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Abstract Object classification has been proposed as a principal objective of the primate ventral 
visual stream and has been used as an optimization target for deep neural network models (DNNs) 
of the visual system. However, visual brain areas represent many different types of information, 
and optimizing for classification of object identity alone does not constrain how other information 
may be encoded in visual representations. Information about different scene parameters may be 
discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity 
(‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factor-
ization is a normative principle of biological visual representations. In the monkey ventral visual hier-
archy, we found that factorization of object pose and background information from object identity 
increased in higher-level regions and strongly contributed to improving object identity decoding 
performance. We then conducted a large-scale analysis of factorization of individual scene param-
eters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN 
models of the visual system. Models which best matched neural, fMRI, and behavioral data from 
both monkeys and humans across 12 datasets tended to be those which factorized scene parame-
ters most strongly. Notably, invariance to these parameters was not as consistently associated with 
matches to neural and behavioral data, suggesting that maintaining non-class information in factor-
ized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factoriza-
tion of visual scene information is a widely used strategy in brains and DNN models thereof.

eLife assessment
The study makes a valuable empirical contribution to our understanding of visual processing in 
primates and deep neural networks, with a specific focus on the concept of factorization. The anal-
yses provide convincing evidence that high factorization scores are correlated with neural predic-
tivity. This work will be of interest to systems neuroscientists studying vision and could inspire further 
research that ultimately may lead to better models of or a better understanding of the brain.

Introduction
Artificial deep neural networks (DNNs) are the most predictive models of neural responses to images 
in the primate high-level visual cortex (Cadieu et al., 2014; Schrimpf et al., 2020). Many studies have 
reported that DNNs trained to perform image classification produce internal feature representations 
broadly similar to those in areas V4 and IT of the primate cortex, and that this similarity tends to be 
greater in models with better classification performance (Yamins et al., 2014). However, it remains 
opaque what aspects of the representations of these more performant models drive them to better 
match neural data. Moreover, beyond a certain threshold level of object classification performance, 
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further improvement fails to produce a concomitant improvement in predicting primate neural 
responses (Schrimpf et al., 2020; Nonaka et al., 2021; Linsley, 2023). This weakening trend moti-
vates finding new normative principles, besides object classification ability, that push models to better 
match primate visual representations.

One strategy for achieving high object classification performance is to form neural representations 
that discard some (are tolerant to) or all (are invariant to) information besides object class. Invariance 
in neural representations is in some sense a zero-sum strategy: building invariance to some param-
eters improves the ability to decode others. We also note that our use of ‘invariance’ in this context 
refers to invariance in neural representations, rather than behavioral or perceptual invariance (DiCarlo 
and Cox, 2007). However, high-level cortical neurons in the primate ventral visual stream are known 
to simultaneously encode many forms of information about visual input besides object identity, such 
as object pose (Freiwald and Tsao, 2010; Hong et  al., 2016; Kravitz et  al., 2013; Peters and 
Kriegeskorte, 2021). In this work, we seek to characterize how the brain simultaneously represents 
different forms of information.

In particular, we introduce methods to quantify the relationships between different types of visual 
information in a population code (e.g., object pose vs. camera viewpoint), and specifically the degree 
to which different forms of information are ‘factorized’. Intuitively, if the variance driven by one param-
eter is encoded along orthogonal dimensions of population activity space compared to the variance 
driven by other scene parameters, we say that this representation is factorized. We note that our defi-
nition of factorization is closely related to the existing concept of manifold disentanglement (DiCarlo 
and Cox, 2007; Chung et  al., 2018) and can be seen as a generalization of disentanglement to 
high-dimensional visual scene parameters like object pose. Factorization can enable simultaneous 
decoding of many parameters at once, supporting diverse visually guided behaviors (e.g., spatial 
navigation, object manipulation, or object classification) (Johnston and Fusi, 2023).

Using existing neural datasets, we found that both factorization of and invariance to object cate-
gory and position information increase across the macaque ventral visual cortical hierarchy. Next, 
we leveraged the flexibility afforded by in silico models of visual representations to probe different 
forms of factorization and invariance in more detail, focusing on several scene parameters of interest: 
background content, lighting conditions, object pose, and camera viewpoint. Across a broad library 
of DNN models that varied in their architecture and training objectives, we found that factorization 

eLife digest When looking at a picture, we can quickly identify a recognizable object, such as 
an apple, applying a single word label to it. Although extensive neuroscience research has focused 
on how human and monkey brains achieve this recognition, our understanding of how the brain and 
brain-like computer models interpret other complex aspects of a visual scene – such as object position 
and environmental context – remains incomplete.

In particular, it was not clear to what extent object recognition comes at the expense of other 
important scene details. For example, various aspects of the scene might be processed simultane-
ously. On the other hand, general object recognition may interfere with processing of such details.

To investigate this, Lindsey and Issa analyzed 12 monkey and human brain datasets, as well as 
numerous computer models, to explore how different aspects of a scene are encoded in neurons and 
how these aspects are represented by computational models. The analysis revealed that preventing 
effective separation and retention of information about object pose and environmental context wors-
ened object identification in monkey cortex neurons. In addition, the computer models that were the 
most brain-like could independently preserve the other scene details without interfering with object 
identification.

The findings suggest that human and monkey high level ventral visual processing systems are 
capable of representing the environment in a more complex way than previously appreciated. In the 
future, studying more brain activity data could help to identify how rich the encoded information 
is and how it might support other functions like spatial navigation. This knowledge could help to 
build computational models that process the information in the same way, potentially improving their 
understanding of real-world scenes.

https://doi.org/10.7554/eLife.91685
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of all of the above scene parameters in DNN feature representations was positively correlated with 
models’ matches to neural and behavioral data. Interestingly, while neural invariance to some scene 
parameters (background scene and lighting conditions) predicted neural fits, invariance to others 
(object pose and camera viewpoint) did not. Our results generalized across both monkey and human 
datasets using different measures (neural spiking, fMRI, and behavior; 12 datasets total) and could not 
be accounted for by models’ classification performance. Thus, we suggest that factorized encoding 
of multiple behaviorally relevant scene variables is an important consideration, alongside other desid-
erata such as classification performance, in building more brain-like models of vision.

