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Abstract Heterogeneity in endothelial cell (EC) sub- phenotypes is becoming increasingly 
appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole 
transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling 
concurrently measuring transcriptomes and accessible chromatin in the same single cells was 
performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating envi-
ronments characteristic of the atherosclerotic microenvironment in vitro. Meta- analysis of single- cell 
transcriptomes across 17 human ex vivo arterial specimens was performed and two computational 
approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in 
vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters 
with distinct pathway enrichment profiles and modest heterogeneous responses: EC1- angiogenic, 
EC2- proliferative, EC3- activated/mesenchymal- like, and EC4- mesenchymal. Quantitative compar-
isons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically 
EC- like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, 
accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease 
(CAD)- associated single- nucleotide polymorphisms from Genome Wide Association Studies (GWAS), 
suggesting that these cell phenotypes harbor CAD- modulating mechanisms. Primary EC cultures 
contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the 
perturbations used here only modestly shifted cells between subpopulations, suggesting relatively 
stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopula-
tions between in vitro and ex vivo models should pave the way for improving in vitro systems while 
enabling the mechanisms governing heterogeneous cell state decisions.

eLife assessment
This is a fundamental resource of snRNA- seq and chromatin accessibility data from human aortic 
endothelial cells (ECs), treated with relevant perturbations such as IL1b, TGFB2, or siERG. The 
authors show that ECs can be categorized by distinct subpopulations of differing plasticity. The 
support for the existence of these subpopulations is compelling, supported also by three publicly 
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available scRNA- seq datasets, and differential enrichment of coronary artery disease associated 
SNPs in open chromatin in these subpopulations.

Introduction
Endothelial cells (ECs) in the vascular endothelium maintain hemostasis, mediate vasodilation, and 
regulate the migration of leukocytes into tissues during inflammation. Dysfunctions of the endothe-
lium are a hallmark of the aging process and are also an important feature of diseases, including 
atherosclerosis. Atherosclerosis is an inflammatory process fueled by cholesterol and leukocyte accu-
mulation in the sub- endothelial layer of arteries. It is the underlying pathobiology of ischemic heart 
disease and the leading cause of morbidity and mortality worldwide due to heart attack and stroke 
(Brown et al., 2020; Hajra et al., 2000; Birdsey et al., 2015). Atherosclerosis of the coronary arteries 
is estimated to be about 50% genetic, with hundreds of genomic loci contributing to genetic risk 
(Marenberg et al., 1994; Aragam et al., 2022; Tcheandjieu et al., 2022). A major opportunity for 
better understanding the molecular basis for how disease progresses lies in identifying the genomic 
and downstream functions impaired by risk variants in disease- relevant cell types. Genetic studies 
are increasingly suggesting that a significant proportion of genetic risk for atherosclerosis is encoded 
in perturbed functions of vascular ECs (Aragam et al., 2022; Tcheandjieu et al., 2022; Kessler and 
Schunkert, 2021).

Single- cell sequencing technologies have begun to characterize the extent of EC molecular diver-
sity in vitro and in vivo (Zhao et al., 2018; Li et al., 2019; Kalluri et al., 2019; Liu et al., 2021; Kalucka 
et al., 2020; Rohlenova et al., 2020; Zhao et al., 2021a; Xu et al., 2020; Cheng et al., 2021; Khan 
et al., 2019; Andueza et al., 2020; Tombor et al., 2020). Genetically engineered, lineage- traced 
mouse models have also been instrumental for identifying which cells in atherosclerotic plaques arose 
from EC origin. These studies have demonstrated that many cells of EC origin in plaques lack canonical 
EC marker genes and luminal location (Evrard et al., 2016; Chen et al., 2012). As many as one- third 
of mesenchymal- like cells in plaques have been reported to be of endothelial origin (Evrard et al., 
2016), suggesting that phenotypic transition from endothelial to mesenchymal (EndMT) is a feature of 
atherosclerosis; however, whether EndMT is a cause or bystander of atherogenesis or plaque rupture 
is not fully understood. Although lineage tracing is not possible in humans, immunocytochemical 
techniques suggest that EC heterogeneity is prevalent in atherosclerotic vessels. These studies have 
described an unexpectedly large number of cells co- expressing pairs of endothelial and mesenchymal 
proteins, including fibroblast- activating protein/von Willebrand factor (FAP/VWF), fibroblast- specific 
protein- 1/VWF (FSP- 1/VWF), FAP/platelet- endothelial cell adhesion molecule- 1 (CD31 or PECAM- 
1), FSP- 1/CD31 (Evrard et al., 2016), phosphorylation of TGFB signaling intermediary SMAD2/FGF 
receptor 1 (p- SMAD2/FGFR1) (Chen et  al., 2015), and α-smooth muscle actin (αSMA)/PECAM- 1 
(Moonen et al., 2015). An important implication of this result is that the use of canonical EC markers 
to isolate or identify ECs will likely omit certain EC populations. The extent of EC molecular and func-
tional heterogeneity within a tissue during homeostasis and during disease is not well understood. 
One notable study exemplifying EC heterogeneity demonstrated that the EC- marker gene von Will-
ebrand Factor (VWF) was expressed only in a subset of ECs from the same murine vessel, and the 
penetrance of VWF expression across ECs was tissue- specific (Yuan et al., 2016). In a related study, 
expression of the leukocyte adhesion molecule VCAM- 1 was found to be upregulated by the pro- 
inflammatory cytokine tumor necrosis factor α only in some of the ECs of a monolayer (Turgeon et al., 
2020). In both studies, variability in DNA methylation on CpG dinucleotides at the gene promoters 
negatively correlated with VWF and VCAM- 1 expression. These findings raise the question as to how 
many molecular programs exist within ECs of a same tissue or culture, how this heterogeneity influ-
ences response to cellular perturbations, and what factors regulate these cellular states.

There are notable benefits and limitations for studying heterogeneity using in vitro and in vivo 
approaches in atherosclerosis research. In vitro approaches provide unique opportunities for inter-
rogating consequences of genetic and chemical perturbations in highly controlled environments and 
are adept at identifying mechanistic relationships on accelerated timelines. In vivo approaches benefit 
from the complexity of the crosstalk among all cell types and tissues of the organism and are adept 
for identifying how perturbations manifest in living systems. It reasons that the integration of results 
from both approaches will best accelerate discovery. However, comprehensive analysis comparing 
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heterogeneity of vascular ECs observed in vivo and in vitro remains unexplored. In the current study, 
we performed meta- analysis on four human in/ex vivo single- cell transcriptomic datasets (Pan et al., 
2020; Alsaigh et  al., 2022; Chowdhury et  al., 2022; Wirka et  al., 2019), containing 17 arterial 
samples, from mild- to- moderate calcified atherosclerotic plaques to evaluate the ability of the in vitro 
EC models to recapitulate molecular signatures observed in human atherosclerosis.

Human aortic endothelial cells (HAECs) are among the most appropriate cell type for in vitro 
modeling of the arterial endothelium in atherosclerosis research insofar as they are human cells, they 
are more readily available than coronary artery ECs, they are not of venous origin like human umbilical 
vein ECs, and they can be isolated from explants of healthy donor hearts during transplantation. We 
set forth in the current study to quantify heterogeneity among HAECs using multimodal sequencing 
that simultaneously measures transcripts using RNA- seq and accessible chromatin using ATAC- seq 
from the same barcoded nuclei. To provide estimates for heterogeneity due to genetic background, 
we molecularly phenotyped HAECs from six genetically distinct human donors. We also quantified 
single- cell responses to three perturbations known to be important in EC biology and atherosclerosis. 
The first was activation of transforming growth factor beta (TGFB) signaling, which is a hallmark of 
phenotypic transition and a regulator of EC heterogeneity (Evrard et al., 2016; van Meeteren and 
ten Dijke, 2012). The second was stimulation with the pro- inflammatory cytokine interleukin- 1 beta 
(IL1B), which has been shown to model inflammation and EndMT in vitro (Bujak et al., 2008; Bujak 
and Frangogiannis, 2009; Maleszewska et al., 2013; Chaudhuri et al., 2007; Sánchez- Duffhues 
et  al., 2019), and whose inhibition reduced adverse cardiovascular events in a large clinical trial 
(Ridker et al., 2017). The third perturbation utilized in our study was knockdown of the ETS- related 
gene (ERG), which encodes a transcription factor of critical importance for EC fate specification and 
homeostasis (Sperone et al., 2011; Fish et al., 2017; Lathen et al., 2014; Vijayaraj et al., 2012; 
Hogan et al., 2017).

Lastly, we examine whether epigenetic landscapes among heterogeneous EC subtypes observed 
in this study were differentially enriched for coronary artery disease (CAD) genetic risk variants. Taken 
together, this study provides evidence that EC heterogeneity is prevalent in vivo and in vitro and that 
not all ECs respond similarly to activating perturbations.

Results
EC single-cell transcriptomic profiles reveal a heterogeneous 
population
To systematically uncover the heterogeneity of molecular landscapes in ECs at single- cell resolution, 
we cultured primary HAECs isolated from luminal digests of ascending aortas from six de- identified 
heart transplant donors at low passage (passages 3–6) (Navab et al., 1988; Figure 1A). Using the 10X 
Genomics multiome kit (Genomics x, 2022a), single- nucleus mRNA expression (snRNA- seq) and chro-
matin accessibility (snATAC- seq) data were collected simultaneously for a total of 15,220 nuclei after 
stringent quality control (‘Materials and methods’). RNA and ATAC data were integrated separately by 
treatment condition and then with each other as reported previously (‘Materials and methods’; Hao 
et al., 2021).

snRNA- seq libraries were sequenced to a median depth of 29,732–84,476 reads and 2481–3938 
transcripts per nucleus (Supplementary file 1a and b). Five distinct EC subtypes (EC1, EC2, EC3, EC4, 
and EC5) were detected from the fully integrated dataset, which included all donors, treatments, and 
data types (Figure 1B). Subtypes EC1 and EC3 comprised cells from all donors, whereas EC2 and EC4 
contained cells from most donors, and EC5 was nearly exclusively populated by cells from a single 
donor (Figure 1C, Supplementary file 1c). Because we do not observe EC5 across multiple individ-
uals, we chose not to focus additional analysis on this subtype. Pathway enrichment of marker genes 
revealed EC1 to exhibit an angiogenic phenotype (WP4331, p- value 4.0 × 10–9; GO:0038084, p- value 
1.5 × 10–9) with enriched transcripts including KDR, GAB1, PGF, and NRP2 (Figure 1D–G, Figure 1—
figure supplement 1A). EC2 was enriched in proliferation (GO:1903047, p- value 7.4 × 10–35) with 
characteristic markers CENPE, CENPF, KIF11, KIF4A, and TOP2A (Figure 1D–G, Figure 1—figure 
supplement 1A). EC3 displayed enrichment in the ‘regulation of smooth muscle cell proliferation’ 
(GO:0048660; p- value 1.1 × 10–10) (Figure  1F). From the top 200 differentially expressed genes 
(DEGs) for EC3, we observed additional pathways enriched, including NABA CORE MATRISOME 
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Figure 1. Human aortic endothelial cell (HAEC) transcriptomic profiling discover a heterogeneous cell population. (A) Schematic diagram of the 
experimental design. Endothelial cells (ECs) were isolated from six human heart transplant donor’s ascending aortic trimmings and treated with IL1B, 
TGFB2, or siERG (ERG siRNA) for 7 d. (B) Weighted nearest- neighbor UMAP (WNNUMAP) of aggregate cells from all perturbations and donors is shown. 
Each dot represents a cell, and the proximity between each cell approximates their similarity of both transcriptional and epigenetic profiles. Colors 

Figure 1 continued on next page
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(M5884; p- value 1 × 10–34) and locomotion (GO:0040011; p- value 1.2 × 10–15), suggesting an activated 
mesenchymal- like phenotype (Figure 1—figure supplement 1B and C). A fourth subset, EC4, demon-
strates enrichment in ECM organization (GO:0097435; p- value 3.2 × 10–19), a process characteristic 
of mesenchymal cells, with distinctive expression of collagen genes, including COL1A1, COL1A2, 
COL3A1, and COL5A1 (Figure 1D–G, Figure 1—figure supplement 1A; Dahal et al., 2017; Kovacic 
et al., 2019). Top marker genes and pathways for each EC subtype are in Supplementary file 1d and 
e. These observations are in line with previous reports of angiogenic, proliferative, mesenchymal, and 
pro- coagulatory EC subtypes within ex vivo models (Li et al., 2019; Kalluri et al., 2019; Zhao et al., 
2021a; Tombor et al., 2020; Bondareva et al., 2022) and underscore the heterogeneity of transcrip-
tomic profiles in cultured HAECs.

EC subtypes exhibit distinct open chromatin profiles and enriched 
motifs
To investigate how different transcriptional signatures across ECs correspond to distinct chromatin 
states, we utilized the snATAC- seq portion of the multiome dataset. The snATAC- seq data were 
sequenced to a median depth of 22,939–126,122 reads with 3480–19,259 peaks called per nucleus 
(Supplementary file 1b and f). Of the 204,904 total identified peaks, 13,731 were differential across 
subtypes, with 79–8091 peaks uniquely accessible per EC subtype (Supplementary file 1h). Over 80% 
of total peaks were intergenic or intronic (Figure 2A and B) and most unique peaks were from EC2 
and EC4.

Transcription factor (TF) motif enrichment analysis using Signac (Stuart et al., 2021) was performed 
on differentially accessible regions (DARs) per EC subtype (Figure 2C). It is important to note that TFs 
within a TF family may share DNA- binding motifs and may not be distinguished by motifs alone. As 
a result, TF names from the Jaspar database (Fornes et al., 2020) indicate the TF family. We find the 
basic helix- loop- helix (bHLH) motif defined by the core sequence CANNTG enriched in EC1 peaks, 
including enrichments for ASCL2 (adjusted p- value 3.9 × 10–50), TCF12 (adjusted p- value 1.7 × 10–21), 
and BHLHE22(var.2) (adjusted p- value 5.7 × 10–48) (Figure 2C and D). ETS motifs, including ETV1 
(adjusted p- value 3.2 × 10–42 and 5.3 × 10–249, for EC1- 2, respectively), SPIB (adjusted p- value 7.9 × 
10–22 and 2.5 × 10–236, respectively), and GABPA (adjusted p- value 2.7 × 10–41 and 4.3 × 10–244, respec-
tively), were also enriched in EC1 as well as in EC2 peaks. These data are consistent with known roles 
for ETS TFs, including ERG and FLI1, in governing angiogenic and homeostatic endothelial pheno-
types (Nagai et al., 2018). Given that ERG expression (Figure 1E) correlated with incidence of the ETS 
motif in open chromatin (Figure 2D) across the nuclei, ERG is likely driving the EC1- 2 sub- phenotypes. 
The near- exact match in motifs between the ETV1 motif position weight matrix in Jaspar and the de 
novo enriched motif from ERG ChIP- seq in human aortic ECs (Hogan et al., 2017) further supports 
this conclusion (Figure 2E). In addition to ETS motifs, EC2 was enriched in ZFX (adjusted p- value 4.2 × 
10–86) and ZNF148 (adjusted p- value 1.1 × 10–126), which are C2H2 zinc finger motifs. C2H2 zinc finger 
motifs, as well as KLF4 (adjusted p- value 5.4 × 10–32 and 8.4 × 10–135, for EC1- 2, respectively), also 
show enrichment in EC1 and EC2. EC3 peaks are enriched for GATA motifs including GATA4 (adjusted 
p- value 3.1 × 10–8), GATA5 (adjusted p- value 8 × 10–11), GATA1::TAL1 (adjusted p- value 1.8 × 10–6), 
and bHLH motif BHLHE22(var.2) (adjusted p- value 0.01). EC4 open regions were uniquely enriched 
for TEA domain (TEAD) factors comprised of motifs named TEAD2 (adjusted p- value 1.2 × 10–238), 

denote cluster membership. (C) The proportion of cells from each donor for each EC subtype. (D) Gene expression across top markers for each cluster 
including pan EC (ERG), EC1 (KDR), EC2 (TOP2A), and EC4 (COL1A1). (E) Top markers for pan EC (PECAM1, CDH5, ERG), EC1 (KDR, PGF), EC2 (CENPE, 
TOP2A), EC3 (SEMA3C, ACKR3), EC4 (COL1A1, COL6A1), and EC5 (LRRC17, LAMA2). The size of the dot represents the percentage of cells within 
each EC subtype that express the given gene, while the shade of the dot represents the level of average expression (‘Avg. Expn.’ in the legend). (F) 
Heatmap of pathway enrichment analysis (PEA) results from submitting top 200 differentially expressed genes (DEGs; by ascending p- value) between EC 
subtypes. Rows (pathways) and columns (EC subtypes) are clustered based on -Log10(P). (G) Violin plots of top Metascape pathway module scores across 
EC subtypes. Module scores are generated for each cell barcode with the Seurat function AddModuleScore().

