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Abstract Untargeted metabolomic profiling through liquid chromatography-mass spectrometry 
(LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, 
disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major chal-
lenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging 
of multiple datasets. Current data pooling methods encounter practical limitations due to their 
vulnerability to data variations and hyperparameter dependence. Here, we introduce Gromov-
Matcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using 
optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers 
superior alignment accuracy and robustness compared to existing approaches. This algorithm scales 
to thousands of features requiring minimal hyperparameter tuning. Manually curated datasets for 
validating alignment algorithms are limited in the field of untargeted metabolomics, and hence we 
develop a dataset split procedure to generate pairs of validation datasets to test the alignments 
produced by GromovMatcher and other methods. Applying our method to experimental patient 
studies of liver and pancreatic cancer, we discover shared metabolic features related to patient 
alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated 
with lifestyle risk factors linked to several cancer types.

eLife assessment
The authors describe an important tool, GromovMatcher, that can be used to compare proteomic 
data from various experimental approaches. The underlying method is innovative, the algorithm is 
clearly described, and the validation that is presented is convincing.

Introduction
Untargeted metabolomics is a powerful analytical technique used to identify and measure a large 
number of metabolites in a biological sample without preselecting targets (Patti, 2011). This approach 
allows for a comprehensive overview of an individual’s metabolic profile, provides insights into the 
biochemical processes involved in cellular and organismal physiology (Wishart, 2019; Pirhaji et al., 
2016), and allows for the exploration of how environmental factors impact metabolism (Rappaport 
et  al., 2014; Bedia, 2022). It creates new opportunities to investigate health-related conditions, 
including diabetes (Wang et  al., 2011), inflammatory bowel diseases Franzosa et  al., 2019, and 
various cancer types (Loftfield et al., 2021; Li et al., 2020). However, a major challenge in biomarker 
discovery, metabolic signature identification and other untargeted metabolomic analyses lies in the 
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low throughput of experimental data, necessitating the development of efficient pooling algorithms 
capable of merging datasets from multiple sources (Loftfield et al., 2021).

A common experimental technique in untargeted metabolomics is liquid chromatography-mass 
spectrometry (LC-MS) which assembles a list of thousands of unlabeled metabolic features character-
ized by their mass-to-charge ratio (‍m/z‍), retention time (RT; Zhou et al., 2012), and intensity across 
all biological samples. Combining LC-MS datasets from multiple experimental studies remains chal-
lenging due to variation in the ‍m/z‍ and RT of a feature from one study to another (Zhou et al., 2012; 
Ivanisevic and Want, 2019). This problem is further compounded by differing instruments and analyt-
ical protocols across laboratories, resulting in seemingly incompatible metabolomic datasets.

Manual matching of metabolic features can be a laborious and error-prone task (Loftfield et al., 
2021). To address this challenge, several automated methods have been developed for metabolic 
feature alignment. One such method is MetaXCMS, which matches LC-MS features based on user-
defined ‍m/z‍ and RT thresholds (Tautenhahn et al., 2011). More advanced tools use information on 
feature intensities measured in samples. For instance, PAIRUP-MS uses known shared metabolic 
features to impute the intensities of all features from one dataset to another Hsu et al., 2019. Metab-
Combiner (Habra et al., 2021) and M2S (Climaco Pinto et al., 2022) compare average feature inten-
sities, along with their ‍m/z‍ and RT values, to align datasets without requiring extensive knowledge of 
shared features. These automated alignment methods have accelerated our ability to pool and anno-
tate datasets as well as extract biologically meaningful biomarkers. However, they demand substan-
tial fine-tuning of user-defined parameters and ignore correlations among metabolic features which 
provide a wealth of additional information on shared features.

Here, we introduce GromovMatcher, a user-friendly flexible algorithm which automates the 
matching of metabolic features across experiments. The main technical innovation of GromovMatcher 
lies in its ability to incorporate the correlation information between metabolic feature intensities, 
building upon the powerful mathematical framework of computational optimal transport (OT; Peyré 
and Cuturi, 2019; Villani, 2021). OT has proven effective in solving various matching problems and 
has found applications in multiomics analysis (Demetci et al., 2022), cell development (Schiebinger 
et al., 2019; Yang et al., 2020), and chromatogram alignment (Skoraczyński et al., 2022). Here, 
we leverage the Gromov-Wasserstein (GW) method (Mémoli, 2011; Solomon et al., 2016), which 
matches datasets based on their distance structure and has been seminally applied to spatial recon-
struction problems in genomics Nitzan et al., 2019. GromovMatcher builds upon the GW algorithm 
to automatically uncover the shared correlation structure among metabolic feature intensities while 
also incorporating ‍m/z‍ and RT information in the final matching process.

To assess the performance of GromovMatcher, we systematically benchmark it on synthetic data 
with varying levels of noise, feature overlap, and data normalizations, outperforming prior state-of-
the-art methods of metabCombiner (Habra et  al., 2021) and M2S (Climaco Pinto et  al., 2022). 
Next, we apply GromovMatcher to align experimental patient studies of liver and pancreatic cancer 
to a reference dataset and associate the shared metabolic features to each patient’s alcohol intake. 
Through these efforts, we demonstrate how GromovMatcher data pooling improves our ability to 
discover biomarkers of lifestyle risk factors associated with several types of cancer.

Results
GromovMatcher algorithm
GromovMatcher uses the mathematical framework of OT to find all matching metabolic features 
between two untargeted metabolomic datasets (Figure  1). It accepts two LC-MS datasets with 
possibly different numbers of metabolic features and samples. Each feature, ‍fxi‍ in Dataset 1 and ‍fyj‍ in 
Dataset 2, is identified by its ‍m/z‍, RT, and vector of feature intensities across samples (Figure 1a). The 
primary tenet of GromovMatcher is that shared metabolic features have similar correlation patterns in 
both datasets and can be matched based on the distance/correlations between their feature intensity 
vectors. Specifically, GromovMatcher computes the pairwise distances between the feature intensity 
vectors of each metabolic feature in a dataset and saves them into a distance matrix, one per dataset 
(Figure  1b). In practice, we use either the Euclidean distance or the cosine distance (negative of 
correlation) to perform this step (Materials and methods). The resulting distance matrices contain 
information about the feature intensity similarity within each study. Using optimal transport, we can 
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deduce shared subsets of metabolic features in both datasets which have corresponding feature 
intensity distance structures.

OT was originally developed to optimize the transportation of soil for the construction of forts 
(Monge, 1781) and was later generalized through the language of probability theory and linear 

Figure 1. An optimal transport approach for combining untargeted metabolomics datasets (GromovMatcher). (a) Inputs are two LC-MS datasets of 
unlabeled metabolic features (rows) identified by their ‍m/z‍, RT, and feature intensities across biospecimen samples. Both studies can have differing 
numbers of metabolic features and samples. (b) In both datasets, the intensities across samples of each metabolic feature are formed into a vector 
and Euclidean distances between these feature vectors are computed and stored in a distance matrix. (c) Based on the technique of optimal 
transport, the unbalanced GW algorithm learns a coupling matrix ‍̃Π‍ that places large weights ‍Π̃ij ≥ 0‍ when ‍fxi‍ and ‍fyj‍ likely correspond to the same 
metabolic feature. It optimizes ‍̃Π‍ to match features with similar pairwise distances (red outlined boxes) whose ‍m/z‍ ratios are close. (d) The final step of 
GromovMatcher plots the retention times of features from both datasets against each other and fits a spline interpolation ‍̂f ‍ weighted by the estimated 
coupling weights ‍̃Π‍. This retention time drift function is then used to set all entries ‍Π̃ij‍ to zero for those outlier pairs ‍(fxi, fyj)‍ which exceed twice the 
median absolute deviation (MAD) around ‍̂f ‍ (green highlighted region). Finally, the coupling matrix ‍̃Π‍ is filtered and/or thresholded to obtain a refined 
coupling ‍̂Π‍ which is then binarized to obtain a one-to-one matching ‍M ‍ between a subset of metabolite pairs in both datasets.

https://doi.org/10.7554/eLife.91597
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programming (Kantorovich, 2006), leading to efficient numerical algorithms and direct applications 
to planning problems in economics. The ability of OT to efficiently match source to target locations 
found applications in data science for the alignment of distributions (Courty et al., 2017; Alvarez-
Melis et  al., 2019) and was generalized by the Gromov-Wasserstein (GW) method (Peyré et  al., 
2016; Alvarez-Melis and Jaakkola, 2018) to align datasets with features of differing dimensions.

In practice, a sizeable fraction of the metabolic features measured in one study may not be present 
in the other. Hence, in most cases only a subset of features in both datasets can be matched. Recent 
GW formulations for unbalanced matching problems (Sejourne et al., 2021) allow for matching only 
subsets of metabolic features with similar intensity structures (Figure 1c). To incorporate additional 
feature information, we modify the optimization objective of unbalanced GW to penalize feature 
matches whose ‍m/z‍ differences exceed a fixed threshold (Materials and methods, Appendix 1). The 
optimization of this objective computes a coupling matrix‍̃Π‍ where each entry ‍Π̃ij ≥ 0‍ indicates the 
level of confidence in matching metabolic feature ‍fxi‍ in Dataset 1 to ‍fyj‍ in Dataset 2.

Differences in experimental conditions can induce variations in RT between datasets that can be 
nonlinear and large in magnitude (Zhou et al., 2012; Climaco Pinto et al., 2022; Habra et al., 2021). 
In the spirit of previous methods for LC-MS batch or dataset alignment (Smith et al., 2006; Brunius 
et al., 2016; Liu et al., 2020; Vaughan et al., 2012; Habra et al., 2021; Climaco Pinto et al., 2022; 
Skoraczyński et al., 2022), the learned coupling ‍̃Π‍ is used to estimate a nonlinear map (drift function) 
between RTs of both datasets by weighted spline regression, which allows us to filter unlikely matches 
from the coupling matrix to obtain a refined coupling matrix ‍̂Π‍ (Figure 1d, Materials and methods). 
An optional thresholding step removes matches with small weights from the coupling matrix. The final 
output of GromovMatcher is a binary matching matrix ‍M ‍ where ‍Mij‍ is equal to 1 if features ‍fxi‍ and ‍fyj‍ 
are matched and 0 otherwise. Throughout the paper, we refer to the two variants of GromovMatcher, 
with and without the optional thresholding step as GMT and GM respectively.

Validation on ground-truth data
We first evaluate the performance of GromovMatcher using a real-world untargeted metabolomics 
study of cord blood across 499 newborns containing 4712 metabolic features characterized by their 
‍m/z‍, RT, and feature intensities (Alfano et al., 2020). To generate ground-truth data, we randomly 
divide the initial dataset into two smaller datasets sharing a subset of features (Figure 2). We simulate 
diverse acquisition conditions by adding noise to the ‍m/z‍ and RT of dataset 2, and to the feature inten-
sities in both datasets. Moreover, we introduce an RT drift in dataset 2 to replicate the retention time 
variations observed in real LC-MS experiments (Materials and methods). For comparison, we also test 
M2S (Climaco Pinto et al., 2022) and metabCombiner (Habra et al., 2021), both of which use ‍m/z‍, RT, 
and median or mean feature intensities to match features (Figure 3). MetabCombiner is supplied with 
100 known shared metabolic features to automatically set its hyperparameters, while M2S parame-
ters are manually fine-tuned to optimize the F1-score in each scenario (Appendix 2). We assess the 
performance of GM, GMT, metabCombiner, and M2S across 20 randomly generated dataset pairs in 
terms of their precision (fraction of true matches among the detected matches) and recall/sensitivity 
(fraction of true matches detected) averaged across 20 dataset pairs.

To investigate how the number of shared features affects dataset alignment, we generate pairs of 
LC-MS datasets with low, medium, and high feature overlap (25%, 50%, and 75%), while maintaining 
a medium noise level (Materials and methods). Here, we find that GM and GMT generally outperform 
existing alignment methods, with a recall above 0.95 while metabCombiner and M2S tend to be less 
sensitive (Figure 3b). All methods drop in precision as the feature overlap is decreased, with GM and 
GMT still maintaining an average precision above 0.8.

Next we evaluate all four methods at low, moderate, and high noise levels for pairs of datasets 
with 50% overlap in their features (Materials and methods). Our results show that GMT, GM, and M2S 
maintain an average recall above 0.89, while metabCombiner’s recall drops below 0.6 for high noise. 
At large noise levels, RT drift estimation becomes more challenging, leading to a higher rate of false 
matches between metabolites (lower precision) for all four methods (Figure 3—figure supplement 
1). Nevertheless, GMT obtains a high average precision and recall of 0.86 and 0.92, respectively.

A notable difference between GM, metabCombiner, and M2S lies in their use of feature intensities. 
MetabCombiner expects that the mean feature intensity rankings are identical across studies, while 
M2S assumes that shared features have similar median intensities. In contrast, GM uses both the mean 

https://doi.org/10.7554/eLife.91597
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feature intensities and their variances and covariances. In practice, differences in experimental assays 
or study populations can lead to greater variation in feature intensities, making matchings based 
on these statistics less reliable. Centering and scaling the feature intensities to unit variance avoids 
potential biases arising from inconsistent feature intensity magnitudes, but preserves correlations that 
GM leverages.

Exploring this further, we test how sensitive all four methods are to centering and scaling of feature 
intensities. MetabCombiner and M2S are tuned using the same methodology as for non-centered 
and non-scaled data. For M2S, we match features solely based on their ‍m/z‍ and RT. In this experi-
ment (Figure 3—figure supplement 2), the absence of intensity magnitude information significantly 
affects metabCombiner’s performance and, to a lesser extent, M2S. GM and GMT still obtain accurate 
matchings, due to their use of correlation structures which are preserved under centering and scaling.

Figure 2. Simulated data for testing untargeted metabolomics alignment methods. (a) Initial LC-MS dataset 
taken from the EXPOsOMICS project with ‍m/z‍, RT, and feature intensities of ‍p = 4, 712‍ metabolites identified in 
cord blood across ‍n = 499‍ newborns. (b) Newborns (rows) are split into two disjoint groups of sizes ‍n1 = 249‍ and 

‍n2 = 250‍ respectively and metabolic features (columns) are split into two equal groups of size ‍p1 = p2‍ with overlap 

‍λp‍ where ‍λ = 0.25, 0.5, 0.75‍ (Materials and methods). Datasets are perturbed by additive noise of magnitude 

‍(σM,σRT,σFI)‍ and a nonlinear drift ‍f(x)‍ is applied to the RTs of dataset 2. (c) The two resulting datasets share 

‍λ = 25%, 50%‍, or 75% of the original dataset’s metabolic features.

https://doi.org/10.7554/eLife.91597
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Figure 3. Comparison of MetabCombiner, M2S, and GromovMatcher on simulated data. (a) Ground-truth matchings, and matchings inferred by 
metabCombiner, M2S, GM, and GMT. Pairs of datasets are generated for three levels of overlap (low, medium and high), with a medium noise level 
(Materials and methods). Matches correctly recovered (true positives) are represented in green. True matches that are not recovered (false negatives) 
are highlighted in grey. Incorrect matches (false positives) are plotted in red. Features in rows and columns of matching matrices are reordered for visual 
clarity. (b) Average precision and recall on 20 randomly generated pairs of datasets, for three levels of overlap (low, medium, and high) with a medium 
noise level.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Average precision and recall obtained on simulated data, with fixed overlap ‍λ = 0.5‍.

Figure supplement 2. Performance on centered and scaled data.

https://doi.org/10.7554/eLife.91597
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Application to EPIC data
Next, we apply GM, metabCombiner and M2S to align datasets from the European Prospective Inves-
tigation into Cancer and Nutrition (EPIC) cohort, a prospective study conducted across 23 European 
centers. EPIC comprises more than 500,000 participants who provided blood samples at recruitment 
(Riboli et al., 2002). Untargeted metabolomics data were successively acquired in several studies 
nested within the full cohort.

