such as protein folding patterns, across a 
vast protein space to predict final three-dimensional (3D) atomic coordinates (Figure 4d).

To better understand the contribution of each module to H3-OPT accuracy with varying factors, 
we next examined how incorporating different approaches through the template and PSPM modules 
could improve accuracy of H3-OPT. While AF2 showed markedly stronger predictions than IgFold in 
Sub1 (Figure 5a), IgFold provided higher accuracy in Sub3 (Figure 6a). In light of previous studies that 
showed PLM-based models are computationally more efficient but have unsatisfactory accuracy when 
high-resolution templates and MSA are available (Lin et al., 2023), we therefore sought to combine 
the strengths of AF2 with PLM-based modeling. Similar to IgFold, an initial version of H3-OPT lacking 
the CBM could not replicate the accuracy of AF2 in Sub1. Interestingly, we observed that the AF2 
confidence score of CDR-H3 shared a strong negative correlation with Cα-RMSDs (Pearson correlation 
coefficient = −0.67; Figure 5b), which led to us to hypothesize that AF2 models with high-confidence 
scores might be sufficiently accurate, and therefore do not require further optimization. Following 
this notion, we incorporated a CBM submodule that could directly retain high-confidence structures 
from AF2. TGM submodule was added as a means of grafting identical H3 loop templates from public 
PDBs onto AF2-predicted models to further improve accuracy. Ablation studies in which the CBM 
or TGM were excluded to determine their respective contributions to the final predictive accuracy 
(Figure  5c–f) revealed that H3-OPT without the template module could generate structures with 
average Cα-RMSDs of 1.76, 2.76, and 4.86 Å for the Sub1, Sub2, and Sub3 datasets, respectively. 
Incorporating only the CBM into our model significantly improved RMSDCα score by 0.62 Å for Sub1, 
but exerted negligible effects on Sub2 and Sub3. By contrast, including the TGM alone resulted in 
substantially improved RMSDCα for Sub2 and Sub3 by 0.68 and 1.04 Å, respectively, suggesting that 
templates were more effective for relatively long CDR-H3 antibodies. These results suggested that 
the combination of TGM and CBM modules could leverage available templates to improve prediction 
accuracy.

Since the large majority of sequences in Sub2 and Sub3 have long CDR-H3 loops with few sequence 
homologs, attaining high accuracy in structural predictions becomes increasingly challenging for AF2 
(Jumper et al., 2021). Inspired by IgFold and other PLM-based methods (Figure 3a), we thus devel-
oped a PSPM module to capture structural information from the sequence embeddings of PLMs (Rives 
et al., 2021). The key innovations of the PSPM for our workflow were the integration of sequence-
level representations from PLMs and the simplified architecture of AF2. ProtTrans-T5, AntiBERTy, and 
ESM2 were initially used without fine-tuning, resulting in overall average Cα-RMSDs of 2.40, 2.49, 
and 2.32 Å, respectively (Table 5). To improve accuracy, we employed a fine-tuning approach for the 
downstream CDR-H3 structure prediction task. As ESM2 outperformed other PLMs in our test set, 
we fine-tuned parameters of all ESM2 hidden layers, which resulted in an overall RMSDCα of 2.24 Å 
for H3-OPT. It should be noted that most computational models, such as IgFold, froze PLM weights 
during model training (Ruffolo et  al., 2023). Analysis of test subsets showed that H3-OPT could 
provide high accuracy in side chain predictions, high TM-scores, and high GDT scores in Sub2 and 
Sub3 (Figure 6b and c).

To expand its generalizability, we simplified the Evoformer architecture and introduced parameter-
sharing to directly predict Cartesian coordinates of CDR-H3 loops through both residue-level features 
and pair representations. In residue-level representations, rows represented amino acid types and 
structural features derived from AF2, while columns represented individual residues from the input 
sequence. The pair representations contained information about the residue pairs, such as Cα-Cα 
distance. These residue-level representations were updated by the attention-based layers and contin-
uously communicated with pair representations; the pair representations were then updated via trian-
gular multiplicative layers (Jumper et al., 2021). This simplified architecture improved model efficiency 
and avoided overfitting. We also applied a structural alignment strategy for feature extraction and 
model prediction. Given the high conservation of Fv structures, the alignment strategy was designed 
to effectively capture residue contribution to loop folding, resulting in improved training speed and 

https://doi.org/10.7554/eLife.91512
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Figure 5. Template module and ablation studies. (a) Side-by-side comparison of Cα-RMSDs of AF2 and IgFold 
for Sub1 (n = 52); color scale for data points reflects CDR3 length. AF2 outperformed IgFold for targets left of the 
dashed diagonal; IgFold outperformed AF2 for targets right of the dashed diagonal. (b) Correlations between AF2 
confidence score and amino acid sequence length of CDR-H3 loops. Datapoint color indicates Cα-RMSD value for 
that target. The correlation coefficient for confidence score and CDR-H3 loop length is −0.5921. (c) The accuracy 
of H3-OPT in three subgroups of the test set. ΔCα-RMSDs were calculated by subtracting the RMSDCα of AF2 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.91512
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from that of H3-OPT. AF2 had higher accuracy for targets above the dashed line; H3-OPT had better accuracy for 
structures below the dashed line. (d) Differences in H3-OPT accuracy without the template module. This ablation 
study means only PLM-based structure prediction module (PSPM) is used. (e) Differences in H3-OPT accuracy 
without the confidence-based module (CBM). This ablation study means input loop is optimized by template-
grafting module (TGM) and PSPM. There are 30 targets in our database with identical CDR-H3 templates. (f) 
Differences in H3-OPT accuracy without the TGM. This ablation study means input loop is optimized by CBM and 
PSPM.