Results
Disentangling object identity manifolds in neural population responses can be achieved by quali-
tatively different strategies. These include building invariance of responses to non-identity scene 
parameters (or, more realistically, partial invariance; DiCarlo and Cox, 2007) and/or factorizing non-
identity-driven response variance into isolated (factorized) subspaces (Figure  1A, left vs. center 
panels, cylindrical/spherical-shaded regions represent object manifolds). Both strategies maintain an 
‘identity subspace’ in which object manifolds are linearly separable. In a non-invariant, non-factorized 
representation, other variables like camera viewpoint also drive variance within the identity subspace, 
‘entangling’ the representations of the two variables (Figure 1A, right; viewpoint-driven variance is 
mainly in identity subspace, orange flat-shaded region).

To formalize these different representational strategies, we introduced measures of factorization 
and invariance to scene parameters in neural population responses (Figure 1B; see Equations 2–4 in 
‘Methods’). Concretely, invariance to a scene variable (e.g., object motion) is computed by measuring 
the degree to which varying that parameter alone changes neural responses, relative to the changes 
induced by varying other parameters (lower relative influence on neural activity corresponds to higher 
invariance, or tolerance, to that parameter). Factorization is computed by identifying the axes in neural 
population activity space that are influenced by varying the parameter of interest and assessing how 
much it overlaps the axes influenced by other parameters (‘a’ in Figure 1B and C; lower overlap corre-
sponds to higher factorization). We quantified this overlap in two different ways (‘principal compo-
nents analysis (PCA)-based’ and ‘covariance-based’ factorization, corresponding to Equations 2 and 
4 in ‘Methods’), which produced similar results when compared in subsequent analyses (unless other-
wise noted, factorization scores will generally refer to the PCA-based method, and the covariance 
method is shown in Figures 5–7 for comparison). Intuitively, a neural population in which one neural 
subpopulation encodes object identity and another separate subpopulation encodes object position 
exhibits a high degree of factorization of those two parameters (however, note that factorization may 
also be achieved by neural populations with mixed selectivity in which the ‘subpopulations’ corre-
spond to subspaces, or independent orthogonal linear projections, of neural activity space rather 
than physical subpopulations). Though the example presented in Figure 1 focused on factorization 
of and invariance to object identity versus non-identity variables, we stress that our definitions can be 
applied to any scene variables of interest. Furthermore, we presented a simplified visual depiction of 
the geometry within each scene variable subspace in Figure 1. We emphasize that our factorization 
metric does not require a particular geometry within a variable’s subspace, whether parallel linearly 
ordered coding of viewpoint as in the cylindrical class manifolds shown in Figure 1A and B, or a more 
complex geometry where there is a lack of parallelism and/or a more nonlinear layout.

While factorization and invariance are not mutually exclusive representational strategies, they are 
qualitatively different. Factorization, unlike invariance, has the potential to enable the simultaneous 
representation of multiple scene parameters in a decodable fashion. Intuitively, factorization increases 
with higher dimensionality as this decreases overlap, all other things being equal (in the limit, the 
angle between points will approach 90o or a fully orthogonal code in high dimensions), and for a given 
finite, fixed dimension, factorization is mainly driven by the angle between this dimension and the 
other variable subspaces which measures the degree of contamination (Figure 1C; square vs. parallel-
ogram). In a simulation, we found that the extent to which the variables of interest were represented 
in a factorized way (i.e., along orthogonal axes, rather than correlated axes) influenced the ability 
of a linear discriminator to successfully decode both variables in a generalizable fashion from a few 
training samples (Figure 1C).

https://doi.org/10.7554/eLife.91685
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Given the theoretically desirable properties of factorized representations, we next asked whether 
such representations are observed in neural data, and how much factorization contributes empirically 
to downstream decoding performance in real data. Specifically, we took advantage of an existing 
dataset in which the tested images independently varied object identity versus object pose plus back-
ground context (Majaj et  al., 2015; https://github.com/brain-score/vision/blob/master/examples/​
data_metrics_benchmarks.ipynb). We found that both V4 and IT responses exhibited more significant 
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Figure 1. Framework for quantifying factorization in neural and model representations. (A) A subspace for encoding a variable, for example, object 
identity, in a linearly separable manner can be achieved by becoming invariant to non-class variables (compact spheres, middle column, where the 
volume of the sphere corresponds to the degree of neural invariance, or tolerance, for non-class variables; colored dots represent example images 
within each class) and/or by encoding variance induced by non-identity variables in orthogonal neural axes to the identity subspace (extended 
cylinders, left column). Only the factorization strategy simultaneously represents multiple variables in a disentangled fashion. A code that is sensitive 
to non-identity parameters within the identity subspace corrupts the ability to decode identity (right column) (identity subspace denoted by orange 
plane). (B) Variance across images within a class can be measured in two different linear subspaces: that containing the majority of variance for all 
other parameters (a, ‘other_param_subspace’) and that containing the majority of the variance for that parameter (b, ‘param_subspace’). Factorization 
is defined as the fraction of parameter-induced variance that avoids the other-parameter subspace (left). By contrast, invariance to the parameter of 
interest is computed by comparing the overall parameter-induced variance to the variance in response to other parameters (c, ‘var_other_param’) (right). 
(C) In a simulation of coding strategies for two binary variables out of 10 total dimensions that are varying (see ‘Methods’), a decrease in orthogonality of 
the relationship between the encoding of the two variables (alignment a > 0, or going from a square to a parallelogram geometry), despite maintaining 
linear separability of variables, results in poor classifier performance in the few training-samples regime when i.i.d. Gaussian noise is present in the data 
samples (only 3 of 10 dimensions used in simulation are shown).