In the present work, we use LC-MS data from the EPIC cross-sectional (CS) study (Slimani et al., 
2003) and two matched case-control studies nested within EPIC, on hepatocellular carcinoma (HCC; 
Stepien et al., 2016; Stepien et al., 2021) and pancreatic cancer (PC; Gasull et al., 2019). LC-MS 
untargeted metabolomic data were acquired at the International Agency for Research on Cancer, 
making use of the same platform and methodology (Materials and methods). The number of samples 
and features in each study is displayed in Figure 4a.

Loftfield et  al., 2021 previously matched features from the CS, HCC, and PC studies in EPIC 
for alcohol biomarker discovery. The authors first identified 205 features (163 in positive and 42 in 
negative mode) associated with alcohol intake in the CS study. These features were then manually 
matched by an expert to features in both the HCC and PC studies (Materials and methods, Table 1). 
In our analysis, we use these features as a validation set and compare each method’s matchings to the 
expert manual matchings on this subset. Due to the imbalance between the number of positive and 
negative mode features in the validation subset, our main analysis focuses on the alignment results of 
CS with HCC and CS with PC in positive mode (Table 2). We delegate the matching results between 
the negative mode studies (Table 3) to Appendix 4.

In this section, we use the same settings for GM as in our simulation study, and do not apply an 
additional thresholding step. The parameters of metabCombiner and M2S are calibrated using the 
validation subset as prior knowledge (Appendix 2).

Preliminary analysis of the validation subset reveals inconsistencies in the mean feature intensities 
(Figure 4—figure supplement 1), but Figure 4b shows that on centered and scaled data, the 90 
expert matched features shared between the CS and HCC studies have similar correlation structures. 
Hence, to avoid potential errors we center and scale the feature intensities which improves the perfor-
mance of all three methods tested below (Appendix 4, Appendix 4—table 1).

Hepatocellular carcinoma
Here, we analyze the quality of the matchings obtained by GM, M2S, and metabCombiner between 
the CS and HCC datasets in positive mode. Both GM and M2S identify approximately 1000 shared 
features while metabCombiner finds a smaller number of about 700 shared features. We refer the 
reader to Figure 4—figure supplement 2a for the precise matched feature sizes and details on the 
agreement between the feature matchings of all three methods.

We evaluate the performance of metabCombiner, M2S, and GM on the validation subset in posi-
tive mode (Figure 4c, Table 2), which consist of 90 features from the CS study manually matched to 
features from the HCC study and 73 features specific to the CS study. MetabCombiner demonstrates 
precise matching but lacks sensitivity. M2S’s precision and recall are comparable with GM, in contrast 
to its performance on simulated data. This can be attributed to the RT drift shape between the CS 
and HCC studies (Appendix 2), which is estimated to be close to linear (Figure 4—figure supplement 
3). Because the parameters of M2S are fine-tuned in the validation subset, it is able to learn this linear 
drift and apply tight RT thresholds to achieve accurate matchings. In contrast to metabCombiner and 
M2S, the GM algorithm is not given any prior knowledge of the validation subset, and nevertheless 
demonstrates the highest precision and recall rates of the three methods (Figure 4c). Figure 4b shows 
how GM recovers the majority of the expert matched pairs by leveraging the shared correlations.

Pancreatic cancer
Matching features between the CS and PC studies in positive mode, GM and M2S identify approxi-
mately 1000 common features, while metabCombiner detects approximately 600 matches (Figure 4—
figure supplement 2b). We examine the performance of all three methods on the validation subset 
consisting of 66 manually matched features between CS and PC along with 97 features specific to the 
CS study. As before, GM and M2S have high recall while the recall of metabCombiner is less than 0.5.

https://doi.org/10.7554/eLife.91597
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A decrease in precision is observed for both GM and M2S compared to the previous CS-HCC 
matchings. We therefore manually inspect the false positive matches; the set of CS features matched 
by the method to the PC study but explicitly examined and left unmatched in the expert manual 
matching. Assessing the GM results, we identify seven false positive feature matches. Upon secondary 

Figure 4. Application of GromovMatcher and comparison to existing methods on EPIC dataset. (a) Dimensions of the three EPIC studies used. For each 
ionization mode, the cross-sectional (CS) study is aligned successively with the hepatocellular carcinoma (HCC) study and the pancreatic cancer (PC) 
study. (b) Demonstration of expert manual matching and GromovMatcher (GM) matching between the CS and HCC studies in positive mode. Experts 
manually match 90 features (Table 1) from Loftfield et al., 2021 and the correlation matrices of these features in both datasets have similar structure 
(bottom two matrices). GM discovers 996 shared features between the CS and HCC datasets which have similar correlation structure (top two matrices). 
We validate that 88 of the 90 features from the manually expert matched subset are contained in the set of features matched by GM. (c) Performance 
of metabCombiner (mC), M2S and GM in positive mode. Precisions and recalls are measured on a validation subset of 163 manually examined features, 
and 95% confidence intervals are computed using modified Wilson score intervals. (d) Performance of mC, M2S, and GM in negative mode. Precision 
and recall are measured on a validation subset of 42 manually examined features, and 95% confidence intervals are computed using modified Wilson 
score intervals. See Table 2 and Table 3 for exact precisions, recalls, and confidence intervals in positive and negative mode, respectively.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Consistency of the mean feature intensities (FI) in EPIC.

Figure supplement 2. Overlap between the matching results obtained by metabCombiner, M2S and GromovMatcher in EPIC.

Figure supplement 3. Estimated RT drift between the EPIC studies aligned in the main experiment.

https://doi.org/10.7554/eLife.91597
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inspection, three pairs are revealed as correct matches that were not initially identified in the expert 
matching. M2S finds 11 false positive matches which include the 7 false positives recovered by GM. 
Manual examination of the four remaining pairs reveals two clear mismatches. These results highlight 
the advantage of using automated methods for data alignment, as both GM and M2S detect correct 
matches that were not identified by experts, with GM being more precise than M2S.

Illustration for alcohol biomarker discovery
Loftfield et al., 2021 identified biomarkers of habitual alcohol intake by first performing a discovery 
step, where they examined the relationship between alcohol intake and metabolic features in the CS 
study. They then manually matched the significant features in CS to features from the HCC and PC 
studies, and repeated the analysis with samples from the HCC and PC studies to determine whether 
the association with alcohol intake persisted. This led to the identification of 10 features possibly 
associated with alcohol intake (Figure 5a).

To extend this analysis and illustrate the benefit of GM automatic matching for biomarker discovery, 
we use GM to pool features from the CS, HCC, and PC studies, and examine the relationship between 
metabolic features and alcohol intake in the pooled study (Materials and methods and Figure 5b).

Figure 5. Comparison of GromovMatcher and Loftfield et al., 2021 analysis for alcohol biomarker discovery on EPIC data. (a) Loftfield study 
implemented a discovery step, examining the relationship between alcohol intake and metabolic features in the CS study. The significant features in CS 
were manually matched to features from the HCC and PC and the analysis was repeated using samples from the HCC and PC studies. After this step, 10 
features associated with alcohol intake were identified. (b) GromovMatcher analysis begins by matching features from CS study to HCC and PC studies 
respectively (top blue, yellow, and red boxes). Samples corresponding to each CS feature are combined with the samples of its matched feature in the 
HCC study, PC study, or both. This generates a larger pooled data matrix with the same number of features as the CS study but with more samples 
pooled across the three original studies (center matrix). Because some features in the CS study may not have matches in HCC or PC, the corresponding 
entries in the pooled matrix are set to NaN/missing values (white regions in matrix). Each column/feature in this matrix is statistically tested for 
association with alcohol intake (ignoring missing values) and an FDR or a stricter Bonferroni correction is performed to retain only a subset of features 
from the pooled study that have a strong association. (c) Venn diagrams show intersection of feature sets (in positive and negative mode) found to be 
associated with alcohol intake by one of the four different analyses.

https://doi.org/10.7554/eLife.91597
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Applying an FDR correction on the pooled study, we identify 243 features associated with alcohol 
intake, including 185 features consistent with the discovery step of Loftfield et al., 2021, and 55 
newly discovered features (Figure 5c). Using the more stringent Bonferroni correction on the pooled 
data, we identify 36 features shared by all three studies that are significantly associated with alcohol 
intake. These features include all 10 features identified in Loftfield et al. (Figure 5c). These findings 
highlight the potential benefits of using GM automatic matching for biomarker discovery in untar-
geted metabolomics data. Additional information regarding the methodology and findings of our GM 
and Loftfield et al. analyses can be found in Materials and methods and Appendix 4.

Discussion
LC-MS metabolomics has emerged as an increasingly powerful tool for biological and biomedical 
research, offering promising opportunities for epidemiological and clinical investigations. However, 
integrating data from different sources remains challenging. To address this issue, we introduce 
GromovMatcher, a method based on optimal transport that automatically aligns LC-MS data 
from pairs of studies. Our method exhibits superior performance on both simulated and real data 
when compared to existing approaches. Additionally, it presents a user-friendly interface with few 
hyperparameters.

While GromovMatcher is robust to noise and variations in data, it may face limitations when 
aligning LC-MS studies from populations with different characteristics, where the correlation struc-
tures between features may be inconsistent across studies. In this case, the base assumption of 
GromovMatcher can be relaxed by focusing on subsamples with similar characteristics, as exemplified 
in a recent study (Gomari et al., 2022).

A current limitation is that GromovMatcher does not account for more than two datasets simulta-
neously, although this can be overcome by aligning multiple studies to a chosen reference dataset, 
as demonstrated in our biomarker experiments. The extension of Gromov-Wasserstein to multiple 
distributions (Beier et al., 2022) is another promising approach for generalizing GromovMatcher to 
multiple dataset alignment. Further improvements can be made by incorporating existing knowledge 
about the studies being matched, such as known shared features, samples in common, or MS/MS 
data.

The results obtained from GromovMatcher are highly promising, opening the door for various 
analyses of metabolomic datasets acquired in different experimental laboratories. Here, we demon-
strated the potential of GromovMatcher in expediting the combination and meta-analysis of data for 
biomarker and metabolic signature discovery. The matchings learned by GromovMatcher also allow 
for comparison between experimental protocols by assessing the drift in ‍m/z‍, RT, and feature intensi-
ties across studies. Finally, inter-institutional annotation efforts can directly benefit from incorporating 
this method to transfer annotations between aligned datasets. Bridging the gap between otherwise 
incompatible LC-MS data, GromovMatcher enables seamless comparison of untargeted metabolo-
mics experiments.

Materials and methods
GromovMatcher method overview
GromovMatcher accepts as input two feature tables from separate LC-MS untargeted metabolomics 
studies. Each feature table for dataset 1 and dataset 2 consists of ‍n1, n2‍ biospecimen samples respec-
tively and ‍p1, p2‍ metabolic features respectively detected in the study. Features in dataset 1 are given 
the label ‍fxi‍ for ‍i = 1, . . . , p1‍. Every feature is characterized by a mass-to-charge ratio (‍m/z‍) denoted 
by ‍m

x
i ‍, a retention time (RT) denoted by ‍RTx

i ‍, and a vector of intensities across all samples written as 

‍Xi ∈ Rn1‍. Similarly, features in dataset 2 are labeled as ‍fyj‍ for ‍j = 1, . . . , p2‍ and are characterized by 
their ‍m/z‍, retention time ‍RTy

j ‍, and a vector of intensities across all samples ‍Yi ∈ Rn2‍.
Our goal is to identify pairs of indexes ‍(i, j)‍ with ‍i ∈ {1, , p1}‍ and ‍j ∈ {1, , p2}‍, such that ‍fxi‍ and 

‍fyj‍ correspond to the same metabolic feature. More formally, we aim to identify a matching matrix 

‍M ∈ {0, 1}p1×p2‍ such that ‍Mij = 1‍ if ‍fxi‍ and ‍fyj‍ correspond to the same feature, hereafter referred to as 
matched features. Otherwise, we set ‍Mij = 0‍.

https://doi.org/10.7554/eLife.91597
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Because the ‍m/z‍ and RT values of metabolomic features are often noisy and subject to experi-
mental bias, our matching algorithm leverages metabolite feature intensities ‍Xi, Yj‍ to produce accu-
rate dataset alignments. The GromovMatcher method is based on the idea that signal intensities of 
the same metabolites measured in two different studies should exhibit similar correlation structures, in 
addition to having compatible ‍m/z‍ and RT values. Here, we define the Pearson correlation for vectors 
‍u, v ∈ Rn‍ as

	﻿‍
corr(u, v) = ⟨u − ū, v − v̄⟩

∥u − ū∥∥v − v̄∥‍�
(1)

where we define

	﻿‍

ū = 1
n

n∑
i=1

ui, ∥u∥ =

����
n∑

i=1
u2

i , ⟨u, v⟩ =
n∑

i=1
uivi

‍�
(2)

as the mean value, Euclidean norm and inner product respectively. If measurements ‍Xi, Yj‍ correspond 
to the same underlying feature, and similarly, measurements ‍Xk, Yl‍ share the same an underlying 
feature, we expect that

	﻿‍ corr(Xi, Xk) ≈ corr(Yj, Yl).‍� (3)

This idea that the feature intensities of shared metabolites have the same correlation structure 
in both datasets also holds more generally for distances, under a suitable choice of distance. For 
example, the correlation coefficient ‍corr(u, v)‍ can be turned into a dissimilarity metric by defining

	﻿‍ dcos(u, v) =
√

1 − corr(u, v)‍� (4)

commonly referred to as the cosine distance. Preservation of feature intensity correlations then trivi-
ally amounts to the preservation of cosine distances.

Another classical notion of distance between vectors ‍u, v ∈ Rn‍ is the normalized Euclidean distance

	﻿‍

deuc(u, v) = 1√
n
∥u − v∥ =

����1
n

n∑
i=1

(ui − vi)2

‍�
(5)

which is equal to the cosine distance (up to constants) when the vectors ‍u, v‍ are centered and scaled to 
have zero mean and a standard deviation of one. The Euclidean distance depends on the magnitude 
or mean intensity of metabolic features, and hence is a useful metric for matching metabolites as long 
as these mean feature intensities are reliably collected.

To summarize, the main tenant of GromovMatcher is that if measurements ‍Xi, Yj‍ correspond 
to the same feature and ‍Xk, Yl‍ correspond to the same feature, then for suitably chosen distances 
‍dx : Rn1 × Rn1 → R‍ and ‍dy : Rn2 × Rn2 → R‍, these distances are preserved

	﻿‍ dx(Xi, Xk) ≈ dy(Yj, Yl)‍� (6)

across both datasets. In this paper, the distances ‍dx, dy‍ are taken to be the normalized Euclidean 
distances in Equation 5. We take care to specify those experiments where the metabolic features ‍X ‍ 
and ‍Y ‍ are centered and scaled. In these cases, implicitly the Euclidean distance between normalized 
feature vectors becomes the cosine distance Equation 4 between the original (unnormalized) feature 
vectors.