Figure 5 continued

Figure 6. PLM-based structure prediction module (PSPM) module. (a) Side-by-side comparison of Cα-RMSDs for AF2 and IgFold, IgFold and H3-OPT in 
the Sub2 (n = 46) and Sub3 (n = 33) test sets, respectively. (b) Comparison of prediction accuracy between AF2 and H3-OPT for Sub2 and Sub3 targets. 
Metrics including root mean square deviations (RMSDs), template modeling scores (TM-scores), and global distance test (GDT) scores were used to 
quantitatively assess similarity between predicted and experimental structures. (c) Comparison of prediction accuracy between AF2 and H3-OPT using 
six metrics (RMSDCα, RMSDbackbone, RMSDsidechain, TM-score, GDT-TS score and GDT-HA score). Radar plots of the mean values of different methods and 
metrics in predictions of Sub2 and Sub3 targets.

https://doi.org/10.7554/eLife.91512
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accuracy. Taken together, H3-OPT provided high-accuracy predictions for CDR-H3 loops, facilitating 
the development of antibody therapeutics.

H3-OPT provides higher accuracy CDR-H3 models than existing 
structure prediction software
We then evaluated the performance of H3-OPT against currently available methods, including AF2, 
IgFold, HelixFold-Single, ESMFold, and OmegaFold. H3-OPT achieved an average Cα root mean 
square deviation (RMSDCα) of 2.24 Å for CDR-H3, while AF2 and IgFold had CDR-H3 RMSDs of 2.85 
and 2.87 Å, respectively (Figure 7a). HelixFold-Single, OmegaFold, and ESM-Fold generated compar-
atively poor predictions, with RMSDs for CDR-H3 of 3.39, 3.75, and 4.23 Å, respectively. As shown in 
Figure 7b, H3-OPT provided higher accuracy predictions than other methods in all three subgroups, 
with average RMSDs of 1.10, 2.28, and 3.99 Å, respectively. While the predictions of H3-OPT were 
comparable to AF2 in Sub1, its accuracy was higher than AF2 in Sub2 and Sub3.

In light of these results, we then sought to validate H3-OPT using three experimentally determined 
structures of anti-VEGF nanobodies, including a wild-type (WT) and two mutant (Mut1 and Mut2) 
structures, that were recently deposited in Protein Data Bank (Figure  7c). Although Mut1 (E45A) 
and Mut2 (Q14N) shared the same CDR-H3 sequences as WT (LengthCDR-H3 = 17), only minor vari-
ations were observed in the CDR-H3. H3-OPT generated accurate predictions with Cα-RMSDs of 
1.510, 1.541, and 1.411 Å for the WT, Mut1, and Mut2, respectively (the confidence scores of these 
AlphaFold2-predicted loops were all higher than 0.8, and these loops were accepted as the outputs 
of H3-OPT by CBM). Subsequent comparison with IgFold showed that AlphaFold2 outperformed 
IgFold on these targets and IgFold could not accurately predict the short helix in CDR-H3, resulting in 
Cα-RMSDs of 2.776 Å (WT), 2.888 Å (Mut1), and 2.448 Å (Mut2) and more diverse conformations of 
Mut1 and Mut2. These results indicated that IgFold was capable of learning long-range correlations 
in protein sequences, but that these long-range correlations could introduce larger errors when MSA 
and templates were available. These results thus demonstrated that MSA could strongly influence the 
accuracy for which similar CDR-H3 template structures were available.

H3-OPT can predict antibody surface properties
To demonstrate how improved CDR-H3 structural accuracy can assist antibody engineering, we 
applied H3-OPT to predict surface properties. A comparison of H3-OPT with AF2 for identifying 
surface amino acids (SAAs) by the relative accessible surface areas (rASAs) of CDR-H3 loops showed 
that H3-OPT could predict SAAs, on average, close to that of the native structures (9.46 vs 9.40, 
Figure 8a), whereas AF2 predicted an average of 9.81 SAAs. Furthermore, H3-OPT predicted closer 
values to native structures than AF2 in predicting diverse surface properties, such as the distribution 
of hydrophilic or charged SAAs (Figure 8b).

To examine insights H3-OPT could provide into the biophysical properties of antibodies (Cong 
et al., 2021), we next estimated the solvent-accessible surface areas (SASAs). The average SASAs of 
H3-OPT loops closely resembled that of the native structures, with larger differences in AF2 predic-
tions (Figure 8c). Plots of SASA distributions at each alignment position revealed smaller errors in 
H3-OPT than AF2, with ΔSASA ranging from –12.17 to 9.74 Å2 (Figure 8—figure supplement 1). In 

Table 5. Performance of H3-OPT with different protein language models (PLMs).

RMSDCα (Å)

H3-OPT 2.24 ± 1.05

AF2 2.85 ± 0.69

ESM2 2.31 ± 1.13

Without PLM 2.41 ± 1.26

AntiBERTy 2.49 ± 1.42

ProtTrans-T5 2.40 ± 1.28

RMSD = root mean square deviation.

https://doi.org/10.7554/eLife.91512
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addition, comparison of surface charge distributions on the predicted CDR-H3 loops generated by 
H3-OPT and AF2 in an electrostatic map of a representative structure (PDB 5U3P, Figure 8d) showed 
that H3-OPT predictions were consistent with the experimental structure. These results collectively 
showed that accurate surface properties predicted by H3-OPT could provide insights into antibody 
folding and stability, as well as their interactions with antigens.