https://doi.org/10.7554/eLife.91685
https://github.com/brain-score/vision/blob/master/examples/data_metrics_benchmarks.ipynb
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factorization of object identity information from non-identity information than a shuffle control (which 
accounts for effects on factorization due to dimensionality of these regions) (Figure 2—figure supple-
ment 1; see ’Methods’). Furthermore, the degree of factorization increased from V4 to IT (Figure 2A). 
Consistent with prior studies, we also found that invariance to non-identity information increased 
from V4 to IT in our analysis (Figure 2A, right, solid lines; Rust and DiCarlo, 2010). Invariance to 
non-identity information was even more pronounced when measured in the subspace of population 
activity capturing the bulk (90%) of identity-driven variance as a consequence of increased factoriza-
tion of identity from non-identity information (Figure 2A, right, dashed lines).

To illustrate the beneficial effect of factorization on decoding performance, we performed a statis-
tical lesion experiment that precisely targeted this aspect of representational geometry. Specifically, 
we analyzed a transformed neural representation obtained by rotating the population data so that 
inter-class variance more strongly overlapped with the principal components (PCs) of the intra-class 
variance in the data (see Equation 1 in ’Methods’). Note that this transformation, designed to decrease 
factorization, acts on the angle between latent variable subspaces. The applied linear basis rotation 
leaves all other activity statistics completely intact (such as mean neural firing rates, covariance struc-
ture of the population, and its invariance to non-class variables) yet has the effect of strongly reducing 
object identity decoding performance in both V4 and IT (Figure 2B). Our analysis shows that main-
taining invariance alone in the neural population code was insufficient to account for a large fraction 
of decoding performance in high-level visual cortex; factorization of non-identity variables is key to 
the decoding performance achieved by V4 and IT representations.

We next asked whether factorization is found in DNN model representations and whether this 
novel, heretofore unconsidered metric, is a strong indicator of more brainlike models. When working 
with computational models, we have the liberty to test an arbitrary number of stimuli; therefore, we 
could independently vary multiple scene parameters at sufficient scale to enable computing factor-
ization and invariance for each, and we explored factorization in DNN model representations in more 
depth than previously measured in existing neural experiments. To gain insight back into neural repre-
sentations, we also assessed the ability of each model to predict separately collected neural and 
behavioral data. In this fashion, we may indirectly assess the relative significance of geometric proper-
ties like factorization and invariance to biological visual representations – if, for instance, models with 
more factorized representations consistently match neural data more closely, we may infer that those 
neural representations likely exhibit factorization themselves (Figure  3). To measure factorization, 
invariance, and decoding properties of DNN models, we generated an augmented image set, based 
on the images used in the previous dataset (Figure 2), in which we independently varied the fore-
ground object identity, foreground object pose, background identity, scene lighting, and 2D scene 
viewpoint. Specifically for each base image from the original dataset, we generated sets of images 
that varied exactly one of the above scene parameters while keeping the others constant, allowing us 
to measure the variance induced by each parameter relative to the variance across all scene param-
eters (Figure 3, top left; 100 base scenes and 10 transformed images for each source of variation). 
We presented this large image dataset to models (4000 images total) to assess the relative degree of 
representational factorization of and invariance to each scene parameter. We conducted this analysis 
across a broad range of DNNs varying in architecture and objective as well as other implementational 
choices to obtain the widest possible range of DNN representations for testing our hypothesis. These 
included models using supervised training for object classification (Krizhevsky et al., 2012; He et al., 
2016), contrastive self-supervised training (He et al., 2020; Chen et al., 2020), and self-supervised 
models trained using auxiliary objective functions (Tian et al., 2019; Doersch et al., 2015; He et al., 
2017; Donahue and Simonyan, 2019; see ’Methods’ and Supplementary file 1b).

First, we asked whether, in the course of training, DNN models develop factorized representations 
at all. We found that the final layers of trained networks exhibited consistent increases in factorization 
of all tested scene parameters relative to a randomly initialized (untrained) baseline with the same 
architecture (Figure 4A, top row, rightward shift relative to black cross, a randomly initialized ResNet-
50). By contrast, training DNNs produced mixed effects on invariance, typically increasing it for back-
ground and lighting but reducing it for object pose and camera viewpoint (Figure 4A, bottom row, 
leftward shift relative to black cross for left two panels). Moreover, we found that the degree of factor-
ization in models correlated with the degree to which they predicted neural activity for single-unit IT 
data (Figure 4A, top row), which can be seen as correlative evidence that neural representations in IT 

https://doi.org/10.7554/eLife.91685
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Figure 2. Benefit of factorization to neural decoding in macaque V4 and IT. (A) Factorization of object identity and position increased from macaque V4 
to IT (PCA-based factorization, see ‘Methods’; dataset E1 – multiunit activity in macaque visual cortex) (left). Like factorization, invariance also increased 
from V4 to IT (note, ‘identity’ refers to invariance to all non-identity position factors, solid black line) (right). Combined with increased factorization of the 
remaining variance, this led to higher invariance within the variable’s subspace (orange lines), representing a neural subspace for identity information 
with invariance to nuisance parameters which decoders can target for read-out. (B) An experiment to test the importance of factorization for supporting 
object class decoding performance in neural responses. We applied a transformation to the neural data (linear basis rotation) that rotated the relative 
positions of mean responses to object classes without changing the relative proportion of within- vs. between-class variance (Equation 1 in ’Methods’). 
This transformation preserved invariance to non-class factors (leftmost pair of bars in each plot), while decreasing factorization of class information from 
non-class factors (center pair of bars in each plot). Concurrently, it had the effect of significantly reducing object class decoding performance (light vs. 
dark red bars in each plot, chance = 1/64; n = 128 multi-unit sites in V4 and 128 in IT).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Factorization and invariance in V4 and IT neural data.