Unbalanced Gromov–Wasserstein
The goal of GromovMatcher is to learn a matching matrix ‍M ∈ {0, 1}p1×p2‍ that gives an alignment 
between a subset of metabolites in both datasets. However, searching over the combinatorially large 
set of binary matrices would be an inefficient approach for dataset alignment. The mathematical 
framework of optimal transport Peyré and Cuturi, 2019 instead enlarges this space of binary matrices 
to the set of coupling matrices with real nonnegative entries ‍Π ∈ Rp1×p2

+ ‍. The entries ‍Πij‍ with large 

https://doi.org/10.7554/eLife.91597
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weights indicate that feature ‍fxi‍ in dataset 1 and feature ‍fyj‍ in dataset 2 are a likely match. Taking 
inspiration from Equation 6, we minimize the following objective function

	﻿‍
E(Π) =

p1∑
i,k=1

p2∑
j,l=1

ΠijΠkl

���dx(Xi, Xk) − dy(Yj, Yl)
���
‍�

(7)

to estimate the coupling matrix ‍Π‍.
A standard approach is to optimize this objective over all coupling matrices ‍Π‍ under exact 

marginal constraints ‍Π1p2 = 1
p1

1p1 ,ΠT1p1 = 1
p2

1p2‍. Here, we define ‍1n‍ is the ones vector of length ‍n‍, and 

‍Π1 = Π1p2 ,Π2 = ΠT1p1‍ denote the column and row sums of the coupling matrix. Objective Equation 7 
under these exact marginal constraints defines a distance between the two sets of metabolic feature 
vectors ‍{Xi}

p1
i=1, {Yi}

p2
i=1‍ known as the Gromov–Wasserstein distance Mémoli, 2011, a generalization of 

optimal transport to metric spaces. Note that for pairs ‍Xi, Yj‍ and ‍Xk, Yl‍ for which ‍dx(Xi, Xk) ≈ dy(Yj, Yl)‍, 
the entries ‍Πij,Πkl‍ are penalized less and hence matches between features ‍fxi, fyj‍ and features ‍fxk, fyl‍ 
are more favored. In our optimization, we avoid enforcing exact marginal constraints on the marginal 
distributions ‍Π1p2‍ and ‍Π

T1p1‍ of our coupling matrix as this would enforce that all metabolites in both 
datasets are matched (Appendix 1). However, without any marginal constraints on the coupling ‍Π‍, the 
objective function Equation 7 is trivially minimized by ‍Π = 0‍, leaving all metabolites in both datasets 
unmatched.

To account for this, we follow the ideas of unbalanced Gromov–Wasserstein (UGW) (Sejourne 
et al., 2021) and add three regularization terms to our objective

	﻿‍

Lρ,ε(Π) = E(Π) +ρDKL
(
Π1 ⊗Π1, a ⊗ a

)

+ρDKL
(
Π2 ⊗Π2, b ⊗ b

)

+εDKL(Π⊗Π,
(
a ⊗ b

)⊗2)‍�

(8)

where ‍ρ, ε > 0‍ and we define ‍a = 1p1 , b = 1p2‍. Here ⊗ denotes the Kronecker product. We define ‍DKL‍ 
as the Kullback–Leibler (KL) divergence between two discrete distributions ‍µ, ν ∈ Rp

+‍ by

	﻿‍
DKL(µ, ν) =

p∑
i=1

µi ln
(µi
νi

)
−

p∑
i=1

µi +
p∑

i=1
νi

‍�
(9)

which measures the closeness of probability distributions.
The first two regularization terms in Equation 8 enforce that the row sums and column sums of the 

coupling matrix ‍Π‍ do not deviate too much from a uniform distribution, leading our optimization to 
match as many metabolic features as possible. The magnitude of the regularizer ‍ρ‍ roughly enforces 
the fraction of metabolites in both datasets that are matched where large ‍ρ‍ implies most metabolites 
are matched across datasets. The final regularization term ‍ε‍ in Equation 8 controls the smoothness 
(entropy) of the coupling matrix ‍Π‍ where larger values of ‍ε‍ encourage ‍Π‍ to put uniform weights on 
many of its entries, leading to less precision in the metabolite matches. However, increasing ‍ε‍ also 
leads to better numerical stability and a significant speedup of the alternating minimization algorithm 
used to optimize the objective function (Appendix 1). In our implementation, we set ‍ρ‍ and ‍ϵ‍ to the 
lowest possible values under which our optimization converges, with ‍ρ = 0.05‍ and ‍ϵ = 0.005‍.

Our full optimization problem can now be written as

	﻿‍
UGWρ,ε = min

Π∈R
p1×p2
+

Lρ,ε(Π).
‍� (10)

The UGW objective function is optimized through alternating minimization based on the code of 
Sejourne et al., 2021 using the unbalanced Sinkhorn algorithm Séjourné et al., 2019 from optimal 
transport (Appendix 1).

Constraint on ‍m/z‍ ratios
Matched metabolic features must have compatible ‍m/z‍ so we enforce that ‍Πij = 0‍ when ‍|m

x
i − my

j | > mgap‍ 
where ‍mgap‍ is a user-specified threshold. Based on prior literature (Loftfield et al., 2021; Hsu et al., 
2019; Climaco Pinto et al., 2022; Habra et al., 2021; Chen et al., 2021), we set  ‍mgap‍ = 0.01 ppm. 

https://doi.org/10.7554/eLife.91597
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Note that ‍mgap‍ is not explicitly used in Equation 10 but is rather enforced in each iteration of our 
alternating minimization algorithm for the UGW objective (Appendix 1).

Unlike the ‍m/z‍ ratios discussed above, RTs often exhibit a non-linear deviation (drift) between 
studies so we cannot enforce compatibility of RTs directly in our optimization. Instead, in the following 
step of our pipeline we ensure matched metabolite pairs have compatible RTs by estimating the drift 
function and subsequently using it to filter out metabolite matches whose RT values are inconsistent 
with the estimated drift.

Estimation of the RT drift and filtering
Estimating the drift between RTs of two studies is a crucial step in assessing the validity of metabolite 
matches and discarding those pairs which are incompatible with the estimated drift.

Let ‍Π̃ ∈ Rp1×p2
+ ‍ be the minimizer of Equation 10 obtained after optimization. We seek to estimate 

the RT drift function ‍f : R+ → R+‍ which relates the retention times of matched features between the 
two studies. Namely, if feature ‍fxi‍ and feature ‍fyj‍ correspond to the same metabolic feature, then we 
must have that ‍RTy

j ≈ f(RTx
i )‍.

We propose to learn the drift ‍f ‍ through the weighted spline regression

	﻿‍
min

f∈Bn,k

p1∑
i=1

p2∑
j=1

Π̃ij

���f (RTx
i
)
− RTy

j

���
‍�

(11)

where ‍Bn,k‍ is the set of ‍n‍-order B-splines with ‍k‍ knots. All pairs ‍(RTx
i , RTy

j )‍ in objective Equation 11 are 
weighted by the coefficients of ‍̃Π‍ so that larger weights are given to pairs identified with high confi-
dence in the first step of our procedure. The order of the B-splines was set to ‍n = 3‍ by default, while 
the number of knots ‍k‍ was selected by 10-fold cross-validation.

Pairs identified as incompatible with the estimated RT drift are then discarded from the coupling 
matrix. To do this, we first take the estimated RT drift ‍̂f ‍, and the set of pairs ‍S = {i, j : Π̃i,j ̸= 0}‍ recov-
ered in ‍̃Π‍. We then define the residual associated with ‍(i, j) ∈ S‍ as

	﻿‍
r̂f(i, j) =

∣∣∣̂f(RTx
i ) − RTy

j

∣∣∣.
‍� (12)

The 95% prediction interval and the median absolute deviation (MAD) of these residuals are given 
by

	﻿‍

PI = 1.96 × std({r̂f(i, j), (i, j) ∈ S})

MAD = median({|r̂f(i, j) − µr|, (i, j) ∈ S})

µr = median({|r̂f(i, j)|, (i, j) ∈ S}) ‍�

(13)

where ‍|S |‍ is the size of ‍S‍ and the functions std and median denote the standard deviation and median 
respectively. Similar to the approach in Climaco Pinto et al., 2022, we create a new filtered coupling 
matrix ‍̂Π ∈ Rp1×p1

+ ‍ given by

	﻿‍

Π̂ij =




Π̃ij if r̂f(i, j) < µr + rthresh

0 otherwise
.

‍�

(14)

where ‍rthresh‍ is a given filtering threshold. Following Habra et al., 2021, the estimation and outlier 
detection step can be repeated for multiple iterations, to remove pairs that deviate significantly from 
the estimated drift and improve the robustness of the drift estimation. In our main algorithm, we use 
two preliminary iterations where estimate the RT drift and discard outliers outside of the 95% predic-
tion interval by setting ‍rthresh = PI‍. We the re-estimate the drift and perform a final filtering step with 
the more stringent MAD by setting ‍rthresh = 2 × MAD‍.

At this stage, it is possible for ‍̂Π‍ to still contain coefficients of very small magnitude. As an optional 
postprocessing step, we discard these coefficients by setting all entries smaller than ‍τmax(Π̂)‍ to 
zero, for some user-defined ‍τ ∈ [0, 1]‍. Lastly, a feature from either study could have multiple possible 
matches, since ‍̂Π‍ can have more than one non-zero coefficient per row or column. Although reporting 

https://doi.org/10.7554/eLife.91597
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multiple matches can be helpful in an exploratory context, for the sake of simplicity in our analysis, 
the final output of GromovMatcher returns a one-to-one matching, as we only keep those metabolite 
pairs ‍(i, j)‍ where the entry ‍̂Πij‍ is largest in its corresponding row and column. All nonzero entries of ‍̂Π‍ 
which do not satisfy this criterion are set to zero. Finally, we convert ‍̂Π‍ into a binary matching matrix 

‍M ∈ {0, 1}p1×p2‍ with ones in place of its nonzero entries and this final output is returned to the user.
As a naming convention, we use the abbreviation GM for our GromovMatcher method, and use the 

abbreviation GMT when running GromovMatcher with the optional ‍τ ‍-thresholding step with ‍τ = 0.3‍.

Metrics for dataset alignment
Every alignment method studied in this paper returns a binary partial matching matrix ‍M ∈ {0, 1}p1×p1‍ 
which has at most one nonzero entry in each row and column. Specifically, ‍Mij = 1‍ if metabolic features 
‍i‍ and ‍j‍ in both datasets correspond to each other and ‍Mij = 0‍ otherwise. In our simulated experiments, 
we compare the partial matching ‍M ‍ to a known ground-truth partial matching matrix ‍M∗ ∈ {0, 1}p1×p2‍.

To do this, we first compute the number of true positives, false positives, true negatives, and false 
negatives as

	﻿‍

TP =
p1∑

i=1

p2∑
j=1

1Mij=11M∗
ij =1

FP =
p1∑

i=1

p2∑
j=1

1Mij=11M∗
ij =0

TN =
p1∑

i=1

p2∑
j=1

1Mij=01M∗
ij =0

FN =
p1∑

i=1

p2∑
j=1

1Mij=01M∗
ij =1

‍�

(15)

where 1 denotes the indicator function. Then we use these values to compute the precision and recall 
as

	﻿‍

Precision =
TP

TP + FP

Recall =
TP

TP + FN
.
‍�

(16)

Precision measures the fraction of correctly found matches out of all discovered metabolite 
matches, while recall, also know as sensitivity, measures the fraction of correctly matched pairs out of 
all truly matched pairs. These two statistics can be summarized into one metric called the F1-score by 
taking their harmonic mean

	﻿‍
F1 = 2 · Precision · Recall

Precision + Recall‍� (17)

These three metrics, precision, recall, and the F1-score, are used throughout the paper to assess 
the performance of dataset alignment methods, both on simulated data where the ground-truth 
matching is known, and on the validation subset in EPIC, using results from the manual examination 
as the ground-truth benchmark.

Validation on simulated data
To assess the performance of GromovMatcher and compare it to existing dataset alignment methods, 
we simulate realistic pairs of untargeted metabolomics feature with known ground-truth matchings. 
This allows us to analyze the dependence of alignment methods on the number of shared metabo-
lites, dataset noise level, and feature intensity centering and scaling.

Dataset generation
Our pairs of synthetic feature tables are generated from one real untargeted metabolomics study of 
500 newborns within the EXPOsOMICS project, which uses reversed phase liquid chromatography-
quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) system in positive ion mode Alfano 
et al., 2020. The original dataset is first preprocessed following the procedure detailed in Alfano 
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et al., 2020, resulting in p=4712 features measured in ‍n = 499‍ samples available for subsequent anal-
ysis. Features and samples from the original study are then divided into two feature tables of respec-
tive size ‍(n1, p1)‍ and ‍(n2, p2)‍, with ‍n1 + n2 = n‍ and ‍p1, p2 ≤ p‍. In order to do this, ‍n1 = ⌊n/2⌋‍ randomly 
chosen samples from the original study are placed into dataset 1 and the remaining ‍n2 = ⌈n/2⌉‍ samples 
from the original study are placed into dataset 2. Here, ‍⌊·⌋‍ and ‍⌈·⌉‍ denote integer floor and ceiling 
functions. The features of the original study are randomly assigned to dataset 1, dataset 2, or both, 
allowing the resulting studies to have both common and study-specific features (Figure 2). Specifically, 
for a fixed overlap parameter ‍λ ∈ [0, 1]‍, we assign a random subset of ‍≈ λp‍ features into both dataset 
1 and dataset 2 while the remaining ‍≈ (1 − λp)‍ features are divided equally between the two studies 
such that ‍p1 = p2‍. We choose ‍λ ∈ {0.25, 0.5, 0.75}‍ corresponding to low, medium and high overlap. 
For more detailed information on how the dataset split is performed and for additional validation 
experiments with unbalanced dataset splits (e.g. ‍n1 ̸= n2, p1 ̸= p2‍) we refer the reader to Appendix 3.

After generating a pair of studies, random noise is added to the ‍m/z‍, RT and intensity levels of 
features in dataset 2 to mimic variations in data acquisition across two different experiments. The 
noise added to each ‍m/z‍ value in study 2 is sampled from a uniform distribution on the interval 

‍[−σM,σM]‍ with ‍σM = 0.01‍ (Climaco Pinto et  al., 2022). The RTs of dataset 2 are first deviated by 
the function ‍f(x) = 1.1x + 1.3 sin(1.2

√
x)‍, corresponding to a systematic inter-dataset drift (Habra 

et al., 2021; Climaco Pinto et al., 2022; Brunius et al., 2016). A uniformly distributed noise on the 
interval ‍[−σRT,σRT]‍ is added to the deviated RTs of dataset 2, with ‍σRT ∈ {0.2, 0.5, 1}‍ (in minutes) 
corresponding to low, moderate and high variations (Climaco Pinto et al., 2022; Habra et al., 2021; 
Vaughan et al., 2012). Finally, we add a Gaussian noise ‍N (0,σ2

FI)‍ to the feature intensities of both 
studies where ‍σFI ‍ is the scalar variance of the noise. This noise perturbs the correlation matrices of 
dataset 1 and dataset 2, making matching based on feature intensity correlations more challenging. 
We vary ‍σFI ‍ over the set of values {0.1, 0.5, 1}.

Given this data generation process, we test the performance of the four alignment methods (M2S, 
metabCombiner, GM, and GMT) under the parameter settings described below.

Dependence on overlap
We first assess how the performance of the four methods is affected by the number of metabolic 
features shared in both datasets. For each value of ‍λ = 0.25, 0.5, 0.75‍ (low, medium, and high overlap), 
we randomly generate 20 pairs of datasets with noise on the ‍m/z‍, RT and feature intensities set to 

‍σM = 0.01,σRT = 0.5,σFI = 0.5‍. The precision and recall of each method at low, medium, and high 
overlap is recorded for each of the repetitions.

Noise robustness
Next, we test the robustness to noise of each method by fixing the metabolite overlap fraction at ‍λ = 0.5‍ 
and generating 20 random pairs of datasets at low (‍σRT = 0.2,σFI = 0.1‍), medium (‍σRT = 0.5,σFI = 0.5‍), 
and high (‍σRT = 1,σFI = 1‍) noise levels. Similarly, the precision and recall of each method is saved for 
each noise level across the 20 repetitions.