H3-OPT can facilitate investigation of antibody–antigen interactions
To explore the potential applications of H3-OPT in studying antibody–antigen interactions, we 
analyzed contact patterns at predicted binding sites. Given that predicting the structure of an anti-
body–antigen complex remains challenging, we superimposed VH fragments from H3-OPT and AF2 
onto experimentally determined native complex structures available in our test set. After identifying 
the contact residues of antigens by H3-OPT, we found that H3-OPT could substantially outperform 
AF2 (Figure 9a), with a median precision of 0.82 and accuracy of 0.98 compared to 0.71 precision and 
0.97 accuracy of AF2. Next, we estimated the distances among interface residues, which are related 
to binding affinity at the interface. We found that H3-OPT had less error in distance metrics than 
predictions by AF2 across different distance thresholds, with average mean squared errors of 2.42 
and 4.85 Å, respectively (Figure 9b). Furthermore, calculation of H3 contact propensities to assess 

Figure 7. Accuracy of CDR-H3 loop prediction by H3-OPT. (a) The performance of H3-OPT in the test set (nmAbs = 119, nNbs = 12) relative to other 
methods. The RMSDCα of H3-OPT was significantly lower than other existing methods (p<0.001). (b) The performance of H3-OPT in structural predictions 
of three subgroups of the test set (n = 52, 46, and 33). (c) H3-OPT structural predictions for three anti-VEGF nanobodies (PDB ID: 8IIU, 8IJZ, 8IJS). The 
sequence identities of the VH domain and H3 loop are 0.816 and 0.647, respectively, compared with the best template. ***p<0.001. RMSD, root mean 
square deviation.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Comparison of accuracy between AF2, H3-OPT, and tFold-Ab methods using the CAMEO 2022 benchmark dataset (Leemann 
et al., 2023).

https://doi.org/10.7554/eLife.91512
https://www.cameo3d.org/
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potential differences in binding patterns between the predicted and native structures using high-
quality H3 conformations indicated that H3-OPT also displayed higher accuracy in predicting contact 
propensities (Figure 9c).

Finally, to test whether H3-OPT was reliable for investigation of the detailed mechanisms under-
lying antigen–antibody binding, we generated contact maps and calculated binding affinities for 
complex structures obtained by H3-OPT, AF2, or through experiments (see ‘Methods’ for details). 
We found that contact maps predicted by H3-OPT were consistent with those observed in the 

Figure 8. Analysis of surface patches. (a) Analysis of surface amino acids for predicted H3 loops. Y-axis represents average number of surface residues 
for H3 loops (n = 131). The surface residues of AF2 models are significantly higher than those of H3-OPT models (p<0.05). (b) Histogram of surface 
patches with different properties predicted by H3-OPT, AF2, or experimentally solved H3 loops. Error bars show standard deviations. H3-OPT models 
predicted lower values than AF2 models in terms of various surface properties, including polarity (p<0.05) and hydrophilicity (p<0.001). (c) Solvent-
accessible surface area (SASA) analysis of predicted H3 loops. Values represent the difference in SASA between predicted and experimentally 
determined H3 structures using AF2 or H3-OPT. The SASA of AF2 models are significantly higher than those of H3-OPT models (p<0.001). (d) 
Comparison of the charged surface patches between H3-OPT and AF2 for target PDB ID: 5U3P. The surface maps compare the surface electrostatic 
potential of the CDR-H3 loop predicted by H3-OPT or AF2 with the native structure. Darker shading indicates greater difference in electrostatic 
potential. *p<0.05; **p<0.01; ***p<0.001.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Solvent-accessible surface area (SASA) analysis of predicted H3 loops.

https://doi.org/10.7554/eLife.91512
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Figure 9. Accuracy of H3-OPT predictions of antibody–antigen interactions. (a) Performance of H3-OPT in binding site prediction. comparison of 
prediction accuracy between H3-OPT and AF2 for antibody–antigen binding sites (n = 27). Box represents interquartile range (IQR); horizontal line in 
the center of the box shows median. (b) Comparison of the mean squared errors of residue pairs between H3-OPT and AF2 under different distance 
thresholds. The x-axis represents the experimentally determined distance between pairs of contacting residues at the binding site in the native 
structure. Y-axis shows mean squared errors of H3-OPT and AF2. (c) Heatmaps of the frequency of pairwise residue–residue contacts across antibody–
antigen interfaces. This analysis compares contact frequency of H3 loops predicted by AF2 or H3-OPT with the native structure. Darker shading 
indicates greater difference in contact frequency. (d) The predicted H3 loops of two targets interacting with antigens (PDB: 2YC1, 6O9H). The epitopes 
are highlighted in red and antibody chains are green. H3-OPT could identify the epitopes of different antigens that form the complementary binding 
interface(s) for the CDR-H3 of antibodies.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. RMSDbackbone during production runs.

https://doi.org/10.7554/eLife.91512
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experimental structures (Figure 9d). Since affinity prediction plays a crucial role in antibody thera-
peutics engineering, we performed MD simulations to compare the differences in binding affinities 
between AF2-predicted complexes and H3-OPT-predicted complexes (Figure 9—figure supplement 
1). Calculation of binding affinities through MD simulations showed that the average affinities of struc-
tures obtained by H3-OPT prediction were closer to those of experimentally determined structures 
than values obtained through AF2 (Table 6). These cumulative findings illustrate the informative value 
of high-quality H3 loops for predicting binding affinity and facilitating antibody engineering, and 
further support the use of H3-OPT as a powerful and versatile tool for investigating antigen–antibody 
interactions.

