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Abstract Evidence suggests that subcortical structures play a role in high-level cognitive func-
tions such as the allocation of spatial attention. While there is abundant evidence in humans for 
posterior alpha band oscillations being modulated by spatial attention, little is known about how 
subcortical regions contribute to these oscillatory modulations, particularly under varying conditions 
of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the 
role of subcortical structures in controlling the allocation of attentional resources by employing a 
cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemi-
spheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemi-
spheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, 
and thalamus predicted attention-related modulations of posterior alpha oscillations. When the 
perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry 
predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when 
either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry 
of the thalamus predicted alpha band modulation when neither component of the task was percep-
tually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha 
oscillations with spatial attention, our finding might also have clinical applications. We provide a 
framework that could be followed for detecting how structural changes in subcortical regions that 
are associated with neurological disorders can be reflected in the modulation of oscillatory brain 
activity.

eLife assessment
This study by Ghafari et al. tackles a question relevant for the field of attention as it connects struc-
tural differences in subcortical regions with oscillatory modulations during attention allocation. Using 
a combination of Magnetoencephalography (MEG) and magnetic resonance imaging (MRI) data in 
human subjects, the valuable results show that inter-individual differences in the lateralisation of 
alpha oscillations are explained by asymmetry of subcortical brain regions. The strength of evidence 
is deemed convincing in line with current state-of-the-art.

Introduction
The visual world provides more sensory information than we can be aware of at any given moment. 
Thus, our brains must prioritise goal-relevant over distracting information. A rich body of research 
shows that the brain amplifies goal-relevant inputs, and suppresses non-relevant inputs by a process 
referred to as selective attention (Nobre and Kastner, 2014; Desimone and Duncan, 1995; Moran 
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and Desimone, 1985). There is ample evidence for top-down control of neocortical regions associ-
ated with sensory processing when information is prioritized (Nobre and Kastner, 2014; Corbetta 
and Shulman, 2002; Noudoost et al., 2010). The dorsal attention network, which consists of the intra-
parietal sulcus/superior parietal lobule, and the frontal eye fields, is the most predominant network 
associated with the allocation of attention (Kastner et al., 1999; Hopfinger et al., 2000; Corbetta 
et  al., 2000). However, although the role of neocortex for spatial attention and cognitive control 
has been extensively studied, the contributions of subcortical regions are less well understood. One 
reason, amongst many others, is that MEG and EEG are not well suited for detecting subcortical 
activity. Therefore, the present study aims to provide insights into the contribution of the thalamus 
and basal ganglia in driving top-down spatial attention.

There has been intense focus on the cortical contributions to the top-down control processes, yet 
there are multiple sources of evidence to suggest that subcortical structures also play an important 
role in cognitive control. For instance, it has been shown that the pulvinar plays an important role in 
the modulation of neocortical alpha oscillations associated with the allocation of attention (Kastner 
et al., 2020). Studies in rats and non-human primates have shown that both the thalamus and supe-
rior colliculus, are involved in the control of spatial attention by contributing to the regulation of 
neocortical activity (Kastner et  al., 2020; Krauzlis et  al., 2013; Krauzlis et  al., 2018). Notably, 
when the largest nucleus of the thalamus, the pulvinar, was inactivated after muscimol infusion, the 
monkey’s ability to detect color changes in attended stimuli was lowered. This behavioral deficit 
occurred when the target was in the receptive field of V4 neurons that were connected to lesioned 
pulvinar (Zhou et al., 2016). The basal ganglia play a role in different aspects of cognitive control, 
encompassing attention (van Schouwenburg et  al., 2010; Nakajima et  al., 2019), behavioural 
output (Moolchand et al., 2022), and conscious perception (Slagter et al., 2017). Moreover, the 
basal ganglia contribute to visuospatial attention by linking with cortical regions like the prefrontal 
cortex via the thalamus. Anatomical tracing studies on selective attention and distractor suppression 
point to a key role of prefrontal-basal ganglia-thalamus pathway whereby sensory thalamic activity is 
regulated by prefrontal cortex via basal ganglia (Nakajima et al., 2019). Furthermore, fMRI studies 
in humans demonstrated increased activation in basal ganglia when covert attention was reallocated. 
Additionally, dynamic causal modelling has shown that the basal ganglia can modulate the top-down 
influence of the prefrontal cortex on the visual cortex in a task-dependent manner (van Schouwen-
burg et al., 2015).

In terms of neuronal dynamics, power modulation of oscillatory activity in the alpha band (8–13 Hz) 
has been proposed to reflect resource allocation between goal-relevant and irrelevant stimuli. This has 
consistently been shown between studies in EEG and MEG in which attention is allocated to the left 
or right hemifield. Such studies typically find an alpha power decrease in the hemisphere contralateral 
to the attended stimuli complemented by a relative increase in alpha power in the other hemisphere 
associated with unattended stimuli (Okazaki et al., 2014; Thut et al., 2006; Worden et al., 2000). 
It is debated whether the alpha power associated with the unattended stimuli is under task-driven 
top-down control or rather explained by an indirect control mechanism driven by the engagement of 
the target (Jensen, 2023). The latter notion is aligned with perception load theory that is defined as 
the perceptual demand of the task or relevant stimulus, according to which the (finite) resources are 
allocated (Lavie, 1995). Indeed, a recent study demonstrated when the target stimulus has a higher 
perceptual load (e.g. more difficult to perceive), alpha band power increases in ipsilateral regions thus 
indirectly reflecting distractor suppression (Gutteling et al., 2022).