Feature intensity centering and scaling
In order to test how all four methods are affected when the mean feature intensities and variance 
are not comparable across studies, we assess their performance when the feature intensities in both 
studies are mean centered and standardized to have unit standard deviation across all samples. We 
again generate 20 random pairs of datasets with medium overlap and medium noise, normalize the 

Table 1. Results from the manual matching conducted for Loftfield et al., 2021.
Features from the CS study (163 features in positive mode, 42 features in negative mode) were manually investigated for matches in 
the HCC and PC studies.

Study Manual matches found in positive mode Manual matches found in negative mode

Hepatocellular carcinoma (HCC) 90 19

Pancreatic cancer (PC) 66 28
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feature intensities in each pair of datasets, and compute the precision and recall of each method 
across the 20 repetitions.

EPIC data
We also evaluate our method on data collected within the European Prospective Investigation into 
Cancer and Nutrition (EPIC) cohort, an ongoing multicentric prospective study with over 500,000 
participants recruited between 1992 and 2000 from 23 centers in 10 European countries, and who 
provided blood samples at the inclusion in the study (Riboli et al., 2002). In EPIC, untargeted metab-
olomics data were successively acquired in several studies nested within the full cohort.

In the present work, we use untargeted metabolomics data acquired in three studies nested in 
EPIC, namely the EPIC cross-sectional (CS) study (Slimani et al., 2003) and two matched case-control 
studies nested within EPIC, on hepatocellular carcinoma (HCC; Stepien et al., 2016; Stepien et al., 
2021) and pancreatic cancer (PC; Gasull et al., 2019), respectively. All data were acquired at the 
International Agency for Research on Cancer, making use of the same plateform and methodology: 
UHPLC-QTOF-MS (1290 Binary Liquid chromatography system, 6550 quadrupole time-of-flight mass 
spectrometer, Agilent Technologies, Santa Clara, CA) using reversed phase chromatography and elec-
trospray ionization in both positive and negative ionization mode.

In a previous analysis aiming at identifying biomarkers of habitual alcohol intake in EPIC, the 205 
features associated with alcohol intake in the CS study were manually matched to features in both the 
HCC and PC studies Loftfield et al., 2021. The results from this manual matching are presented in 
Table 1. This matching process was based on the proximity of ‍m/z‍ and RT, using a matching tolerance 
of ± 15 ppm and ± 0.2 min, and on the comparison of the chromatograms of features in a quality 
control samples from both studies.

Preprocessing
In the HCC and PC studies, samples corresponding to participants selected as cases in either study 
(i.e. participants selected in the study because of a diagnosis of incident HCC or PC) are excluded. 
Indeed, the metabolic profiles of participants selected as controls are expected to be more compa-
rable across studies than those of cases, especially if certain features are associated with the risk of 
HCC or PC. Apart from this additional exclusion criterion, the untargeted metabolomics data of each 
study is pre-processed following the steps described in Loftfield et al., 2021, to eliminate unreliable 
features and samples, impute missing values and minimize technical variations in the feature intensity 
levels.

Table 2. Precision and recall on the EPIC validation subset in positive mode.
95% confidence intervals were computed using modified Wilson score intervals (Brown et al., 2001; Agresti and Coull, 1998).

‍CS ←→ HCC‍ ‍CS ←→ PC‍

Method Precision Recall Precision Recall

GromovMatcher 0.989 (0.939, 0.999) 0.978 (0.923, 0.996) 0.903 (0.813, 0.952) 0.985 (0.919, 0.999)

M2S 0.967 (0.908, 0.991) 0.978 (0.923, 0.996) 0.855 (0.759, 0.917) 0.985 (0.919, 0.999)

metabCombiner 0.961 (0.868, 0.993) 0.544 (0.442, 0.643) 0.967 (0.833, 0.998) 0.439 (0.326, 0.559)

Table 3. Precision and recall on the EPIC validation subset in negative mode.
95% confidence intervals were computed using modified Wilson score intervals (Brown et al., 2001; Agresti and Coull, 1998).

‍CS ←→ HCC‍ ‍CS ←→ PC‍

Method Precision Recall Precision Recall

GromovMatcher 0.950 (0.764, 0.997) 1.000 (0.832, 1.000) 0.929 (0.774, 0.987) 0.929 (0.774, 0.987)

M2S 1.000 (0.824, 1.000) 0.947 (0.754, 0.997) 0.931 (0.780, 0.988) 0.964 (0.823, 0.998)

metabCombiner 0.875 (0.529, 0.993) 0.368 (0.191, 0.590) 1.000 (0.845, 1.000) 0.750 (0.566, 0.873)

https://doi.org/10.7554/eLife.91597
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Alcohol biomarker discovery
Loftfield et al., 2021 used the untargeted metabolomics data of the CS, HCC and PC studies in their 
alcohol biomarker discovery study in EPIC, without being able to automatically match their common 
features and pool the three datasets. Instead, the authors first implemented a discovery step, exam-
ining the relationship between alcohol intake and metabolic features measured in the CS study and 
accounting for multiple testing using a false discovery rate (FDR) correction. This led to the identifica-
tion of 205 features significantly associated with alcohol intake in the CS study. In order to gauge the 
robustness of these associations, the authors of Loftfield et al., 2021 then implemented a validation 
step using data from two independent test sets. The first test set was composed of data from the EPIC 
HCC and PC studies, while the second was derived from the Finnish Alpha-Tocopherol, Beta-Carotene 
Cancer Prevention (ATBC) study. The 205 features identified in the discovery step were manually 
investigated for matches in the EPIC test set, and 67 features were effectively matched to features in 
the HCC or PC study, or both. The authors then evaluated the association between alcohol intake and 
those 67 features, applying a more conservative Bonferroni correction to determine whether the asso-
ciation with alcohol intake persisted. This step led to the identification of 10 features associated with 
alcohol intake (Extended Data Figure 5a). The second test set was then used to determine whether 
those 10 features were also significant in the ATBC population, which was indeed the case.

To conduct a more in-depth investigation of the matchings produced by the GromovMatcher 
algorithm, we build upon the analysis previously conducted by Loftfield et al., 2021 by exploring 
potential alcohol biomarkers using a pooled dataset created from the CS, HCC, and PC studies. Our 
goal is to assess whether pooling the data leads to increased statistical power and allows for the 
detection of more features associated with alcohol intake. Namely, we generate the pooled dataset 
by aligning a chosen reference dataset (CS study) with the HCC and PC studies successively using the 
GM matchings computed in both positive and negative mode (Materials and methods and Extended 
Data Figure 5b). Features that are not detected in either the HCC or PC studies are designated as 
‘missing’ in the final pooled dataset for samples belonging to the respective studies where the feature 
is not found.

To evaluate the potential relationship between alcohol consumption and pooled metabolic 
features, we use a methodology akin to that of Loftfield et al., 2021. The self-reported alcohol intake 
data is adjusted for various demographic and lifestyle factors (age, sex, country, body-mass-index, 
smoking status and intensity, coffee consumption, and study) via the residual method in linear regres-
sion models. Feature intensities are also adjusted for technical variables (plate number and position 
within the plate) via linear mixed effect models. The significance of the association is assessed using 
correlation coefficients computed from the residuals for both self-reported alcohol intake and feature 
intensities. p-Values are corrected using either false discovery rate (FDR) or Bonferroni correction to 
account for multiple testing. Corrected p-values less than 5% are considered significant.
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and is therefore not publicly available. It is centralised at IARC and can be analysed through the 
IARC Scientific IT platform after a Data Use Agreement has been signed. Access requests should 
be submitted to the IARC Steering Committee https://epic.iarc.fr/access/index.php. All code for the 
data preprocessing, figure generation, as well as the GromovMatcher algorithm and its comparison 
to other methods are available at: https://github.com/sgstepaniants/GromovMatcher (copy archived 
at Breeur and Stepaniants, 2024). Instructions and examples for how to run the GromovMatcher 
method are provided in the Github repository. The metabCombiner implementation written by the 
original authors was taken from their Github codebase: https://github.com/hhabra/metabCombiner 
(Habra, 2024). The M2S implementation of the original authors was taken from their Github code-
base: https://github.com/rjdossan/M2S (Rjdossan, 2024).
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birthweight in newborn 
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underlying mechanisms 
related to cholesterol 
metabolism

https://www.​ebi.​ac.​
uk/​metabolights/​
editor/​MTBLS1684/​
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MetaboLights, MTBLS1684
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Appendix 1
In this paper, we study how to match metabolic features across two datasets where Dataset 1 has p1 
metabolic features measured across n1 patients and Dataset 2 has p2 metabolic features measured 
across n2 patients. Our goal is to identify pairs of indexes ‍(i, j)‍ with ‍i ∈ {1, . . . , p1}‍ and ‍j ∈ {1, . . . , p2}‍, 
such that feature ‍i‍ in Dataset 1 and feature ‍j‍ in Dataset 2 correspond to the same metabolic feature. 
More formally, we aim to identify a matching matrix‍M∗ ∈ {0, 1}p1×p2‍ such that ‍M

∗
i,j = 1‍ if features ‍i‍ 

in Dataset 1 and feature ‍j‍ in Dataset 2 correspond to the same feature, hereafter referred to as 
matched features. Otherwise we set ‍M

∗
i,j = 0‍ otherwise. We emphasize that a matching matrix ‍M∗‍ 

can have at most one nonzero entry in each row and column.
Both of the datasets we aim to match are obtained from liquid chromatography-mass spectrometry 

(LC-MS) experiments. Hence, for Dataset 1 each metabolite ‍i ∈ [p1]‍ is labeled with a mass-to-charge 
(‍m/z‍) ratio ‍m

1
i ‍ as well as a retention time (RT) given by ‍RT1

i ‍. Additionally, each metabolite has a vector 
of intensities across patients denoted by ‍Xi ∈ Rn1‍. Similarly, each metabolite ‍j ∈ [p2]‍ in Dataset 2 is 
labeled by its ‍m/z‍ ratio ‍m

2
j ‍, its retention time ‍RT2

j ‍ and its vector of intensities across samples ‍Yj ∈ Rn2
‍.

Correlations and distances between metabolomic features
Features cannot be aligned based on their ‍m/z‍ and RT alone as they are often too inconsistent across 
studies. Our method is based on the idea that, in addition to their ‍m/z‍ and RT being compatible, the 
signal intensities of metabolites measured in two different studies should exhibit similar correlation 
structures, or more generally exhibit similar distances between their intensity vectors. In other words, 
if feature intensity vectors ‍Xi ∈ Rn1 , Yj ∈ Rn2

‍ correspond to the same underlying feature (‍M
∗
ij = 1‍) and 

similarly if ‍Xk ∈ Rn1 , Yl ∈ Rn2‍ correspond to the same feature (‍M
∗
kl = 1‍), then we expect that

	﻿‍ corr(Xi, Xk) ≈ corr(Yj, Yl) if Π∗
ij = Π∗

kl = 1.‍� (18)

Here we define ‍corr(u, v)‍ to be the Pearson correlation coefficient between two feature intensity 
vectors ‍u, v ∈ Rn‍ by

	﻿‍
corr(u, v) = ⟨u − ū, v − v̄⟩

∥u − ū∥∥v − v̄∥‍�
(19)

where we define

	﻿‍

ū = 1
n

n∑
i=1

ui, ∥u∥ =

����
n∑

i=1
u2

i , ⟨u, v⟩ =
n∑

i=1
uivi

‍�
(20)

as the mean value, Euclidean norm and inner product respectively. More generally, with dx and dy 
denoting two given distances on ‍Rn1‍ and ‍Rn2‍ respectively, we expect that

	﻿‍ dx(Xi, Xk) ≈ dy(Yj, Yl) if Π∗
ij = Π∗

kl = 1.‍� (21)

Throughout this paper, we use the normalized Euclidean distance defined for any ‍u, v ∈ Rn‍ as

	﻿‍
deuc(u, v) = 1√

n
∥u − v∥

‍�
(22)

where for dx and dy we take ‍n = n1, n2‍ respectively. If the signal intensity vectors ‍u, v‍ are mean 
centered and normalized by their standard deviation as

	﻿‍

u �→
√

n ·
u − 1

n
∑n

i=1 ui
���u − 1

n
∑n

i=1 ui

���
‍�

(23)

and likewise for ‍v‍, then it follows that

	﻿‍
deuc(u, v) =

√
2
(

1 − corr(u, v)
)

=
√

2dcos(u, v)
‍� (24)
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where we denote ‍dcos(u, v) =
√

1 − corr(u, v)‍ as the cosine distance. For the purposes of this paper, 
we will always assume that dx and dy denote the normalized Euclidean distance from Equation 22. 
As shown above, this will be implicitly equal to the cosine distance from Equation 24 on centered 
and scaled data.

The goal of metabolomic feature matching is to learn the binary matching matrix ‍M∗‍ that aligns 
the distances between pairs of features in the most consistent way possible as shown in Equation 
21. To formalize this notion into a practical algorithm, we use the mathematical theory of optimal 
transport (Peyré and Cuturi, 2019) which we discuss next.

Optimal transport
Optimal transport (OT) applies in the setting when the points ‍{Xi}

p1
i=1‍ and ‍{Yj}

p2
j=1‍ being matched live 

in the same dimensional space ‍n1 = n2 = n‍. It aims to find a matching between each point ‍Xi‍ and 
its corresponding point ‍Yj‍ such that the sum of distances between matches is minimized. Matches 
between each pair of points can be stored in a matching matrix ‍M ∈ {0, 1}p1×p2‍ such that ‍Mij = 1‍ if 
‍Xi‍ and ‍Yj‍ are matched, and ‍Mij = 0‍ otherwise. Again we note that ‍M ‍ must have at most one nonzero 
entry in each row and column to be a valid matching matrix.

Instead of searching over this space of binary matching matrices, optimal transport places 
masses ‍ai ≥ 0‍ at all points ‍Xi‍ for ‍i = 1, . . . , p1‍ and masses ‍bj ≥ 0‍ at all points ‍Yj‍ for ‍j = 1, . . . , p2‍ and 
optimizes over the space of probabilistic couplings ‍Π ∈ Rp1×p2

+ ‍ which move a ‍Πij‍ amount of mass 
from ‍Xi‍ to ‍Yj‍. We assume here for simplicity that the sum of masses in both datasets are equal to 
one ‍

∑p1
i=1 ai =

∑p2
i=1 bi = 1‍ and that the coupling ‍Π‍ transports all mass from ‍a‍ into ‍b‍. More formally, 

optimal transport optimizes over the constrained set of couplings

	﻿‍
U(a, b) =

{
Π ∈ Rp1×p2

+ : Π1p2 = a andΠT1p1 = b
}

‍� (25)

where ‍1p‍ denotes the all ones vector of length ‍p‍. In practice, the points ‍Xi‍ and ‍Yj‍ in each dataset 
are all treated the same and the masses placed on the data are chosen to be uniform ‍a = 1

p1
1p1‍ and 

‍b = 1
p2

1p2‍.
The cost function which optimal transport minimizes is the sum of squared distances of its 

transported mass

	﻿‍
E(Π) =

p1∑
i=1

p2∑
j=1

Πijd(Xi, Yj)
‍�

(26)

where 
‍
d(u, v) = deuc(u, v) = 1√

n∥u − v∥
‍
 is the Euclidean distance. The distance matrix ‍d(Xi, Yj)‍ in the 

OT objective can be replaced more generally with a cost matrix ‍C ∈ Rp1×p2‍ that is not necessarily a 
distance matrix. In this case the cost function becomes

	﻿‍
E(Π) =

p1∑
i=1

p2∑
j=1

ΠijCij
‍�

(27)

When the transport cost ‍Cij‍ is a distance, the OT optimization defines a valid distance metric 
known as the optimal transport distance between discrete distributions ‍{(ai, Xi)}

p1
i=1‍ and ‍{(bj, Yj)}

p2
j=1‍ 

in ‍Rn‍ given by

	﻿‍
OT(a, b) = min

Π∈U(a,b)
E(Π).