Discussion
Several platforms for in silico antibody engineering have been developed to improve binding affinity 
(Lippow et al., 2007; Riahi et al., 2021; Clark et al., 2006; Shan et al., 2022), humanization (Choi 
et al., 2015; Kurella and Gali, 2014), and stability (Tomar et al., 2018; Froning et al., 2020). At 
present, engineering these biophysical properties of therapeutic antibodies heavily relies on the avail-
ability of the structures of thousands of antibodies. The accurate structure of CDR-H3 is crucial for 
understanding the mechanism(s) of antigen–antibody interactions. Although AF2 performs well when 
MSA and templates are available, its predictive capability decreases for targets with long CDR-H3 
loops. By contrast, PLMs leverage tens of millions of protein sequences to learn relevant structural 
patterns, consequently enhancing their capacity to predict orphan antibodies (Chowdhury et  al., 
2022). The results of IgFold indicate that PLMs, which incorporate transformer-based attention mech-
anisms, are capable of learning both local and global sequence information (Ruffolo et al., 2023). 
While global information can be useful for challenging targets, it may lead to large errors when 
templates were available, as demonstrated by our case study of anti-VEGF nanobodies (Figure 7).

Table 6. Comparison of binding affinities obtained from molecular dynamics (MD) simulations using 
AF2 and H3-OPT.

PDB ID

AF2 (kcal/mol)
AF2 
RMSDCα 
(Å)

H3-OPT (kcal/
mol)

H3-OPT 
RMSDCα 
(Å)

AF2 (kcal/mol)
H3-OPT (kcal/
mol)

MM/
GBSA

MM/
PBSA

MM/
GBSA

MM/
PBSA

|ΔMM/

GBSA*|
|ΔMM/

PBSA|
|ΔMM/

GBSA|
|ΔMM/

PBSA|

2ghw –29.20 –33.36 2.7 –14.70 –21.36 3.0 8.63 2.42 23.13 14.42

2yc1 –38.85 –37.73 2.3 –43.80 –48.72 1.5 6.80 18.67 1.85 7.68

3l95 –29.59 –53.35 2.5 –47.22 –68.86 2.5 23.60 11.44 5.97 4.07

3u30 –37.31 –42.41 2.6 –44.94 –50.07 2.5 9.64 2.18 2.01 5.48

4cni –36.96 –42.93 1.0 –31.92 –40.39 1.3 8.54 7.44 3.50 4.89

4nbz –36.59 –43.79 1.9 –59.61 –54.23 0.6 10.17 3.30 12.85 13.74

4xnq –13.55 –17.47 2.7 –31.51 –30.94 0.5 15.40 12.32 2.57 1.15

4ydl –52.51 –74.25 4.8 –49.17 –73.57 3.6 6.82 6.53 10.15 7.21

5e5m –59.72 –71.15 3.0 –41.29 –53.70 7.3 0.50 5.79 18.93 11.66

5f7y –61.76 –69.46 2.7 –60.33 –69.43 1.4 3.95 6.38 5.38 6.41

6kyz –12.66 –20.32 4.0 –9.36 –17.13 3.7 17.63 17.21 20.93 20.40

6o9h –39.53 –43.45 2.8 –52.27 –57.51 0.6 10.45 13.31 2.29 0.74

6pyd –45.87 –58.71 1.0 –35.75 –45.28 1.1 6.29 13.50 3.83 0.06

6u9s –36.54 –48.66 1.0 –39.79 –44.80 1.3 14.35 10.42 11.11 14.28

Average / / 2.6 / / 2.4 10.20 9.35 8.89 8.01

*ΔMM/GBSA (or ΔMM/PBSA) was calculated by subtracting the MM/GBSA (or MM/PBSA) of predicted model from the 
MM/GBSA· (or MM/PBSA) of experimental structure.

https://doi.org/10.7554/eLife.91512
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H3-OPT combines the strengths of AF2 and PLMs to predict the structures of mAbs and Nbs, and 
our results show that combining these features can improve the average RMSDCα by 20% over that 
of AF2 or IgFold. However, H3-OPT is less efficient than PLM-based methods like IgFold because it 
relies on AF2 structures. To improve efficiency, one possible solution is to cluster the targets based 
on sequence identity and compute AF2 structures for each cluster, followed by generation of mutant 
structures. Despite the lower efficiency, H3-OPT offers several notable advantages over IgFold. First, 
H3-OPT incorporates a simplified version of Evoformer, which improves training efficiency. In addi-
tion, H3-OPT employs an alignment-based strategy to extract structural features that are then used 
to directly predict the Cα coordinates of H3 loops, effectively capturing the residue features rele-
vant to loop folding. Moreover, we found that IgFold uses an augmented dataset containing AF2-
predicted structures, which could potentially propagate errors during model training. In contrast, 
H3-OPT was trained by using high-quality and non-redundant antibody structures. Finally, H3-OPT 
also shows lower Cα-RMSDs compared to AF2 or tFold-Ab for the majority (six of seven) of targets 
in an expanded benchmark dataset, including all antibody structures from CAMEO 2022 (Leemann 
et al., 2023 ; Figure 7—figure supplement 1).