https://doi.org/10.7554/eLife.91685
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exhibit factorization of all scene variables tested. Interestingly, we saw a different pattern for represen-
tational invariance to a scene parameter. Invariance showed mixed correlations with neural predictivity 
(Figure 4A, bottom row), suggesting that IT neural representations build invariance to some scene 
information (background and lighting) but not to others (object pose and observer viewpoint). Similar 
effects were observed when we assessed correlations between these metrics and fits to human behav-
ioral data rather than macaque neural data (Figure 4B).
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Figure 3. Measurement of factorization in deep neural network (DNN) models and comparison to brain data. Schematic showing how meta-analysis on 
models and brain data was conducted by first computing various representational metrics on models and then measuring a model’s predictive power 
across a variety of datasets. For computing the representational metrics of factorization of and invariance to a scene parameter, variance in model 
responses was induced by individually varying each of four scene parameters (n = 10 parameter levels) for each base scene (n = 100 base scenes) (see 
images on the top left). The combination of model-layer metric and model-layer dataset predictivity for a choice of model, layer, metric, and dataset 
specifies the coordinates of a single dot on the scatter plots in Figures 4 and 7, and the across-model correlation coefficient between a particular 
representational metric and neural predictivity for a dataset summarizes the potential importance of the metric in producing more brainlike models (see 
Figures 5 and 6).

https://doi.org/10.7554/eLife.91685
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Figure 4. Neural and behavioral predictivity of models versus their factorization and invariance properties. (A) Scatter plots, for example, neural dataset 
(IT single units, macaque E2 dataset) showing the correlation between a model’s predictive power as an encoding model for IT neural data versus a 
model’s ability to factorize or become invariant to different scene parameters (each dot is a different model, using each model’s penultimate layer). Note 
that factorization (PCA-based, see ‘Methods’) in trained models is consistently higher than that for an untrained, randomly initialized Resnet-50 DNN 
architecture (rightward shift relative to black cross). Invariance to background and lighting but not to object pose and viewpoint increased in trained 
models relative to the untrained control (rightward versus leftward shift relative to black cross). (B) Same as (A) except for human behavior performance 
patterns across images (human I2 dataset). Increasing scene parameter factorization in models generally correlated with better neural predictivity (top 
row). A noticeable drop in neural predictivity was seen for high levels of invariance to object pose (bottom row, second panel).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page

https://doi.org/10.7554/eLife.91685
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To assess the robustness of these findings to choice of images and brain regions used in an exper-
iment, we conducted the same analyses across a large and diverse set of previously collected neural 
and behavioral datasets, from different primate species and visual regions (six macaque datasets 
[Majaj et al., 2015; Rust and DiCarlo, 2012; Rajalingham et al., 2018]: two V4, two ITC (inferior 
temporal cortex), and two behavior; six human datasets [Rajalingham et al., 2018; Kay et al., 2008; 
Shen et al., 2019]: two V4, two HVC (higher visual cortex), and two behavior; Supplementary file 
1a). Consistently, increased factorization of scene parameters in model representations correlated 
with models being more predictive of neural spiking responses, voxel BOLD signal, and behavioral 
responses to images (Figure  5A, black bars; see Figure  4—figure supplements 1–3 for scatter 
plots across all datasets). Although invariance to appearance factors (background identity and scene 
lighting) correlated with more brainlike models, invariance for spatial transforms (object pose and 
camera viewpoint) consistently did not (zero or negative correlation values; Figure 5C, red and green 
open circles). Our results were preserved when we re-ran the analyses using only the subset of models 
with the identical ResNet-50 architecture (Figure 5—figure supplement 1) or when we evaluated 
model predictivity using representational dissimilarity matrices of the population (RDMs) instead of 
linear regression (encoding) fits of individual neurons or voxels (Figure 5—figure supplement 2). 
Furthermore, the main finding of a positive correlation between factorization and neural predictivity 
was robust to the particular choice of PCA threshold we used to quantify factorization (Figure 5—
figure supplement 3). We found similar results using a covariance-based method for computing 
factorization that does not have any free parameters (Figure 5C, faded filled circles; see Equations 4 
in ‘Methods’).

Finally, we tested whether our results generalized across the particular image set used for computing 
the model factorization scores in the first place. Here, instead of relying on our synthetically generated 
images, where each scene parameter was directly controlled, we re-computed factorization from two 
types of relatively unconstrained natural movies, one where the observer moves in an urban environ-
ment (approximates camera viewpoint changes) (Lee et al., 2012) and another where objects move 
in front of a fairly stationary observer (approximates object pose changes) (Monfort, 2019). Similar to 
the result found for factorization measured using augmentations of synthetic images, factorization of 
frame-by-frame variance (local in time, presumably dominated by either observer or camera motion; 
see ‘Methods’) from other sources of variance across natural movies (non-local in time) was correlated 
with improved neural predictivity in both macaque and human data while invariance to local frame-by-
frame differences was not (Figure 5B; black versus gray bars). Thus, we have shown that a main finding 
– the importance of object pose and camera viewpoint factorization for achieving brainlike represen-
tations – holds across types of brain signal (spiking vs. BOLD), species (monkey vs. human), cortical 
brain areas (V4 vs. IT), images for testing in experiments (synthetic, grayscale vs. natural, color), and 
image sets for computing the metric (synthetic images vs. natural movies).