‍� (28)

When ‍d(u, v)‍ is Euclidean, this OT distance is also referred to as the ‍L1‍ optimal transport distance, 
the Wasserstein 1-distance, or the Earth mover’s distance. As formulated, the computation of the 
optimal transport objective involves an optimization over coupling matrices ‍Π‍ which can be solved 
by linear programming (Peyré and Cuturi, 2019). The OT optimization problem becomes time 
consuming for problems with many points ‍p1, p2 ≫ 1‍. We show in the next section how augmenting 
this distance with a regularization term leads to a more efficient algorithm for learning the optimal 
coupling ‍Π‍.

https://doi.org/10.7554/eLife.91597
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Entropic regularization
Define the Kullback–Leibler (KL) divergence between two positive vectors ‍µ, ν ∈ Rp

+‍ as

	﻿‍
DKL(µ, ν) =

p∑
i=1

µi ln
(µi
νi

)
−

p∑
i=1

µi +
p∑

i=1
νi

‍�
(29)

Given fixed marginals ‍a ∈ Rp1‍ and ‍b ∈ Rp2‍ from the previous section, we can define the entropy of 
a coupling matrix ‍Π ∈ Rp1×p2

+ ‍ with respect to these fixed marginals as

	﻿‍
DKL(Π, a ⊗ b) =

p1∑
i=1

p2∑
j=1

Πij ln
( Πij

aibj

)
−

p1∑
i=1

p2∑
j=1

Πij +
p1∑

i=1

p2∑
j=1

aibj.
‍�

(30)

where ‍(a ⊗ b)ij = aibj‍ denotes the outer product. This can be further simplified as

	﻿‍

DKL(Π, a ⊗ b) =
∑p1

i=1
∑p2

j=1 Πij ln
( Πij

aibj

)
−

∑p1
i=1

∑p2
j=1 Πij +

(∑p1
i=1 ai

)(∑p2
j=1 bj

)

=
∑P1

i=1
∑P2

j=1 Πijln
( Πij

aibj

)

= H(Π) + ln(p1) + ln(p2) ‍�

(31)

where we define ‍H(Π)‍ by

	﻿‍
H(Π) =

p1∑
i=1

p2∑
j=1

Πij ln(Πij).
‍�

(32)

In the second line of the derivation above, we used the fact that the entries of ‍a, b‍, and ‍Π‍ summed 
to one, and in the third line we used the fact that the marginals ‍a‍ and ‍b‍ were uniform. Under 
these assumptions, we see that the KL divergence ‍DKL(Π, a ⊗ b)‍ is independent of the values of the 
marginals ‍a, b‍ and is equal to ‍H(Π)‍ up to constants.

Although here the general definition of entropy through the KL divergence reduces to the simpler 
formula of ‍H(Π)‍, in the following sections we will need to extend our analysis to cases when ‍a, b‍, 
and ‍Π‍ have positive values that do not sum to one (i.e. not distributions). In this context, we will 
no longer have that ‍DKL(Π, a ⊗ b) = H(Π) + const‍ but we will still be able to use ‍DKL(Π, a ⊗ b)‍ as a 
general notion of entropy for ‍Π‍.

The entropy of a coupling ‍DKL(Π, a ⊗ b)‍ is an important notion because it quantifies how uniform 
or smooth ‍Π‍ is with respect to the product distribution ‍a ⊗ b‍. In particular, if ‍a‍ and ‍b‍ are set to 
uniform distributions as commonly done in practice, then ‍DKL(Π, a ⊗ b)‍ is small when ‍Π‍ has close to 
uniform entries and is large otherwise. This notion of smoothness allows us to use ‍DKL(Π, a ⊗ b)‍ as a 
regularizer in our optimal transport distance as

	﻿‍
Lε(Π) =

p1∑
i=1

p2∑
j=1

ΠijCij + εDKL(Π, a ⊗ b)
‍�

(33)

where ‍ε‍ is a small regularization parameter. Note that here we have denoted the transport cost 
matrix by ‍C ∈ Rp1×p2‍ which is not necessarily a distance matrix. The introduction of the regularizer 
‍εDKL(Π, a ⊗ b)‍ gives us an efficient iterative algorithm known as the Sinkhorn algorithm for optimizing 
‍Π‍ which we describe in the following sections.

Unbalanced optimal transport
Before we introduce the Sinkhorn algorithm, we introduce a final modification to our optimal transport 
distance that allows us to learn couplings between distributions ‍a, b ∈ Rp

+‍ that do not preserve mass. 
In other words, the coupling ‍Π‍ is not required to perfectly satisfy the marginal constraints ‍Π1p2 = a‍ 
and ‍Π

T1p1 = b‍. In our metabolite matching problem, this is particularly useful as not all metabolites 
in one dataset necessarily appear in the other dataset and hence should be left unmatched. This 
modification of optimal transport, known as unbalanced optimal transport (UOT) Chizat et al., 2018, 
optimizes the following cost function

https://doi.org/10.7554/eLife.91597
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	﻿‍
Lρ,ε(Π) =

p1∑
i=1

p2∑
j=1

ΠijCij + ρDKL(Π1p2 , a) + ρDKL(ΠT1p1 , b) + εDKL(Π, a ⊗ b)
‍�

(34)

where we have added two KL terms with regularization parameter ‍ρ‍ to enforce that the marginals 
of the coupling ‍Π1p2 ,ΠT1p1‍ are approximately close to the prescribed marginals ‍a, b‍ respectively. We 
have also kept the smoothness/entropy regularizer ‍εDKL(Π, a ⊗ b)‍ from the previous section.

Unbalanced Sinkhorn algorithm
Now we are ready to present the unbalanced Sinkhorn algorithm Peyré and Cuturi, 2019 for 
optimizing the unbalanced optimal transport cost defined above. First we rewrite our optimization 
as

	﻿‍

min
Π∈R

p1×p2
+

Lρ,ε(Π) = min
Π∈R

p1×p2
+

∑p1
i=1

∑p2
j=1 ΠijCij + ρDKL(Π1p2 , a) + ρDKL(ΠT1p1 , b) + εDKL(Π, a ⊗ b)

= min
u∈R

p1
+ , v∈R

p2
+

min

Π ∈ R
p1×p2
+

Π1p2 = u, ΠT1p1 = v

∑p1
i=1

∑p2
j=1 ΠijCij + ρDKL(u, a) + ρDKL(v, b) + εDKL(Π, a ⊗ b).

‍�

The inner minimization can be solved exactly by introducing dual variables ‍f ∈ Rp1 , g ∈ Rp2‍ and 
writing out the Lagrange dual problem

	﻿‍

min
Π∈R

p1×p2
+

Π1p2 =u, ΠT1p1 =v

∑p1
i=1

∑p2
j=1 ΠijCij + εDKL(Π, a ⊗ b) − f T(Π1p2 − u) − gT(ΠT1p1 − v)

= max
f∈Rp1 , g∈Rp2

min
Π∈R

p1×p2
+

∑p1
i=1

∑p2
j=1 ΠijCij + εDKL(Π, a ⊗ b) − f T(Π1p2 − u) − gT(ΠT1p1 − v).

‍�

where we have removed the terms ‍ρDKL(u, a)‍ and ‍ρDKL(v, b)‍ since they do not depend on ‍Π‍. Taking 
the gradient in ‍Π‍ in the inner minimization and setting it to zero we get

	﻿‍
Cij + ε log

( Πij
aibj

)
− fi − gj = 0

‍�

which implies that

	﻿‍
Πij = aibj exp

( fi + gj − Cij
ε

)
‍�

Now we can substitute this expression for ‍Π‍ back into our Lagrange dual problem. First we 
compute

	﻿‍
εDKL(Π, a ⊗ b) =

p1∑
i=1

p2∑
j=1

Πij

(
fi + gj − Cij

)
− ε

p1∑
i=1

p2∑
j=1

Πij + ε

p1∑
i=1

p2∑
j=1

aibj
‍�

which implies that

	﻿‍

∑p1
i=1

∑p2
j=1 ΠijCij + εDKL(Π, a ⊗ b) − f T(Π1p2 − u) − gT(ΠT1p1 − v)

= uTf + vTg − ε
∑p1

i=1
∑p2

j=1 aibj exp
( fi + gj − Cij

ε

)
+ ε

∑p1
i=1

∑p2
j=1 aibj.‍�

Hence, the outer maximization in our Lagrange dual problem for ‍f ‍ and ‍g‍ can now be written as

	﻿‍
max

f∈Rp1 , g∈Rp2
uTf + vTg − ε

p1∑
i=1

p2∑
j=1

aibj exp
( fi + gj − Cij

ε

)

‍�

where we have removed the last constant sum in ‍aibj‍. Finally we can rewrite our entire minimization 
from the start of this section as

https://doi.org/10.7554/eLife.91597
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	﻿‍

min
Π∈R

p1×p2
+

Lρ,ε(Π) = min
u∈R

p1
+ , v∈R

p2
+

min
Π∈R

p1×p2
+

Π1p2 =u, ΠT1p1 =v

∑p1
i=1

∑p2
j=1 ΠijCij + ρDKL(u, a) + ρDKL(v, b) + εDKL(Π, a ⊗ b)

= min
u∈R

p1
+ , v∈R

p2
+

max
f∈Rp1 , g∈Rp2

uTf + vTg − ε
∑p1

i=1
∑p2

j=1 aibj exp
( fi + gj − Cij

ε

)
+ ρDKL(u, a) + ρDKL(v, b).

‍�

By strong duality, we can interchange the minimum and maximum above to write

	﻿‍

min
Π∈R

p1×p2
+

Lρ,ε(Π) = max
f∈Rp1 , g∈Rp2

min
u∈R

p1
+ , v∈R

p2
+

uTf + vTg − ε
∑p1

i=1
∑p2

j=1 aibj exp
( fi + gj − Cij

ε

)
+ ρDKL(u, a) + ρDKL(v, b)

= U∗(f) + V∗(g) − ε
∑p1

i=1
∑p2

j=1 aibj exp
( fi + gj − Cij

ε

)
‍�

where we define the functions

	﻿‍

U∗(f) = minu∈R
p1
+

uTf + ρDKL(u, a)

V∗(g) = minv∈R
p2
+

vTg + ρDKL(v, b).‍�
(35)

In fact, we can solve the minimizations in ‍U∗‍ and ‍V∗‍ in closed form to get the minimizers 

‍u∗ = a ⊙ exp(−f/ρ)‍ and ‍v∗ = b ⊙ exp(−g/ρ)‍ which we can substitute back in to get

	﻿‍

U∗(f) =
∑p1

i=1 u∗i fi + ρ
∑p1

i=1 u∗i ln
(u∗i

ai

)
− ρ

∑p1
i=1 u∗i + ρ

∑p1
i=1 ai

=
∑p1

i=1 u∗i fi −
∑p1

i=1 u∗i fi − ρ
∑p1

i=1 ai exp(−fi/ρ) + ρ
∑p1

i=1 ai

= −ρ
∑p1

i=1 ai exp(−fi/ρ) + ρ
∑p1

i=1 ai. ‍�

Likewise we can see that

	﻿‍
V∗(f) = −ρ

p2∑
i=1

bi exp(−gi/ρ) + ρ

p2∑
i=1

bi.
‍�

Thus, we can rewrite our full optimization as

	﻿‍

min
Π∈R

p1×p2
+

Lρ,ε(Π) = max
f∈Rp1 , g∈Rp2

− ρ
∑p1

i=1 ai exp(−fi/ρ) − ρ
∑p2

i=1 bi exp(−gi/ρ) − ε
∑p1

i=1
∑p2

j=1 aibj exp
( fi + gj − Cij

ε

)

= min
f∈Rp1 , g∈Rp2

ρ
∑p1

i=1 ai exp(−fi/ρ) + ρ
∑p2

i=1 bi exp(−gi/ρ) + ε
∑p1

i=1
∑p2

j=1 aibj exp
( fi + gj − Cij

ε

)
‍�

where we have removed the terms independent of ‍f ‍ and ‍g‍.
Note that now we can optimize the cost function above by performing an alternating minimization 

on the dual variables ‍f ‍ and ‍g‍. Taking the gradient in ‍f ‍ and setting it to zero we see that

	﻿‍
−ai exp(−fi/ρ) + ai

p2∑
j=1

bj exp
( fi + gj − Cij

ε

)
= 0

‍�

which implies that

	﻿‍
fi = − ερ

ε + ρ
ln
( p2∑

j=1
bj exp

(gj − Cij
ε

))
.
‍�

Similarly, we can write out

	﻿‍
gj = − ερ

ε + ρ
ln
( p1∑

i=1
ai exp

( fi − Cij
ε

))
.
‍�

We are now ready to write out the full unbalanced Sinkhorn algorithm which performs an 
alternating minimization on the dual potentials ‍f, g‍ as outlined above. We remind the reader that the 
coupling matrix can be recovered from the dual potentials by the formula

https://doi.org/10.7554/eLife.91597
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	﻿‍
Πij = aibj exp

( fi + gj − Cij
ε

)
.
‍�

The unbalanced Sinkhorn algorithm proceeds as follows.

Algorithm 1. UnbalancedSinkhorn

input: Transport cost ‍C‍, marginals ‍a, b‍, marginal relaxation ‍ρ‍, entropic regularization ‍ε‍
output: Return the coupling matrix ‍Π‍ 
Initialize ‍g = 0‍
while ‍(f, g)‍ has not converged do

  �  Set 
‍
fi ← − ερ

ε+ρ ln
(∑p2

j=1 bj exp
(

gj−Cij
ε

))
‍
 for ‍i ∈ [p1]‍

     Set 
‍
gj ← − ερ

ε+ρ ln
(∑p1

i=1 ai exp
(

fi−Cij
ε

))
‍
 for ‍j ∈ [p2]‍ 

Return the coupling matrix 
‍
Πij = aibj exp

(
fi+gj−Cij

ε

)
‍
 for ‍i ∈ [p1]‍ and ‍j ∈ [p2]‍

The final output of the Sinkhorn algorithm optimization is a real-valued coupling matrix ‍Π ∈ Rp1×p2
+ ‍. 

In some cases, it is desirable to transform the coupling matrix into a binary-valued matching matrix 

‍M ∈ {0, 1}p1×p2‍ with possibly an added restriction that there is at most one nonzero element in 
each row and column (to obtain a valid partial matching). This can be done by either thresholding 
the real matrix ‍Π‍ or by assigning all maximal entries in each row (or column) to one and setting the 
remaining entries to zero. For our metabolomics matching problem, we describe our procedure 
for transforming our real-valued coupling into a binary matching matrix in the section on the 
GromovMatcher algorithm below.

Gromov–Wasserstein
Now that we have introduced the general formulation of unbalanced optimal transport and its 
corresponding Sinkhorn algorithm, we can extend this formulation to matching problems between 
distributions of points that live in different dimensional spaces. In our metabolomics setting, we aim 
to match two datasets of p1 and p2 metabolic features respectively where each feature in a dataset is 
associated with a feature intensity vector ‍{Xi}

p1
i=1 ⊂ Rn1

‍ and ‍{Yj}
p2
j=1 ⊂ Rn2

‍ respectively across samples. 
We assume that there exists a true matching matrix ‍M∗ ∈ {0, 1}p1×p2‍ with at most one nonzero entry 
in each row and column such that two metabolites ‍(i, j)‍ are matched if ‍M

∗
ij = 1‍.