Although H3-OPT can provide high accuracy with a small training dataset, it is likely that a larger 
dataset containing high-resolution structures will further improve our model. In the current study, 
we observed that the accuracy of AF2 CDR-H3 predictions was correlated with the length of the H3 
loop. Thus, AF2 can provide accurate predictions for short loops with fewer than 10 amino acids, 
with PLM-based models offering little or no improvement in such cases. Conversely, antibodies with 
H3 loop lengths exceeding 25 residues (common in Sub3) pose a long-standing challenge for struc-
tural prediction algorithms, and none of the existing methods (including H3-OPT) tested here could 
provide accurate predictions due to a lack of homologous sequences and a high degree of freedom in 
this subgroup. Notably, H3-OPT outperformed AF2 in Sub3 because the context of protein sequences 
learned from ESM2 was fine-tuned to fit antibody structures. Furthermore, we envision that antibodies 
with H3 loop lengths ranging from 10 to 25 amino acids could be further optimized using PLMs 
with more model parameters. In addition, we attempted to optimize the H3 loop structure through 
MD simulations and QM-based methods. However, these approaches generally yielded less accurate 
predictions than AF2 due to inaccurately described solvent effects and other environmental factors. 
The development of a more accurate, physics-based method for modeling long loops may be another 
potentially effective strategy for improving H3-OPT.

Deep generative models are playing a vital role in the field of protein design, leading to several 
successful applications (Watson et al., 2023; Dauparas et al., 2022; Shin et al., 2021; Luo et al., 
2022; Watson et al., 2022; Ingraham et al., 2019). These models capture the intricate relationship 
between sequences and structures, enabling the generation of novel protein scaffolds not existing 
in nature. However, the potential immunogenicity concerns associated with these newly designed 
proteins require comprehensive preclinical and clinical investigations. Consequently, conventional 
mAbs and Nbs remain the prevailing choices in medicine. Recognizing that the properties of anti-
bodies are heavily influenced by their structures, accurate prediction of the structures of mAbs and 
Nbs is of great significance in optimizing their therapeutic effectiveness and clinical relevance. To this 
end, H3-OPT has strong potential to accelerate optimization of antibody–antigen binding as well as 
engineering of therapeutic antibodies with specialized biophysical properties.

Methods
Datasets
High-quality structures are necessary for the accurate assessment of antibody modeling methods. 
All antibody information was obtained from the SAbDab website. We first downloaded antibody 
structures with X-ray diffraction resolution of 2.5 Å or less from the RCSB website (https://www.rcsb.​
org/) and deleted redundant sequences with 95% or more identity. Then, we clustered the remaining 
sequences into 93 clusters using UCLUST (Edgar, 2010) by 65% sequence similarity cutoff and selected 
centroid sequences to ensure the representativeness and sufficient quantity of the final datasets. We 
additionally omitted the PDB IDs 5DHV, 3SE9, 4YDJ, 5VF6, 6CT7, 7FAB, 6NMT, 5ILT, and 5UXQ, 
which were unable to predict using ABodyBuilder. The Fv sequence of each target was identified from 
initial sequences using the Chothia and Lesk, 1987 definitions. For the Nb dataset, we collected Nb 

https://doi.org/10.7554/eLife.91512
https://www.cameo3d.org/
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sequences from a non-redundant dataset (Zavrtanik and Hadži, 2019) and deleted all structures with 
low resolution (≥ 2.5 Å) to construct a high-resolution nanobody structure database. Seven native 
structures (PDB IDs 6NEX, 6FFJ, 4BUH, 6BHZ, 6UUM, 5O03, and 5C1M) were further excluded from 
the final dataset owing to the missing residues in CDR-H3 loops. In total, 125 targets were included in 
the final datasets: 47 mAbs (DB1) and 78 Nbs (DB2). After the model assessment, additional 98 anti-
bodies and 42 nanobodies, which were collected from the test sets of DeepAb and NanoNet, were 
combined to verify the improvement of the CDR-H3 optimization methods (DB3).

Sequence logos generation
Sequences of DB1, DB2 VH domains were determined by Chothia definitions and aligned using 
ANARCI (Dunbar and Deane, 2016) with the Aho scheme (Honegger and Plückthun, 2001). Then, 
we removed the alignment positions with 85% gaps to obtain a good visualization of alignment statis-
tics. Finally, the alignment outputs of different datasets were submitted to the WebLogo3 server 
(Crooks et  al., 2004) to obtain sequence logos of each database. These sequence logos quanti-
tatively showed the conservation of antibody sequences. The height of each letter within the logo 
corresponds to its base frequency at that particular position. The letters are arranged in descending 
order of size, with the tallest (or most frequent) letter positioned at the top.

Benchmarking alternative methods
To evaluate the prediction accuracy of all alternative methods, we benchmarked five AI-based 
methods (AF2, RoseTTAFold, trRosetta, NanoNet, and DeepAb) and two TBM methods (MODELLER 
and ABodyBuilder). Identical templates were excluded from TBM templates database and AF2 PDB 
database. To model full-length VH and VL antibody, 50 glycines were added as a linker between two 
chains. The output multiple sequence alignment files of AF2 were then used to predict MODELLER 
models. ABodyBuilder models were generated using the webserver and modeled by Sphinx. For all 
methods, recommended parameters were used for all antibody predictions. NanoNet was removed 
from the DB1 as it was only applied for Nb modeling. We only compared and summarized the target 
structures that were successfully produced by all participants.