Based on these findings, both oscillatory activity in the alpha band and the activity of subcortical 
structures are involved in the allocation of attentional resources. The direct relationship between 
activity in subcortical regions and neocortical oscillations is poorly understood in humans, in part 
owing to the difficulty in detecting the activity of deep structures using MEG/EEG. One way around 
this is to instead investigate, the relationship between the volumetric measures of subcortical struc-
tures and oscillatory brain activity by combining MRI and electrophysiological measures such as MEG. 
Using this approach, it was shown that the hemispheric lateralized modulation of alpha oscillations is 
correlated with the volumetric hemispheric asymmetry of both the globus pallidus and the thalamus 
(Mazzetti et al., 2019). The relationship between the globus pallidus and the modulation of alpha 
oscillations was demonstrated in the trials where the visual stimuli were associated with high-value 
(positive or negative) reward valence.

https://doi.org/10.7554/eLife.91650
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In this study, we aimed to identify a link between the volumetric asymmetries of subcortical struc-
tures and the modulation of alpha oscillations in the context of spatial attention without explicit 
reward-associations. Given the assumed contribution of the basal ganglia to reward-based learning 
(Kasanova et al., 2017; Cools et al., 2009; Hikosaka et al., 2014; Fallon and Cools, 2014), it is 
perhaps unsurprising to find contributions of the globus pallidus in the paradigms targeting reward 
valence. What remains to be determined is whether these structures play a more general role in the 
formation of spatial attention biases. We analyzed MEG and structural data from a previous study 
(Gutteling et al., 2022), in which spatial cues guided participants to covertly attend to one stimulus 
(target) and ignore the other (distractor). To investigate the relationship between the allocation of 
attentional resources and mechanisms of neural excitability and suppression, the target load and 
the visual saliency of the distractor were manipulated using a noise mask. This load/salience manip-
ulation resulted in four conditions that affect the attentional demands of target and distractor. We 
utilized the hemispheric laterality of subcortical structures and alpha modulation to overcome issues 
related to individual variations in oscillatory power and head-size. This approach allowed us to relate 
the hemispheric volumetric asymmetries in thalamus, caudate nucleus, and globus pallidus to the 
modulation of alpha oscillations when spatial attention is allocated under varying conditions of cogni-
tive challenge. By examining their role in a task without explicit reward, we aim to elucidate the 
generalizability of the contributions of subcortical structures to spatial attention modulation. Such a 
finding would implicate a role for the basal ganglia in cognition beyond the well-studied realm of the 

Figure 1. Schematic of experimental design. (A) Two face stimuli were presented simultaneously in the left and right hemifield. After baseline, a 
directional cue indicated the location of the target. After a variable delay interval (1000–2000ms) the eye-gaze of each stimulus (independent of the 
other) shifted randomly to the right or left. Subjects had to indicate the direction of the target eye movement after the delay interval. (B) Examples of 
visual stimuli for each of the four conditions. (C) Table with the labels of the four load/salience conditions. Adapted from Figure 1 of Gutteling et al., 
2022.

https://doi.org/10.7554/eLife.91650
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estimation of choice values (Montague et al., 2004). Specifically, in a prior study (Mazzetti et al., 
2019), we observed that the contributions of the basal ganglia were most pronounced when the items 
in question were associated with a reward. Our current findings broaden our understanding of how 
subcortical structures are involved in modulating alpha oscillations during top-down spatial attention, 
in the absence of any reward or value associations.

Results
We investigated the relationship between the volumetric lateralization of subcortical structures esti-
mated from structural MRIs and the hemispheric modulation of alpha oscillations measured by MEG 
in a spatially cued change detection task. We asked the participants to covertly attend to face-stimuli 
in the left or right visual field and indicate the direction of a subtle gaze-shift of the attended face 
(Figure 1A). The influences of perceptual load and distractor salience were examined by combining 
noisy and clear target and distractor stimuli in a 2x2 design (Figure 1B).

Modulation of alpha power with respect to left and right cues
To quantify the anticipatory change in alpha power, we analysed the modulation of power in the 
–850–0ms interval prior to the target. As expected from a previous report (Gutteling et al., 2022), 
we observed a power decrease contralateral to the cued hemifield and a relative increase ipsilaterally 
(i.e. an increase contralateral to the distractor, Figure 2A) As expected, the magnitude of the modu-
lation index (MI(‍α‍)) reflecting the relative difference in alpha power when attending left versus right, 
gradually decreased and increased over respectively the left and right hemisphere until target onset 
(Figure 2B). We then identified symmetric clusters of sensors (5 over each hemisphere) that showed 
the highest modulation of alpha power (Figure 2C) and focused the subsequent analyses on these 
sensors of interest.

Hemispheric asymmetry of subcortical regions
Next, we computed the hemispheric lateralization modulation of alpha power (HLM(α)) in each 
individual. We did so using the HLM(α) index which quantifies how strongly the alpha power in the 
left hemisphere is modulated by attention with respect to alpha power modulations in the right 
hemisphere.

The histogram in Figure 3A illustrates the distribution of HLM(‍α‍) in all participants. HLM(‍α‍) indices 
range from ~–0.15 to 0.15 and are normally distributed around zero before target onset (Shapiro-Wilk, 
W=0.966, p-value = 0.3895).

We then calculated the hemispheric lateralized volumes of the seven subcortical structures, as 
illustrated in Figure 3B (thalamus, caudate nucleus, putamen, globus pallidus, hippocampus, amyg-
dala, and nucleus accumbens) using the FIRST algorithm on the MRI data. Thalamus (mean ± std 
= –0.0123±0.0121, p-value <0.000), putamen (mean ± std = –0.0149±0.0285, p-value = 0.004) 
and nucleus accumbens (mean ± std = –0.1141±0.0746, p-value <0.000) have significantly nega-
tive LV values (i.e. left lateralization) whereas the caudate nucleus is right lateralized (mean ± std = 
0.0115±0.0285, p-value = 0.021; Figure 3B). Globus pallidus, hippocampus, and amygdala did not 
show any robust volume lateralization.