Our analysis of DNN models provides strong evidence that greater factorization of a variety of 
scene variables is consistently associated with a stronger match to neural and behavioral data. Prior 
work had identified a similar correlation between object classification performance (measured fitting 
a decoder for object class using model representations) and fidelity to neural data (Yamins et al., 
2014). A priori, it is possible that the correlations we have demonstrated between scene parameter 
factorization and neural fit can be entirely captured by the known correlation between classification 
performance and neural fits (Schrimpf et al., 2020; Yamins et al., 2014) as factorization and clas-
sification may themselves be correlated. However, we found that factorization scores significantly 
boosted cross-validated predictive power of neural/behavioral fit performance compared to simply 
using object classification alone, and factorization boosted predictive power as much if not slightly 
more when using RDMs instead of linear regression fits to quantify the match to the brain/behavior 
(Figure 6). Thus, considering factorization in addition to object classification performance improves 
upon our prior understanding of the properties of more brainlike models (Figure 7).

Figure supplement 1. Scatter plots for all datasets for V4.

Figure supplement 2. Scatter plots for all datasets for ITC/HVC.

Figure supplement 3. Scatter plots for all datasets for behavior.

Figure 4 continued

https://doi.org/10.7554/eLife.91685
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Figure 5. Scene parameter factorization correlates with more brainlike deep neural network (DNN) models. (A) Factorization of scene parameters in 
model representations computed using the PCA-based method consistently correlated with a model being more brainlike across multiple independent 
datasets measuring monkey neurons, human fMRI voxels, or behavioral performance in both macaques and humans (left vs. right column) (black 
bars). By contrast, increased invariance to camera viewpoint or object pose was not indicative of brainlike models (gray bars). In all cases, model 
representational metric and neural predictivity score were computed by averaging scores across the last 5 model layers. (B) Instead of computing 
factorization scores using our synthetic images (Figure 3, top left), recomputing camera viewpoint or object pose factorization from natural movie 
datasets that primarily contained camera or object motion, respectively, gave similar results for predicting which model representations would be 
more brainlike (right: example movie frames; also see ’Methods’). Error bars in (A and B) are standard deviations over bootstrapped resampling of the 
models. (C) Summary of the results from (A) across datasets (x-axis) for invariance (open symbols) versus factorization (closed symbols) (for reference, 
‘x’ symbols indicate predictive power when using model classification performance). Results using a comparable, alternative method for computing 
factorization (covariance-based, Equation 4 in ’Methods’; light closed symbols) are shown adjacent to the original factorization metric (PCA-based, 
Equation 2 in ‘Methods’; dark closed symbols).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Predictivity of factorization and invariance restricting to ResNet-50 model architectures.

Figure supplement 2. Predictivity of factorization and invariance for representational dissimilarity matrices (RDMs).

Figure supplement 3. Effect on neural and behavioral predictivity of PCA threshold for computing PCA-based factorization, related to Figure 5.

https://doi.org/10.7554/eLife.91685
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Discussion
Object classification, which has been proposed as a normative principle for the function of the ventral 
visual stream, can be supported by qualitatively different representational geometries (Yamins et al., 
2014; Nayebi, 2021). These include representations that are completely invariant to non-class infor-
mation (Caron et al., 2019b; Caron, 2019a) and representations that retain a high-dimensional but 
factorized encoding of non-class information, which disentangles the representation of multiple 
variables (Figure 1A). Here, we presented evidence that factorization of non-class information is an 
important strategy used, alongside invariance, by the high-level visual cortex (Figure 2) and by DNNs 
that are predictive of primate neural and behavioral data (Figures 4 and 5).

Prior work has indicated that building representations that support object classification perfor-
mance and representations that preserve high-dimensional information about natural images are both 
important principles of the primate visual system (Cadieu et al., 2014; Elmoznino and Bonner, 2022; 
though see Conwell et  al., 2022). Critically, our results cannot be accounted for by classification 
performance or dimensionality alone (Figure 6, gray and pink bars); that is, the relationship between 
factorization and matches to neural data was not entirely mediated by classification or dimensionality. 
That said, we do not regard factorization and dimensionality, or factorization and object classification 
performance, as mutually exclusive hypotheses for useful principles of visual representations. Indeed, 
high-dimensional representations could be regarded as a means to facilitate factorization, and like-
wise factorized representations can better support classification (Figure 1C).