Model assessment
The residue indexes of different models were aligned and renumbered using MAFFT (Katoh et al., 
2002) to obtain the same sequence length. We assessed the accuracy of AF2 through varying metrics, 
including TM-score, GDT-TS score, and GDT-HA score. The structural cutoffs for GDT-TS score were 
1, 2, 4, and 8 Å, respectively, while that of the GDT-HA score were 0.5, 1, 2, and 4 Å, respectively. 
We calculated the average Z-scores of these methods to assess the overall similarities. The average 
Z-score of each target is given by

	﻿‍
Zave = 1

3
ZGDT−TS + 1

3
ZGDT−HA + 1

3
ZTM−score‍�

To better evaluate the accuracy of CDR loops, RMSDs were computed after superimposing the Fv or 
VH backbone heavy atoms to their reference structures. All RMSDs were computed using Schrödinger 
v. 2017-2 (Schrödinger, New York, NY).

Refinement of the CDR-H3 loop of AF2 through QM methods
We extracted all H3 loop atoms from different AF2 models and re-rank these models based on 
QM energies. The nitrogen atoms and carbonyl atoms were initially removed from N-terminals and 
C-terminals, respectively. Next, we added hydrogens to these loops and produced the input files for 
different QM optimization methods using Schrödinger v. 2017-2. The geometry optimizations were 
carried out with the Gaussian16 (Stewart, 2007) software. We first optimized the CDR-H3 loop by 
using PM6-D3 (Grimme et al., 2010; Stephens et al., 1994) and B3LYP/6-31G* (Chothia and Lesk, 
1987; Hehre et  al., 1972). The optimization method was divided into three steps: (1) optimizing 
hydrogens; (2) freezing the terminal C-alpha atoms and optimizing other atoms; and (3) frequency 
calculations to obtain Gibbs free energies. For an alternative CDR-H3 loop optimization method, we 
calculated the single-point energies with thermal corrections. The solvation effect can be estimated 
using the polarizable continuum model (with a dielectric constant ε = 78.36). After optimization, the 

https://doi.org/10.7554/eLife.91512
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proportion of each conformation was calculated based on the energies of five AF2 models according 
to Boltzmann distribution, which was used to generate a Boltzmann-averaged structure. The struc-
tures that failed in the optimization process were excluded from the final comparison.

H3-OPT dataset
Crystal structures of antibodies were obtained from SAbDab, a non-redundant nanobody database 
(Zavrtanik and Hadži, 2019) and a subset of DeepAb. The structures with resolution >2.5 Å or redun-
dant sequences with 95% or greater identity were removed (Figure 4a). We removed the structures 
with missing loops in CDR-H3 or lengths >45. The structures with missing residues at CDR-H3 loops 
were also dropped. To enhance the generalizability of H3-OPT, the sequences were clustered based 
on a 90% similarity cutoff by using UCLUST (Edgar, 2010). The resulting clusters were then randomly 
divided into training, validating, and testing sets to avoid overestimation of performance. The number 
of sequences in training, validating, and testing sets was 1021 (925 mAbs, 96 Nbs), 134 (122 mAbs, 
12Nbs), and 131 (119 mAbs, 12 Nbs), respectively, with average CDR-H3 loop length of 11.8, 11.9, 
and 11.7, respectively. Schrödinger v. 2017-2 (Schrödinger), Numpy 1.18.5, and Pandas 1.0.5 were 
used for data preparation.

Structure preparation
To address the transformational invariance for predicting 3D coordinates, we applied a structural 
alignment strategy. Prior to feature extraction, we removed all atoms of light chains in mAbs Fv 
structures and any non-standard residues in native structures. All antibody VH native structures were 
aligned using StructAlign module in Schrödinger with a randomly selected reference structure (PDB 
ID: 1GIG). Next, we superimposed AF2-predicted models to their corresponding native structures. 
This alignment allowed the model to learn the interactions between residues located in H3 loops 
while disregarding the rotation and translation of the entire structure. The heavy chain fragments were 
determined using Chothia definitions (Ahdritz et al., 2022a).

Feature generation
As shown in Table 7, structural features were extracted and aggregated into the following inputs to 
PSPM of H3-OPT: a residue feature vector of size [Nres, 34] was constructed by concatenating ‘amino 
acid type’, ‘AF2-predicted coordinates’, ‘AF2-predicted backbone torsion angles’, ‘torsion angles 
mask’, and ‘predicted residue mask’. The pairwise feature vector of size [Nres, Nres, 60] included the 
‘pairwise distances’ and ‘pairwise amino acid type’.

Table 7. Features of the model.
Nres is the number of residues (Jumper et al., 2021).

Feature and shape Description

Amino acid type [Nres, 21] One-hot representation of the input amino acid sequence 
(including 20 amino acids and unknown).

3D coordinates [Nres, 3] Cα coordinates of all AlphaFold2-predicted residues

Backbone torsion angles [Nres, 6] Sine and cosine encoding of all predicted three backbone 
torsion angles.

Torsion angles mask [Nres, 3] A mask indicating if the angle was presented in the 
predicted structure.

H3 residue mask [Nres, 1] A mask indicating if the residue was located in H3 loop.