Relationship between subcortical regions and hemispheric alpha 
lateralization
To test whether the individual hemispheric asymmetries in subcortical grey matter relate to variability 
in HLM(‍a‍), we subjected the MEG and MRI data to a General Linear Model (GLM). In this model, the 
individual HLM(‍α‍) values was the dependent variable, and the individual hemispheric lateralization 
volumes (LV) of the subcortical region were the explanatory variables. To discover the best set of 
subcortical structures that predict HLM(‍α‍) we used all possible combinations of regressors (LV) and 
selected the winning model based on lowest Akaike Information Criterion (AIC) scores. The winning 
model constituted of thalamus, caudate nucleus and globus pallidus and is defined as:

	﻿‍ HLM
(
α
)
∼ β0 + β1LVTh + β2LVCN + β3LVGP + ε‍�

https://doi.org/10.7554/eLife.91650
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where HLM(α) indicates the hemispheric lateralization modulation of alpha power and ‍LVTh‍ , ‍LVCN ‍ , 

‍LVGP‍ refer to the lateralization volumes of thalamus, caudate nucleus and globus pallidus, respectively.
The analysis showed that the participants with larger volumes of the caudate nucleus in the left 

compared to the right hemisphere showed higher modulations in alpha power over the left compared 
to the right hemisphere (and vice versa). There was a trend for the same effect for the globus pallidus 
whereas the thalamus shows the opposite effect. These results were observed from the winning model 
that contained LVTh, (β = –2.19, T(29) = –2.74, se = 0.80, p=0.010), LVCN (β = 0.92, T(29) = 2.83, se = 0.33, 
p-value = 0.008) and LVGP (β = 0.51, T(29) = 1.95, se = 0.26, p-value = 0.061) as regressors. This model 
predicted the HLM(‍α‍) values significantly in the GLM (F3,29 = 7.4824, p=0.0007, adjusted R2=0.376) as 

Figure 2. Alpha power decreases contralaterally and increases ipsilaterally with respect to the cued hemifield. (A) Time-frequency representations 
of power demonstrate the difference between attended right versus left trials (t=0 indicate the target onset). (B) Topographical plot of the relative 
difference between attend right versus left trials. Regions of Interest sensors (ROIs) are marked with white circles. (C) The alpha band modulation MI(α) 
averaged over ROI sensors within the left and right hemispheres, respectively. The absolute MI(α) increased gradually during the delay interval until the 
onset of the target stimuli.

https://doi.org/10.7554/eLife.91650
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Figure 3. Hemispheric lateralization modulation (HLM(α)) grand average and basal ganglia volumes across all participants. (A) The HLM(α) distribution 
across participants. While there was considerable variation across participants, we observed no hemispheric bias in lateralized modulation values across 
participants (p-value = 0.39). (B) Histograms of the lateralization volumes of subcortical regions. We found that caudate nucleus was right lateralized 
(p-value = 0.021), whereas, putamen, nucleus accumbens, and thalamus volumes showed left lateralization (p-value = 0.004, p-value <0.001 and p-value 
<0.001, respectively). Th = Thalamus, CN = Caudate nucleus, Put = Putamen, GP = Globus pallidus, Hipp = Hippocampus, Amyg = Amygdala, Acc = 
Nucleus accumbens.

https://doi.org/10.7554/eLife.91650


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Ghafari et al. eLife 2023;12:RP91650. DOI: https://doi.org/10.7554/eLife.91650 � 7 of 20

compared with an intercept-only null model (Figure 4A). These findings are illustrated in Figure 4B, 
confirming that both thalamus and caudate nucleus showed a significant linear partial regression with 
hemispheric lateralization modulation in the alpha band in the opposite and same direction. Although, 
the β estimate of LVGP only showed a positive trend, removing it from the regression resulted in worse 
models (Supplementary files 1 and 2).

It is worth noting that neither the behavioural nor the rapid invisible frequency tagging (RIFT) 
measures showed significant relationships with LVs and HLM(α) (Figure 4—figure supplement 1 and 
Supplementary file 3).

Association between volumetric lateralization of subcortical regions and 
attention related to perceptual load conditions
To relate load and salience conditions of the task to the relationship between subcortical structures 
and the alpha activity, we combined low-load or high-load targets with high-saliency or low-saliency 
distractors to manipulate the perceptual load appointed to each trial (Method section, Figure 1).

We therefore applied a multivariate multiple regression (MMR) using the HLM(‍α‍) values from each 
load/salience condition, and the LV values of the thalamus, caudate nucleus, and globus pallidus 
(Equation 5). Comparison of the full (i.e. MMR including the LV values of all seven subcortical struc-
tures as regressors) and reduced (i.e. MMR with all structures excluding the selected structures) models 
showed that our selected regressors predicted variability in HLM(α) values to an extent that was 
greater than chance (F(25,28) = 2.03, p-value = 0.037). This was further confirmed when we compared 
the MMR model with the null model (i.e. MMR including only subject intercepts as regressor; F(29,31) 
= 3.78, p-value = 0.0015). We next examined the extent to which LV values from each subcortical 
region predicted HLM(α) values for each load/salience condition. Our analysis, as shown in Figure 5, 
demonstrated that the thalamus had significant LV values in condition 1 (i.e. low-load target, non-
salient distractor) with β = –3.63 (T(29) = –2.64, se = 1.37, p-value = 0.0132). Globus pallidus showed 
a significant β coefficient in conditions 2 (i.e., high-load target, non-salient distractor) and 3 (i.e. low-
load target, salient distractor) with β = 0.93, (T(29) = 2.15, se = 0.43, p-value = 0.040) and β = 0.89 (T(29) 
= 2.30, se = 0.39, p-value = 0.029), respectively. Condition 4 (i.e. high-load target, salient distractor) 
was the only condition in which the caudate nucleus had a β estimate significantly different than zero 
(β = 1.64, T(29) = 2.07, se = 0.79, p-value = 0.049). To ascertain whether each predictor contributes 
to all conditions, we conducted statistical tests on the results of our MMR, testing the hypothesis 
that a given regressor does not impact all dependent variables. We found that while, with marginal 
significancy, caudate nucleus can predict variability across all four of the task conditions (F(26,4) = 2.82, 
p-value = 0.046), the predictive relationships of thalamus (F(26,4) = 2.43, p-value = 0.073) with condi-
tion 1, and globus pallidus (F(26,4) = 2.29, p-value = 0.087) with conditions 2 and 3 hold only for these 
conditions. In sum, this demonstrates that when the task is easiest (condition 1), the thalamus is 
related to alpha modulation. When the task is most difficult (condition 4), the caudate nucleus relates 
to the alpha modulation; however, its contributions are substantial enough to predict outcomes across 
all conditions. For the conditions with medium difficulty (conditions 2 and 3), the globus pallidus is 
related to the alpha band modulation.