Our notion of factorization is related to, but distinct from, several other concepts in the literature. 
Many prior studies in machine learning have considered the notion of disentanglement, often defined 
as the problem of inferring independent factors responsible for generating the observed data (Kim 
and Mnih, 2018; Eastwood and Williams, 2018; Higgins, 2018). One prior study notably found that 
machine learning models designed to infer disentangled representations of visual data displayed 
single-unit responses that resembled those of individual neurons in macaque IT (Higgins et al., 2021). 
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Figure 6. Scene parameter factorization combined with object identity classification improves correlations with neural predictivity. Average across 
datasets of brain predictivity of classification (faded black bar), dimensionality (faded pink bar), and factorization (remaining faded colored bars) 
in a model representation. Linearly combining factorization with classification in a regression model (unfaded bars at right) produced significant 
improvements in predicting the most brainlike models (performance cross-validated across models and averaged across datasets, n = 4 datasets for 
each of V4, IT/HVC and behavior). The boost from factorization in predicting the most brainlike models was not observed for neural and fMRI data 
when combining classification with a model’s overall dimensionality (solid pink bars; compared to black dashed line for brain predictivity when using 
classification alone). Results are shown for both the PCA-based and covariance-based factorization metric (top versus bottom row). Error bars are 
standard deviations over bootstrapped resampling of the models.
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Our definition of factorization is more flexible, requiring only that independent factors be encoded in 
orthogonal subspaces, rather than by distinct individual neurons. Moreover, our definition applies to 
generative factors, such as camera viewpoint or object pose, that are multidimensional and context 
dependent. Factorization is also related to a measure of ‘abstraction’ in representational geometry 
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Figure 7. Combining classification performance with object pose factorization improves predictions of the most brainlike models on IT/HVC data. 
Example scatter plots for neural and fMRI datasets (macaque E1 and E2, IT multi units and single units; human F1 and F2, fMRI voxels) showing a 
saturating and sometimes reversing trend in neural (voxel) predictivity for models that are increasingly good at classification (top row). This saturating/
reversing trend is no longer present when adding object pose factorization to classification as a combined, predictive metric for brainlikeness of a 
model (middle and bottom rows). The x-axis of each plot indicates the predicted encoding fit or representational dissimilarity matrix (RDM) correlation 
after fitting a linear regression model with the indicated metrics as input (either classification or classification + factorization).
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introduced in a recent line of work (Bernardi et al., 2020; Boyle et al., 2024), which is observed to 
emerge in trained neural networks (Johnston and Fusi, 2023; Alleman et al., 2024). In these studies, 
an abstract representation is defined as one in which variables are encoded and can be decoded in a 
consistent fashion regardless of the values of other variables. A fully factorized representation should 
be highly abstract according to this definition, though factorization emphasizes the geometric prop-
erties of the population representation while these studies emphasize the consequences for decoding 
performance in training downstream linear read-outs. Relatedly, another recent study found that 
orthogonal encoding of class and non-class information is one of several factors that determines few-
shot classification performance (Sorscher et al., 2022). Our work can be seen as complementary to 
work on representational straightening of natural movie trajectories in the population space (Hénaff 
et al., 2021). This work suggested that visual representations maintain a locally linear code of latent 
variables like camera viewpoint, while our work focused on the global arrangement of the linear 
subspaces affected by different variables (e.g., overall coding of camera viewpoint-driven variance 
versus sources of variance from other scene variables in a movie). Local straightening of natural movies 
was found to be important for early visual cortex neural responses but not necessarily for high-level 
visual cortex (Toosi and Issa, 2022), where the present work suggests factorization may play a role.

Our work has several limitations. First, our analysis is primarily correlative. Going forward, we 
suggest that factorization could prove to be a useful objective function for optimizing neural network 
models that better resemble primate visual systems, or that factorization of latent variables should 
at least be a by-product of other objectives that lead to more brain-like models. An important direc-
tion for future work is finding ways to directly incentivize factorization in model objective functions 
so as to test its causal impact on the fidelity of learned representations to neural data. Second, our 
choice of scene variables to analyze in this study was heuristic and somewhat arbitrary. Future work 
could consider unsupervised methods (in the vein of independent components analysis) for uncov-
ering the latent sources of variance that generate visual data, and assessing to what extent these 
latent factors are encoded in factorized form. Third, in our work we do not specify the details of 
how a particular scene parameter is encoded within its factorized subspace, including whether the 
code is linear (‘straightened’) or nonlinear (Hénaff et al., 2021; Hénaff et al., 2019). Neural codes 
could adopt different strategies, resulting in similar factorization scores at the population level, each 
with some support in visual cortex literature: (1) each neuron encodes a single latent variable (Field, 
1994; Chang and Tsao, 2017), (2) separate brain subregions encode qualitatively different latent 
variables but using distributed representations within each region (Tsao et al., 2006; Lafer-Sousa and 
Conway, 2013; Vaziri et al., 2014), and (3) each neuron encodes multiple variables in a distributed 
population code, such that the factorization of different variables is only apparent as independent 
directions when assessed in high-dimensional population activity space (Field, 1994; Rigotti et al., 
2013). Future work can disambiguate among these possibilities by systematically examining ventral 
visual stream subregions (Kravitz et al., 2013; Vaziri et al., 2014; Kravitz et al., 2011) and the single 
neuron tuning curves within them (Leopold et al., 2006; Freiwald et al., 2009).

Methods
Monkey datasets
Macaque monkey datasets were of single-unit neural recordings (Rust and DiCarlo, 2012), multi-unit 
neural recordings (Majaj et al., 2015), and object recognition behavior (Rajalingham et al., 2018). 
Single-unit spiking responses to natural images were measured in V4 and anterior ventral IT (Rust and 
DiCarlo, 2012). The advantages of this dataset are that it contains well-isolated single neurons, the 
gold standard for electrophysiology. Furthermore, the IT recordings were obtained from penetrating 
electrodes targeting the anterior ventral portion of IT near the base of skull, reflecting the highest 
level of the IT hierarchy. On the other hand, the multi-unit dataset was obtained from across IT with 
a bias toward where multi-unit arrays are more easily placed such as CIT and PIT (Majaj et al., 2015), 
complementing the recording locations of the single-unit dataset. An advantage of the multi-unit 
dataset using chronic recording arrays is that an order of magnitude more images were tested per 
recording site (see dataset comparisons in Supplementary file 1a). Finally, the monkey behavioral 
dataset came from a third study examining the image-by-image object classification performance of 
macaques and humans (Rajalingham et al., 2018).

https://doi.org/10.7554/eLife.91685
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Human datasets
Three datasets from humans were used, two fMRI datasets and one object recognition behavior 
dataset (Nonaka et al., 2021; Rajalingham et al., 2018; Kay et al., 2008). The fMRI datasets used 
different images (color versus grayscale) but otherwise used a fairly similar number of images and 
voxel resolution in MR imaging. Human fMRI studies have found that different DNN layers tend to map 
to V4 and HVC human fMRI voxels (Nonaka et al., 2021). The human behavioral dataset measured 
image-by-image classification performance and was collected in the same study as the monkey behav-
ioral signatures (Rajalingham et al., 2018).