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Marker genes and pathways for endothelial clusters.

Figure supplement 2. Violin plot of XIST showing expected expression in female in vitro donor cells (1 and 3) and lack of expression in male in vitro 
donor cells (2, 4, 5, and 6).

Figure 1 continued
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TEAD3 (adjusted p- value 2.1 × 10–306), and TEAD4 (adjusted p- value 6.9 × 10–252) (Figure 2C and D). 
Notably, TEAD factors have been found as enriched in vascular smooth muscle cells (VSMCs) (Wirka 
et al., 2019; Örd et al., 2021), which is consistent with EC4 having the most mesenchymal phenotype 
of our EC subtypes.

Figure 2. Endothelial cells (ECs) have epigenetically distinct cell states. (A) Upset plot of differential peaks across EC subtypes. Intersection size 
represents the number of genes at each intersection, while set size represents the number of genes for each EC subtype. (B) Genomic annotation for 
the complete peak set. (C) Heatmap of top transcription factors (TFs) from motif enrichment analysis for marker peaks in each EC subtype. Top TFs for 
each EC subtype are selected based on ascending p- value. Rows (TFs) and columns (EC subtype) are clustered based on enrichment score (ES). (D) 
Feature plots and position weight matrices (PWMs) for top TF binding motifs for EC1 (TCF12), EC2 (ETV1), EC3 (GATA5), and EC4 (TEAD3). Per- cell motif 
activity scores are computed with chromVAR, and motif activities per cell are visualized using the Signac function FeaturePlot. (E), PWMs comparing 
Jaspar 2020 ETV1 motif to ERG motif reported in Hogan et al.

https://doi.org/10.7554/eLife.91729
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Taken together, these data demonstrate that EC1 and EC2 are the subtypes most canonically like 
‘healthy’ or angiogenic ECs insofar as they exhibit ETS motif enrichments. Additionally, we conclude 
that EC4 is the most mesenchymal EC insofar as it exhibits TEAD factor enrichments.

EC-activating perturbations modestly shift cells into the EC3 subtype
Embedded in the dataset of this study were three experimental conditions known to promote EndMT 
along with their respective controls. Each experimental condition was administered to between three 
and five genetically distinct HAEC cultures. The conditions included 7- day exposure to IL1B (10 ng/
ml), 7- day exposure to TGFB2 (10 ng/ml), and 7- day siRNA- mediated knockdown of ERG (siERG). The 
control for IL1B and TGFB2 treatments was 7- day growth in matched media lacking cytokine and the 
control for the siERG condition was transfection with scrambled RNA.

Figure 3. Endothelial cell (EC)- activating perturbations modestly shift cells into the EC3 subtype. (A) The proportion of cells in 7- day control and 7- day 
IL1B treatment are shown per human aortic endothelial cell (HAEC) donor and cluster on the top and for 7- day control and 7- day TGFB2 on the bottom. 
(B) The proportion of cells in 7- day siSCR control and 7- day siERG knockdown are shown per HAEC donor and cluster. EC1 was omitted in (A) due to 
lack of cells in both conditions.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Annotated western blots for Figure 3—figure supplement 3B where the leftmost six wells are shown from left to right as (1) the protein 
ladder (labeled in kD), (2) the lipofectamine transfected control, (3) the scrambled siRNA control, (4, 5) two lanes using different siRNAs against the TCF4 
gene (not relevant to these studies), and lastly, (6) siRNA against ERG.

Source data 2. Original western blots for ERG, annotated and uncropped.

Source data 3. Original western blots for H3, annotated and uncropped.

Source data 4. Original western blots for ERG, unannotated and uncropped.

Source data 5. Original western blots for H3, unannotated and uncropped.

Figure supplement 1. Principal component analysis using RNA- seq data.

Figure supplement 2. Receptor expression profiles across endothelial clusters.

Figure supplement 3. Validation of ERG knockdown.

https://doi.org/10.7554/eLife.91729
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The UMAP presented in Figure 1 includes all the nuclei profiled across donors and conditions. We 
hypothesized that EC4, the most mesenchymal cluster, would be enriched for cells exposed to IL1B, 
TGFB2, and/or siERG relative to the controls thereby consistent with the hypothesis that the EC4 
subtype were a consequence of EndMT. Detailed in Figure 3A and B are the relative proportions 
of cells from each experimental condition and donor by cluster. Contrary to our hypothesis, the EC4 
cluster was not enriched for cells that were treated with cytokine or siERG relative to the controls; in 
fact, there is a nonstatistically significant trend for decreased numbers of EC4 cells from these condi-
tions relative to controls insofar as all the donors with cells in EC4 show diminished proportions upon 
perturbation (Figure 3). The one cluster exhibiting increased proportions of cells upon perturbations 
was EC3, with three of four EC IL1B- exposed donors having increased proportions in EC3 (p=0.08 
by two- sided paired t- test; Figure 3A), four of five TGFB2- exposed donors having increased propor-
tions (p=0.04 by two- sided paired t- test; Figure 3A), and three of three donors having increased EC3 
proportions upon ERG knockdown (Figure 3B).

In addition to heterogeneity across EC clusters, data in Figure 3 underscores that there is hetero-
geneity among EC cultures. To quantify this effect, we performed principal component analysis (PCA) 
to evaluate the overall contributions that donor and experimental conditions have on variance in this 
dataset. We found that pro- EndMT perturbations elicited greater variance in RNA expression (38–56% 
of variance) than donor (17%–27% variance) (Figure 3—figure supplement 1A–C), supporting that 
the transcriptional and epigenetic programs elicited by experimental conditions have a greater overall 
consequence than donor. This finding provides the opportunity to elucidate how different EC clusters 
respond to pro- EndMT exposures across genetically distinct ECs.

Pro-EndMT perturbations in vitro elicit EC subtype-specific 
transcriptional responses
We next sought to evaluate the similarities and differences among pro- EndMT perturbations and 
evaluate the transcriptional response elicited in each EC subtype. Differential gene expression analysis 
was performed using pseudo- bulked profiles grouped by donor, subcluster, and experimental group-
ings (Supplementary file 1i).

Overall, we found heterogeneity in transcriptional responses across EC subtypes. While EC1 and 
EC2 transcripts were predominantly perturbed by siERG, the greatest number of transcripts differen-
tially expressed in EC3 were those responsive to IL1B, though siERG and TGFB2 also regulated tens 
to hundreds of transcripts in EC3. In contrast, transcripts in EC4 were predominantly responsive to 
TGFB2 (Figure 4A, Supplementary file 1i). With respect to EC4, we questioned whether transcripts 
were predominantly responsive to TGFB2 due to differences in expression of TGFB receptors. While 
we observed increased TGFBR1 expression in EC4, we observed relatively less expression of TGFBR2 
and ACVRL1 in EC4 when compared to EC1, EC2, and EC3 (Figure 3—figure supplement 2A). We 
next questioned whether EC3 transcripts were predominantly responsive to IL1B due to differences 
in IL1B receptor expression. Notably, we did not observe differences in IL1B receptor expression, 
suggesting that their transcription is not responsible for divergent EC responses across EC subtypes 
(Figure 3—figure supplement 2B). Interestingly, we did observe differential expression of IL1RL1 in 
EC2, which may influence EC2 response to cytokine (Figure 3—figure supplement 2B).

When comparing enriched pathways across perturbations, we observed that over 80% of transcripts 
differentially expressed by a treatment in EC4 were in response to TGFB2 (Figure 4A, Supplementary 
file 1i). TGFB2- affected transcripts for EC4 were enriched in invadopodia formation (R- HAS- 8941237; 
p- value 2.7 × 10–7) and anchoring fibril formation (R- HAS- 2214320; p- value 3.6 × 10–7) (Figure 4B). 
Notably, TGFB2- affected genes for EC3 share several mesenchymal- related enriched pathways with 
TGFB2- affected genes for EC4, including actin cytoskeleton organization (GO:0030036; p- value 4.4 × 
10–7), NABA CORE MATRISOME (M5884; p- value 2.8 × 10–7), and ECM organization (R- HSA- 1474244; 
p- value 5.4 × 10–7). TGFB2- attenuated transcripts unique to EC3 were enriched in platelet activation 
(GO:0030168; p- value 1.4 × 10–4) (Figure 4B).

Most transcripts affected in EC3 were responsive to IL1B (Figure 4A). Importantly, several EC3 
genes differentially expressed with IL1B were also affected with siERG (Figure  4A). IL1B- affected 
transcripts in EC3 are not enriched in mesenchymal- like pathways (Figure 4C). However, EC3 IL1B- 
attenuated genes are enriched in blood vessel development (GO:0032502; p- value 5.1 × 10–11), indi-
cating that this perturbation still has anti- endothelial effects (Figure 4C).

https://doi.org/10.7554/eLife.91729
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Figure 4. Endothelial cell (EC)- activating perturbations in vitro elicit EC subtype- specific transcriptional responses. (A) Upset plots of up- and 
downregulated differentially expressed genes (DEGs) across EC subtypes with siERG (gray), IL1B (pink), and TGFB2 (blue). Upset plots visualize 
intersections between sets in a matrix, where the columns of the matrix correspond to the sets, and the rows correspond to the intersections. 
Intersection size represents the number of genes at each intersection. (B) Pathway enrichment analysis (PEA) for EC3- 4 up- and downregulated DEGs 
with TGFB2 compared to control media. (C) PEA for EC2- 4 up- and downregulated DEGs with IL1B compared to control media. (D) PEA for EC1- 4 
up- and downregulated DEGs with siERG compared to siSCR. (E) PEA comparing up- and downregulated DEGs that are mutually exclusive and shared 
between IL1B and siERG in EC3.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Profiles of shared peaks and motif enrichments across endothelial subtypes.
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Most genes significantly affected by perturbations in EC1 and EC2 were responsive to siERG, 
likely due to their more endothelial- like phenotypes compared to EC3 and EC4 (Figure 4A). siERG- 
affected genes in EC1 and EC2 were enriched in COVID- 19 adverse outcome pathway (Zhang et al., 
2022) (WP4891; p- values 5 × 10–9 and 8.3 × 10–5, for EC1- 2, respectively) and AGE- RAGE signaling in 
diabetes (Deng et al., 2020) (hsa04933; p- values 8.9 × 10–16 and 1.9 × 10–20, respectively), while EC3 
siERG- perturbed genes are enriched with a unique metabolic profile demonstrated by enrichment in 
monosaccharide metabolic process (GO:0005996; p- value 1 × 10–6), carbohydrate metabolic process 
(GO:0005975; p- value 6.6 × 10–7), and aerobic glycolysis (WP4629; p- value 4.1 × 10–5) (Figure 4D). In 
contrast, EC4 siERG- induced genes are enriched in positive regulation of angiogenesis (GO:0045766; 
p- value 4.5 × 10–6), a function normally impaired in ERG- depleted ECs (Figure 4D; Fish et al., 2017).

Due to the role that ERG plays in inhibiting NF- KB- dependent inflammation in vitro and in vivo 
(Sperone et al., 2011), we set out to characterize mutually exclusive and shared pathways between 
IL1B and siERG (Figure 4E). Importantly, siERG, but not IL1B- perturbed genes, involves several previ-
ously mentioned metabolic processes including carbohydrate metabolic process (GO:0005975; p- value 
6.6 × 10–7), aerobic glycolysis (WP4629; p- value 4.1 × 10–5), and monosaccharide metabolic process 
(GO:0005996; p- value 1 × 10–6). This suggests differences in the ability of ERG and IL1B to modify 
metabolism. Interestingly, IL1B but not siERG upregulated interferon signaling and viral responsive 
pathways (GO:0051607, p- value 1 × 10–37; R- HSA- 913531, p- value 1 × 10–41). Shared IL1B- and siERG- 
upregulated genes were enriched in COVID- 19 adverse outcome pathway (WP4891; p- value 1.9 × 
10–9) (Zhang et al., 2022). Shared IL1B- and siERG- attenuated genes are enriched in several processes 
involving ribosomal proteins, including ribosome, cytoplasmic (CORUM:306; p- value 3.3 × 10–7), cyto-
plasmic ribosomal proteins (WP477; p- value 5.3 × 10–7), and peptide chain elongation (R- HSA- 156902; 
p- value 5.9 × 10–7) (Figure 4E). This finding indicates that the downregulation of ribosomal genes is 
a hallmark of inflammatory and ERG- depleted endothelium. Altogether, these data demonstrate the 
heterogeneity in EC subtype response to pro- EndMT perturbations.

In vitro EC EndMT models reorganize epigenetic landscapes with 
subtype specificity
To gain insight into gene regulatory mechanisms responsible for EC subtype transcriptional responses 
to IL1B, TGFB2, and siERG, we compared the effects of these perturbations on chromatin accessibility. 
Across all three treatments, we identified 4034 DARs (Supplementary file 1j, ‘Materials and methods’). 
The majority of DARs for EC1 and EC2 were responsive to siERG, while the majority of DARs for EC3 
were responsive to IL1B (Figure 4—figure supplement 1A, Supplementary file 1j). Interestingly, 
the epigenetic landscape of EC4 differs from its transcriptional response, insofar as most peaks were 
responsive to IL1B (not TGFB2) (Figure 4—figure supplement 1A, Supplementary file 1j). To inform 
the TFs likely bound to differentially accessible regulatory elements, motif enrichment analysis was 
performed (Figure 4—figure supplement 1B–D). Several distinct TF motifs were enriched across EC 
subtypes. For IL1B, we observed enrichment in KLF15 (adjusted p- value 5 × 10–10) (Kruppel- like factor 
15) in EC2 alone (Figure 4—figure supplement 1B). siERG- induced peaks showed subtype- specific 
motif enrichments, including TWIST1 (adjusted p- value 2.5 × 10–22) (twist family bHLH transcription 
factor 1), HAND2 (adjusted p- value 2.3 × 10–19) (heart and neural crest derivatives expressed 2) for 
EC1, RELA (adjusted p- value 9.5 × 10–20) (RELA proto- oncogene, NF- KB subunit) for EC2, and CEBPD 
(adjusted p- value 1.6 × 10–29) for EC3 (Figure 4—figure supplement 1C). Minimal motif enrichment 
was observed with siERG for EC4.