Pairwise distances [Nres, Nres, 39] One hot representation of residue alpha carbon atoms 
distance. The pairwise distances ranging from 3.25 Å to 
50.75 Å were put into 38 bins equally and the last bin 
contained any larger distances.

Pairwise amino acid type [Nres, Nres, 21] One-hot representation of the input amino acid sequence.

https://doi.org/10.7554/eLife.91512
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Network architecture
H3-OPT took the predicted H3 loops of AF2 as input and generate the antibody structure with the 
optimized CDR-H3 loops as output. H3-OPT was composed of a template module and a PSPM. The 
template module contains two submodules, that is, CBM and TGM. The CBM calculated the average 
confidence score of H3 residues and retained AF2 structures with confidence score >0.8. The TGM 
grafted the template loop structure onto the input AF2 model, when their CDR-H3 sequences were 
identical. We replaced the predicted CDR-H3 loop generated by AF2 with the template loop by 
aligning corresponding atoms, which included Cα atoms and carbonyl carbon atoms in the first two 
residues and Cα atoms and backbone nitrogen atoms in the last two residues.

The input residue-level features are extracted from AF2-predicted structures as mentioned above, 
resulting in a dimension of L × 34, where L is the padding length of antibody heavy chain. Similarly, 
the pairwise features has a dimension of L × L × 60. The PSPM network began with a row-wise gated 
multi-head self-attention layer that updated residue-level features from pair representations. Then, 
the residue-level information updated the pair representations via outer product mean module. Pair 
representations were updated by two multiplicative update modules. During training, the weights 
of the attention layer and the triangle multiplicative update modules were updated four times per 
epoch. Then, the final hidden states from ESM2 (esm2_t33_650M_UR50D) were passed to a linear 
layer and then concatenated with the residue-level features to enable the learning of latent infor-
mation from vast protein sequences. To predict all Cα coordinates for the CDR-H3 loop, the output 
vector was passed through three linear layers with a hidden size of 64. In summary, PSPM utilized an 
attention-based mechanism to learn the contribution of individual residues and incorporate sequence 
representations from PLMs into final predictions. We used OpenFold (Banks et  al., 2005; based 
on GitHub from June 2022: commit 3f57b4a041f063406059f42080ede6d495479617; Ahdritz et al., 
2022b) to implement partial networks of AF2.

We employed a fine-tuning strategy to update the sequence representations in ESM2. Initially, 
we froze all weights of the 33 representation layers in ESM2 and updated only the weights of the 
attention layers and pair representation update modules. Subsequently, we fixed all weights of the 
remaining components in H3-OPT and performed fine-tuning exclusively on all hidden layers of ESM2 
for the H3 loop prediction task. Finally, we fine-tuned all parameters of H3-OPT to predict the atomic 
coordinates of all CDR-H3 Cα atoms.

Table 8. Hyperparameters for H3-OPT models.

Model 2 5 1 3 Best

 � Initial learning rate 1–4 5–4 1–3 5–4 1–4

 � Hidden layers 64 64 64 64 64

 � Iterations numbers of Evoformer-like layer 6 6 4 4 4

 � Average RMSDCα (Å) 2.42 2.36 2.35 2.33 2.24

RMSD = root mean square deviation.

Table 9. Average Cα-RMSDs of our test set under different confidence cutoffs.

Cutoff Cα-RMSD (Å)

0.70 2.46

0.75 2.30

0.80 2.24

0.85 2.17

0.90 2.29

0.95 2.28

RMSD = root mean square deviation.

https://doi.org/10.7554/eLife.91512
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During training, we trained our model on the training set and validated it on the validation set. The 
dropout rates of H3-OPT were set to 0.25. Mean squared error (MSE) loss was utilized to train the 
model. We used Adam optimizer with a learning rate of 1 × 10−4, weight decay of 5 × 10−4 for training. 
The model was trained on an NVIDIA V100 super GPU and took 1 hr per epoch over the entire training 
set with a batch size of 64. We randomly selected 10% of all structures for model validation. The 
H3-OPT was implemented using PyTorch 1.12.1 in Python 3.7.2. The hyperparameters used during 
training process for H3-OPT are presented in Table 8. The average Cα-RMSDs of our test set under 
different confidence cutoffs in CBM are presented in Table 9.

Structure generation and refinement
We utilized a structure refinement strategy to generate structures of CDR-H3 loops and rectify struc-
tural errors. Initially, we used PSPM predictions to modify the Cα coordinates of predicted CDR-H3 
loops generated by AF2. Then, we minimized the remaining atoms of the CDR-H3 loops, while 
keeping their Cα coordinates fixed, by using the OPLS 2005 force field (Mirdita et al., 2022). After 
the initial energy minimization step, we applied a force constant of 10 kcal/mol to these fixed atoms 
to guarantee complete relaxation of the entire loops.