Computational models
In recent years, a variety of approaches to training DNN vision models have been developed that 
learn representations that can be used for downstream classification (and other) tasks. Models differ 
in a variety of implementational choices including in their architecture, objective function, and training 
dataset. In the models we sampled, objectives included supervised learning of object classification 
(AlexNet, ResNet), self-supervised contrastive learning (MoCo, SimCLR), and other unsupervised 
learning algorithms based on auxiliary tasks (e.g., reconstruction or colorization). A majority of the 
models that we considered relied on the widely used, performant ResNet-50 architecture, though 
some in our library utilized different architectures. The randomly initialized network control utilized 
ResNet-50 (see Figure 4A and B). The set of models we used is listed in Supplementary file 1b.

Simulation of factorized versus non-factorized representational 
geometries
For the simulation in Figure 1C, we generated data in the following way. First, we randomly sampled 
the values of N = 10 binary features. Feature values corresponded to positions in an N-dimensional 
vector space as follows: each feature was assigned an axis in N-dimensional space, and the value of 
each feature (+1 or –1) was treated as a coefficient indicating the position along that axis. All but two 
of the feature axes were orthogonal to the rest. The last two features, which served as targets for the 
trained linear decoders, were assigned axes whose alignment ranged from 0 (orthogonal) to 1 (iden-
tical). In the noiseless case, factorization of these two variables with respect to one another is given by 
subtracting the square of the cosine of the angle between the axes from 1. We added Gaussian noise 
to the positions of each data point and randomly sampled K positive and negative examples for each 
variable of interest to use as training data for the linear classifier (a support vector machine).

Macaque neural data analyses
For the shuffle control used as a null model for factorization, we shuffled the object identity labels of 
the images (Figure 2—figure supplement 1). For the transformation used in Figure 2B, we computed 
the PCs of the mean neural activity response to each object class (‘class centers,’ xc), referred to as 
the inter-class PCs, v1

inter, v2
inter, …, vN

inter. We also computed the PCs of the data with corresponding 
class centers subtracted (i.e., x - xc) from each activity pattern, referred to as the intra-class PCs v1

intra, 
v2

intra, …, vN
intra. We transformed the data by applying to the class centers a change of basis matrix 

Winter→intra that rotated each inter-class PC into the corresponding intra-class PC: Winter→intra=v1
intra (v1

inter)T 
+ …1vN

intra (vN
inter)T. That is, the class centers were transformed by this matrix, but the relative positions 

of activity patterns within a given class were fixed. For an activation vector x belonging to a class c for 
which the average activity vector over all images of class c is xc, the transformed vector was

	﻿‍ xtransformed = Winter→intra xc + (x − xc)‍� (1)

This transformation has the effect of preserving intra-class variance statistics exactly from the orig-
inal data and preserving everything about the statistics of inter-class variance except its orientation 
relative to intra-class variance. That is, the transformation is designed to affect (specifically decrease) 
factorization while controlling for all other statistics of the activity data that may be relevant to object 
classification performance (considering the simulation in Figure 1C of two binary variables, this basis 
change of the neural data in Figure 2B is equivalent to turning a square into the maximally flat paral-
lelogram, the degenerate one where all the points are collinear).

https://doi.org/10.7554/eLife.91685
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Scene parameter variation
Our generated scenes consisted of foreground objects imposed upon natural backgrounds. To 
measure variance associated with a particular parameter like the background identity, we randomly 
sampled 10 different backgrounds while holding the other variables (e.g., foreground object identity 
and pose constant). To measure variance associated with foreground object pose, we randomly varied 
object angle from [–90, 90] along all three axes independently, object position on the two in-plane 
axes, horizontal [–30%, 30%] and vertical [–60%, 60%], and object size [×1/1.6, ×1.6]. To measure vari-
ance associated with camera position, we took crops of the image with scale uniformly varying from 20 
to 100% of the image size, and position uniformly distributed across the image. To measure variance 
associated with lighting conditions, we applied random jitters to the brightness, contrast, saturation, 
and hue of an image, with jitter value bounds of [–0.4, 0.4] for brightness, contrast, and saturation 
and [–0.1, 0.1] for hue. These parameter choices follow standard data augmentation practices for self-
supervised neural network training, as used, for example, in the SimCLR and MoCo models tested 
here (He et al., 2020; Chen et al., 2020).

Factorization and invariance metrics
Factorization and invariance were measured according to the following equations:

	﻿‍ factorizationparam = 1 − varparam|other_param_subspace/varparam‍� (2)

	﻿‍ invarianceparam = 1 − varparam/varall param‍� (3)

Variance induced by a parameter (varparam) is computed by measuring the variance (summed across 
all dimensions of neural activity space) of neural responses to the 10 augmented versions of a base 
image where the augmentations are those obtained by varying the parameter of interest. This quan-
tity is then averaged across the 100 base images. The variance induced by all parameters is simply the 
sum of the variances across all images and augmentations. To define the ‘other-parameter subspace,’ 
we averaged neural responses for a given base image over all augmentations using the parameter of 
interest, and ran PCA on the resulting set of averaged responses. The subspace was defined as the 
space spanned by top PCA components containing 90% of the variance of these responses. Intui-
tively, this space captures the bulk of the variance driven by all parameters other than the parameter 
of interest (due to the averaging step). The variance of the parameter of interest within this ‘other-
parameter subspace,’ varparam|other_param_subspace, was computed the same way as varparam but using the 
projections of neural activity responses onto the other-parameter subspace. In the main text, we refer 
to this method of computing factorization as PCA-based factorization.