We make the further assumption that if feature vectors ‍Xi, Yj‍ are matched and feature vectors 

‍Xk, Yl‍ are matched under ‍M∗‍, then we expect that

	﻿‍ dx(Xi, Xk) ≈ dy(Yj, Yl) if M∗
ij = M∗

kl = 1.‍� (36)

where dx is a distance metric on ‍Rn1‍ and dy is a distance metric n ‍Rn2‍. In practice, we always choose 
these distance metrics to be the normalized Euclidean distance defined for any ‍u, v ∈ Rn‍ as

	﻿‍
deuc(u, v) = 1√

n
∥u − v∥

‍�
(37)

which is equal to the cosine distance ‍dcos‍ (i.e. one minus the correlation) for centered and scaled data. 
Given these two distance matrices ‍D

x = [dx(Xi, Xk)]p1
i,k=1 ∈ Rp1×p1

‍ and ‍D
y = [dy(Yj, Yl)]

p2
j,l=1 ∈ Rp2×p2

‍ we 
would like to infer the true matching matrix ‍M∗‍ by solving an optimization problem.

Consider the following objective function

	﻿‍
E(M) =

p1∑
i,k=1

p2∑
j,l=1

MijMkl

���Dx
ik − Dy

jl

���.
‍�

(38)

where the matching matrices ‍M ∈ {0, 1}p1×p2‍ we optimize over are constrained to satisfy marginal 
constraints ‍Π1p2 > 0‍ and ‍Π

T1p1 > 0‍. These marginal constraints simply impose that there is at least 
one nonzero entry in each row and column (i.e. each metabolite in both datasets has at least one 
corresponding match). Searching for the ‍Π‍ minimizing ‍EX,Y

(
Π
)
‍ consists of putting the non-zero 

entries in ‍Π‍ such that the distance profiles of the matched features are similar, so that the minimizer 
of this criterion provides a good candidate estimate of ‍Π∗‍. This is closely related to the Gromov–
Hausdorff distance Gromov, 2001, an extension of optimal transport to the case where the sets to 
be coupled do not lie in the same metric space.

https://doi.org/10.7554/eLife.91597
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In practice, it is often desirable to optimize over a different set of matrices in order to make the 
optimization problem more tractable. Here we take intuition from optimal transport, and search over 
the set of coupling matrices with marginal constraints

	﻿‍ U(a, b) = {Π ∈ Rp1×p2
+ : Π1p2 = a and ΠT1p1 = b}.‍� (39)

where as before, ‍a ∈ Rp1
+ ‍ and ‍b ∈ Rp2

+ ‍ are desired marginals which are typically set to be uniform 
distributions ‍a = 1

p1
1p1‍ and ‍b = 1

p2
1p2‍. These marginal vectors can be interpreted as distributions of 

masses ai and bj on the feature vectors ‍Xi‍ and ‍Yj‍ respectively for ‍i ∈ [p1], j ∈ [p2]‍.
Coupling matrices in ‍U(a, b)‍ transport the distribution of masses ‍a‍ in the first dataset to the 

distribution of masses ‍b‍ in the second dataset. Now we can formulate the Gromov–Wasserstein 
(GW) distance, introduced by Mémoli, 2011, as

	﻿‍
GW(a, b) = min

Π∈U(a,b)
E(Π)

‍� (40)

By optimizing this objective, each entry ‍Πij‍ now reflects the strength of the matched pair ‍(Xi, Yj)‍. 
Optimizing ‍GW(a, b)‍ then amounts to placing larger entries in ‍Π‍ whose paired features have similar 
distance profiles. Before we develop an algorithm to optimize this objective, we first modify it to 
allow for unbalanced matchings where marginal constraints are not enforced exactly (e.g. features in 
both datasets can remain unmatched).

Unbalanced Gromov–Wasserstein
In an untargeted context, all features measured in one study are not necessarily observed in another, 
either because these features are truly not shared or because of measurement error. However, the 
constraint ‍Π ∈ U(a, b)‍ in the original GW optimization criterion Equation 40 ensures that all the 
mass is transported from one set to another, resulting in all features being matched across studies. 
In order to discard study-specific features during the GW computation, we use the unbalanced 
Gromov–Wasserstein (UGW) distance with an additional entropic regularization for computational 
purposes, described in Sejourne et al., 2021. The optimization problem therefore reads

	﻿‍

Lρ,ε(Π) = E(Π) +ρDKL
(
Π1p2 ⊗Π1p2 , a ⊗ a

)

+ρDKL
(
ΠT1p1 ⊗ΠT1p1 , b ⊗ b

)

+εDKL(Π⊗Π,
(
a ⊗ b

)⊗2) ‍�

(41)

	﻿‍
UGWρ,ε = min

Π∈R
p1×p2
+

Lρ,ε(Π)
‍� (42)

with ‍ρ, ε > 0‍. Here ‍DKL‍ is the Kullback–Leibler divergence defined in the previous sections and we 
define the tensor product ‍

(
P ⊗ P

)
i,j,k,l = Pi,jPk,l‍. Here we set the desired marginal constraints to 

‍a = 1
p1

1p1‍ and ‍b = 1
p2

1p2‍ as before.
As in the case of unbalanced optimal transport (Chizat et al., 2018), the regularization ‍ρ‍ times 

the Kullback–Leibler divergences allows for the relaxation of the marginal constraints ‍Π1p2 = a‍ and 

‍Π
T1p1 = b‍. The value of ‍ρ > 0‍ controls the extent to which we allow for mass destruction. Smaller 

values of ‍ρ‍ tend to lessen the constraint on the marginals of ‍Π‍, while balanced GW is recovered when 

‍ρ → +∞‍. As proposed in the original paper (Sejourne et al., 2021), our UGW cost modifies the UOT 
formulation by using the quadratic Kullback-Leibler divergence in ‍Π1p2 ⊗Π1p2‍ and ‍Π

T1p1 ⊗ΠT1p1‍ 
instead, hence preserving the quadratic form of the GW cost function ‍E(Π)‍.

The term 
‍
ϵDKL

(
Π⊗Π,

(
a ⊗ b

)⊗2
)
‍
 serves as an entropic regularization, inspired again by optimal 

transport. Adding such a penalty is a standard way to compute an approximate solution to the 
optimal transport problem using the Sinkhorn algorithm as we shall show in the following section. 
Here again, we modify the entropic penalty in UGW to have a quadratic form in ‍Π⊗Π‍ to agree 
with the quadratic form of the GW cost ‍E(Π)‍. The parameter ‍ε‍ controls the smoothness (entropy) of 
the coupling matrix ‍Π‍ where larger values of ‍ε‍ encourage ‍Π‍ to put uniform weights on many of its 
entries, leading to less precision in the feature matches. However, increasing ‍ε‍ also leads to better 
numerical stability and a significant speedup of the alternating Sinkhorn algorithm used to optimize 
the objective function described below.

https://doi.org/10.7554/eLife.91597
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UGW optimization algorithm
Now we are ready to write out an algorithm to optimize the UGW objective in Equation 42. First 
write our objective as

	﻿‍

Lρ,ε(Π) =
∑p1

i,k=1
∑p2

j,l=1 ΠijΠkl

���Dx
ik − Dy

jl

��� +ρDKL
(
Π1p2 ⊗Π1p2 , a ⊗ a

)

+ρDKL
(
ΠT1p1 ⊗ΠT1p1 , b ⊗ b

)

+εDKL(Π⊗Π,
(
a ⊗ b

)⊗2). ‍�

(43)

Using the quadratic nature of our cost function, we aim to perform an alternating minimization in 
the two copies of ‍Π‍. For the moment, let’s differentiate these two copies by ‍Π‍ and ‍Γ‍ and write the 
new cost

	﻿‍

Fρ,ε(Π,Γ) =
∑p1

i,k=1
∑p2

j,l=1 ΠijΓkl

���Dx
ik − Dy

jl

��� +ρDKL(Π1p2 ⊗ Γ1p2 , a ⊗ a)

+ρDKL(ΠT1p1 ⊗ ΓT1p1 , b ⊗ b)

+εDKL(Π⊗ Γ, (a ⊗ b)⊗2). ‍�

(44)

Before we expand this cost, we introduce the notation ‍m(π)‍ to denote the sum of the elements 
of ‍π‍ which can be a vector, matrix or tensor. In general, for four positive distributions ‍π, a ∈ Rp

+‍ and 

‍γ, b ∈ Rq
+‍ we have that the KL satisfies the tensorization property

	﻿‍

DKL(π ⊗ γ, a ⊗ b) =
∑p

i=1
∑q

j=1 πiγj ln
(πiγj

aibj

)
−

∑p
i=1

∑q
j=1 πiγj +

∑p
i=1

∑q
j=1 aibj

= m(γ)
∑p

i=1 πi ln
(πi

ai

)
+ m(π)

∑q
j=1 γj ln

(γj
bj

)
− m(π)m(γ) + m(a)m(b)

= m(γ)DKL(π, a) + m(π)DKL(γ, b) +
(

m(π) − m(a)
)(

m(γ) − m(b)
)

.
‍�

(45)

Specifically, if we remove those terms that do not depend on ‍γ‍ we are left with

	﻿‍
DKL(π ⊗ γ, a ⊗ b) = m(π)DKL(γ, b) + m(γ)

p∑
i=1

πi ln
(πi

ai

)
+ const.

‍�
(46)

This allows us to write for the marginal constraints ‍a ∈ Rp1
+ , b ∈ Rp2

+ ‍ and couplings ‍Π,Γ ∈ Rp1×p2
+ ‍ 

that

	﻿‍

DKL(Π1p2 ⊗ Γ1p2 , a ⊗ a) = m(Π)DKL(Γ1p2 , a) + m(Γ)
∑p1

i=1(Π1p2 )i ln
( (Π1p2 )i

ai

)
+ const.

DKL(ΠT1p1 ⊗ ΓT1p1 , b ⊗ b) = m(Π)DKL(ΓT1p1 , b) + m(Γ)
∑p2

j=1(ΠT1p1 )j ln
( (ΠT1p1 )j

bj

)
+ const.

DKL(Π⊗ Γ, (a ⊗ b)⊗2) = m(Π)DKL(Γ, a ⊗ b) + m(Γ)
∑p1

i=1
∑p2

j=1 Πij ln
( Πij

aibj

)
+ const.

‍�

where in the expansions above we have removed all terms that are independent of ‍Γ‍. Finally, 
expanding out ‍Fρ,ε(Π,Γ)‍ and keeping only those terms that depend on ‍Γ‍ we get

	﻿‍
Fρ,ε(Π,Γ) =

p1∑
k=1

p2∑
l=1

ΓklC
Π
kl + ρm(Π)DKL(Γ1p2 , a) + ρm(Π)DKL(ΓT1p1 , b) + εm(Π)DKL(Γ, a ⊗ b)

‍�
(47)

where the cost matrix ‍CΠ ∈ Rp1×p2‍ is defined as

	﻿‍
CΠ

kl =
p1∑
i=1

p2∑
j=1

Πij

���Dx
ik − Dy

jl

��� + ρ

p1∑
i=1

(Π1p2 )i ln
( (Π1p2 )i

ai

)
+ ρ

p2∑
j=1

(ΠT1p1 )j ln
( (ΠT1p1 )j

bj

)
+ ε

p1∑
i=1

p2∑
j=1

Πij ln
( Πij

aibj

)
.
‍

� (48)

where we have hidden the dependence of ‍CΠ‍ on the distance matrices ‍Dx, Dy‍, the marginals ‍a, b‍, and 
the regularization parameters ‍ρ, ε‍ for ease of notation.

Remarkably, the cost above in ‍Γ‍ for fixed ‍Π‍ is in the form of an unbalanced optimal transport 
problem which can be solved through unbalanced Sinkhorn iterations (Algorithm 1). Note that in our 

https://doi.org/10.7554/eLife.91597


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Breeur, Stepaniants et al. eLife 2023;12:RP91597. DOI: https://doi.org/10.7554/eLife.91597 � 30 of 43

derivation above, it did not matter whether we optimized ‍Γ‍ with ‍Π‍ fixed or vice versa because the 
cost ‍Fρ,ε(Π,Γ)‍ is symmetric in both of its arguments.

Our iterative algorithm for solving the unbalanced GW problem will proceed at each iteration by 
optimizing ‍Γ‍ to minimize the cost above using the unbalanced Sinkhorn method, setting ‍Π‍ equal to 
‍Γ‍ and repeating. With each iteration, we expect this iterative procedure to make smaller and smaller 
updates to ‍Γ‍ until convergence. By definition, at the end of each iteration we assign ‍Π = Γ‍ so the 
minimizer of ‍Fρ,ε(Π,Γ)‍ we converge to should also be a minimizer of the original UGW cost ‍Lρ,ε(Π)‍ 
in the sense that the relaxation of ‍Lρ,ε(Π)‍ to ‍Fρ,ε(Π,Γ)‍ is tight. This is proven rigorously under strict 
mathematical assumptions in Sejourne et al., 2021. We state the full UGW optimization algorithm 
below.

Algorithm 2. UnbalancedGromovWasserstein

input: Distance matrices ‍Dx, Dy
‍, marginals a, b marginal relaxation ‍ρ‍, entropic regularization ‍ε‍

output: Return the coupling matrix ‍Π‍ 
Initialize ‍Π = Γ = a ⊗ b/

√
m(a)m(b)‍

while ‍(Π,Γ)‍ has not converged do
  �  Update ‍Π ← Γ‍
  �  Update ‍Γ = UnbalancedSinkhorn(CΠ, a, b, ρm(Π), εm(Π))‍
  �  Rescale ‍Γ ←

√
m(Π)/m(Γ)Γ‍ 

Update ‍Π ← Γ‍ 
Return ‍Π‍.

Following the implementation of the UGW algorithm in Sejourne et  al., 2021, we initialize 
both ‍Π‍ and ‍Γ‍ to be the product distribution of the marginals ‍a ⊗ b/

√
m(a)m(b)‍ before we begin the 

optimization. Also, we note that if ‍(Π,Γ)‍ is a minimizer of our UGW objective ‍Fρ,ε(Π,Γ)‍, then so is 

‍(
1
s Π, sΓ)‍ for any scale factor ‍s > 0‍. Hence, we can set ‍m( 1

s Π) = m(sΓ)‍ by choosing ‍s =
√

m(Π)/m(Γ)‍. 
This motivates the final step in the while loop of the UGW algorithm where the rescaling of ‍Γ‍ by the 
factor ‍

√
m(Π)/m(Γ)‍ leads to mass equality ‍m(Π) = m(Γ)‍ and also stabilizes the convergence of the 

algorithm.
Returning to our metabolomics matching problem, we further guide our UGW optimization 

procedure by discouraging it from matching metabolic feature pairs whose mass-to-charge ratios 
are incompatible. Namely, we choose a value ‍mgap‍ such that for all pairs ‍(i, j)‍ with ‍i ∈ [p1], j ∈ [p2]‍ and 
mass-to-charge ratios ‍m

x
i , my

j ‍ we enforce that

	﻿‍ |mx
i − my

j | > mgap =⇒ Πij = 0.‍� (49)

In practice, this is done by taking the optimal transport cost ‍CΠ‍ in every iteration of the UGW 
algorithm and premultiplying it elementwise by a factor ‍W ∈ Rp1×p2

+ ‍ given by

	﻿‍
CΠ → W ⊙ CΠ, Wij = 99 · 1{|mx

i −my
j |>mgap} + 1

‍� (50)

where ‍1X ‍ denotes the indicator function that is one when the condition ‍X ‍ is satisfied and zero 
otherwise. Such a prefactor changes the transport cost to be very large for feature matches with 
incompatible mass-to-charge ratio times, and hence, the entries of ‍Π‍ set small weights at these 
entries. Our weighted UGW algorithm is rewritten below.