Discussion
In the current study, we sought to identify the association between the volumetric hemispheric asym-
metries in subcortical structures and the hemispheric laterality in the modulation of posterior alpha 
oscillations during varying conditions of perceptual load. This association was tested in the context of 
a spatial attention paradigm where target load and distractor salience were manipulated. Our study 
resulted in two main findings: (1) globus pallidus, caudate nucleus, and thalamus predicted attention-
related modulations of posterior alpha oscillations. (2) Each of these subcortical structures contributed 
differently to the lateralization values associated with the perceptual load conditions. For the easier 
task condition, the thalamus showed strong predictive power for alpha power modulation, whereas 
for mid-levels of load and salience, the globus pallidus showed predictive value. For the most percep-
tual demanding condition, we found that asymmetry of the caudate nucleus predicted alpha power 
modulation. These results shed light on the role of subcortical structures and their involvement in the 
modulation of oscillatory activity during the allocation of spatial attention.

https://doi.org/10.7554/eLife.91650
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Figure 4. Lateralization volume of thalamus, caudate nucleus, and globus pallidus in relation to hemispheric lateralization modulation of alpha 
(HLM(α)) in the task. (A) The β coefficients for the best model (containing three regressors) associated with a generalized linear model (GLM) where 
lateralization volume (LV) values were defined as explanatory variables for HLM(α). The model significantly explained the HLM(α) (p-value = 0.0007). 
Error bars indicate standard errors of mean (SEM), n = 33. Asterisks denote statistical significance; *p-value <0.05. (B) Partial regression plot showing 
the association between LVTh and HLM(α) while controlling for LVGP and LVCN (p-value = 0.01). (C) Partial regression plot showing the association between 
LVGP and HLM(α) while controlling for LVTh and LVCN (p-value = 0.061). (D) Partial regression plot showing the association between LVCN and HLM(α) while 
controlling for LVTh and LVGP (p-value = 0.008). Negative (or positive) LVs indices denote greater left (or right) volume for a given substructure; similarly 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.91650
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Thalamus, caudate nucleus, and globus pallidus are involved in the 
allocation of spatial attention
While some MEG studies have demonstrated that it is possible to detect activity from deep structures 
such as the hippocampus (Alberto et al., 2021; Griffiths et al., 2021; Meyer et al., 2017; Ruzich 
et al., 2019), it is questionable whether one in general can use MEG to reliably detect activity from the 
thalamus and basal ganglia, owing to low SNR from sources close to the centre of the head (Baillet, 
2017). Given these constraints, we instead correlated MEG data with structural magnetic resonance 
images to uncover functional contributions of subcortical structures to spatial attention.

We evaluated the relationship between subcortical structures and cortical oscillatory activity relying 
on the association between structure and function. Previous research points to a link between the 
volume of a given brain region and its functionality. It has been demonstrated that extensive navi-
gation experience enlarges the size of right hippocampus (Maguire et al., 2000). Furthermore, in 
terms of neurological disorders, it is well established that shrinkage (atrophy) in specific regions is 
a predictor of a number of neurological and psychiatric conditions including Parkinson’s disease, 
dementia, and Huntington’s disease. In Parkinson’s disease, atrophy in the nucleus accumbens and 
thalamus correlated with cognitive impairments (Mak et  al., 2014). In a large-scale study on 773 
participants, patients with Alzheimer’s Disease have been shown to have a significantly smaller amyg-
dala, thalamus, caudate nucleus, putamen, and nucleus accumbens than matched controls (Yi et al., 
2016). It has also been shown that the spatial extent of pathological change in subcortical structures 
can predict cognitive changes in Parkinson’s Disease (Ye et  al., 2022). Patients with symptomatic 
Huntington’s Disease also show significantly smaller caudate nucleus than pre-symptomatic partici-
pants who were carriers of Huntington’s Disease gene mutation (Aylward et al., 2000). Changes in 
neocortical oscillatory activity have also been observed in neurological disorders which mainly are 
known to affect subcortical structures. For example, individuals with Alzheimer’s Disease demonstrate 
an increase in slow oscillatory activities and a decrease in higher frequency oscillations (Jafari et al., 
2020). Moreover, in patients with Parkinson’s Disease, the power of beta oscillations increases rela-
tively to when they are dopamine-depleted compared with when they are on dopaminergic medica-
tion (Jenkinson and Brown, 2011).