We also found several TF motifs enriched across more than one EC subtype upon perturbation. 
IL1B- affected peaks gained in EC1 and EC2 shared enrichments for TFDP1 (adjusted p- value 1.3 
× 10–4  and 9 × 10–4 for EC1 and EC2, respectively) (transcription factor Dp1) and ZBTB14 motifs 
(adjusted p- value 2.2 × 10–4 and 2 × 10–8, respectively) (zinc finger and BTB domain containing 14). 
IL1B- induced peaks in EC3 and EC4 shared enrichment for CEBPD (adjusted p- value 4.4 × 10–73 and 1.6 
× 10–33 for EC3 and EC4, respectively) and CEBPG motifs (adjusted p- value 5.4 × 10–45 and 7.1 × 10–18, 
respectively) (CCAAT enhancer binding protein delta and gamma) (Figure 4—figure supplement 1B). 
TGFB2- affected peaks in EC1, EC2, and EC3 shared enrichment for ZBTB14 (adjusted p- values 6.8 × 
10–31, 5.1 × 10–12, and 2 × 10–8, for EC1, EC2, and EC3, respectively) while TGFB2- induced peaks in 
EC3 and EC4 shared enrichment for the SMAD5 motif (adjusted p- value 7.4 × 10–6 and 4.2 × 10–11, 
for EC3 and EC4, respectively) (SMAD family member 5) (Figure 4—figure supplement 1D). Taken 
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together, while several enriched motifs are shared across EC subtypes, divergent epigenetic land-
scapes are also induced with pro- EndMT perturbations. We therefore conclude that different tran-
scriptional responses to these perturbations across EC subtypes are elicited by distinct TFs, including 
members of families of the KLF, TWIST, HAND, p65, and CEBP families.

Meta-analysis of ex vivo human atherosclerotic plaque snRNA-seq 
datasets
To understand the diversity of ECs in human atherosclerotic plaques and evaluate their relationships 
to our in vitro system, we performed a meta- analysis of data from recent publications that utilized 
scRNA- seq from human atherosclerotic lesions (Pan et al., 2020; Alsaigh et al., 2022; Chowdhury 
et al., 2022; Wirka et al., 2019; accessions in Supplementary file 1k). We identified 24 diverse clus-
ters among 58,129 cells after integration of 17 different coronary and carotid samples (Figure 5A and 
Supplementary file 1l). Clusters were annotated using a combinatorial approach including canon-
ical marker genes, CIPR (Ekiz et al., 2020), and the original publications (Figure 5B). Clusters were 
annotated as T- lymphocytes, natural killer T- cells, ECs, macrophages, VSMCs, fibroblasts, B- lympho-
cytes, basophils, neurons, and plasmacytoid dendritic cells (PDCs) (Figure 5A). We find the greatest 
proportion of cells belonging to each major cell type derive from carotid arteries, except for neurons 
that derive exclusively from coronary arteries, and PDCs that derive exclusively from carotid arteries 
(Figure 5—figure supplement 1B and C). Expected pathway enrichments are observed for anno-
tated cell types, including NABA CORE MATRISOME (M5884; p- value 4.8 × 10–41) for fibroblasts, 
blood vessel development (GO:0001568; p- value 5.6 × 10–33) for ECs, and actin cytoskeleton orga-
nization (GO:0030036; p- value 1.3 × 10–15) for VSMCs (Figure 5—figure supplement 1D–G). These 
observations support the diverse composition of human atherosclerotic lesions.

We evaluated what pathways distinguished the endothelial cells 1 (Endo1) and endothelial cells 
2 (Endo2) subtypes from our ex vivo meta- analysis (Figure  5C). We found Endo2 has an EndMT- 
related phenotype, with enrichment in mesenchymal pathways including NABA MATRISOME ASSO-
CIATED (M5885; p- value 1.6 × 10–14), ECM organization (R- HSA- 1474244; p- value 6 × 10–17), skeletal 
system development (GO:0001501; p- value 3.4 × 10–13), and network map of SARS- CoV- 2 signaling 
pathway (Zhang et  al., 2022) (WP5115; p- value 1.3 × 10–11) (Figure  5C and D). Additionally, we 
observe enrichment for inflammatory pathways in Endo2 including prostaglandin synthesis and regu-
lation (WP98; p- value 1.2 × 10–7), and complement and coagulation cascades (hsa04610; 1 × 10–10) 
(Figure 5C and D; Ricciotti and FitzGerald, 2011; Levi et al., 2004). On the contrary, Endo1 was 
highly enriched in multicellular organismal homeostasis (GO:0048871; p- value 3.3 × 10–8) and lowly 
enriched in mesenchymal pathways (M5885; p- value 1 × 10–3; no enrichment for R- HSA- 1474244, 
GO:0001501, or WP5115), indicating a canonical EC phenotype (Figure  5C and D). Interestingly, 
Endo1, but not Endo2, is highly enriched in ribosome, cytoplasmic pathway (CORUM:306; p- value 9.3 
× 10–96), and TRBP containing complex (CORUM:5380; DICER, RPL7A, EIF6, MOV10 and subunits of 
the 60S ribosomal particle; p- value 1.5 × 10–22), suggesting a potential protective role for this complex 
along with ribosomal gene expression (Ni and Buszczak, 2023; Suárez et al., 2007). The depletion of 
these pathways may serve as a hallmark of activated endothelium (Figure 5C–E). We interpret these 
results to suggest that Endo1 is a classical endothelial state, while Endo2 appears to be character-
ized by ECM production and possibly indicate EndMT. This interpretation is further corroborated by 
evidence of upregulation of several classical EndMT markers in Endo2, including FN1, BGN, COL8A1, 
ELN, CCN1, and FBLN5 (Figure 5—figure supplement 2; Krizbai et al., 2015; Zhao et al., 2021b; 
Pinto et al., 2018; Stenmark et al., 2016; Gole et al., 2022; Lee et al., 2008).

Ex vivo-derived module score analysis reveals differences among in 
vitro EC subtypes and EndMT stimuli
To directly evaluate the relationships between the ex vivo and in vitro cell subpopulations, we utilized 
module scores. These quantitative scores are based on the sum of ex vivo marker genes across each 
cluster and were used to evaluate similarity to each in vitro cell subcluster. Unexpectedly, the ex vivo 
cluster that consistently generated the greatest module scores for in vitro ECs is the VSMCs cluster 5 
(VSMC5) (Figure 5A, Figure 5—figure supplement 3A). VSMC5 bridges the EC to SMC and fibro-
blast clusters in the ex vivo analysis (Figure 5A). Marker genes of VSMC5 are expressed across ex 
vivo and in vitro clusters (Figure  5—figure supplement 4A) and include important regulators of 
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Figure 5. Endothelial cells (ECs) from ex vivo human atherosclerotic plaques show two major populations. (A) scRNA- seq UMAP of different cell 
subtypes across 17 samples of ex vivo human atherosclerotic plaques. (B) Dot plot of top markers for each cell type. (C) Heatmap of pathway enrichment 
analysis (PEA) results generated from submitting 200 differentially expressed genes (DEGs) between endothelial cells 1 (Endo1) and endothelial cells 
2 (Endo2). Rows (pathways) and columns (cell subtypes) are clustered based on -Log10(P). (E) Heatmap displaying expression of genes belonging to 
ribosome cytoplasmic pathway for Endo1 and Endo2.

Figure 5 continued on next page
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ECM, such as BGN, VCAN, FN1, as well as several collagen genes (COL1A1, COL1A2, COL3A1, 
COL6A1) (Figure 5—figure supplement 4A and B). VSMC5 marker transcripts also include several 
lncRNAs and mitochondrial transcripts (CARMN, MALAT1, NEAT1; MT- ATP6, MT- ND4, and MT- CYB) 
(Figure 5—figure supplement 4A). Ex vivo Endo1 and Endo2 module scores are the second highest 
scoring across in vitro clusters. Cells scoring high for Endo1 are concentrated in the in vitro EC1 
cluster, while cells scoring high in Endo2 are concentrated to the in vitro EC3 locale (Figure 5—figure 
supplement 3B–E). This supports that EC3 is a more activated subtype than EC1. Finally, among in 
vitro cells, those with highest VSMC5 module scores are concentrated in EC4, underscoring that EC4 
is a more mesenchymal sub- phenotype in vitro (Figure 5—figure supplement 3B–E).

We stratify these analyses by pro- EndMT treatment and find greater VSMC5 module scores with 
TGFB2 treatment versus control for EC3 (adjusted p- value=0.001) and EC4 (adjusted p- value=9.9 
× 10–15) (Figure 5—figure supplement 5A–C). However, there is no difference in VSMC5 module 
scores for EC1- 2 between control and TGFB2 treatment, suggesting these subtypes are resistant to 
transcriptional changes by TGFB2 exposure (i.e., EC1- 2). This is in contract to the more mesenchymal- 
like EC (i.e., EC3- 4) subtypes, which are more responsive to TGFB2 (Figure 5—figure supplement 
5A–C, Supplementary file 1l and m). We observe siERG lowers Endo1 scores across all EC subtypes 
(adjusted p=9.9 × 10–15 for EC1- 4), indicating ERG depletion decreases endothelial- likeness across 
all EC subtypes (Figure  5—figure supplement 5A–C, Supplementary file 1m and n). Moreover, 
siERG increases VSMC5 scores for EC2 (adjusted p=2.8 × 10–9) and EC3 (adjusted p- value 0.04), indi-
cating siERG elicits activated and mesenchymal characteristics (Figure 5—figure supplement 5A–C, 
Supplementary file 1m and n).

EC subtype is a major determinant in modeling cell states observed in 
atherosclerosis
In addition to module score analysis, we applied a complementary approach to quantitatively relate in 
vitro EC subtypes and pro- EndMT perturbations to ex vivo cell types. We calculate average expression 
profiles for all major cell populations in both ex vivo and in vitro datasets and examine the compre-
hensive pairwise relationship among populations with hierarchical clustering using Spearman Correla-
tion (Figure 6A). All in vitro transcripts significantly regulated across all pro- EndMT perturbations at 
5% false discovery rate (FDR) (Benjamini and Hochberg, 1995) are used in this analysis, although 
several additional means to select transcripts showed similar results. This analysis reveals three major 
observations. First, in vitro EC4 cells are most like mesenchymal ex vivo cell types, including VSMCs 
and fibroblasts (indicated by the yellow block of correlations in the bottom left of the heatmap in 
Figure 6A). Second, in vitro EC1, EC2, and EC3 are most like ex vivo Endo1 and Endo2 populations, 
especially among the siSCR and 7- day control cells. Moreover, cells in the siSCR condition in EC1 are 
most like ex vivo Endo1, reinforcing that these two populations are the most canonically ‘healthy’ 
endothelial populations. Third, while pro- EndMT perturbations did elicit variation in how similar in 
vitro ECs resembled ex vivo transcriptomic signatures, these effects are secondary to which subtype 
the cells belonged (Figure 6A). Taken together, these findings underscore that EC subtype, versus 
perturbation, is a greater determinant of similarity to ex vivo cell types.

CAD-associated genetic variants are enriched across EC subtype 
epigenomes
Genetic predisposition to CAD is approximately 50% heritable with hundreds to thousands of genetic 
loci supposed to be involved in shaping an individual’s propensity for disease (Drobni et al., 2022; 

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Characterization of RNA- seq profiles from ex vivo arterial samples.

Figure supplement 2. Violin plots displaying upregulation of several EndMT markers in Endo2, compared to Endo1, including FN1, BGN, COL8A1, 
ELN, CCN1, FBLN5.

Figure supplement 3. Cross comparisons between in vitro and ex vivo RNA- based module scores.

Figure supplement 4. Heatmap and pathway analysis for marker genes of the VSMC5 ex vivo cluster.

Figure supplement 5. Breakdown of ex vivo module scores across in vitro clusters and sample identity.

Figure 5 continued
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Figure 6. Endothelial cell (EC) subtype is a major determinant in the ability to recapitulate ‘omic profiles seen in atherosclerosis. (A) Heatmap displaying 
average expression between in vitro perturbation- subtype combinations and ex vivo cell subtypes using all up- and downregulated genes between 
IL1B, TGFB2, or siERG versus respective controls. Spearman correlation was used as the distance metric. Rows (in vitro EC subtypes) and columns (ex 
vivo cell subtypes) are clustered using all significant genes (adjusted p- value<0.05) induced and attenuated across all in vitro EC subtypes for each 

Figure 6 continued on next page
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McPherson and Tybjaerg- Hansen, 2016). Most CAD- associated variants are not protein coding, 
suggesting that they perturb cellular function through gene regulatory functions. We therefore asked 
whether the open chromatin regions in this in vitro dataset coincided with locations of single- nucleotide 
polymorphisms (SNPs) reported in the latest CAD meta- GWAS analysis from the Millions Veterans 
Project, which includes datasets from CARDIoGRAMplusC4D 1000G study, UK Biobank CAD study, 
and Biobank Japan (Tcheandjieu et al., 2022). We found significant enrichment in CAD- associated 
SNPs for the complete set of accessible regions across all EC subtypes (termed ‘panEC’; adjusted 
p- value 1.5e × 10–93; odds ratio [OR] = 1.8; Figure 6B, Supplementary file 1o and p) when comparing 
CAD SNPs exceeding the genome- wide significance threshold of p<5 × 10–8 versus nonsignificant 
SNPs (‘Materials and methods). Among accessible regions unique to EC subtypes, EC4 shows the 
greatest enrichment (adjusted p- value 7.85 × 10–6; OR = 1.74). Additionally, EC2 is also enriched for 
CAD SNPs (adjusted p- value 6.3 × 10–8; OR = 2.15), supporting a role for proliferative ECs in CAD. 
Of all accessible regions influenced by pro- EndMT perturbations, siERG and TGFB2 sets are most 
enriched for CAD variants (Figure 6B, Supplementary file 1o and p).

The measurement of both gene expression and DNA accessibility in the same cell enables testing 
for direct correlation, or ‘links’, between accessibility of noncoding DNA elements and gene expres-
sion of their potential regulatory targets (i.e., gene promoters). This is achieved by testing for correla-
tion between DNA accessibility and the expression of a nearby gene across single cells (Stuart et al., 
2021; Cao et al., 2018). Focusing on EC4, we search for EC4- specific sites of correlated chromatin 
accessibility and linked target gene expression. Upon restricting linked peaks overlapping CAD 
SNPs, we identify 81 significant SNP- peak- gene trios (p<0.05) representing 46 unique genes with 
specific activity in EC4 (Supplementary file 1q). We submit the 46 unique genes to Metascape (Zhou 
et al., 2019) and observe enrichment in EndMT- related pathways including blood vessel develop-
ment (GO:0001568; p- value 2.1 × 10–10), crosslinking of collagen fibrils (R- HSA- 2243919; p- value 1.4 
× 10–8), and canonical and non- canonical TGFB signaling (WP3874; p- value 2.2 × 10–6) (Figure 6—
figure supplement 1). Literature review of this gene list further confirms several linked EC4- restricted 
genes associated with cardiovascular disease, including COL4A1, COL4A2, PECAM1, DSP, and BMP6 
(Figure 6C–E; Liu et al., 2019; Yang et al., 2016; Woodfin et al., 2007).

Altogether, these data underscore that common genetic variation influences individual propensi-
ties for CAD through ECM- organizing functions evidenced by the EC4 phenotype.

Discussion
The major goals of this study were fourfold: (1) quantitatively assess molecular heterogeneity of 
cultured HAECs in vitro, (2) evaluate and compare molecular changes elicited by EC- activating pertur-
bations at single- cell resolution, (3) assess similarities between in vitro and ex vivo EC signatures to 
inform the extent to which in vitro models recapitulate ex vivo biology, and (4) investigate how hetero-
geneous EC populations are enriched for genetic associations to CAD. The findings for each of these 
goals are discussed below, along with important implications and questions arising from this work.

The multiomic single- cell profiles of 15,220  cells cultured in vitro from six individuals enabled 
the discovery of five EC subpopulations, named EC1, EC2, EC3, EC4, and EC5. Except for EC5, EC 
subpopulations were comprised of cells from multiple donors and perturbations, which lends credence 
to the reproducibility of these biological states. The loosely defined phenotypes, based on pathway 

perturbation versus its respective control. (B) Heatmap of coronary artery disease (CAD)- associated single- nucleotide polymorphism (SNP) enrichments 
across in vitro EC subtypes and perturbation–subtype combinations. Rows (EC subtypes and perturbation- subtype combinations) are clustered using 
-Log10(P) for enrichment in significant CAD- associated SNPs (p- value<5 × 10–8). Note that ‘diff’ represents peaks common to more than one EC subtype; 
it is found by subtracting EC1–5 subtype- specific peaks from the entire in vitro peak set (termed ‘panEC’). (C) Coverage plots displaying links for 
COL4A1/COL4A2 genes to EC4- specific peaks, including one overlapping with CAD- associated SNP rs9515203. (D) Coverage plot showing links for 
PECAM1 gene to EC4- specific peaks, including one overlapping with CAD- associated SNP rs1108591. (E) Coverage plot showing links for BMP6 gene to 
EC4- specific peaks, including one overlapping with CAD- associated SNP rs6597292.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Pathway enrichment analysis (PEA) of significant (p- value<0.05) EC4- linked genes that overlap with significant (p- value<10–8) 
coronary artery disease (CAD)- associated single- nucleotide polymorphism (SNP).