Validation settings
H3-OPT, AF2, HelixFold-Single, IgFold, and ESMFold were compared on the test subset. Given that 
tFold-Ab is only available on webserver, we compared H3-OPT with tFold-Ab on the CAMEO 2022 
dataset (Leemann et al., 2023). We removed the target antibody structures from the AF2 database 
before prediction to evaluate the performance of AF2. This ensured that the predictions depended 
solely on the information derived from other template structures, thus avoiding biased results. Since 
all other methods did not require MSA searching, we did not exclude these targets from their data-
base. To predict the entire Fv structures, we included 50 glycine residues as a linker between the 
heavy chain and the light chain for antibodies (Levy, 2010). The Cα-RMSDs of all predicted H3 loops 
were calculated after superimposing the VH backbone heavy atoms (without CDR-H3) to the refer-
ence structures. All structures were generated using publicly available code repositories: AF2 v2.1.1 
(based on GitHub from the November 2021 version at GitHub: commit 91b43223422420d1783ed-
802c8b3a8382a9309fd; Zidek et al., 2021), IgFold (based on GitHub from February 2023: commit 
6a09298d165ed1deb438c0b6eefcbcb03ed0eca5; Graylab, 2023), HelixFold-Single (based on 
GitHub from January 2023: commit 5f39b2c2a4ecc00b89ba05b95dc56212bdd5d886; Xiang and 
xiaoyao4573, 2023), and ESMFold v1 (based on GitHub from October 2022: commit dc823b89c6acb-
9f67caea53704c2a97524fbd456; Sercu, 2022).

Analysis of SASAs and pairwise residue contacts
We computed the SASAs and rASAs of all CDR-H3 loops by using the ANARCI webserver (Dunbar 
and Deane, 2016) with the default settings. Residue with an rASA >25% was considered surface 
residues (Schweke et  al., 2022). Subsequently, we applied AHo alignment software (Honegger 
and Plückthun, 2001) to report the averaged SASA per alignment position. The samples and align-
ment positions with more than 10 gaps were removed to avoid randomness and bias, reducing the 
final samples to 123. Finally, the difference in SASAs between H3-OPT and AF2 was calculated by 
subtracting predicted H3 loops SASAs from the ground truth.

To examine the contribution of H3-OPT in discovering antibody–antigen interactions, we identified 
contact residue pairs that were within this distance as binding sites by setting a threshold of 5 Å. We 
next calculated the pairwise residue distance matrices for each individual predicted complex and 
native structure, where each element represented the closest distance between the heavy atoms of 
two residues. From these pairwise distances, we derived contact propensity matrices that specifically 
indicated the presence or absence of interactions between residues.

Analysis of surface electrostatic potential
We generated 2D projections of CDR-H3 loop’s surface electrostatic potential using SURFMAP 
v2.0.0 (Salomon‐Ferrer et al., 2013; based on GitHub from February 2023: commit: e0d51a10debc-
96775468912ccd8de01e239d1900; Chevrollier et al., 2023) with default parameters. The 2D surface 
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maps were calculated by subtracting the surface projection of H3-OPT or AF2-predicted 3 loops to 
their native structures.

Binding affinity calculation
We analyzed the binding affinities of antibody–antigen complexes predicted by AF2 and H3-OPT. 
Their relative binding affinities were calculated through MD simulations. Initially, the missing side 
chains and loops in the antibody structures were filled using the Protein Preparation Wizard module 
within Schrödinger software. Subsequently, the tLEaP module of AMBER (Tian et  al., 2020) was 
employed to construct the simulation system with the ff19SB force field (Izadi et al., 2014) and OPC 
solvent model (Chayen and Saridakis, 2008). Additionally, the simulation system was solvated with 
a 0.15 M NaCl solution. Energy minimization was performed through a 5000-step steepest descent 
algorithm, followed by a 5000-step conjugate gradient algorithm. Then, a 400-ps NVT simulation 
with a time step of 2 fs was performed to gradually heat the system from 0 K to 298 K (0–100 K: 100 
ps; 100–298 K: 200 ps; hold 298 K: 100 ps), and a 100-ps NPT simulation with a time step of 2 fs was 
performed to equilibrate the density of the system. During heating and density equilibration, we 
constrained the antigen–antibody structure with a restraint value of 10 kcal⋅mol–1⋅Å–2. In the produc-
tion run, 100-ns MD simulations were performed with a time step of 2 fs. The first 50 ns restrains the 
non-hydrogen atoms of the antigen–antibody complex, and the last 50 ns restrains the non-hydrogen 
atoms of the antigen, with a constraint value of 10 kcal⋅mol–1⋅Å–2. The distance cutoff for nonbonded 
interactions was set to 10 Å, and the Berendsen algorithm was utilized to maintain isotropic pressure 
coupling at 1 bar. The Langevin algorithm was employed to maintain the simulation temperature at 
298 K. The relative binding affinities of the antigen–antibody complexes were evaluated using the 
MMPBSA module of AMBER software, which computed the MM/GBSA energies for the trajectory 
frames of last 10 ns.

Crystallization and data collection
The protein expression, purification, and crystallization experiments were described previously (Zhu 
et al., 2023; Yu et al., 2019). The proteins used in the crystallization experiments were unlabeled. 
Upon thawing the frozen protein on ice, we performed a centrifugation step to eliminate any potential 
crystal nucleus and precipitants. Subsequently, we mixed the protein at a 1:1 ratio with commercial 
crystal condition kits using the sitting-drop vapor diffusion method facilitated by the Protein Crystal-
lization Screening System (TTP LabTech, mosquito). After several days of optimization, single crystals 
were successfully cultivated at 21°C and promptly flash-frozen in liquid nitrogen. The diffraction data 
from various crystals were collected at the Shanghai Synchrotron Research Facility and subsequently 
processed using the aquarium pipeline (Yu et al., 2019).

Statistics analysis
We conducted two-sided t-test analyses to assess the statistical significance of differences between 
the various groups. Statistical significance was considered when the p-values were <0.05. These statis-
tical analyses were carried out using Python 3.10 with the Scipy library (version 1.10.1).
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