We also considered an alternative definition of factorization referred to as covariance-based factor-
ization. In this alternative definition, we measured the covariance matrices covparam and covother_param 
induced by varying (in the same fashion as above) the parameter of interest, and all other parameters. 
Factorization was measured by the following equation:

	﻿‍

factorizationparam = 1 − Trace[(covparam)T covother_param]/(Trace[(covparam)T covparam]

Trace[(covother_param)T covother_param])1/2
‍�

(4)

This is equal to 1 minus the dot product between the normalized, flattened covariance matrices, 
and thus covariance-based factorization is a measure of the discrepancy of the covariance structure 
induced by the parameter of interest and other parameters. The main findings were unaffected by 
our choice of method for computing the factorization metric, whether PCA or covariance based 
(Figures 5–7). An advantage of the PCA-based method is that as an intermediate one recovers the 
linear subspaces containing parameter variance, but in so doing requires an arbitrary choice of the 
explained variance threshold used to choose the number of PCs. By contrast, the covariance-based 
method is more straightforward to compute and has no free parameters. Thus, these two metrics 
are complementary and somewhat analogous in methodology to two metrics commonly used for 
measuring dimensionality (the number of components needed to explain a certain fraction of the 
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variance, analogous to our original PCA-based definition, and the participation ratio, analogous to our 
covariance-based definition) (Ding and Glanzman, 2010; Litwin-Kumar et al., 2017).

Natural movie factorization metrics
For natural movies, variance is not induced by explicit control of a parameter as in our synthetic 
scenes but implicitly, by considering contiguous frames (separated by 200 ms in real time) as reflec-
tive of changes in one of two motion parameters (object versus observer motion) depending on how 
stationary the observer is (MIT Moments in Time movie set: stationary observer; UT-Austin Egocen-
tric movie set: nonstationary) (Lee et al., 2012; Monfort, 2019). Here, the all parameters condition 
is simply the variance across all movie frames, which in the case of MIT Moments in Time dataset 
includes variance across thousands of video clips taken in many different settings and in the case 
of the UT-Austin Egocentric movie dataset includes variance across only four movies but over long 
durations of time during which an observer translates extensively in an environment (3–5 hr). Thus, 
movie clips in the MIT Moments in Time movie set contained new scenes with different object identi-
ties, backgrounds, and lightings and thus effectively captured variance induced by these non-spatial 
parameters (Monfort, 2019). In the UT-Austin Egocentric movie set, new objects and backgrounds 
are encountered as the subject navigates around the urban landscape (Lee et al., 2012).

Model neural encoding fits
Linear mappings between model features and neuron (or voxel) responses were computed using ridge 
regression (with regularization coefficient selected by cross-validation) on a low-dimensional linear 
projection of model features (top 300 PCA components computed using images in each dataset). 
We also tested an alternative approach to measuring representational similarity between models and 
experimental data based on representational similarity analysis (Kriegeskorte and Kievit, 2013), 
computing dot product similarities of the representations of all pairs of images and measuring the 
Spearman correlation coefficient between these pairwise similarity matrices obtained from a given 
model and neural dataset, respectively.

Model behavioral signatures
We followed the approach of Rajalingham et al., 2018. We took human and macaque behavioral 
data from the object classification task and used it to create signatures of image-level difficulty (the 
‘I1’ vector) and image-by-distractor-object confusion rates (the ‘I2’ matrix). We did the same for the 
DNN models, extracting model ‘behavior’ by training logistic regression classifiers to classify object 
identity in the same image dataset used in the experiments of Rajalingham et al., 2018, using model 
layer activations as inputs. Model behavioral accuracy rates on image by distractor object pairs were 
assessed using the classification probabilities output by the logistic regression model, and these were 
used to compute I1 and I2 metrics as was done for the true behavioral data. Behavioral similarity 
between models and data was assessed by measuring the correlation between the entries of the I1 
vectors and I2 matrices (both I1 and I2 results are reported).

Model layer choices
The scatter plots in Figure 4A and B and Figure 4—figure supplements 1–3 use metrics (factoriza-
tion, invariance, and goodness of neural fit) taken from the final representational layer of the network 
(the layer prior to the logits layer used for classification in supervised network, prior to the embed-
ding head in contrastive learning models, or prior to any auxiliary task-specific layers in unsupervised 
models trained using auxiliary tasks). However, representational geometries of model activations, and 
their match to neural activity and behavior, vary across layers. This variability arises because different 
model layers correspond to different stages of processing in the model (convolutional layers in some 
cases, and pooling operations in others), and may even have different dimensionalities. To ensure 
that our results do not depend on idiosyncrasies of representations in one particular model layer and 
the particular network operations that precede it, summary correlation statistics in all other figures 
(Figures 5–7, Figure 5—figure supplements 1–3) show the results of the analysis in question aver-
aged over the five final representational layers of the model. That is, the metrics of interest (factoriza-
tion, invariance, neural encoding fits, RDM correlation, behavioral similarity scores) were computed 
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independently for each of the five final representational layers of each model, and these five values 
were averaged prior to computing correlations between different metrics.

Correlation of model predictions and experimental data
A Spearman linear correlation coefficient was calculated for each model layer by biological dataset 
combination (six monkey datasets and six human datasets). Here, we do not correct for noise in the 
biological data when computing the correlation coefficient as this would require trial repeats (for 
computing intertrial variability) that were limited or not available in the fMRI data used. In any event, 
normalizing by the data noise ceiling applies a uniform scaling to all model prediction scores and does 
not affect model comparison, which only depends on ranking models as being relatively better or 
worse in predicting brain data. Finally, we estimated the effectiveness of model factorization, invari-
ance, or dimensionality in combination with model object classification performance for predicting 
model neural and behavioral fit by performing a linear regression on the particular dual metric combi-
nation (e.g., classification plus object pose factorization) and reporting the Spearman correlation coef-
ficient of the linearly weighted metric combination. The correlation was assessed on held-out models 
(80% used for training, 20% for testing), and the results were averaged over 100 randomly sampled 
train/test splits.
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