Based on these considerations, we argue that the volume of basal ganglia relates to the ability to 
modulate posterior brain oscillations in attention type tasks. We demonstrated this by considering 
the hemispheric lateralization of the basal ganglia structures in relation to the ability to modulate 
posterior alpha oscillations. Employing hemispheric lateralization was motivated by the organizational 
characteristic of structural asymmetry in healthy brain (Kong et al., 2018; Guadalupe et al., 2017). 
Additionally, considering the effects of aging (Minkova et al., 2017; Guadalupe et al., 2017) and 
neurodegenerative disorders, such as Alzheimer’s Disease (Roe et  al., 2021), on brain symmetry 
influenced this approach. Furthermore, computing lateralization indices for individuals addresses the 
challenge of accommodating variations in both head size and the power of oscillatory activity. Our 
findings are consistent with previous studies suggesting that thalamic and basal ganglia structures 
are involved in modulating oscillatory activity in the alpha band. For example, the largest nucleus 
of the thalamus, the pulvinar, supports the allocation of spatial attention by driving the oscillatory 
synchrony in the alpha band between cortical areas in a task-dependent manner (Saalmann et al., 
2012) Also, our finding are consistent with other studies suggestions a role for the caudate nucleus 
(Bogadhi et  al., 2018) and the pulvinar when allocating spatial attention (Bogadhi et  al., 2018; 
Green et al., 2017; Petersen et al., 1987). Stimulation of the subthalamic nucleus has been shown 
to suppress oscillatory activity in the alpha and beta (8–22 Hz) frequency bands (Abbasi et al., 2018). 
Furthermore, our regression analysis outcomes align with the findings of Mazzetti et al., 2019 under-
scoring the significant predictive influence exerted by the lateralized volume of globus pallidus on 

negative HLM(α) values indicate stronger modulation of alpha power in the left compared with the right hemisphere, and vice versa. The dotted curves 
in B, C, and D indicate 95% confidence bounds for the regression line fitted on the plot in red.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Lateralization volume of thalamus, caudate nucleus, and globus pallidus in relation to hemispheric lateralization modulation of 
rapid invisible frequency tagging (HLM(RIFT)) on the right and behavioural asymmetry on the left.

Figure 4 continued

https://doi.org/10.7554/eLife.91650
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Figure 5. β estimates of subcortical nuclei from a multivariate regression model predicting HLM(α) in the four perceptual load conditions. Here, the 
HLM(α) values for the four load conditions are the dependent variables and the lateralization volume of subcortical structures are the explanatory 
variables. The model significantly explains HLM(α) variability (p-value = 0.001) in comparison with null model. Error bars indicate SEM, n = 33. Asterisks 
denote statistical significance; *p-value <0.05.
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the modulation of hemispheric lateralization in alpha oscillations during spatial attention tasks. This 
convergence of results not only corroborates the validity and consistency of our findings but also 
extends the empirical foundation supporting the predictive role of the asymmetry of globus pallidus 
in modulating alpha oscillations beyond reward valence and to the context of attention.

Thalamus, globus pallidus, and caudate nucleus play varying roles 
across different load conditions
Our results demonstrate a shift in the contribution of the thalamus, globus pallidus, and caudate 
nucleus when increasing the perceptual load of the target and saliency of the distractor. While in the 
low load, low saliency condition, the lateralized volume of the thalamus was correlated with the inter-
hemispheric bias in alpha modulation, in the low load, high saliency, as well as high load, low saliency 
conditions, globus pallidus was related to the alpha oscillatory activity. Finally, the caudate nucleus 
was mainly associated with the high load, high saliency condition.

This differing pattern of the thalamic and basal ganglia structures might be suggestive of their 
respective contributions to the control of attentional resources. Involvement of the thalamus when the 
task is in its simplest form can be explained by its role relaying information between the basal ganglia 
and the prefrontal cortex (McFarland and Haber, 2002; Jeon et al., 2014). The opposite effect of the 
globus pallidus compared to the thalamus is striking, and possibly explained by the globus pallidus 
containing GABAergic interneurons. Thus the inhibitory nature of the globus pallidus projections to 
thalamus could explain why they are related to the alpha modulation in different manners (Lanciego 
et al., 2012). The involvement of the caudate nucleus in the most difficult condition is also in line with 
previous findings showing activation of caudate nucleus only in the higher level cognitive hierarchy 
in a working memory selection (Chatham et al., 2014) as well as a language task (Jeon et al., 2014). 
The engagement of globus pallidus might be reflected from its central role in harmonizing firing 
rates across the cortico-basal-ganglia circuits (Crompe et al., 2020). Globus pallidus also has wide 
projections to the thalamus (Goldberg et al., 2013) and can thereby impact the dorsal attentional 
networks by modulating prefrontal activities (Nakajima et al., 2019). Although these findings high-
light the varying contributions of different regions, they do not imply a lack of evidence for correla-
tions between these subcortical structures and other load conditions.

Limitations and future directions
In the current study, we correlated the volumetric asymmetry of subcortical structures with the lateral-
ized power of alpha oscillation. While this method provides novel insights into the role of subcortical 
structures in the modulation of oscillatory activity, it is indirect. The association between the func-
tion of subcortical nuclei and cortical oscillatory activity needs to be investigated further in electro-
physiological studies that record the activity of both regions simultaneously. This could be done in 
non-human primates or in humans implanted with electrodes in the globus pallidus in treatment for 
Parkinson’s Disease. In particular, EEG paired with globus pallidus recordings in participants performing 
spatial attention tasks would be of great value. Furthermore, in this study, our emphasis has been 
on assessing the size of subcortical structures. Future investigations could explore subcortical white 
matter connectivities and hemispheric asymmetries. This approach has previously been conducted on 
superior longitudinal fasciculus (SLF; Marshall et al., 2015; D’Andrea et al., 2019) and holds poten-
tial for examining cortico-subcortical connectivity in the context of oscillatory asymmetries.

Moreover, the current study faced methodological constraints, limiting the analysis to the entire 
thalamus. Additionally, we refrained from directly comparing the contributions of subcortical struc-
tures to different conditions due to low statistical power. It would be of great interest to conduct 
further investigations to quantify the distinct impacts of individual thalamic nuclei on the association 
between subcortical structures and the modulation of oscillatory activity. In future studies, it would 
be interesting to design an experiment directly addressing which subcortical regions contribute to 
distractor and target load in terms of modulating the alpha band activity. In order to ensure sufficient 
statistical power for doing so possibly each factor needs to be addressed in different experiments.