Figure 6 continued
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enrichment analysis, were healthy/angiogenic for EC1, proliferative for EC2, activated for EC3, and 
mesenchymal for EC4. Angiogenic (Li et al., 2019; Kalluri et al., 2019; Zhao et al., 2021a), prolifer-
ative (Tombor et al., 2020; Rodor et al., 2022), and mesenchymal (Tombor et al., 2020) ECs have 
been previously reported in the literature. The three activating perturbations (TGFB2, IL1B, siERG) 
had markedly unique effects on different EC subclusters, highlighting the fact that in vitro systems 
contain populations of discrete cell subtypes, or states, that respond divergently to even reduction-
istic experimental conditions. Implications of such heterogeneity include both a need to elucidate 
what factors dictate treatment responsiveness, as well as experimental design and data interpretation 
that considers heterogeneity of response. The exact origin of EC heterogeneity observed in this study 
is unknown. We consider it likely that EC1 EC2, EC3, and EC4 subpopulations, which were popu-
lated by most donors, date back to the original isolation of ECs from aortic trimmings, implying that 
different states were preserved across passage in the culture conditions. However, we cannot exclude 
the possibility that some of the subpopulations have expanded since seeding of the cultures. If that 
were the case, EC1, EC2, EC3, and EC4 represent reproducible cell states consequent to primary 
culture of arterial cells. In fact, the limited correlation with ex vivo data supports this interpretation. 
Future studies will be required to delineate the exact source of heterogeneity in these systems.

In this study, we set out to elucidate whether the mesenchymal phenotype of EC4 was an end- stage 
result of EndMT and whether TGFB2, IL1B, and/or siERG would increase the proportion of cells in EC4. 
As shown in Figure 3, this hypothesis was incorrect, and the only cluster with a modest increase in 
cell proportions upon stimulation was EC3. Moreover, while the percent of cells in EC3 increased with 
TGFB or IL1B, they decreased in EC4, suggesting trans- differentiation from EC4 into EC3 with these 
perturbations. We cannot exclude the possibility that EC3 is an EndMT cluster, although we would 
have expected more significant deviation from clusters EC1 and EC2. It is also possible that the post-
mortem state experienced by aortic explants prior to EC isolation could induce changes in the ECs, 
or that the duration and doses of perturbations chosen were not sufficient to elicit complete EndMT. 
While the duration and doses employed in our study were established based on literature reports 
reporting EndMT phenotypes (Maleszewska et al., 2013; Nagai et al., 2018; Medici et al., 2011), 
EndMT was quantified by expression of only a few marker genes rather than complete transcriptomic 
analysis. This raises an important conclusion of our study, which is that EndMT is not well- defined 
molecularly and it remains possible that several different molecular profiles may each represent variant 
flavors of EndMT.

We found that TGFB2, IL1B, and siERG have many distinct effects on EC molecular profiles 
(Figures 3 and 4). In general, TGFB2 elicits a greater transcriptomic and epigenomic response in 
the mesenchymal EC subtype, EC4, while siERG and IL1B regulate the greatest numbers of shared 
transcripts and chromatin regions in more endothelial clusters EC1, EC2, and EC3. One interpretation 
for this finding is that IL1B treatment and depletion of ERG directly affect rewiring transcription in 
ECs while TGFB2 may affect other cell types in the vascular wall (or culture plate) that in turn affect 
ECs through paracrine interactions. Part of the similarities between IL1B and siERG responses may be 
explained by the fact that ERG depletion increases IL1B production (Hogan et al., 2017).

A major question raised by this work is the origin of cells in the mesenchymal cluster EC4. We 
originally hypothesized this cluster was the result of EndMT, which led to our investigations as to 
whether we could leverage EndMT- promoting exposures (IL1B, TGFB2, siERG) in vitro observe an 
expansion of treated cells in the EC4 population. To our surprise, the EC4 population did not expand. 
If anything, these exposures reduced the proportion of cells in ECs (Figure 4). Nonetheless, it remains 
a possibility that EC4 represents cells that had undergone EndMT in vivo prior to culture and that the 
exposures we presented in vitro were not sufficient to elicit a complete EndMT transition. Another 
viable hypothesis is that cells in EC4 are of SMC origin and have persisted in culture alongside their 
EC counterparts. Cells used in this study were isolated by luminal collagenase digestion of explanted 
aortic segments and were tested at early passage for EC phenotypic markers including VWF expres-
sion, cobblestone morphology, and uptake of acetylated LDL. Notably, these rigorous metrics to 
ensure pure EC isolation occurred prior to our group’s studies. In addition, if some of the isolated cells 
had undergone EndMT in vivo prior to isolation, it would be nearly impossible to distinguish their cell 
of origin after isolation since their collective molecular phenotypes would appear as an SMC. Without 
lineage tracing, which is currently not possible in human tissue explants, it would not be possible to 
distinguish cell origin. Nonetheless, this remains an important issue that is the subject of ongoing 

https://doi.org/10.7554/eLife.91729


 Research article Chromosomes and Gene Expression | Genetics and Genomics

Adelus et al. eLife 2023;12:RP91729. DOI: https://doi.org/10.7554/eLife.91729  17 of 29

investigations. What we can confidently discern from these data is that these distinct cell subpopula-
tions respond differently to the disease- relevant exposures of IL1B, TGFB2, and ERG depletion.

The current study sought to evaluate similarities and differences between in vitro primary cultures 
of HAECs to ex vivo single- cell signatures of cells from human lesions. First, we leveraged transcrip-
tomic profiles from clusters in the scRNA meta- analysis of human lesions and evaluated each in vitro 
cluster using a module score (Figure 5, Figure 5—figure supplement 4). The three ex vivo clus-
ters with greatest similarity to in vitro clusters were Endo1, Endo2, and VSMC5. Pathway enrichment 
analysis suggested that the ex vivo Endo1 cluster is close to the classic ‘healthy’ EC state relative to 
Endo2, which returned pathway enrichments consistent with activated endothelium (Figure 5C and 
D). Interestingly, Endo2 is depleted in ribosome transcripts as well as transcripts in the Dicer complex 
(Figure 5C–E), which may serve as hallmarks of dysregulated endothelium in vivo. VSMC5 is an inter-
esting ex vivo cluster insofar as it spans the endothelial, fibroblast, and VSMC clusters (Figure 5A) and 
is enriched for genes in actin cytoskeleton, extracellular matrix organization, and more (Figure 5—
figure supplement 4). In vitro EC1, EC2, and EC3 score generally greater in Endo1 and Endo2 rela-
tive to the more mesenchymal EC4 (Figure 5—figure supplement 3). Consistent with the intent of 
the pro- EndMT treatments, they generally decrease Endo1 and Endo2 scores and increase VSMC5 
scores. However, these effects are unexceptional in comparison to effects of EC subtype. In addition 
to module scores, we also utilized unsupervised clustering of Spearman correlation coefficients across 
ex vivo and in vitro average gene expression profiles, finding again that EC1, EC2, and EC3 are more 
like Endo1 and Endo2 and EC4 is more like VSMCs (Figure 6A). As expected, the control (siSCR) cells 
are most correlated to healthy Endo1 transcriptomes; however, the correlation coefficient achieved 
is modest, at rho = 0.56. We cannot exclude the possibility that the moderate correlation coefficient 
observed between in vitro and ex vivo ECs may be explained by anatomic differences (i.e., aortic 
versus coronary and carotid arteries). While reinforcing that in vitro cell cultures best resemble ECs 
isolated ex vivo, regardless of perturbation, this finding accentuates how different cultured cells are 
and paves the way for quantitatively evaluating and improving in vitro models.

Finally, GWAS have established that hundreds of independent common genetic variants in human 
populations affect risk for CAD, yet discovering the causal mechanisms remains a major challenge 
given that most of the risk is in non- coding regions of the genome. One approach to prioritize causal 
variants in regulatory elements is through integration of open chromatin regions from the cell type 
and states of interest followed by expression quantitative trait loci (eQTL) or other linking evidence 
to target gene (Stolze et al., 2020; Toropainen et al., 2022). In the current study, we find significant 
enrichment for CAD- risk variants in open chromatin regions across the entire dataset (‘panEC’) as well 
as specifically for EC2 and EC4 subpopulations (Figure 6B, Supplementary file 1o- q). While EC3 
was found to be more sensitive to perturbations in our in vitro experiments, we did not expect to 
see CAD- related SNPs enriched in EC3 because plasticity does not necessarily imply a pathological 
process. Moreover, while EC3 and EC4 both have mesenchymal phenotypes, EC3 may represent a 
reversible state that is lacking in EC4. This hypothesis would explain the enrichment of EC4, but not 
EC3, in CAD- related SNPs.

Taken together, these data emphasize the value in multimodal datasets in human samples for prior-
itizing disease- associated SNPs and mechanisms.

Materials and methods
Tissue procurement and cell culture
Primary HAECs were isolated from eight deidentified deceased heart donor aortic trimmings 
(belonging to three females and five males of Admixed Americans, European, and East Asian ances-
tries) at the University of California Los Angeles Hospital as described previously (Navab et al., 1988; 
Supplementary file 1g). The only clinically relevant information collected for each donor was their 
genotype (see ‘Genotyping and multiplexing cell barcodes for donor identification‘). HAECs were 
isolated from the luminal surface of the aortic trimmings using collagenase and identified by Navab et 
al. using their typical cobblestone morphology, presence of Factor VIII- related antigen, and uptake of 
acetylated LDL labeled with 1,1′-dioctadecyl- 1–3,3,3′,3′-tetramethyl- indo- carbocyan- ine perchlorate 
(Di- acyetl- LD) (Navab et al., 1988). Cells were grown in culture in M- 199 (Thermo Fisher Scientific, 
Waltham, MA, MT- 10- 060- CV) supplemented with 1.2% sodium pyruvate (Thermo Fisher Scientific, 
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Cat# 11360070), 1% 100× Pen Strep Glutamine (Thermo Fisher Scientific, Cat# 10378016), 20% fetal 
bovine serum (GE Healthcare, Hyclone, Pittsburgh, PA), 1.6% Endothelial Cell Growth Serum (Corning, 
Corning, NY, Cat# 356006), 1.6% heparin, and 10 μl/50 ml Amphotericin B (Thermo Fisher Scientific, 
Cat# 15290018). Mycoplasma testing was not carried out on the cells used. HAECs at low passage 
(passages 3–6) were treated prior to harvest every 2 d for 7 d with either 10 ng/ml TGFB2 (Thermo 
Fisher Scientific, Cat# 302B2002CF), IL1B (Thermo Fisher Scientific, Cat# 201LB005CF), or no addi-
tional protein, or two doses of small interfering RNA for ERG locus (siERG; Supplementary file 1r), or 
randomized siRNA (siSCR; Supplementary file 1r). Donors 7 and 8 were treated prior to harvest for 
6 hr with either 1 ng/ml IL1B, or no additional protein, and included in the dataset during integration 
to generate the original UMAP (Figure 1B), but not used for the purposes of downstream analyses in 
this study (Supplementary file 1g). All HAECs used were authenticated based on morphology, gene 
expression profiles indicative of ECs, and donor genotypes. No commercially available cell lines were 
analyzed in this study.

siRNA knockdown, qPCR, and western blotting
Knockdown of ERG was performed as previously described (Hogan et al., 2017) using 1 nM siRNA 
oligonucleotides in OptiMEM (Thermo Fisher Scientific, Cat# 11058021) with Lipofectamine 2000 
(Thermo Fisher Scientific, Cat# 11668030). Transfections were performed in serum- free media for 4 hr, 
then cells were grown in full growth media for 48 hr. All siRNAs and qPCR primers used in this study 
are listed in Supplementary file 1r. Transfection efficiency for the siRNAs utilized in this study was 
verified using qPCR 7 d after transfection (Figure 3—figure supplement 3A). Protein knockdown is 
shown 2 d after transfection using the same siRNAs from a representative experiment (Figure 3—
figure supplement 3B). Antibodies used included 1:1000 recombinant anti- ERG antibody (ab133264) 
and 1:5000 anti- histone H3 antibody (ab1791) (Abcam). Western blots were quantified using ImageJ 
(Schneider et al., 2012).

Nuclear dissociation and library preparation
Nuclei from primary cells were isolated according to 10X Genomics Nuclei Isolation for Single Cell 
Multiome ATAC+Gene Expression Sequencing Demonstrated Protocol (CG000365, Rev C) (Genomics 
x, 2022b). Nuclei were pooled isolated with lysis buffer consisting of 10 mM Tris- HCl (pH 7.5, Invi-
trogen, Cat# 15567027), 10  mM NaCl (Invitrogen, Cat# AM9759), 3  mM MgCl2 (Alfa Aesar, Cat# 
J61014), 0.1% Tween- 20 (Thermo Fisher Scientific, Cat# 9005- 64- 5), 0.1% IGEPAL CA- 630 (Thermo 
Fisher Scientific, Cat# J61055.AP), 0.01% Digitonin (Thermo Fisher Scientific, Cat# BN2006), 1% BSA 
(Sigma- Aldrich, Cat# A2153), 1 mM DTT (Thermo Fisher Scientific, Cat# 707265 ML), 1 U/μl RNase 
inhibitor (Sigma Protector RNase inhibitor; Cat# 3335402001), and nuclease- free water (Invitrogen, 
Cat# 10977015). The seven pooled samples were incubated on ice for 6.5 min with 100 μl lysis buffer 
and washed three times with 1 ml wash buffer consisting of 10 mM Tris–HCl, 10 mM NaCl, 3 mM 
MgCl2, 1% BSA, 0.1% Tween- 20, 1 mM DTT, 1 U/μl RNase inhibitor, and nuclease- free water. Samples 
were centrifuged at 500 rcf for 5 min at 4°C, and the pellets were resuspended in chilled Diluted 
Nuclei Buffer consisting of 1× Nuclei Buffer (20×) (10X Genomics), 1 mM DTT (Thermo Fisher Scien-
tific, Cat# 707265 ML), 1 U/μl RNase inhibitor, and nuclease- free water. The homogenate was filtered 
through a 40 μm cell strainer (Flowmi, Cat# BAH136800040) prior to proceeding immediately to 10X 
Chromium library preparation according to the manufacturer’s protocol (CG000338).

Genotyping and multiplexing cell barcodes for donor identification
Genotyping of HAEC donors was performed as described previously (Stolze et al., 2020). Briefly, 
IMPUTE2 (Howie et al., 2009) was used to impute genotypes utilizing all populations from the 1000 
Genomes Project reference panel (phase 3) (1000 Genomes Project Consortium et al., 2015). Geno-
types were called for imputed SNPs with allelic R2 values greater than 0.9. Mapping between genomic 
coordinates was performed using liftOver (Kuhn et al., 2013). VCF files were subset by genotypes for 
the donors of interest using VCFtools (Danecek et al., 2011).