Algorithm 3. WeightedUnbalancedGromovWasserstein

input : Distance matrices ‍Dx, Dy
‍, marginals ‍a, b‍, marginal relaxation ‍ρ‍, entropic regularization ‍ε‍,

   �   mass-to-charge ratios ‍mx, my
‍, mass-to-charge ratio gap ‍mgap‍

output: Return the coupling matrix ‍Π‍ 
Initialize ‍Π = Γ = a ⊗ b/

√
m(a)m(b)‍ 

Set 
‍
Wij = 99 · 1{|mx

i −my
j |>mgap} + 1

‍
 for ‍i ∈ [p1]‍ and ‍j ∈ [p2]‍ 

while ‍(Π,Γ)‍ has not converged do
  �  Update ‍Π ← Γ‍
  �  Update ‍Γ = UnbalancedSinkhorn(W ⊙ CΠ, a, b, ρm(Π), εm(Π))‍
  �  Rescale ‍Γ ←

√
m(Π)/m(Γ)Γ‍ 

Update ‍Π ← Γ‍ 
Return ‍Π‍.
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As mentioned before, the coupling matrix returned by our weighted UGW algorithm is a real-
valued matrix rather than a binary matching matrix. In the next section, we describe how we 
incorporate metabolite retention time information to filter out unlikely pairs in our coupling matrix 
and transform it into a valid one-to-one matching of features across two datasets.

Retention time drift estimation and filtering
To filter out unlikely matches from the coupling matrix returned by Algorithm 3 above, we use 
the retention times (RTs) of the metabolites in both datasets. We remind the reader that RTs were 
not incorporated into the weighted UGW algorithm since they often exhibit a non-linear deviation 
between datasets, and hence are not directly comparable. However, using the metabolite coupling 

‍Π̃ ∈ Rp1×p2
+ ‍ obtained from Algorithm 3, it is possible to estimate this RT drift. The estimated RT 

drift ‍̂f : R+ → R+‍ allows us to assess the plausibility of the pairs recovered by the restricted UGW 
coupling ‍̃Π‍, and discard pairs incompatible with the estimated drift.

We propose to learn the drift ‍̂f ‍ through the weighted spline regression

	﻿‍
min

f∈Bn,k

p1∑
i=1

p2∑
j=1

Π̃ij

���f (RTx
i
)
− RTy

j

���
‍�

(51)

where ‍Bn,k‍ is the set of ‍n‍-order B-splines with ‍k‍ knots. All pairs ‍(RTx
i , RTy

j )‍ in objective Equation 51 
are weighted by the coefficients of ‍̃Π‍ so that larger weights are given to pairs identified with high 
confidence in the first step of our procedure.

Pairs identified as incompatible with the estimated RT drift are then discarded from the coupling 
matrix. To do this, we first take the estimated RT drift ‍̂f ‍, and the set of pairs ‍S = {i, j : Π̃i,j ̸= 0}‍ 
recovered in ‍̃Π‍ with nonzero entries. We then define the residual associated with ‍(i, j) ∈ S‍ as

	﻿‍ r̂f(i, j) = |̂f(RTx
i ) − RTy

j |.‍� (52)

The 95% prediction interval and the median absolute deviation (MAD) of these residuals are given 
by

	﻿‍

PI = 1.96 × std({r̂f(i, j), (i, j) ∈ S})

MAD = median({|r̂f(i, j) − µr|, (i, j) ∈ S})

µr = median({|r̂f(i, j)|, (i, j) ∈ S}) ‍�

(53)

where ‍|S |‍ is the size of ‍S‍ and the functions std, median denote the standard deviation and median 
respectively. Following Habra et al., 2021, we then create a new filtered coupling matrix ‍̂Π ∈ Rp1×p1

+ ‍ 
given by

	﻿‍

Π̂ij =




Π̃ij if r̂f(i, j) < µr + rthresh

0 otherwise
.

‍�

(54)

where ‍rthresh‍ is a given filtering threshold. The procedure of estimating the drift function ‍̂f ‍ in Equation 
51 and filtering the coupling can be repeated for multiple iterations, to improve the drift and 
coupling estimation. In our main algorithm, we use two preliminary iterations where we estimate the 
RT drift and discard outliers with ‍rthresh = PI‍, defined as points falling outside of the 95% prediction 
interval. We the re-estimate the drift and perform a final filtering step with the more stringent MAD 
by setting ‍rthresh = 2 × MAD‍.

At this stage, it is possible for ‍̂Π‍ to still contain coefficients of very small magnitude. As an optional 
postprocessing step, we discard these coefficients by setting all entries smaller than ‍τmax(Π̂)‍ to 
zero for some scaling constant ‍τ ∈ [0, 1]‍. Lastly, a feature from either study could have multiple 
possible matches, since ‍̂Π‍ can have more than one non-zero coefficient per row or column. Although 
reporting multiple matches can be helpful in an exploratory context, for the sake of simplicity in our 
analysis, the final output of GromovMatcher returns a one-to-one matching. Consequently, we only 
keep those metabolite pairs ‍(i, j)‍ where the entry ‍̂Πij‍ is largest in its corresponding row and column. 
All nonzero entries of ‍̂Π‍ which do not satisfy this criterion are set to zero. Finally, we convert ‍̂Π‍ into a 
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binary matching matrix ‍M ∈ {0, 1}p1×p2‍ with ones in place of its nonzero entries and this final output 
is returned to the user.

As a naming convention, we use the abbreviation GM for our GromovMatcher method, and use 
the abbreviation GMT when running GromovMatcher with the optional ‍τ ‍-thresholding step.

GromovMatcher algorithm summary
In summary, our full GromovMatcher algorithm consists of (1) UGW optimization followed by (2) 
retention time drift estimation and filtering.

The tuning of ‍ρ‍ and ‍ϵ‍ was computationally driven and the two parameters were set as low as 
possible, with ‍ρ = 0.05‍ and ‍ϵ = 0.005‍. Based on literature (Loftfield et al., 2021; Hsu et al., 2019; 
Climaco Pinto et al., 2022; Habra et al., 2021; Chen et al., 2021) and what is considered to be a 
plausible variation of a feature’s ‍m/z‍, we set  ‍mgap‍ = 0.01 ppm. For RT drift estimation, the order of 
the B-splines was set to ‍n = 3‍ by default, while the number of knots ‍k‍ was selected by 10-fold cross-
validation. If the optional thresholding step was applied in GMT, we set ‍τ = 0.3‍. Otherwise, we let 
‍τ = 0‍ which gives the unthresholded GM algorithm.

Algorithm 4. GromovMatcher

input : Distance matrices ‍Dx, Dy
‍, marginals ‍a, b‍, marginal relaxation ‍ρ‍, entropic regularization ‍ε‍,

   �   mass-to-charge ratios ‍mx, my
‍, mass-to-charge ratio gap ‍mgap‍,

   �   retention times ‍RTx, RTy
‍, B-spline order ‍n‍, filtering threshold ‍τ ‍

output: Return the matching matrix ‍M ‍ and the retention time drift ‍̂f ‍
# Step 1: Weighted UGW optimization
Compute ‍̃Π = WeightedUnbalancedGromovWasserstein(Dx, Dy, a, b, ρ, ε, mx, my)‍
# Step 2: Retention time drift estimation and filtering
for ‍i = 1 : 3‍ do
 �   Perform weighted spline regression Equation 51 for RT drift ‍f̂ ∈ Bn,k‍ where k is chosen by 10-fold cross 

validation
 �   Initialize ‍rthresh = 0‍
 �   if ‍i < 3‍ then
 �       Set ‍rthresh = PI‍ from Equation 53
 �   else
 �       Set ‍rthresh = 2 × MAD‍ from Equation 53
 �   Set ‍̃Π = Π̂‍ 

Compute ‍U = max(Π̂)‍ 
Set ‍̂Πij = 0‍ if ‍̂Πij < τU ‍ for  ‍i ∈ [p1]‍ and ‍j ∈ [p2]‍ 
Set ‍̂Πij = 0‍ if ‍i ̸= argmaxkΠ̂k,j‍ or ‍j ̸= argmaxkΠ̂i,k‍ for ‍i ∈ [p1]‍ and ‍j ∈ [p2]‍ 
Define the binarized matching 

‍
Mij = 1{Π̂ij>0}‍

 

Return ‍M ‍ and ‍̂f ‍.

https://doi.org/10.7554/eLife.91597
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Appendix 2
Here we discuss existing metabolomic alignments methods and the hyperparameter experiments 
we perform on these methods. We consider two existing alignment methods for comparison, 
metabCombiner (Habra et al., 2021) and M2S (Climaco Pinto et al., 2022). Both of them take the 
same kind of input as GromovMatcher, i.e. feature tables with features identified with their ‍m/z‍, RT, 
and intensities across samples.

MetabCombiner hyperparameter experiments
MetabCombiner (Habra et al., 2021) is a three-step process that begins by grouping features based 
on their ‍m/z‍ within user-specified bins. This creates a search space for potential feature pairs. In the 
second step, MetabCombiner estimates the RT drift using the potential feature pairs identified in 
the first step, and eliminates outlying pairs over several iterations. This step can incorporate prior 
knowledge by identifying shared features and marking them as anchors, which are not discarded. In 
the final step, MetabCombiner scores the remaining feature pairs based on their ‍m/z‍, RT, and relative 
intensity compatibility to discriminate between multiple matches for one feature. The scoring system 
relies on weights assigned to ‍m/z‍, RT, and feature intensities, with the magnitude of those weights 
reflecting the reliability of the corresponding measurements across studies.

MetabCombiner (Habra et al., 2021) includes adjustable parameters throughout the pipeline. We 
set most of them to default values unless otherwise stated. MetabCombiner first establishes candidate 
pairs by binning features in the ‍m/z‍ dimension with a width of binGap, and pairing the features sorted 
by relative intensities. The ‘binGap’ parameter sets the ‍m/z‍ tolerance of metabCombiner, similar to 

‍mgap‍ in GromovMatcher. We used the same value of 0.01 as in GromovMatcher.
MetabCombiner then estimates the RT drift using basis splines, and removes pairs associated 

with a high residual (twice the mean model error) from the candidate set.
In our main experiment, the RT drift is estimated exclusively using candidate pairs selected by the 

pipeline. However, it is also possible to include known ground truth pairs as ’anchors’ to estimate 
the RT drift. We choose not to rely on prior knowledge for drift estimation as Habra et al., 2021 
show their drift estimation to be efficient and robust, even without prior knowledge. To confirm this 
claim, we conduct a sensitivity analysis comparing the results obtained in our main experiment with 
those obtained when supplying metabCombiner with known shared metabolites to anchor the RT 
drift estimation. We randomly select 100 anchors from the ground truth matching and compute the 
metabCombiner matchings with otherwise identical settings as in our main experiment. The results 
from this analysis (reported in Appendix 2—figure 1) show that the unsupervised RT drift estimation 
(using anchors selected by the pipeline only) performs as well as the supervised RT drift estimation, 
showing the drift estimation to be very consistent, with or without shared entities.

After establishing candidate pairs and filtering out those that contradict the estimated RT drift, 
metabCombiner discriminates between multiple matches using a scoring system that considers ‍m/z‍, 
RT, and rankings of the median feature intensities. Each dimension has a specific weight that can 
be left at default, manually adjusted, or automatically tuned using known matched pairs. Habra 
et al., 2021 provide qualitative guidelines for tuning the weights manually, mainly based on the 
experimental conditions and visual inspection of the RT drift plot. Since this approach is difficult to 
implement in the various settings we consider for our simulation study, we rely on the quantitative 
tuning function included in the metabCombiner pipeline. This function takes into account known 
shared features and tunes the weights to optimize the scores of those known matches. We randomly 
select 100 known true matches to define the objective function metabCombiner maximizes. We 
search over the recommended range of values, with the ‍m/z‍ weight ‍A ∈ [50, 150]‍, the RT weight 

‍B ∈ [5, 20]‍ and the feature intensities weight ‍C ∈ [0, 1]‍. Appendix 2—figure 1 presents the results 
obtained with the weights set at default values (‍A = 100, B = 15, C = 0.5‍), as a sensitivity analysis.

https://doi.org/10.7554/eLife.91597
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Appendix 2—figure 1. Performance of metabCombiner with the different parameter settings. The first setting, 
labelled ‘Scores’ correspond to the design of our main analysis, where 100 randomly selected true pairs are 
supplied to metabCombiner to set the scoring weights automatically, but are not otherwise used. In the second 
setting, labelled ‘Scores + RT’, metabCombiner is allowed to use the 100 true pairs not only to set the scoring 
weights, but also to estimate the RT drift. Finally, in the third ‘Default’ setting, we do not use any prior knowledge 
for the RT drift estimation and keep the scoring weights’ default values.

M2S hyperparameter experiments
Climaco Pinto et  al., 2022 introduce M2S as a more versatile alternative to metabCombiner, 
while still adhering to most of its core principles. Like metabCombiner, M2S follows a three-step 
process. First it searches for matches within user-defined thresholds for ‍m/z‍, retention time, and 
mean feature intensity. Next, M2S estimates ‍m/z‍, RT and feature intensity drifts between datasets 
and removes any outlier pairs. Finally, M2S selects the best match using a scoring system that 
weighs each measurement, similar to metabCombiner. M2S notably stands out by providing greater 
flexibility in the methods and measurements used at each step of the procedure, resulting however 
in a larger number of parameters that require manual fine-tuning. To address this, we adopt two 
different approaches for the simulation study and the EPIC study alignment. In the simulation study, 
we set the initial thresholds to oracle values and investigate technical parameters. For the EPIC study 
alignment, we use the combination of technical parameters with the best average F1-score in the 
simulation study and select the best threshold values based on the performance on the validation 
subset.

More precisely, M2S first matches all pairs of metabolic features whose absolute difference in 
‍m/z‍, RT, and median of ‍log10‍ FI are within the user-defined thresholds ‘MZ_intercept’, ‘RT_intercept’ 
and ‘log10FI_intercept’. On simulated data experiments, we set these thresholds to MZ_intercept 
= 0.01, RT_intercept = 3.5  and log10FI_intercept = 0.2 which are large enough to not exclude 
any true feature matches in any of the scenarios for our simulated data under low, medium, and 
high overlap/noise (see Methods). M2S also offers more detailed options to match features whose 
absolute difference stays within two lower and upper bound lines with a given slope where the 
intercepts of these lines are defined using the values above. In our analysis, we set the slopes of 
these linear boundaries to zero so as to not remove any true matches. Because the reference and 
target studies we are matching in the simulated analysis are on the same scale, we set the FI adjust 
method to ‘none’.

The second step of M2S involves calculating penalization scores for every pair of matches which 
are used to determine the best set of matches between metabolic features of both datasets. 
This step depends on a set of hyperparameters which we perform a grid search over to optimize 
the performance of M2S. For estimating the ‍m/z‍, RT, and FI drift, the hyperparameters are the 
percentage of neighbors ‘nrNeighbors‘, the neighborhood shape ‘neighMethod’, and the LOESS 
span percentage ‘pctPointsLoess’ used to smooth the estimated drift functions. After the drifts 
are estimated, they are normalized using a method specified by ‘residPercentile’ that puts the ‍m/z‍, 
RT, and FI residuals on the same scale. We always fix residPercentile = NaN which defaults to the 
standard 2 × MAD normalization. Next, for every remaining metabolic feature match, the residuals/
drifts of the ‍m/z‍, RT, and FI are added together by taking the weighted square root sum of squares. 
For unnormalized data where feature intensity magnitudes are important, we weight all three drifts 
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equally using ‍W = (1, 1, 1)‍ and for data with normalized feature intensities we set the FI drift weight 
to zero such that ‍W = (1, 1, 0)‍. Finally, using these weighted penalization scores, M2S selects the best 
matched pair within a multiple match cluster to obtain a one-to-one matching between datasets.

The third and final step of M2S involves removing those remaining matches which have large 
differences in ‍m/z‍, RT, or FI. This can be performed using several methods indicated by the 
hyperparameter ‘methodType’. Each method excludes those matched pairs whose differences in 
‍m/z‍, RT, or FI exceed a certain number of median absolute deviations indicated by the parameter 
‘nrMAD’. The remaining one-to-one metabolic feature matches are returned as the final result of the 
M2S algorithm.