Moreover, our failure to identify a relationship between the lateralized volume of subcortical struc-
tures and behavioural measures should be addressed in studies that are better designed to capture 
performance asymmetries (Ghafari et al., 2023). Individual preferences toward one hemifield, which 
were not addressed in the current study design, could potentially strengthen the power to detect 
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correlations between structural variations in the subcortical structures and behavioural measures. For 
example, it would be of great significance to investigate the lateralization of subcortical structures in 
patients with hemineglect in relation to right hemisphere lesions (Buxbaum et al., 2004).

We did not find any association between the power of RIFT signal and the size asymmetry of 
subcortical structures. Since Bayes factors were less than 0.1, we conclude that our RIFT null find-
ings are robust, suggesting a dissociation between how alpha oscillations and neuronal excitability 
indexed by RIFT relate to subcortical structures. In previous work we have demonstrated that the 
attention modulation of the RIFT signal is strongest observed in early visual cortex, whereas alpha 
oscillations are more strongly modulated around the parieto-occipital sulcus (Zhigalov et al., 2019). 
It has been proposed that the modulation in RIFT in early visual cortex with attention reflects gain 
control. According to this framework, we conclude that subcortical regions might not be involved in 
gain modulation in early visual cortex during the allocation of spatial attention, but rather in the down-
stream gating of visual information.

Conclusion
Our findings point to a link between thalamus and nuclei of the basal ganglia and measures of alpha 
oscillations in relation to spatial attention. Moreover, they demonstrate distinguished contributions 
of the different subcortical structures depending on target load or distractor salience, thus informing 
theories of how subcortical structures relate to oscillatory dynamics in challenging attentional settings. 
The stage is now set for further investigating the relationship between subcortical regions and the 
modulation of oscillatory activity. Linking brain oscillations to changes in subcortical regions associ-
ated with neurological disorders, such as Alzheimer’s Disease (Yi et al., 2016; Jiji et al., 2013) and 
Parkinson’s Disease (Mak et al., 2014), could have potential clinical applications in terms of early diag-
nosis. Our approach could also be extended to other tasks resulting in hemispheric lateralization of 
oscillatory brain activity, for example working memory tasks (Sauseng et al., 2009) or language tasks 
(Wang et al., 2013). Our results also call for more direct investigations of the relationship between 
subcortical regions and neocortical oscillations which is best done by intracranial recordings in non-
human primates or utilizing human recording from deep-brain stimulation electrodes combined with 
EEG or MEG.

Materials and methods
Participants
We analysed a previously collected dataset, described in Gutteling et al., 2022. 35 right-handed 
healthy volunteers (25 female, mean age: 24 ± 5.7) participated. All reported normal or corrected-to-
normal vision. One participant did not give consent for their data to be used outside of the original 
study and one was removed due to poor MRI [segmentation] quality, resulting in 33 participants in 
total. All subjects signed an informed consent form before participation and were paid £15 per hour. 
The study was conducted in compliance with the Declaration of Helsinki and was approved by the 
Science, Technology, Engineering, and Mathematics (STEM) ethical review committee of the Univer-
sity of Birmingham (ERN_18-0226AP4).

Experimental design
Participants were instructed to perform a cued change detection task (2 blocks of 256 trials, 45 min; 
Figure 1A), designed to assess selective attention function under varying conditions of perceptual 
challenge. Each trial started with a fixation point (1000ms) followed by two faces presented on the 
left and right side of the screen (1000ms). The fixation cross then turned into an arrowhead for 350ms 
cueing the left or the right hemifield. After a variable 1000–2000ms delay, the eye-gaze of each face 
randomly shifted rightward or leftward in a 150ms interval. Then followed a 1000ms response interval 
where participants were asked to respond with their right or left index finger whether the gaze direc-
tion of the cued face shifted left or right (NAtA technologies, Coquitlam, BC, Canada). The exper-
imental paradigm was implemented on a Windows 10 computer running MATLAB (Mathworks Inc, 
Natrick, USA) using Psychophysics Toolbox 3.0.11 (Brainard, 1997; Pelli, 1997).

Visual stimuli
Stimuli were circular faces that comprised 8° visual angle in diameter and placed with 7° eccentricity 
from fixation and were presented in the lower hemifield. Over trials, the perceptual load of targets 
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was manipulated using a noise mask; noisy targets are harder to detect than clear targets and there-
fore incur greater perceptual load in their detection. The saliency of distractor stimuli was also manip-
ulated using a noise mask; noisy distractor stimuli are less salient than clear distractors and therefore 
less disruptive to performance on the detection task. The noise mask was created by randomly swap-
ping 50% of the stimulus pixels (Figure 1B). This manipulation resulted in four target-load/distractor-
saliency conditions: (Nobre and Kastner, 2014) target: low load, distractor: low saliency (i.e. clear 
target, noisy distractor), (Desimone and Duncan, 1995) target: high load, distractor: low saliency (i.e. 
noisy target, noisy distractor), (Moran and Desimone, 1985) target: low load, distractor: high saliency 
(i.e. clear target, clear distractor), (Corbetta and Shulman, 2002) target: high load, distractor: high 
saliency (i.e. noisy target, clear distractor) (Figure  1B and C). The stimulus set consisted of eight 
different face identities that were randomized across trials. On each trial, the identities of both stimuli 
were the same; however, to avoid visual differences between left and right the faces were mirror 
symmetric from the fixation point. Stimuli were projected using a VPixx PROPixx projector (VPixx tech-
nologies, Saint-Bruno, Canada) in Quad RGB mode (1440 Hz) with an effective resolution of 960x540 
pixels. Face stimuli were tagged with an invisible rapid-frequency-tagged flicker (for more details 
please refer to Gutteling et  al., 2022). The distance between the participant and the projection 
screen was 148 cm resulting in a 25.6° of visual angle screen.