To identify donors across the in vitro dataset, snATAC- and snRNA- seq output BAM files from Cell 
Ranger ARC (10X Genomics, v.2.0.0; Genomics x, 2022a) were concatenated, sorted, and indexed 
using samtools (Danecek et al., 2021). The concatenated BAM files were input with the genotype 
VCF file to demuxlet (Kang et al., 2018) to identify best matched donors for each cell barcode, using 
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options ‘–field GT’. Verification of accurate donor identification was confirmed by visualizing female 
sex- specific XIST for the known donor sexes (Figure 1—figure supplement 2).

snRNA-seq bioinformatics workflow
A target of 10,000 nuclei were loaded onto each lane. Libraries were sequenced on NovaSeq6000. 
Reads were aligned to the GRCh38 (hg38) reference genome and quantified using Cell Ranger ARC 
(10X Genomics, v.2.0.0; Genomics x, 2022a). Datasets were subsequently preprocessed for RNA indi-
vidually with Seurat version 4.3.0 (Hao et al., 2021). Seurat objects were created from each dataset, 
and cells with <500 counts were removed. This is a quality control step as it is thought that cells 
with low number of counts are poor data quality. Similarly, for each cell, the percentage of counts 
that come from mitochondrial genes was determined. Cells with >20% mitochondrial gene percent 
expression (which are thought to be of low quality, possibly due to membrane rupture) were excluded. 
Demuxlet (Kang et  al., 2018) was next used to remove doublets. The filtered library was subset 
and merged by pro- EndMT perturbation. Data were normalized with NormalizeData, and cell cycle 
regression was performed by generating cell cycle phase scores for each cell using CellCycleScoring, 
followed by regression of these using ScaleData (Luecken and Theis, 2019). Batch effects by treat-
ment were corrected using FindIntegrationAnchors using 10,000 anchors, followed by IntegrateData.

snATAC-seq bioinformatics workflow
A target of 10,000 nuclei were loaded onto each lane. Libraries were sequenced on an NovaSeq 
6000 according to manufacturer’s specifications at the University of Chicago. Reads were aligned to 
the GRCh38 (hg38) reference genome and quantified using Cell Ranger ARC (10X Genomics, v.2.0.0; 
Genomics x, 2022a). Datasets were subsequently preprocessed for ATAC individually with Seurat 
v4.3.0 (Hao et al., 2021) and Signac v1.6.0 (Heidecker et al., 2010) to remove low- quality nuclei 
(nucleosome signal >2, transcription start site enrichment <1, ATAC count <500, and % mitochondrial 
genes >20) (Hao et al., 2021). Next, demuxlet (Kang et al., 2018) was used to remove doublets. A 
common peak set was quantified across snATAC- seq libraries using FeatureMatrix, prior to merging 
each lane. A series of two iterative peak calling steps were performed. The first step consisted of 
calling peaks for every EndMT perturbation, and the second involved calling peaks for every cluster 
generated from weighted nearest- neighbor analysis (WNN) (see ‘Integration and weighted nearest- 
neighbor analyses’). Latent semantic indexing (LSI) was computed after each iterative peak calling 
step using Signac standard workflow (Stuart et al., 2021). Batch effects by treatment were finally 
corrected using FindIntegrationAnchors using 10,000 anchors, followed by IntegrateData.

Integration and weighted nearest-neighbor analyses
Following snRNA- seq and snATAC- seq quality control filtering, barcodes for each modality were 
matched, and both datasets were combined by adding the snATAC- seq assay and integrated LSI 
to the snRNA- seq assay. WNN (Hao et  al., 2021) was next calculated on the combined dataset, 
followed by joint UMAP (WNNUMAP) visualization using Signac (Stuart et al., 2021) functions FindMul-
timodalNeighbors, RunUMAP, and FindClusters, respectively. WNN is an unsupervised framework to 
learn the relative utility of each data type in each cell, enabling an integrative analysis of multimodal 
datasets. This process involves learning cell- specific modality ‘weights’ and constructing a WNNUMAP 
that integrates the modalities. The subtypes discovered in the first round of WNN were utilized in an 
additional peak calling step for snATAC- seq, followed by LSI computation, re- integration, and a final 
round of WNN to achieve optimal peak predictions (see ‘Single- Nucleus ATAC sequencing bioinfor-
matics workflow’) (Yan et al., 2020).

Differential expression and accessibility region analyses across EC 
subtypes and EndMT perturbation–subtype combinations
Differential expression between clusters was computed by constructing a logistic regression (LR) 
model predicting group membership based on the expression of a given gene in the set of cells being 
compared. The LR model included pro- EndMT perturbation as a latent variable and was compared 
to a null model using a likelihood ratio test. This was performed using Seurat FindMarkers, with ‘ 
test. use= LR’ and ‘ latent. vars’ set to perturbation. Differential expression between perturbation and 
control for each cluster was performed using pseudobulk method with DESeq2 (Love et al., 2014). 
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Raw RNA counts were extracted for each EndMT perturbation- subtype combination and counts, and 
metadata were aggregated to the sample level.

Differential accessibility between EC subtypes was performed using FindMarkers, with ‘ test. use= 
LR’ and  latent. vars set to both the number of reads in peaks and perturbation. Finally, differential 
accessibility between perturbation and control for each cluster was performed using FindMarkers, 
with ‘ test. use= LR’ and  latent. vars set to the number of reads in peaks.

Bonferroni- adjusted p- values were used to determine significance at adjusted p- value<0.05 for 
differential expression, and p- value<0.005 for differential accessibility (Benjamini and Hochberg, 
1995).

Pathway enrichment analysis
Pathway enrichment analysis (PEA) was performed using Metascape (Zhou et al., 2019). Top DEGs for 
each EC subtype or subtype–perturbation were sorted based on ascending p- value. Genes listed for 
each pathway were pulled from the Metacape results file, ‘_ FINAL_ GO. csv’. For heatmaps produced 
by metascape, top 20 or 100 pathways were pulled from  Metascape. png files, ‘ HeatmapSelectedGO. 
png’, ‘ Heat mapS elec tedG OParent. png’, or ‘ Heat mapS elec tedG OTop100. png’.

Motif enrichment analysis
A hypergeometric test was used to test for overrepresentation of each DNA motif in the set of differen-
tially accessible peaks compared to a background set of peaks. We tested motifs present in the Jaspar 
database (2020 release) (Fornes et al., 2020) by first identifying which peaks contained each motif 
using motifmatchr R package (https://bioconductor.org/packages/motifmatchr). We computed the 
GC content (percentage of G and C nucleotides) for each differentially accessible peak and sampled a 
background set of 40,000 peaks matched for GC content (Stuart et al., 2021). Per- cell motif activity 
scores were computed by running chromVAR (Schep et al., 2017), and visualized using Seurat (Hao 
et al., 2021) function FeaturePlot.

Human atherosclerosis scRNA-seq public data download, mapping, and 
integration across samples
Count matrices of 17 samples taken from four different published scRNA- seq datasets were down-
loaded from the NCBI Gene Expression Omnibus (accessions listed in Supplementary file 1k), 
processed using Cell Ranger (10X Genomics Cell Ranger 6.0.0; Zheng et al., 2017) with reference 
GRCh38 (version refdata- gex- GRCh38- 2020- A, 10X Genomics), and analyzed using Seurat version 
4.3.0 (Hao et al., 2021). Seurat objects were created from each dataset, and cells with <500 counts 
and  >20% mitochondrial gene percent expression were excluded. Additionally, doublets were 
removed using DoubletFinder (McGinnis et al., 2019), which predicts doublets according to each 
real cell’s proximity in gene expression space to artificial doublets created by averaging the transcrip-
tional profile of randomly chosen cell pairs. Next, normalization and variance stabilization, followed 
by PC analysis for 30 PCs, were performed in Seurat (Hao et al., 2021) using default parameters. 
Batch effects across the 17 samples were corrected using Seurat functions (Hao et al., 2021) FindIn-
tegrationAnchors using 10,000 anchors, followed by IntegrateData. During the integration step, cell 
cycle regression was performed by assigning cell cycle scores with Seurat (Hao et al., 2021) function 
CellCycleScoring. The ex vivo dataset was first visualized, and canonical markers were identified for 
annotating cell types using FindAllMarkers.

Module scoring
FindAllMarkers was used to identify the top DEGs between each ex vivo cell subtype. Cells from the in 
vitro dataset were assigned an ex vivo cell subtype module score using Seurat (Hao et al., 2021) func-
tion AddModuleScore. The difference in module score between each in vitro EC subtype was estab-
lished using Wilcoxon rank sum test with continuity correction and a two- sided alternative hypothesis.

Comparison of ex vivo snRNA-seq data to in vitro snRNA-seq data
Meta- analyzed ex vivo human scRNA- seq data and in vitro snRNA- seq data were compared. Gene 
expression values for each ex vivo cell subtype and in vitro EC subtype–perturbation were produced 
using the AverageExpression function in Seurat (Hao et al., 2021) (which exponentiates log data, 
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therefore output is depth normalized in non- log space). Figure 6A was generated using hclust func-
tion in R (Murtagh and Legendre, 2014). Spearman correlation was used as the distance metric. 
Sample clustering was performed using all significant genes (adjusted p- value <0.05) induced and 
attenuated across all in vitro EC subtypes for each pro- EndMT perturbation versus its respective 
control. Figure 5—figure supplement 4A was made using average expression data for marker genes 
for each ex vivo cell subtype. Hierarchical clustering across ex vivo cell subtypes was performed using 
hclust function in R (Murtagh and Legendre, 2014) using average expression as the distance metric 
for a given gene.

GWAS SNP enrichment analysis
The SNPs associated with CAD were extracted from the most recent available meta- analysis (Tchean-
djieu et al., 2022). We utilized a matched background of SNPs pulled from 1000 Genomes Project 
reference panel (phase 3) (1000 Genomes Project Consortium et  al., 2015), which were filtered 
using PLINK (Purcell et al., 2007) v1.90b5.3 with the following settings: ‘--maf 0.01’, ‘--geno 0.05’. 
Mapping between genomic coordinates was performed using liftOver (Kuhn et al., 2013). To eval-
uate for enrichment in CAD- associated SNPs for each EC subtype and perturbation- subtype peak 
set, traseR package in R (traseR) (Chen and Qin, 2016) was used with the following: ‘ test. method’ = 
‘fisher’, ‘alternative’ = ‘greater’.

Peak-to-gene linkage
We estimated a linkage score for each peak- gene pair using the LinksPeaks function in Signac (Stuart 
et al., 2021). For each gene, we computed the Pearson correlation coefficient r between the gene 
expression and the accessibility of each peak within 500  kb of the gene TSS. For each peak, we 
then computed a background set of expected correlation coefficients given properties of the peak 
by randomly sampling 200 peaks located on a different chromosome to the gene, matched for GC 
content, accessibility, and sequence length (MatchRegionStats function in Signac). We then computed 
the Pearson correlation between the expression of the gene and the set of background peaks. A 
z score was computed for each peak as z = (r − μ)/σ, where μ is the background mean correlation 
coefficient and σ is the SD of the background correlation coefficients for the peak. We computed a 
p- value for each peak using a one- sided z- test and retained peak- gene links with a p- value<0.05 and 
a Pearson correlation coefficient. The results were restricted to peak regions that overlapped with 
significant CAD- associated SNPs (see ‘GWAS SNP enrichment analysis’).

Data visualization
Data visualizations were performed using Seurat functions DimPlot, DotPlot, FeaturePlot, and VlnPlot. 
Other data visualizations were performed using ggplot2 (for stacked bar graphs) (Villanueva and 
Chen, 2019), UpSetR (for UpSet plots) (Conway et al., 2001), pheatmap (for DEG and DAR analysis 
heatmaps), and heatmap.2 (for Spearman’s rank correlation coefficient heatmap and Figure 5—figure 
supplement 4A; Warnes et al., 2016).
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each gene is tested for differential expression between cells of each cluster and the cells outside 
of that cluster. p_val corresponds to the p- value of the Wilcoxon rank sum test, avg_log2FC is the 
log2- fold change in expression of the marker for the average cell in the cell type, cell type is the 
collapsed cluster of cells for which the marker was discovered, gene is the markers, pct.1 is the 
percentage of cells expressing the marker within the tested cluster, pct.2 is the percentage of cells 
expressing the marker outside the cluster, and p_val_adj is the Bonferroni adjusted p- value (based 
on the number of genes tested). (m) Effect of EndMT perturbation on in vitro EC subtypes according 
to ex vivo cell type module scores: Adjusted p- values<0.05 are generated using Wilcoxon rank sum 
test with continuity correction setting alternative hypothesis to ‘ two. sided’. Colored arrows represent 
significantly (adjusted p- value<0.05) upregulated (green) and downregulated (red) module scores 
for each EC sub- phenotype and perturbation combination. (n) Results table for effect of EndMT 
perturbation on in vitro EC subtypes according to ex vivo cell type module scores: Adjusted p- 
values<0.05 are generated using Wilcoxon rank sum test with continuity correction setting alternative 
hypothesis to ‘ two. sided’. (o) SNP enrichment analysis results across clusters and perturbation- cluster 
combinations: briefly, SNP enrichment analysis was used with traseR with ' test. method' set to ‘fisher’ 
and 'alternative' set to ‘greater’. (p) Significantly enriched SNPs (adjusted p- value<0.05) across 
clusters and perturbation- cluster combinations: briefly, SNP enrichment analysis was used with traseR 
with ' test. method' set to ‘fisher’ and 'alternative' set to ‘greater’. (q) Significant links between genes 
and EC4- specific peaks which overlap with CAD- associated SNPs (p- value<0.05): Briefly, peak- to- 
gene linkage was performed using Signac ‘LinkPeaks’ function on a dataset consisting of EC4- specific 
peaks and genes. Results were filtered based on peak regions which overlap with significant (p<5e- 8) 
CAD associated SNPs. (r) siRNAs and qPCR primers used in this study. siERG #1, #2, #4, and #5 were 
pooled together. Non- targeting siRNA (siSCR) #3 and #4 were pooled together.