To optimally tune M2S on our simulated experiments, we determine the optimal M2S parameter 
combination for each individual simulation setting (low, medium, high overlap and noise) by 
performing a grid search over the product of parameter lists

•	 nrNeighbors = [0.01, 0.05, 0.1, 0.5, 1]
•	 neighMethod = [‘cross’, ‘circle’]
•	 pctPointsLoess = [0, 0.1, 0.5]
•	 methodType = [‘none’, ‘scores’, ‘byBins’, ‘trend_mad’, ‘residuals_mad’]
•	 nrMAD = [1, 3, 5]

Each parameter combination for M2S is tested across 20 randomly generated datasets at the same 
overlap and noise settings. For each setting, the combination of parameters above with the best 
average F1-score across these 20 trials is used as the optimal parameter choice.

M2S applies initial RT thresholds to search for candidate pairs, which may favor settings where 
the RT drift follows a linear trend. Therefore, as a sensitivity analysis, we apply M2S to simulated data 
with a linear drift. The simulation process is identical to that of our main simulation study, except for 
the deviation of the RT in dataset 2. Specifically, for a given overlap value, we divide the original real-
world dataset into two smaller datasets and introduce random noise to the ‍m/z‍, RT and intensities of 
the features, without introducing a systematic deviation to the RT in dataset 2. M2S parameters are 
kept identical to the ones used in our main analysis in comparable settings. The results obtained by 
M2S on three pairs of datasets generated for three overlap values (0.25, 0.5 and 0.75) and a medium 
noise level are reported in Appendix 2—table 1. While the results obtained in a high overlap setting 
are close to those obtained in our main analysis M2S demonstrates better performance in a low 
overlap setting when the RT drift is linear than in our main analysis. This observation is consistent 
with the results obtained by M2S on EPIC data, considering the relatively low estimated overlap 
between the aligned EPIC studies in our main analysis.

Appendix 2—table 1. Performance of M2S in a setting where the RT drift between studies is linear.

Metric
Low 
overlap

Medium 
overlap High overlap

Precision 0.831 0.917 0.947

Recall 0.934 0.933 0.939

For the EPIC data, we select the parameter combination that yields the highest F1-score across all 
simulated settings. However, due to the unavailability of oracle values for setting initial thresholds, 
we perform a search over several MZ intercept values (0.01, 0.05, and 0.1), RT intercept values (0.1, 
0.5, 1, and 5), and logFI intercept values (1, 10, and 100).

https://doi.org/10.7554/eLife.91597
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Appendix 3
In this section, we study the sensitivity of all three alignment methods GMT, M2S, and mC to the 
validation dataset split when creating two validation studies for matching. As described in the 
section "Validation on ground-truth data" and depicted in Figure 2 of the main text, we generate 
two datasets to be matched by splitting an initial LC-MS dataset with ‍p‍ features and ‍n‍ samples into 
two smaller overlapping datasets. The first dataset has p1 features and n1 samples while the second 
dataset has p2 features and n2 samples. The sets of samples in both datasets are disjoint such that 
‍n1 + n2 = n‍. However, the dataset split is constructed such that both datasets share ‍≈ λp‍ of their 
features where ‍λ ∈ [0, 1]‍ is an overlap fraction. Namely, this is done by defining the dataset feature 
sizes as

	﻿‍
p1 =

⌊(
λ + λf(1 − λ)

)
p
⌋

, p2 =
⌊(

λ + (1 − λf)(1 − λ)
)

p
⌋
‍� (55)

and the dataset sample sizes as

	﻿‍ n1 = ⌊λsn⌋, n2 = n − ⌊λsn⌋.‍� (56)

As before, ‍⌊·⌋‍ and ‍⌈·⌉‍ denote integer floor and ceiling functions. Then taking the original LC-MS 
dataset and randomly permuting its samples and features, the first p1 features and first n1 samples 
are placed into dataset 1 while the last p2 features and last n2 samples are placed into dataset 2. It 
is indeed easy to check here that with such a splitting procedure, the feature overlap between both 
datasets is ‍p1 + p2 − p ≈ λp‍.

Here ‍λf ∈ [0.5, 1]‍ controls the fraction of features in dataset 1 that is not shared with dataset 2 
and ‍λs ∈ (0, 1)‍ controls the fraction of samples in dataset 1 vs. dataset 2. In particular, if ‍λf = 1‍ then 
the features in dataset 2 are entirely a subset of those in dataset 1. In the experiments described in 
the main text, we always set ‍λf = λs = 0.5‍ as to balance the number of features and samples in both 
resulting datasets.

Now we study how the performance of all three alignment methods changes when ‍λf,λs‍ and the 
feature overlap ‍λ‍ are varied. Here we vary the feature overlap ‍λ ∈ {0.25, 0.5, 0.75}‍, the feature fraction 

‍λf ∈ {0.5, 0.6, 0.7, 0.8, 0.9}‍, and the sample fraction ‍λs ∈ {0.1, 0.2, . . . , 0.9}‍. In Appendix  3—figures 
1–3 we show how the precision and recall of GMT, M2S, and mC depend on these parameters. Here 
we use the same unnormalized validation data and experimental setup as decribed in the main text 
section "Validation on ground-truth data" and in the Methods and Materials section "Validation 
on simulated data". For each triple ‍(λ,λf,λs)‍ we randomly generate 20 dataset splits with these 
parameters and show the average precision and recall for each method over these trials. Our method 
GMT (thresholded GromovMatcher) is applied out-of-box with the default hyperparameter settings. 
The algorithm hyperparameters for mC and M2S are chosen optimally for each individual triple of 
dataset parameters ‍(λ,λf,λs)‍ to maximize the average F1 score in each setting. The hyperparameters 
searched over when optimizing mC and M2S are described in detail in Appendix 2.

Consistent with prior validation experiments, we find that GromovMatcher outperforms both mC 
and M2S in all dataset regimes, for low overlap and high overlap ‍λ‍ as well as for varying balances of 
features ‍λf ‍ and samples ‍λs‍. Remarkably, all three methods exhibit the same sensitivity to variations 
of ‍(λ,λf,λs)‍. All methods exhibit a monotonic decrease in their precision as ‍λf ‍ drops from 0.9 to 
0.5. In other words, the most challenging setting for matching both datasets is when dataset 1 and 
dataset 2 both have an equal number of unshared features (e.g. ‍λf = 0.5‍). Likewise, the simplest 
setting for matching is when the features in dataset 2 are exactly a subset of the features in dataset 
1 (e.g. ‍λf = 1‍). Sensitivity to this parameter ‍λf ‍ is most noticeable at low feature overlap ‍λ = 0.25‍.

https://doi.org/10.7554/eLife.91597
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Appendix 3—figure 1. Sensitivity of thresholded GromovMatcher (GMT) to feature overlap fraction ‍λ‍, feature 
imbalance fraction ‍λf ‍, and sample imbalance fraction ‍λs‍ between two datasets being matched.

https://doi.org/10.7554/eLife.91597
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Appendix 3—figure 2. Sensitivity of M2S to feature overlap fraction ‍λ‍, feature imbalance fraction ‍λf ‍, and sample 
imbalance fraction ‍λs‍ between two datasets being matched.

https://doi.org/10.7554/eLife.91597
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Appendix 3—figure 3. Sensitivity of metabCombiner (mC) to feature overlap fraction ‍λ‍, feature imbalance 
fraction ‍λf ‍, and sample imbalance fraction ‍λs‍ between two datasets being matched.

https://doi.org/10.7554/eLife.91597
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Appendix 4
Here we describe additional preprocessing details and analyses of the EPIC data.

Centered and scaled data - Negative mode
In this section, we present the results obtained on centered and scaled EPIC data in negative mode, 
shown in Figure 4 of our main paper. However, due to the smaller size of the validation subset (42 
features examined in negative mode compared to 163 in positive mode), the evaluation of the 
performance of the three methods may be less reliable than in positive mode.

First, we align the CS and HCC studies in negative mode and detect a total of 449, 492, and 180 
matches with GM, M2S, and metabCombiner, respectively. Similar to the positive mode analysis, 
we evaluate the precision and recall of the three methods on the 42 feature validation subset, of 
which 19 were manually matched. GM and M2S demonstrate identical F1-scores of 0.98, while 
metabCombiner performs poorly in comparison. GM is able to recover all 19 true matches and 
identified only 1 false positive, while M2S recovers no false positives but missed 1 true positive.

Next, we align the CS and PC studies in negative mode and detect a total of 485, 569, and 314 
matches with GM, M2S, and metabCombiner, respectively. Again, we evaluate the precision and 
recall of the three methods on the 42 feature validation subset, of which 26 were manually matched. 
MetabCombiner performs better than in the other EPIC pairings with an F1-score of 0.857, but is still 
outperformed by the other two methods. GM is slightly outperformed by M2S in this setting, with an 
almost identical precision of 0.93, but a slightly higher recall for M2S due to detecting 1 additional 
true positive. However, this remains a good performance for GM since M2S was optimally tuned 
using the validation subset itself.

Non-centered and non-scaled data
As a sensitivity analysis, we apply the three methods to EPIC data that has not been centered or 
scaled. The detailed results can be found in Appendix 4—table 1.

Appendix 4—table 1. Precision and recall on the EPIC validation subset for unnormalized data in (a) 
positive mode, and (b) negative mode.
95% confidence intervals were computed using modified Wilson score intervals Brown et al., 2001; 
Agresti and Coull, 1998.

‍CS ←→ HCC‍ ‍CS ←→ PC‍

Method Precision Recall Precision Recall

GromovMatcher 0.988 (0.937, 0.999) 0.944 (0.876, 0.997) 0.873 (0.776, 0.932) 0.939 (0.854, 0.976)

M2S 0.967 (0.908, 0.991) 0.978 (0.923, 0.996) 0.855 (0.759, 0.917) 0.985 (0.919, 0.999)

metabCombiner 0.979 (0.889, 0.999) 0.511 (0.410, 0.612) 0.926 (0.766, 0.987) 0.379 (0.271, 0.499)

(a) Positive mode

‍CS ←→ HCC‍ ‍CS ←→ PC‍

Method Precision Recall Precision Recall

GromovMatcher 0.950 (0.764, 0.997) 1.000 (0.832, 1.000) 0.964 (0.823, 0.998) 0.964 (0.823, 0.998)

M2S 1.000 (0.824, 1.000) 0.947 (0.754, 0.997) 0.931 (0.780, 0.988) 0.964 (0.823, 0.998)

metabCombiner 1.000 (0.566, 1.000) 0.263 (0.118, 0.488) 1.000 (0.785, 1.000) 0.500 (0.326, 0.674)

(b) Negative mode

M2S was tuned manually on the validation subset to ignore feature intensities in both cases. 
As a result, it maintains its performance compared to our main experiment. On the other hand, 
the performance of GM and metabCombiner is affected by the lack of consistency in feature 
intensities. MetabCombiner’s recall drops slightly but its precision remains comparable to that of 
our main experiment, with the method clearly favoring the latter. Although GM’s recall decreases 
slightly in positive mode, it remains more precise than the optimally tuned M2S, and it balances 
precision and recall better than metabCombiner. Interestingly, GM’s results in negative mode are 
improved compared to our main experiment, and it outperforms both mC and M2S. However, since 
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the validation subset in negative mode is relatively small, these differences may not be significant. 
Nonetheless, GM maintains a good performance, similar to that of the optimally tuned M2S.

Similar to the analysis we conducted on centered and scaled data, we find a high number of false 
positives when aligning the CS study and the PC study in positive mode. Therefore, we manually 
examine the matches recovered by GM. Our examination reveals 2 false positives, 4 unclear matches, 
and 3 additional good matches that GM also identifies in our main analysis. This demonstrates that 
the lack of centering and scaling results in two additional false positives for GM that are not present 
in our main results.

Illustration for alcohol biomarker discovery
Loftfield et al., 2021 identified 205 features associated with alcohol intake in the CS study, using a 
false discovery rate (FDR) correction to account for multiple testing. By applying an FDR correction 
in our pooled analysis, we identify 243 features associated with alcohol intake. Out of those 243 
features, 185 are consistent with the features identified in the discovery step of Loftfield et al., 
2021, while 55 features are newly discovered (Figure 5c). We examine the 20 features identified as 
significant in Loftfield et al.’s discovery analysis but that are not significant in our pooled analysis. 
Both manual and GM matching yield identical results for these features, indicating that the loss of 
significance is not due to incorrect matching. Upon further investigation, we find that these features 
do not demonstrate a meaningful association with alcohol intake in the HCC and PC studies. This 
observation is reinforced by the fact that none of these features are among the 10 features that 
persisted after the validation step in Loftfield et al.

Out of the 205 features initially discovered in Loftfield et  al., 2021, 10 are replicated in the 
EPIC HCC and PC studies using the more stringent Bonferroni correction. When using a Bonferroni 
correction in our pooled analysis, we find significant association between alcohol intake and 92 
features, 36 of which are effectively shared by the three studies. Notably, these features include all 
10 features that were retained in Loftfield et al. (Figure 5c).

This analysis illustrates how GromovMatcher can be used in the context of biomarker discovery, 
and its potential to allow for increased statistical power.

https://doi.org/10.7554/eLife.91597
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Appendix 5
Here we investigate how the choice of the reference dataset influences the discovery of metabolites 
shared across the CS, HCC and PC EPIC studies by GromovMatcher. All three methods considered 
in this paper, GromovMatcher, M2S, and metabCombiner, are limited to the comparison of two 
datasets. However, they can still be used to compare and pool multiple datasets using a multi-step 
procedure. Namely, this can be done by designating a ‘reference’ dataset and aligning all studies 
to it one by one. We take this exact approach in our analysis when aligning the CS, HCC, and PC 
studies of the EPIC data in positive mode. Namely, the HCC and PC studies are both aligned to the 
CS study (see main text Figure 5b). However, this method raises two critical questions: (i) how does 
the use of a reference dataset affect matching results, and (ii) how is the matching affected by the 
choice of reference dataset.

To address these questions, we compare the features identified as common to the three studies 
using two different studies as references: the CS study used as reference in the main analysis, and 
the HCC study. For simplicity, let’s denote ‍Mstudy 1,study 2‍ the matching matrix obtained when aligning 
study 1 and study 2.

Changes in matching results when reference dataset is used
Concerning question (i), we compare two matchings: HCC to CS to PC (the matrix product 

‍M
T
CS,HCCMCS,PC‍) which we will refer to as the reference matching, and the direct matching of PC to 

HCC (‍MHCC,PC‍). Note that these matchings are not fully comparable as the former considers only 
features found in CS, potentially missing unique HCC and PC matches. We can however compare 
the two matchings on the subset of 706 features common to all three studies, as determined by 
the reference matching. We find that the direct matching supports 683 out of them, indicating 
that the matching via a reference still yields good results compared to the direct matching (see 
Appendix 5—figure 1).

Appendix 5—figure 1. Overlap between the 706 features common to the HCC and PC studies found via 
reference matching, and the 938 features common to HCC and PC found by direct matching.

Effect of reference dataset choice on matching results
Concerning question (ii), we compare the features identified as common to the three studies using 
two different studies as references: the CS study used in the paper, and the HCC study. We find 
that they identify 706 and 708 common features respectively, with an overlap of 640 features (see 
Appendix 5—figure 2). This highlights that the choice of reference does matter to some extent. 
In the paper, choosing CS as a reference was informed by CS’s sample size, and study population.
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 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Breeur, Stepaniants et al. eLife 2023;12:RP91597. DOI: https://doi.org/10.7554/eLife.91597 � 43 of 43

Appendix 5—figure 2. Overlap between the features identified as common to the three EPIC studies using either 
the CS study or the HCC study as a reference.

https://doi.org/10.7554/eLife.91597
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