Structural data acquisition
T1-weighted magnetic resonance images were acquired for 10 participants on a 3 Tesla Magnetom 
Prisma whole-body scanner (Siemens AG) with acquisition parameters: TR/TE = 2000/2.01ms, TI = 
880ms, FoV = 256 × 256×208 mm3, acquired voxel size = 1 × 1 x1 mm3. For 23 participants MRI 
images were attained from previous studies. These scans were obtained at the former Birmingham 
University Imaging Center (3-Tesla Philips Achieva Scanner: TR/TE = 7.4/3.5ms, FA = 7°, FOV = 256 
× 256 x176 mm3, acquired voxel size = 1 × 1 x1 mm3) were used. The two remaining participants 
provided their MRIs from other sources.

Structural data analysis
To segment the subcortical structures, FMRIB’s Integrated Registration and Segmentation Tool 
(FIRST) v5.0.9 (https://www.fmrib.ox.ac.uk/fsl/, Oxford Centre for Functional MRI of the Brain) was 
used. FIRST is an automated model-based tool that runs a two-stage affine transformation to MNI152 
space, to achieve a robust pre-alignment of thalamus, caudate nucleus, putamen, globus pallidus, 
hippocampus, amygdala, and nucleus accumbens based on individual’s T1-weighted MR images. 
Subcortical structures are modelled within a Bayesian framework (using manually segmented images 
provided by the Centre for Morphometric Analysis, CMA, MGH, Boston, as a prior) as surface meshes 
(masks) that were then fit to the registered image. Regions outside of the masks were excluded from 
subcortical alignment (Patenaude et al., 2011).

To assess hemispheric laterality for each subcortical structure, we calculated the Lateralization 
Volume indices (LVs):

	﻿‍
LVs =

Vsright − Vsleft

Vsright + Vsleft ‍�
(1)

where ‍Vsright‍ and ‍Vsleft‍ represent the anatomical volume of a given subcortical structure (s) in number of 
voxels, in the right and left hemisphere, respectively. This equation implicitly controls for individual 
differences in brain volumes and has been commonly used to compute hemispheric structural asym-
metries (Mazzetti et al., 2019). LVs can range between –1 and 1 where a positive LV indicates right-
ward asymmetry and vice versa.

MEG data acquisition
Electromagnetic data were recorded from participants while seated in upright position, using a 306-
sensor whole-head TRIUX system from MEGIN (MEGIN, Stockholm, Sweden) including 102 magne-
tometers and 204 (2x102 orthogonal) planar gradiometers. The MEG data were sampled at 1000 Hz, 
following an embedded anti-aliasing low-pass filter at 330 Hz and stored for offline analysis. Head 
position of the participants was monitored by coils placed on anatomical fiducials (nasion, left and 
right periauricular points), digitized using a Polhemus Fastrack electromagnetic digitizer system 
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(Polhemus Inc). Eye movements were recorded using an Eyelink eyetracker (EyeLink 1000, SR research 
Ltd., Ottawa, Canada) along with vertical EOG sensors.

MEG data analysis
MEG data analysis was performed using custom scripts in MATLAB 2017a and 2019b (The Math-
Works) and the FieldTrip toolbox (Oostenveld et al., 2011). The analysis pipeline was adapted from 
the FLUX pipeline (Ferrante et al., 2022) and the scripts are available on GitHub (copy archived at 
Ghafari, 2024).

Preprocessing
Raw MEG data were high-pass filtered at 1 Hz and demeaned. Then data were segmented in 4 s 
epochs (–3s to 1s) relative to the target-onset (gaze shift of the face stimuli). Secondly, trials with 
sensors artifacts (e.g. jumps) were removed manually to prepare the data for automatic artifact atten-
uation using independent component analysis (ICA; ‘runica.m’ in FieldTrip). Components related to 
eye blinks/movements, heartbeat and muscle activity were rejected. Thirdly, by visually inspecting the 
trials, we removed those containing clear residual artifacts such as eye blinks. We also removed trials 
with saccadic deviations larger than 3° from fixation (using EyeLink eye tracker data) during the 1.5 s 
interval before target-onset (−1.5–0 s; average ± SD = 13.7%±8.0 trials). Sensors that were removed 
during preprocessing were interpolated using a weighted neighbor estimate.

Time-frequency analysis of power
To calculate the time frequency representations (TFR) of power, we used a 3-cycle fixed time-window 
(e.g. 300ms for 10 Hz) at each 10ms step. The data segments were multiplied by a Hanning taper to 
control the frequency smoothing and reduce spectral leakage. For computational efficiency, we also 
used a zero-padding, rounding up the length of segments to the next power of 2. Then a fast Fourier 
transform (FFT) was applied to the tapered segments in the 2–30 Hz frequency range in 1 Hz steps and 
the power was estimated. The power was then summed for each gradiometer pair.

To quantify the anticipatory oscillatory activity, we focussed on the –850–0ms interval before target 
onset. To select sensors constituting the region of interest (ROI), we calculated the 8–13 Hz alpha 
modulation index (MI(‍α‍)) for all sensors. TFR of power for each sensor was averaged over all trials in 
the –850–0ms interval, for attention to right and left. Then the MI(α) for each participant and each 
sensor was calculated as:

	﻿‍
MI

(
α
)

k =
Power

(
α
)

katt right
− Power

(
α
)

katt left

Power
(
α
)

katt right
+ Power

(
α
)

katt left ‍�
(2)

where Power(‍α‍)k denotes the alpha power at sensor k in each condition.
Subsequently, at the group level, MI(‍α‍) for all sensors on the left hemisphere were subtracted from 

the corresponding sensors on the right hemisphere. The resulting values were then sorted and five 
pairs of sensors (nROI) that showed the highest difference in MI(α) values were selected, resulting in 
10 sensors, symmetrically distributed over the right and left hemispheres. Ten sensors were selected 
to ensure sufficient coverage of the region exhibiting alpha modulation as judged from prior work 
(Zhigalov et  al., 2019). As MI(‍α‍) consistently represents power of alpha in attention right versus 
attention left conditions, it entails the comparison between ipsilateral and contralateral alpha modu-
lation power for sensors located on the right side of the head. The same comparison applies inversely 
for sensors situated on the left side of the brain.