•  MDAR checklist 

Data availability
Sequencing data have been deposited in GEO under accession code GSE228428. This project utilized 
data deposited previously in GEO accessions GSE155512, GSE159677, and GSE131778. The code 
used for analysis can be found in GitHub at https://github.com/cromanoski/Adelus_2024_Elife/ (copy 
archived at Romanoski, 2024).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Adelus ML, Ding 
J, Tran BT, Conklin 
AC, Golebiewski AK, 
Stolze LK, Whalen 
MB, Cusanovich DA, 
Romanoski CE

2023 Multiomic profiling of in 
vitro models of endothelial- 
to- mesenchymal transition 
reveals endothelial 
cell subtype is a major 
determinant of fidelity 
to observed states in 
atherosclerosis

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE228428

NCBI Gene Expression 
Omnibus, GSE228428

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Huize P, Chenyi X 2020 Single- cell genomics 
reveals a novel cell state 
during smooth muscle 
cell phenotypic switching 
and potential therapeutic 
targets for atherosclerosis 
in mouse and human

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE155512

NCBI Gene Expression 
Omnibus, GSE155512

Alsaigh T, Evans D, 
Frankel D, Torkamani 
A

2020 Decoding the 
transcriptome of calcified 
atherosclerotic plaque at 
single- cell resolution

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE159677

NCBI Gene Expression 
Omnibus, GSE159677
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Author(s) Year Dataset title Dataset URL Database and Identifier

Wirka RC, Wagh D, 
Paik DT, Pjanic M, 
Nguyen T, Miller CL, 
Kundu R, Nagao M, 
Coller J, Koyano T, 
Fong R, Woo YJ, 
Liu B, Montgomery 
SB, Zhu K, Chang 
R, Alamprese M, 
Tallquist MD, Kim JB, 
Quertermous T, Wu J

2019 Single cell analysis of 
smooth muscle cell 
phenotypic modulation in 
vivo during disease in mice 
and humans

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE131778

NCBI Gene Expression 
Omnibus, GSE131778

References
1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, 

Marchini JL, McCarthy S, McVean GA, Abecasis GR. 2015. A global reference for human genetic variation. 
Nature 526:68–74. DOI: https://doi.org/10.1038/nature15393, PMID: 26432245

Alsaigh T, Evans D, Frankel D, Torkamani A. 2022. Decoding the transcriptome of calcified atherosclerotic 
plaque at single- cell resolution. Communications Biology 5:1084. DOI: https://doi.org/10.1038/s42003-022- 
04056-7, PMID: 36224302

Andueza A, Kumar S, Kim J, Kang D- W, Mumme HL, Perez JI, Villa- Roel N, Jo H. 2020. Endothelial 
reprogramming by disturbed flow revealed by Single- Cell RNA and chromatin accessibility study. Cell Reports 
33:108491. DOI: https://doi.org/10.1016/j.celrep.2020.108491, PMID: 33326796

Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, Weeks EM, Wang M, Hindy G, Zhou W, Grace C, 
Roselli C, Marston NA, Kamanu FK, Surakka I, Venegas LM, Sherliker P, Koyama S, Ishigaki K, Åsvold BO, et al. 
2022. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a 
million participants. Nature Genetics 54:1803–1815. DOI: https://doi.org/10.1038/s41588-022-01233-6, PMID: 
36474045

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society 57:289–300. DOI: https://doi.org/10.1111/j.2517-6161. 
1995.tb02031.x

Birdsey GM, Shah AV, Dufton N, Reynolds LE, Osuna Almagro L, Yang Y, Aspalter IM, Khan ST, Mason JC, 
Dejana E, Göttgens B, Hodivala- Dilke K, Gerhardt H, Adams RH, Randi AM. 2015. The endothelial transcription 
factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Developmental Cell 
32:82–96. DOI: https://doi.org/10.1016/j.devcel.2014.11.016, PMID: 25584796

Bondareva O, Rodríguez- Aguilera JR, Oliveira F, Liao L, Rose A, Gupta A, Singh K, Geier F, Schuster J, 
Boeckel J- N, Buescher JM, Kohli S, Klöting N, Isermann B, Blüher M, Sheikh BN. 2022 Single- cell profiling of 
vascular endothelial cells reveals progressive organ- specific vulnerabilities during obesity. Nature Metabolism 
4:1591–1610. DOI: https://doi.org/10.1038/s42255-022-00674-x

Brown JC, Gerhardt TE, Kwon E. 2020. Risk factors for coronary artery disease. StatPearls.
Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A, Frangogiannis NG. 2008. Interleukin- 1 receptor 

type I signaling critically regulates infarct healing and cardiac remodeling. The American Journal of Pathology 
173:57–67. DOI: https://doi.org/10.2353/ajpath.2008.070974, PMID: 18535174

Bujak M, Frangogiannis NG. 2009. The role of IL- 1 in the pathogenesis of heart disease. Archivum Immunologiae 
et Therapiae Experimentalis 57:165–176. DOI: https://doi.org/10.1007/s00005-009-0024-y, PMID: 19479203

Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline- Figueroa JL, Packer JS, 
Christiansen L, Steemers FJ, Adey AC, Trapnell C, Shendure J. 2018. Joint profiling of chromatin accessibility 
and gene expression in thousands of single cells. Science 361:1380–1385. DOI: https://doi.org/10.1126/ 
science.aau0730, PMID: 30166440

Chaudhuri V, Zhou L, Karasek M. 2007. Inflammatory cytokines induce the transformation of human dermal 
microvascular endothelial cells into myofibroblasts: a potential role in skin fibrogenesis. Journal of 
Cutaneous Pathology 34:146–153. DOI: https://doi.org/10.1111/j.1600-0560.2006.00584.x, PMID: 
17244026

Chen P- Y, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG, 
Kotelianski V, Wang F, Tellides G, Simons M. 2012. FGF regulates TGF-β signaling and endothelial- to- 
mesenchymal transition via control of let- 7 miRNA expression. Cell Reports 2:1684–1696. DOI: https://doi.org/ 
10.1016/j.celrep.2012.10.021, PMID: 23200853

Chen P- Y, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M. 2015. Endothelial- 
to- mesenchymal transition drives atherosclerosis progression. The Journal of Clinical Investigation 125:4514–
4528. DOI: https://doi.org/10.1172/JCI82719, PMID: 26517696

Chen L, Qin ZS. 2016. traseR: an R package for performing trait- associated SNP enrichment analysis in genomic 
intervals. Bioinformatics 32:1214–1216. DOI: https://doi.org/10.1093/bioinformatics/btv741, PMID: 26685307

 Continued

https://doi.org/10.7554/eLife.91729
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131778
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131778
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131778
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131778
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1038/s42003-022-04056-7
https://doi.org/10.1038/s42003-022-04056-7
http://www.ncbi.nlm.nih.gov/pubmed/36224302
https://doi.org/10.1016/j.celrep.2020.108491
http://www.ncbi.nlm.nih.gov/pubmed/33326796
https://doi.org/10.1038/s41588-022-01233-6
http://www.ncbi.nlm.nih.gov/pubmed/36474045
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.devcel.2014.11.016
http://www.ncbi.nlm.nih.gov/pubmed/25584796
https://doi.org/10.1038/s42255-022-00674-x
https://doi.org/10.2353/ajpath.2008.070974
http://www.ncbi.nlm.nih.gov/pubmed/18535174
https://doi.org/10.1007/s00005-009-0024-y
http://www.ncbi.nlm.nih.gov/pubmed/19479203
https://doi.org/10.1126/science.aau0730
https://doi.org/10.1126/science.aau0730
http://www.ncbi.nlm.nih.gov/pubmed/30166440
https://doi.org/10.1111/j.1600-0560.2006.00584.x
http://www.ncbi.nlm.nih.gov/pubmed/17244026
https://doi.org/10.1016/j.celrep.2012.10.021
https://doi.org/10.1016/j.celrep.2012.10.021
http://www.ncbi.nlm.nih.gov/pubmed/23200853
https://doi.org/10.1172/JCI82719
http://www.ncbi.nlm.nih.gov/pubmed/26517696
https://doi.org/10.1093/bioinformatics/btv741
http://www.ncbi.nlm.nih.gov/pubmed/26685307


 Research article Chromosomes and Gene Expression | Genetics and Genomics

Adelus et al. eLife 2023;12:RP91729. DOI: https://doi.org/10.7554/eLife.91729  25 of 29

Cheng J, Gu W, Lan T, Deng J, Ni Z, Zhang Z, Hu Y, Sun X, Yang Y, Xu Q. 2021. Single- cell RNA sequencing 
reveals cell type- and artery type- specific vascular remodelling in male spontaneously hypertensive rats. 
Cardiovascular Research 117:1202–1216. DOI: https://doi.org/10.1093/cvr/cvaa164, PMID: 32589721

Chowdhury RR, D’Addabbo J, Huang X, Veizades S, Sasagawa K, Louis DM, Cheng P, Sokol J, Jensen A, Tso A, 
Shankar V, Wendel BS, Bakerman I, Liang G, Koyano T, Fong R, Nau AN, Ahmad H, Gopakumar J, Wirka R, 
et al. 2022. Human coronary plaque T cells are clonal and cross- react to virus and self. Circulation Research 
130:1510–1530. DOI: https://doi.org/10.1161/CIRCRESAHA.121.320090, PMID: 35430876

Conway EM, Collen D, Carmeliet P. 2001. Molecular mechanisms of blood vessel growth. Cardiovascular 
Research 49:507–521. DOI: https://doi.org/10.1016/s0008-6363(00)00281-9, PMID: 11166264

Dahal S, Huang P, Murray BT, Mahler GJ. 2017. Endothelial to mesenchymal transformation is induced by altered 
extracellular matrix in aortic valve endothelial cells. Journal of Biomedical Materials Research. Part A 105:2729–
2741. DOI: https://doi.org/10.1002/jbm.a.36133, PMID: 28589644

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, 
Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and 
VCFtools. Bioinformatics 27:2156–2158. DOI: https://doi.org/10.1093/bioinformatics/btr330

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, 
Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008. DOI: https://doi.org/ 
10.1093/gigascience/giab008, PMID: 33590861

Deng G, Zhang L, Wang C, Wang S, Xu J, Dong J, Kang Q, Zhai X, Zhao Y, Shan Z. 2020. AGEs- RAGE axis causes 
endothelial- to- mesenchymal transition in early calcific aortic valve disease via TGF-β1 and BMPR2 signaling. 
Experimental Gerontology 141:111088. DOI: https://doi.org/10.1016/j.exger.2020.111088

Drobni ZD, Kolossvary M, Karady J, Jermendy AL, Tarnoki AD, Tarnoki DL, Simon J, Szilveszter B, Littvay L, 
Voros S, Jermendy G, Merkely B, Maurovich- Horvat P. 2022. Heritability of coronary artery disease: insights 
from a classical twin study. Circulation. Cardiovascular Imaging 15:e013348. DOI: https://doi.org/10.1161/ 
CIRCIMAGING.121.013348, PMID: 35290075

Ekiz HA, Conley CJ, Stephens WZ, O’Connell RM. 2020. CIPR: a web- based R/shiny app and R package to 
annotate cell clusters in single cell RNA sequencing experiments. BMC Bioinformatics 21:191. DOI: https://doi. 
org/10.1186/s12859-020-3538-2, PMID: 32414321

Evrard SM, Lecce L, Michelis KC, Nomura- Kitabayashi A, Pandey G, Purushothaman K- R, d’Escamard V, Li JR, 
Hadri L, Fujitani K, Moreno PR, Benard L, Rimmele P, Cohain A, Mecham B, Randolph GJ, Nabel EG, Hajjar R, 
Fuster V, Boehm M, et al. 2016. Endothelial to mesenchymal transition is common in atherosclerotic lesions and 
is associated with plaque instability. Nature Communications 7:11853. DOI: https://doi.org/10.1038/ 
ncomms11853, PMID: 27340017

Fish JE, Cantu Gutierrez M, Dang LT, Khyzha N, Chen Z, Veitch S, Cheng HS, Khor M, Antounians L, Njock M- S, 
Boudreau E, Herman AM, Rhyner AM, Ruiz OE, Eisenhoffer GT, Medina- Rivera A, Wilson MD, Wythe JD. 2017. 
Dynamic regulation of VEGF- inducible genes by an ERK/ERG/p300 transcriptional network. Development 
144:2428–2444. DOI: https://doi.org/10.1242/dev.146050, PMID: 28536097

Fornes O, Castro- Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, 
Gheorghe M, Baranašić D, Santana- Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, 
Wasserman WW, Mathelier A. 2020. JASPAR 2020: update of the open- access database of transcription factor 
binding profiles. Nucleic Acids Research 48:D87–D92. DOI: https://doi.org/10.1093/nar/gkz1001, PMID: 
31701148

Genomics x. 2022a. Chromium next GEM single cell Multiome ATAC + gene expression. Revision Fed August.
Genomics x. 2022b. Nuclei isolation for single cell Multiome ATAC + gene expression sequencing. Revision C 

Ed.
Gole S, Tkachenko S, Masannat T, Baylis RA, Cherepanova OA. 2022. Endothelial- to- mesenchymal transition in 

atherosclerosis: friend or foe? Cells 11:19. DOI: https://doi.org/10.3390/cells11192946, PMID: 36230908
Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI. 2000. The NF-κB signal transduction pathway in 

aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. 
PNAS 97:9052–9057. DOI: https://doi.org/10.1073/pnas.97.16.9052

Hao Y, Hao S, Andersen- Nissen E, Mauck WM III, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, 
Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LM, Yeung B, Rogers AJ, 
et al. 2021. Integrated analysis of multimodal single- cell data. Cell 184:3573–3587.. DOI: https://doi.org/10. 
1016/j.cell.2021.04.048

Heidecker B, Lamirault G, Kasper EK, Wittstein IS, Champion HC, Breton E, Russell SD, Hall J, Kittleson MM, 
Baughman KL, Hare JM. 2010. The gene expression profile of patients with new- onset heart failure reveals 
important gender- specific differences. European Heart Journal 31:1188–1196. DOI: https://doi.org/10.1093/ 
eurheartj/ehp549, PMID: 20031959

Hogan NT, Whalen MB, Stolze LK, Hadeli NK, Lam MT, Springstead JR, Glass CK, Romanoski CE. 2017. 
Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human 
aortic endothelial cells. eLife 6:e22536. DOI: https://doi.org/10.7554/eLife.22536, PMID: 28585919

Howie BN, Donnelly P, Marchini J. 2009. A flexible and accurate genotype imputation method for the next 
generation of genome- wide association studies. PLOS Genetics 5:e1000529. DOI: https://doi.org/10.1371/ 
journal.pgen.1000529, PMID: 19543373

Kalluri AS, Vellarikkal SK, Edelman ER, Nguyen L, Subramanian A, Ellinor PT, Regev A, Kathiresan S, Gupta RM. 
2019. Single- cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. 
Circulation 140:147–163. DOI: https://doi.org/10.1161/CIRCULATIONAHA.118.038362, PMID: 31146585

https://doi.org/10.7554/eLife.91729
https://doi.org/10.1093/cvr/cvaa164
http://www.ncbi.nlm.nih.gov/pubmed/32589721
https://doi.org/10.1161/CIRCRESAHA.121.320090
http://www.ncbi.nlm.nih.gov/pubmed/35430876
https://doi.org/10.1016/s0008-6363(00)00281-9
http://www.ncbi.nlm.nih.gov/pubmed/11166264
https://doi.org/10.1002/jbm.a.36133
http://www.ncbi.nlm.nih.gov/pubmed/28589644
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
http://www.ncbi.nlm.nih.gov/pubmed/33590861
https://doi.org/10.1016/j.exger.2020.111088
https://doi.org/10.1161/CIRCIMAGING.121.013348
https://doi.org/10.1161/CIRCIMAGING.121.013348
http://www.ncbi.nlm.nih.gov/pubmed/35290075
https://doi.org/10.1186/s12859-020-3538-2
https://doi.org/10.1186/s12859-020-3538-2
http://www.ncbi.nlm.nih.gov/pubmed/32414321
https://doi.org/10.1038/ncomms11853
https://doi.org/10.1038/ncomms11853
http://www.ncbi.nlm.nih.gov/pubmed/27340017
https://doi.org/10.1242/dev.146050
http://www.ncbi.nlm.nih.gov/pubmed/28536097
https://doi.org/10.1093/nar/gkz1001
http://www.ncbi.nlm.nih.gov/pubmed/31701148
https://doi.org/10.3390/cells11192946
http://www.ncbi.nlm.nih.gov/pubmed/36230908
https://doi.org/10.1073/pnas.97.16.9052
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1093/eurheartj/ehp549
https://doi.org/10.1093/eurheartj/ehp549
http://www.ncbi.nlm.nih.gov/pubmed/20031959
https://doi.org/10.7554/eLife.22536
http://www.ncbi.nlm.nih.gov/pubmed/28585919
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1371/journal.pgen.1000529
http://www.ncbi.nlm.nih.gov/pubmed/19543373
https://doi.org/10.1161/CIRCULATIONAHA.118.038362
http://www.ncbi.nlm.nih.gov/pubmed/31146585


 Research article Chromosomes and Gene Expression | Genetics and Genomics

Adelus et al. eLife 2023;12:RP91729. DOI: https://doi.org/10.7554/eLife.91729  26 of 29

Kalucka J, de Rooij LPMH, Goveia J, Rohlenova K, Dumas SJ, Meta E, Conchinha NV, Taverna F, Teuwen L- A, 
Veys K, García- Caballero M, Khan S, Geldhof V, Sokol L, Chen R, Treps L, Borri M, de Zeeuw P, Dubois C, 
Karakach TK, et al. 2020. Single- cell transcriptome atlas of murine endothelial cells. Cell 180:764–779.. DOI: 
https://doi.org/10.1016/j.cell.2020.01.015, PMID: 32059779

Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, Wan E, Wong S, Byrnes L, Lanata CM, 
Gate RE, Mostafavi S, Marson A, Zaitlen N, Criswell LA, Ye CJ. 2018. Multiplexed droplet single- cell RNA- 
sequencing using natural genetic variation. Nature Biotechnology 36:89–94. DOI: https://doi.org/10.1038/nbt. 
4042

Kessler T, Schunkert H. 2021. Coronary artery disease genetics enlightened by genome- wide association 
studies. JACC. Basic to Translational Science 6:610–623. DOI: https://doi.org/10.1016/j.jacbts.2021.04.001, 
PMID: 34368511

Khan S, Taverna F, Rohlenova K, Treps L, Geldhof V, de Rooij L, Sokol L, Pircher A, Conradi L- C, Kalucka J, 
Schoonjans L, Eelen G, Dewerchin M, Karakach T, Li X, Goveia J, Carmeliet P. 2019. EndoDB: a database of 
endothelial cell transcriptomics data. Nucleic Acids Research 47:D736–D744. DOI: https://doi.org/10.1093/nar/ 
gky997, PMID: 30357379

Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH. 2019. Endothelial to 
mesenchymal transition in cardiovascular disease: JACC state- of- the- art review. Journal of the American 
College of Cardiology 73:190–209. DOI: https://doi.org/10.1016/j.jacc.2018.09.089, PMID: 30654892

Krizbai IA, Gasparics Á, Nagyőszi P, Fazakas C, Molnár J, Wilhelm I, Bencs R, Rosivall L, Sebe A. 2015. 
Endothelial- mesenchymal transition of brain endothelial cells: possible role during metastatic extravasation. 
PLOS ONE 10:e0119655. DOI: https://doi.org/10.1371/journal.pone.0119655, PMID: 25742314

Kuhn RM, Haussler D, Kent WJ. 2013. The UCSC genome browser and associated tools. Briefings in 
Bioinformatics 14:144–161. DOI: https://doi.org/10.1093/bib/bbs038, PMID: 22908213

Lathen C, Zhang Y, Chow J, Singh M, Lin G, Nigam V, Ashraf YA, Yuan JX, Robbins IM, Thistlethwaite PA. 2014. 
ERG- APLNR axis controls pulmonary venule endothelial proliferation in pulmonary veno- occlusive disease. 
Circulation 130:1179–1191. DOI: https://doi.org/10.1161/CIRCULATIONAHA.113.007822, PMID: 25062690

Lee YH, Albig AR, Regner M, Schiemann BJ, Schiemann WP. 2008. Fibulin- 5 initiates epithelial- mesenchymal 
transition (EMT) and enhances EMT induced by TGF- beta in mammary epithelial cells via a MMP- dependent 
mechanism. Carcinogenesis 29:2243–2251. DOI: https://doi.org/10.1093/carcin/bgn199, PMID: 18713838

Levi M, van der Poll T, Büller HR. 2004. Bidirectional relation between inflammation and coagulation. Circulation 
109:2698–2704. DOI: https://doi.org/10.1161/01.CIR.0000131660.51520.9A, PMID: 15184294

Li Z, Solomonidis EG, Meloni M, Taylor RS, Duffin R, Dobie R, Magalhaes MS, Henderson BEP, Louwe PA, 
D’Amico G, Hodivala- Dilke KM, Shah AM, Mills NL, Simons BD, Gray GA, Henderson NC, Baker AH, Brittan M. 
2019. Single- cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident 
endothelial cells following myocardial infarction. European Heart Journal 40:2507–2520. DOI: https://doi.org/ 
10.1093/eurheartj/ehz305, PMID: 31162546

Liu T, Zou X- Z, Huang N, Ge X- Y, Yao M- Z, Liu H, Zhang Z, Hu C- P. 2019. miR- 27a promotes endothelial- 
mesenchymal transition in hypoxia- induced pulmonary arterial hypertension by suppressing BMP signaling. Life 
Sciences 227:64–73. DOI: https://doi.org/10.1016/j.lfs.2019.04.038, PMID: 31004656

Liu Z, Ruter DL, Quigley K, Tanke NT, Jiang Y, Bautch VL. 2021. Single- cell RNA sequencing reveals endothelial 
cell transcriptome heterogeneity under homeostatic laminar flow. Arteriosclerosis, Thrombosis, and Vascular 
Biology 41:2575–2584. DOI: https://doi.org/10.1161/ATVBAHA.121.316797, PMID: 34433297

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA- seq data with 
DESeq2. Genome Biology 15:1–21. DOI: https://doi.org/10.1186/s13059-014-0550-8

Luecken MD, Theis FJ. 2019. Current best practices in single- cell RNA- seq analysis: a tutorial. Molecular Systems 
Biology 15:e8746. DOI: https://doi.org/10.15252/msb.20188746, PMID: 31217225

Maleszewska M, Moonen J, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. 2013. IL- 1β and TGFβ2 
synergistically induce endothelial to mesenchymal transition in an NFκB- dependent manner. Immunobiology 
218:443–454. DOI: https://doi.org/10.1016/j.imbio.2012.05.026, PMID: 22739237

Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. 1994. Genetic susceptibility to death from 
coronary heart disease in a study of twins. The New England Journal of Medicine 330:1041–1046. DOI: https:// 
doi.org/10.1056/NEJM199404143301503, PMID: 8127331

McGinnis CS, Murrow LM, Gartner ZJ. 2019. DoubletFinder: doublet detection in single- cell RNA sequencing 
data using artificial nearest neighbors. Cell Systems 8:329–337.. DOI: https://doi.org/10.1016/j.cels.2019.03. 
003, PMID: 30954475

McPherson R, Tybjaerg- Hansen A. 2016. Genetics of coronary artery disease. Circulation Research 118:564–578. 
DOI: https://doi.org/10.1161/CIRCRESAHA.115.306566, PMID: 26892958

Medici D, Potenta S, Kalluri R. 2011. Transforming growth factor-β2 promotes Snail- mediated endothelial- 
mesenchymal transition through convergence of Smad- dependent and Smad- independent signalling. The 
Biochemical Journal 437:515–520. DOI: https://doi.org/10.1042/BJ20101500, PMID: 21585337

Moonen J, Lee ES, Schmidt M, Maleszewska M, Koerts JA, Brouwer LA, van Kooten TG, van Luyn MJA, 
Zeebregts CJ, Krenning G, Harmsen MC. 2015. Endothelial- to- mesenchymal transition contributes to fibro- 
proliferative vascular disease and is modulated by fluid shear stress. Cardiovascular Research 108:377–386. 
DOI: https://doi.org/10.1093/cvr/cvv175

Murtagh F, Legendre P. 2014. Ward’s hierarchical agglomerative clustering method: which algorithms implement 
ward’s criterion? Journal of Classification 31:274–295. DOI: https://doi.org/10.1007/s00357-014-9161-z

https://doi.org/10.7554/eLife.91729
https://doi.org/10.1016/j.cell.2020.01.015
http://www.ncbi.nlm.nih.gov/pubmed/32059779
https://doi.org/10.1038/nbt.4042
https://doi.org/10.1038/nbt.4042
https://doi.org/10.1016/j.jacbts.2021.04.001
http://www.ncbi.nlm.nih.gov/pubmed/34368511
https://doi.org/10.1093/nar/gky997
https://doi.org/10.1093/nar/gky997
http://www.ncbi.nlm.nih.gov/pubmed/30357379
https://doi.org/10.1016/j.jacc.2018.09.089
http://www.ncbi.nlm.nih.gov/pubmed/30654892
https://doi.org/10.1371/journal.pone.0119655
http://www.ncbi.nlm.nih.gov/pubmed/25742314
https://doi.org/10.1093/bib/bbs038
http://www.ncbi.nlm.nih.gov/pubmed/22908213
https://doi.org/10.1161/CIRCULATIONAHA.113.007822
http://www.ncbi.nlm.nih.gov/pubmed/25062690
https://doi.org/10.1093/carcin/bgn199
http://www.ncbi.nlm.nih.gov/pubmed/18713838
https://doi.org/10.1161/01.CIR.0000131660.51520.9A
http://www.ncbi.nlm.nih.gov/pubmed/15184294
https://doi.org/10.1093/eurheartj/ehz305
https://doi.org/10.1093/eurheartj/ehz305
http://www.ncbi.nlm.nih.gov/pubmed/31162546
https://doi.org/10.1016/j.lfs.2019.04.038
http://www.ncbi.nlm.nih.gov/pubmed/31004656
https://doi.org/10.1161/ATVBAHA.121.316797
http://www.ncbi.nlm.nih.gov/pubmed/34433297
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.15252/msb.20188746
http://www.ncbi.nlm.nih.gov/pubmed/31217225
https://doi.org/10.1016/j.imbio.2012.05.026
http://www.ncbi.nlm.nih.gov/pubmed/22739237
https://doi.org/10.1056/NEJM199404143301503
https://doi.org/10.1056/NEJM199404143301503
http://www.ncbi.nlm.nih.gov/pubmed/8127331
https://doi.org/10.1016/j.cels.2019.03.003
https://doi.org/10.1016/j.cels.2019.03.003
http://www.ncbi.nlm.nih.gov/pubmed/30954475
https://doi.org/10.1161/CIRCRESAHA.115.306566
http://www.ncbi.nlm.nih.gov/pubmed/26892958
https://doi.org/10.1042/BJ20101500
http://www.ncbi.nlm.nih.gov/pubmed/21585337
https://doi.org/10.1093/cvr/cvv175
https://doi.org/10.1007/s00357-014-9161-z


 Research article Chromosomes and Gene Expression | Genetics and Genomics

Adelus et al. eLife 2023;12:RP91729. DOI: https://doi.org/10.7554/eLife.91729  27 of 29

Nagai N, Ohguchi H, Nakaki R, Matsumura Y, Kanki Y, Sakai J, Aburatani H, Minami T. 2018. Downregulation of 
ERG and FLI1 expression in endothelial cells triggers endothelial- to- mesenchymal transition. PLOS Genetics 
14:e1007826. DOI: https://doi.org/10.1371/journal.pgen.1007826, PMID: 30500808

Navab M, Hough GP, Stevenson LW, Drinkwater DC, Laks H, Fogelman AM. 1988. Monocyte migration into the 
subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells. The Journal of 
Clinical Investigation 82:1853–1863. DOI: https://doi.org/10.1172/JCI113802, PMID: 3198759

Ni C, Buszczak M. 2023. The homeostatic regulation of ribosome biogenesis. Seminars in Cell & Developmental 
Biology 136:13–26. DOI: https://doi.org/10.1016/j.semcdb.2022.03.043

Örd T, Õunap K, Stolze LK, Aherrahrou R, Nurminen V, Toropainen A, Selvarajan I, Lönnberg T, Aavik E, 
Ylä-Herttuala S, Civelek M, Romanoski CE, Kaikkonen MU. 2021. Single- cell epigenomics and functional 
fine- mapping of atherosclerosis GWAS Loci. Circulation Research 129:240–258. DOI: https://doi.org/10.1161/ 
CIRCRESAHA.121.318971

Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, Yang DY, Trignano SB, Liu W, Shi J, Ihuegbu CO, Bush EC, 
Worley J, Vlahos L, Laise P, Solomon RA, Connolly ES, Califano A, Sims PA, Zhang H, et al. 2020. Single- cell 
genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic 
targets for atherosclerosis in mouse and human. Circulation 142:2060–2075. DOI: https://doi.org/10.1161/ 
CIRCULATIONAHA.120.048378, PMID: 32962412

Pinto MT, Ferreira Melo FU, Malta TM, Rodrigues ES, Plaça JR, Silva WA, Panepucci RA, Covas DT, 
de Oliveira Rodrigues C, Kashima S. 2018. Endothelial cells from different anatomical origin have distinct 
responses during SNAIL/TGF-β2- mediated endothelial- mesenchymal transition. American Journal of 
Translational Research 10:4065–4081 PMID: 30662651. 

Purcell S, Neale B, Todd- Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, 
Sham PC. 2007. PLINK: a tool set for whole- genome association and population- based linkage analyses. 
American Journal of Human Genetics 81:559–575. DOI: https://doi.org/10.1086/519795, PMID: 17701901

Ricciotti E, FitzGerald GA. 2011. Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular 
Biology 31:986–1000. DOI: https://doi.org/10.1161/ATVBAHA.110.207449, PMID: 21508345

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, 
Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, 
Vida- Simiti L, et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New 
England Journal of Medicine 377:1119–1131. DOI: https://doi.org/10.1056/NEJMoa1707914, PMID: 28845751

Rodor J, Chen SH, Scanlon JP, Monteiro JP, Caudrillier A, Sweta S, Stewart KR, Shmakova A, Dobie R, 
Henderson BEP, Stewart K, Hadoke PWF, Southwood M, Moore SD, Upton PD, Morrell NW, Li Z, Chan SY, 
Handen A, Lafyatis R, et al. 2022. Single- cell RNA sequencing profiling of mouse endothelial cells in response 
to pulmonary arterial hypertension. Cardiovascular Research 118:2519–2534. DOI: https://doi.org/10.1093/cvr/ 
cvab296, PMID: 34528097

Rohlenova K, Goveia J, García- Caballero M, Subramanian A, Kalucka J, Treps L, Falkenberg KD, de Rooij LPMH, 
Zheng Y, Lin L, Sokol L, Teuwen L- A, Geldhof V, Taverna F, Pircher A, Conradi L- C, Khan S, Stegen S, 
Panovska D, De Smet F, et al. 2020. Single- Cell RNA sequencing maps endothelial metabolic plasticity in 
pathological angiogenesis. Cell Metabolism 31:862–877.. DOI: https://doi.org/10.1016/j.cmet.2020.03.009, 
PMID: 32268117

RomanoskiCE. 2024. Adelus_2024_Elife. swh:1:rev:422d8dd1d5c72306e082574d327a84bdc1a5ea7e. Software 
Heritage. https://archive.softwareheritage.org/swh:1:dir:b2fa6bd8f76aa92f26cc08d73f44083af7d34c15;origin= 
https://github.com/cromanoski/Adelus_2024_Elife;visit=swh:1:snp:d8d052272f1daf28634d55fac0c4bb1d 
10c4fdd1;anchor=swh:1:rev:422d8dd1d5c72306e082574d327a84bdc1a5ea7e

Sánchez- Duffhues G, García de Vinuesa A, van de Pol V, Geerts ME, de Vries MR, Janson SG, van Dam H, 
Lindeman JH, Goumans M- J, Ten Dijke P. 2019. Inflammation induces endothelial- to- mesenchymal transition 
and promotes vascular calcification through downregulation of BMPR2. The Journal of Pathology 247:333–346. 
DOI: https://doi.org/10.1002/path.5193, PMID: 30430573

Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. 2017. chromVAR: inferring transcription- factor- associated 
accessibility from single- cell epigenomic data. Nature Methods 14:975–978. DOI: https://doi.org/10.1038/ 
nmeth.4401

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature 
Methods 9:671–675. DOI: https://doi.org/10.1038/nmeth.2089, PMID: 22930834

Sperone A, Dryden NH, Birdsey GM, Madden L, Johns M, Evans PC, Mason JC, Haskard DO, Boyle JJ, 
Paleolog EM, Randi AM. 2011. The transcription factor Erg inhibits vascular inflammation by repressing 
NF- kappaB activation and proinflammatory gene expression in endothelial cells. Arteriosclerosis, Thrombosis, 
and Vascular Biology 31:142–150. DOI: https://doi.org/10.1161/ATVBAHA.110.216473, PMID: 20966395

Stenmark KR, Frid M, Perros F. 2016. Endothelial- to- mesenchymal transition: an evolving paradigm and a 
promising therapeutic target in PAH. Circulation 133:1734–1737. DOI: https://doi.org/10.1161/ 
CIRCULATIONAHA.116.022479, PMID: 27045137

Stolze LK, Conklin AC, Whalen MB, López Rodríguez M, Õunap K, Selvarajan I, Toropainen A, Örd T, Li J, 
Eshghi A, Solomon AE, Fang Y, Kaikkonen MU, Romanoski CE. 2020. Systems genetics in human endothelial 
cells identifies non- coding variants modifying enhancers, expression, and complex disease traits. American 
Journal of Human Genetics 106:748–763. DOI: https://doi.org/10.1016/j.ajhg.2020.04.008, PMID: 32442411