To evaluate hemisphere-specific lateralization of alpha band modulation, we applied the hemi-
spheric lateralization modulation (HLM(α)) index:

	﻿‍
HLM

(
α
)

= 1
nROI

nROI∑
k=1

MI
(
α
)

kright
+ 1
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nROI∑
k=1

MI
(
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‍�

(3)

where  ‍nROI ‍ = 5 represents the number of sensors in each ROI and 
‍
MI

(
α
)

kright‍
 or 

‍
MI

(
α
)

kleft‍
 denote the 

modulation index for sensor k over the right or left hemisphere, respectively.
We computed the modulation index (MI) for rapid invisible frequency tagging (RIFT) by averaging 

the power of the signal in sensors on the right when attention was directed to the right compared to 
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when it was directed to the left. This calculation was also performed for sensors on the left. Conse-
quently, we identified the top 5 sensors on each side with the highest MI as the Region of Interest 
(ROI). Utilizing the sensors within the ROI, we computed hemispheric lateralization modulation (HLM) 
of RIFT by summing the average MI(RIFT) of the right sensors and the average MI(RIFT) of the left 
sensors, obtaining one HLM(RIFT) value for each participant. For a more comprehensive analysis, refer 
to reference (Gutteling et al., 2022).

Statistical analysis
Generalized linear model
To model how the mean expected value of HLM(α) indices depends on the lateralized volume of 
subcortical structures, we applied a generalized linear model (GLM) using HLM(α) values as the 
dependent variable and LV indices of subcortical structures as the systematic (explanatory) variables. 
We performed a collinearity analysis (vif.m function in MATLAB) to ensure that the predictor variables 
were sufficiently independent prior to performing the GLM analysis.

First, we sought to determine the best set of regressors that predicted variability in HLM(α) values. 
We therefore used all possible combinations of regressors (LVs; one to seven combinations) in a linear 
mixed-effects model (fitme.m function in MATLAB) to predict HLM(α) indices and selected the model 
that scored the lowest using the Akaike information criterion (AIC; Akaike, 1974) score as the winning 
model. We confirmed our findings using Bayesian information criterion (BIC; Schwarz, 1978) and 
produced similar results. These values are commonly used to identify the best point of trade-off 
between fit and model complexity.

To estimate the β weights of the winning model the optimal set of regressors (here LVTh, LVCN, and 
LVGP) were used as the explanatory variables in a GLM (fitlm.m function in MATLAB) to predict HLM(a) 
values with the following formula:

	﻿‍ HLM
(
α
)
∼ β0 + β1LVTh + β2LVCN + β3LVGP + ε‍� (4)

Here, LVTh, LVCN, and LVGP refer to the lateralization volume of thalamus, caudate nucleus, and 
globus pallidus, respectively.

The absence of a relationship between modulations of alpha oscillations and the hippocampus 
and amygdala was expected as these regions typically are not associated with the allocation of spatial 
attention and thus add validity to our approach.

Multivariate multiple regression
To simultaneously model the predictive relationship between the lateralized volume of thalamus, 
caudate, and globus pallidus, and all four load conditions, we used a multivariate multiple regression 
(MMR) (Manly and Navarro Alberto, 2016) analysis. MMR is used to predict multiple dependent 
variables using multiple systematic parameters. It allows for modifying our hypothesis tests and confi-
dence intervals for explanatory parameters and responses, respectively (Dattalo, 2013). The model 
was defined as:

	﻿‍ HLM
(
α1

)
+ HLM

(
α2

)
+ HLM

(
α3

)
+ HLM

(
α4

)
∼ β0 + β1LVTh + β2LVCN + β3LVGP + ε‍� (5)

Where HLM(‍α‍) refers to hemispheric lateralization modulation of alpha power in load conditions 
1–4 (Figure 1C), respectively; ‍β‍ refers to the coefficients in the model; LVTh, LVCN, and LVGP refer to the 
lateralization volume of thalamus, caudate nucleus, and globus pallidus, respectively.

To ensure our chosen MMR predicts meaningful variance in HLM(α) scores, we compared a full 
model containing LV indexes from all 7 subcortical regions to one where the key structures of interest 
(i.e. thalamus, caudate nucleus, and globus pallidus) had been removed, leaving putamen, nucleus 
accumbens, hippocampus, and amygdala as regressors. This model is referred to as the reduced 
model. We also compared a model containing the key regressors of interest (LVTh, LVCN, LVGP) to a null 
model that contained only subject intercepts as regressors. Models were compared one-way ANOVA 
test in RStudio (version 2022.02.0; R Development Core Team, 2020).

To examine the specificity of each regressor for lateralized alpha in each condition, we statistically 
assessed the results of the MMR against the null hypothesis that a particular predictor does not 
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contribute to all dependent variables, employing a MANOVA test in RStudio (version 2022.02.2; R 
Development Core Team, 2020).

Behavioral data analysis
To evaluate if the participants response times and accuracy was correlated with the hemispheric later-
alization of alpha oscillatory activity as well as lateralized volume of subcortical structures, we calcu-
lated behavioral asymmetry (BA) as below:

	﻿‍
BAACC/RT =

ACC/RTatt right − ACC/RTatt left
ACC/RTatt right + ACC/RTatt left ‍�

(6)

where ‍ACC/RTatt right‍ and ‍ACC/RTatt left‍ correspond to the behavioural asymmetric performance in 
accuracy or response times when the attention was toward right or left visual hemifield, respectively. 
Finally, we ran the winning GLM model with accuracy and response times as the dependent variable 
and LVTh, LVCN, and LVGP as the regressors.
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