Stuart T, Srivastava A, Madad S, Lareau CA, Satija R. 2021. Single- cell chromatin state analysis with Signac. 
Nature Methods 18:1333–1341. DOI: https://doi.org/10.1038/s41592-021-01282-5, PMID: 34725479

https://doi.org/10.7554/eLife.91729
https://doi.org/10.1371/journal.pgen.1007826
http://www.ncbi.nlm.nih.gov/pubmed/30500808
https://doi.org/10.1172/JCI113802
http://www.ncbi.nlm.nih.gov/pubmed/3198759
https://doi.org/10.1016/j.semcdb.2022.03.043
https://doi.org/10.1161/CIRCRESAHA.121.318971
https://doi.org/10.1161/CIRCRESAHA.121.318971
https://doi.org/10.1161/CIRCULATIONAHA.120.048378
https://doi.org/10.1161/CIRCULATIONAHA.120.048378
http://www.ncbi.nlm.nih.gov/pubmed/32962412
http://www.ncbi.nlm.nih.gov/pubmed/30662651
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1161/ATVBAHA.110.207449
http://www.ncbi.nlm.nih.gov/pubmed/21508345
https://doi.org/10.1056/NEJMoa1707914
http://www.ncbi.nlm.nih.gov/pubmed/28845751
https://doi.org/10.1093/cvr/cvab296
https://doi.org/10.1093/cvr/cvab296
http://www.ncbi.nlm.nih.gov/pubmed/34528097
https://doi.org/10.1016/j.cmet.2020.03.009
http://www.ncbi.nlm.nih.gov/pubmed/32268117
https://archive.softwareheritage.org/swh:1:dir:b2fa6bd8f76aa92f26cc08d73f44083af7d34c15;origin=https://github.com/cromanoski/Adelus_2024_Elife;visit=swh:1:snp:d8d052272f1daf28634d55fac0c4bb1d10c4fdd1;anchor=swh:1:rev:422d8dd1d5c72306e082574d327a84bdc1a5ea7e
https://archive.softwareheritage.org/swh:1:dir:b2fa6bd8f76aa92f26cc08d73f44083af7d34c15;origin=https://github.com/cromanoski/Adelus_2024_Elife;visit=swh:1:snp:d8d052272f1daf28634d55fac0c4bb1d10c4fdd1;anchor=swh:1:rev:422d8dd1d5c72306e082574d327a84bdc1a5ea7e
https://archive.softwareheritage.org/swh:1:dir:b2fa6bd8f76aa92f26cc08d73f44083af7d34c15;origin=https://github.com/cromanoski/Adelus_2024_Elife;visit=swh:1:snp:d8d052272f1daf28634d55fac0c4bb1d10c4fdd1;anchor=swh:1:rev:422d8dd1d5c72306e082574d327a84bdc1a5ea7e
https://doi.org/10.1002/path.5193
http://www.ncbi.nlm.nih.gov/pubmed/30430573
https://doi.org/10.1038/nmeth.4401
https://doi.org/10.1038/nmeth.4401
https://doi.org/10.1038/nmeth.2089
http://www.ncbi.nlm.nih.gov/pubmed/22930834
https://doi.org/10.1161/ATVBAHA.110.216473
http://www.ncbi.nlm.nih.gov/pubmed/20966395
https://doi.org/10.1161/CIRCULATIONAHA.116.022479
https://doi.org/10.1161/CIRCULATIONAHA.116.022479
http://www.ncbi.nlm.nih.gov/pubmed/27045137
https://doi.org/10.1016/j.ajhg.2020.04.008
http://www.ncbi.nlm.nih.gov/pubmed/32442411
https://doi.org/10.1038/s41592-021-01282-5
http://www.ncbi.nlm.nih.gov/pubmed/34725479


 Research article Chromosomes and Gene Expression | Genetics and Genomics

Adelus et al. eLife 2023;12:RP91729. DOI: https://doi.org/10.7554/eLife.91729  28 of 29

Suárez Y, Fernández- Hernando C, Pober JS, Sessa WC. 2007. Dicer dependent microRNAs regulate gene 
expression and functions in human endothelial cells. Circulation Research 100:1164–1173. DOI: https://doi.org/ 
10.1161/01.RES.0000265065.26744.17, PMID: 17379831

Tcheandjieu C, Zhu X, Hilliard AT, Clarke SL, Napolioni V, Ma S, Lee KM, Fang H, Chen F, Lu Y, Tsao NL, 
Raghavan S, Koyama S, Gorman BR, Vujkovic M, Klarin D, Levin MG, Sinnott- Armstrong N, Wojcik GL, 
Plomondon ME, et al. 2022. Large- scale genome- wide association study of coronary artery disease in 
genetically diverse populations. Nature Medicine 28:1679–1692. DOI: https://doi.org/10.1038/s41591-022- 
01891-3, PMID: 35915156

Tombor L, John D, Glaser SF, Luxan G, Forte E, Furtado M, Rosenthal N, Manavski Y, Fischer A, 
Muhly- Reinholz M, Looso M, Acker T, Harvey R, Abplanalp A, Dimmeler S. 2020. Single cell sequencing reveals 
endothelial plasticity with transient mesenchymal activation after myocardial infarction. European Heart Journal 
41:ehaa946. DOI: https://doi.org/10.1093/ehjci/ehaa946.3736

Toropainen A, Stolze LK, Örd T, Whalen MB, Torrell PM, Link VM, Kaikkonen MU, Romanoski CE. 2022. 
Functional noncoding SNPs in human endothelial cells fine- map vascular trait associations. Genome Research 
32:409–424. DOI: https://doi.org/10.1101/gr.276064.121, PMID: 35193936

Turgeon PJ, Chan GC, Chen L, Jamal AN, Yan MS, Ho JJD, Yuan L, Ibeh N, Ku KH, Cybulsky MI, Aird WC, 
Marsden PA. 2020. Epigenetic heterogeneity and mitotic heritability prime endothelial cell gene induction. 
Journal of Immunology 204:1173–1187. DOI: https://doi.org/10.4049/jimmunol.1900744, PMID: 31996458

van Meeteren LA, ten Dijke P. 2012. Regulation of endothelial cell plasticity by TGF-β. Cell and Tissue Research 
347:177–186. DOI: https://doi.org/10.1007/s00441-011-1222-6, PMID: 21866313

Vijayaraj P, Le Bras A, Mitchell N, Kondo M, Juliao S, Wasserman M, Beeler D, Spokes K, Aird WC, Baldwin HS, 
Oettgen P. 2012. Erg is a crucial regulator of endocardial- mesenchymal transformation during cardiac valve 
morphogenesis. Development 139:3973–3985. DOI: https://doi.org/10.1242/dev.081596, PMID: 22932696

Villanueva RAM, Chen ZJ. 2019. ggplot2: elegant graphics for data analysis. Measurement 17:160–167. DOI: 
https://doi.org/10.1080/15366367.2019.1565254

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T. 2016. Gplots: various R programming 
tools for plotting data. R Package Version. 2014.

Wirka RC, Wagh D, Paik DT, Pjanic M, Nguyen T, Miller CL, Kundu R, Nagao M, Coller J, Koyano TK, Fong R, 
Woo YJ, Liu B, Montgomery SB, Wu JC, Zhu K, Chang R, Alamprese M, Tallquist MD, Kim JB, et al. 2019. 
Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed 
by single- cell analysis. Nature Medicine 25:1280–1289. DOI: https://doi.org/10.1038/s41591-019-0512-5, 
PMID: 31359001

Woodfin A, Voisin MB, Nourshargh S. 2007. PECAM- 1: a multi- functional molecule in inflammation and vascular 
biology. Arteriosclerosis, Thrombosis, and Vascular Biology 27:2514–2523. DOI: https://doi.org/10.1161/ 
ATVBAHA.107.151456, PMID: 17872453

Xu K, Xie S, Huang Y, Zhou T, Liu M, Zhu P, Wang C, Shi J, Li F, Sellke FW, Dong N. 2020. Cell- type transcriptome 
atlas of human aortic valves reveal cell heterogeneity and endothelial to mesenchymal transition involved in 
calcific aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology 40:2910–2921. DOI: https://doi. 
org/10.1161/ATVBAHA.120.314789, PMID: 33086873

Yan F, Powell DR, Curtis DJ, Wong NC. 2020. From reads to insight: a hitchhiker’s guide to ATAC- seq data 
analysis. Genome Biology 21:1–16. DOI: https://doi.org/10.1186/s13059-020-1929-3

Yang W, Ng FL, Chan K, Pu X, Poston RN, Ren M, An W, Zhang R, Wu J, Yan S, Situ H, He X, Chen Y, Tan X, 
Xiao Q, Tucker AT, Caulfield MJ, Ye S. 2016. Coronary-heart- disease- associated genetic variant at the COL4A1/
COL4A2 Locus Affects COL4A1/COL4A2 expression, vascular cell survival, atherosclerotic plaque stability and 
risk of myocardial infarction. PLOS Genetics 12:e1006127. DOI: https://doi.org/10.1371/journal.pgen.1006127

Yuan L, Chan GC, Beeler D, Janes L, Spokes KC, Dharaneeswaran H, Mojiri A, Adams WJ, Sciuto T, 
Garcia- Cardeña G, Molema G, Kang PM, Jahroudi N, Marsden PA, Dvorak A, Regan ER, Aird WC. 2016. A role 
of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity. Nature Communications 
7:10160. DOI: https://doi.org/10.1038/ncomms10160, PMID: 26744078

Zhang L, Tang C, Zhang M, Tong X, Xie Y, Yan R, Wang X, Zhang X, Liu D, Li S. 2022. Single cell meta- analysis of 
EndMT and EMT state in COVID- 19. Frontiers in Immunology 13:976512. DOI: https://doi.org/10.3389/fimmu. 
2022.976512, PMID: 36248845

Zhao Q, Eichten A, Parveen A, Adler C, Huang Y, Wang W, Ding Y, Adler A, Nevins T, Ni M, Wei Y, Thurston G. 
2018. Single- cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following 
antiangiogenic treatment. Cancer Research 78:2370–2382. DOI: https://doi.org/10.1158/0008-5472.CAN-17- 
2728

Zhao G, Lu H, Chang Z, Zhao Y, Zhu T, Chang L, Guo Y, Garcia- Barrio MT, Chen YE, Zhang J. 2021a. Single- cell 
RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovascular 
Research 117:1402–1416. DOI: https://doi.org/10.1093/cvr/cvaa214, PMID: 32678909

Zhao G, Lu H, Liu Y, Zhao Y, Zhu T, Garcia- Barrio MT, Chen YE, Zhang J. 2021b. Single- cell transcriptomics reveals 
endothelial plasticity during diabetic atherogenesis. Frontiers in Cell and Developmental Biology 9:689469. 
DOI: https://doi.org/10.3389/fcell.2021.689469, PMID: 34095155

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, 
Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall- Levin M, 
Wyatt PW, Hindson CM, Bharadwaj R, et al. 2017. Massively parallel digital transcriptional profiling of single 
cells. Nature Communications 8:14049. DOI: https://doi.org/10.1038/ncomms14049, PMID: 28091601

https://doi.org/10.7554/eLife.91729
https://doi.org/10.1161/01.RES.0000265065.26744.17
https://doi.org/10.1161/01.RES.0000265065.26744.17
http://www.ncbi.nlm.nih.gov/pubmed/17379831
https://doi.org/10.1038/s41591-022-01891-3
https://doi.org/10.1038/s41591-022-01891-3
http://www.ncbi.nlm.nih.gov/pubmed/35915156
https://doi.org/10.1093/ehjci/ehaa946.3736
https://doi.org/10.1101/gr.276064.121
http://www.ncbi.nlm.nih.gov/pubmed/35193936
https://doi.org/10.4049/jimmunol.1900744
http://www.ncbi.nlm.nih.gov/pubmed/31996458
https://doi.org/10.1007/s00441-011-1222-6
http://www.ncbi.nlm.nih.gov/pubmed/21866313
https://doi.org/10.1242/dev.081596
http://www.ncbi.nlm.nih.gov/pubmed/22932696
https://doi.org/10.1080/15366367.2019.1565254
https://doi.org/10.1038/s41591-019-0512-5
http://www.ncbi.nlm.nih.gov/pubmed/31359001
https://doi.org/10.1161/ATVBAHA.107.151456
https://doi.org/10.1161/ATVBAHA.107.151456
http://www.ncbi.nlm.nih.gov/pubmed/17872453
https://doi.org/10.1161/ATVBAHA.120.314789
https://doi.org/10.1161/ATVBAHA.120.314789
http://www.ncbi.nlm.nih.gov/pubmed/33086873
https://doi.org/10.1186/s13059-020-1929-3
https://doi.org/10.1371/journal.pgen.1006127
https://doi.org/10.1038/ncomms10160
http://www.ncbi.nlm.nih.gov/pubmed/26744078
https://doi.org/10.3389/fimmu.2022.976512
https://doi.org/10.3389/fimmu.2022.976512
http://www.ncbi.nlm.nih.gov/pubmed/36248845
https://doi.org/10.1158/0008-5472.CAN-17-2728
https://doi.org/10.1158/0008-5472.CAN-17-2728
https://doi.org/10.1093/cvr/cvaa214
http://www.ncbi.nlm.nih.gov/pubmed/32678909
https://doi.org/10.3389/fcell.2021.689469
http://www.ncbi.nlm.nih.gov/pubmed/34095155
https://doi.org/10.1038/ncomms14049
http://www.ncbi.nlm.nih.gov/pubmed/28091601


 Research article Chromosomes and Gene Expression | Genetics and Genomics

Adelus et al. eLife 2023;12:RP91729. DOI: https://doi.org/10.7554/eLife.91729  29 of 29

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. 2019. Metascape 
provides a biologist- oriented resource for the analysis of systems- level datasets. Nature Communications 
10:1–10. DOI: https://doi.org/10.1038/s41467-019-09234-6

https://doi.org/10.7554/eLife.91729
https://doi.org/10.1038/s41467-019-09234-6

	Single-cell ‘omic profiles of human aortic endothelial cells in vitro and human atherosclerotic lesions ex vivo reveal heterogeneity of endothelial subtype and response to activating perturbations
	eLife assessment
	Introduction
	Results
	EC single-cell transcriptomic profiles reveal a heterogeneous population
	EC subtypes exhibit distinct open chromatin profiles and enriched motifs
	EC-activating perturbations modestly shift cells into the EC3 subtype
	Pro-EndMT perturbations in vitro elicit EC subtype-specific transcriptional responses
	In vitro EC EndMT models reorganize epigenetic landscapes with subtype specificity
	Meta-analysis of ex vivo human atherosclerotic plaque snRNA-seq datasets
	Ex vivo-derived module score analysis reveals differences among in vitro EC subtypes and EndMT stimuli
	EC subtype is a major determinant in modeling cell states observed in atherosclerosis
	CAD-associated genetic variants are enriched across EC subtype epigenomes

	Discussion
	Materials and methods
	Tissue procurement and cell culture
	siRNA knockdown, qPCR, and western blotting
	Nuclear dissociation and library preparation
	Genotyping and multiplexing cell barcodes for donor identification
	snRNA-seq bioinformatics workflow
	snATAC-seq bioinformatics workflow
	Integration and weighted nearest-neighbor analyses
	Differential expression and accessibility region analyses across EC subtypes and EndMT perturbation–subtype combinations
	Pathway enrichment analysis
	Motif enrichment analysis
	Human atherosclerosis scRNA-seq public data download, mapping, and integration across samples
	Module scoring
	Comparison of ex vivo snRNA-seq data to in vitro snRNA-seq data
	GWAS SNP enrichment analysis
	Peak-to-gene linkage
	Data visualization

	Acknowledgements
	Additional information
	Funding
	Author contributions
	Author ORCIDs
	Peer review material

	Additional files
	Supplementary files

	References


