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Abstract Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function 
in remyelination is important to optimise the development of regenerative therapies for multiple 
sclerosis (MS). Platelets are present in chronic non- remyelinated lesions of MS and an increase 
in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) 
mice, an animal model for MS. However, the contribution of platelets to remyelination remains 
unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental 
demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelin-
ation, without altering blood- brain barrier stability and neuroinflammation. Transient exposure to 
platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. 
In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation 
together with a reduction of newly- generated oligodendrocytes following toxin- induced demyelin-
ation. These findings reveal a complex bimodal contribution of platelet to remyelination and provide 
insights into remyelination failure in MS.
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eLife assessment
This important study aims to understand how the regulation of oligodendrocyte progenitor cell 
(OPC) remyelination and function contributes to the treatment of multiple sclerosis. The authors 
provide convincing evidence for the platelets mediating OPC differentiation and remyelination. This 
work will be of interest to several disciplines.

Introduction
In the CNS, remyelination by newly generated oligodendrocytes is largely mediated by the differentiation 
of oligodendrocyte progenitor cells (OPCs). In response to demyelination, OPCs proliferate, migrate, 
and differentiate into remyelinating oligodendrocytes (Franklin and ffrench- Constant, 2008). Although 
remyelination represents a robust regenerative response to demyelination, it fails during the progress of 
multiple sclerosis (MS), a CNS autoimmune demyelinating disease (Noseworthy et al., 2000). Unravel-
ling the mechanisms that govern remyelination is essential to our understanding of why this important 
regenerative process fails in MS, as well as in guiding the development of regenerative therapies.

Platelets are small, anucleate cells essential for haemostatic plug formation (Semple et al., 2011). 
Platelets also display tissue- regenerative properties (Nurden, 2011). Several growth factors known to 
modulate OPCs’ responses to demyelination, such as PDGF and FGF2 (Woodruff et al., 2004; Murtie 
et al., 2005; Zhou et al., 2006; Clemente et al., 2011; Hiratsuka et al., 2019), are stored in platelets 
(Chen et al., 2012; Lohmann et al., 2012; Schallmoser and Strunk, 2013; Warnke et al., 2013). We 
have previously shown that platelet lysate increases neural stem / progenitor cells (NSPCs) survival, an 
alternative but infrequent cellular source for mature oligodendrocytes (Kazanis et al., 2015). Although 
this evidence argues in favour of a beneficial contribution of platelets to remyelination, other studies 
suggest a detrimental role. CD41- expressing platelets and platelet- contained molecules are found in 
non- remyelinated MS lesions (Lock et al., 2002; Han et al., 2008; Langer et al., 2012; Simon, 2012; 
Steinman, 2012). Moreover, MS patients show increased levels of circulating platelet microparticles 
(PMPs) (Marcos- Ramiro et al., 2014) and the number of PMPs are indicative of the clinical status 
of the disease (Sáenz- Cuesta et al., 2014). Additionally, MS patients display high plasma levels of 
platelet- specific factors such as, P- selectin and PF4 that correlate with disease course and severity, 
respectively (Cananzi et al., 1987; Kuenz et al., 2005). In the animal model for MS, experimental 
autoimmune encephalomyelitis (EAE), platelet numbers within CNS increase (D’Souza et al., 2018). 
When platelets were immunodepleted before clinical onset, EAE severity is decreased (Langer et al., 
2012; Kocovski et al., 2019). Here, we ask whether circulating platelets regulate OPC function and 
how this impacts remyelination.

Results
Circulating platelets transiently accumulate in response to 
demyelination and accumulate in close proximity to OPCs
We first assessed the distribution of platelets during remyelination. We created lysolecithin (LPC)- 
induced demyelinating lesions in the spinal cord white matter of wild type (WT) mice and collected 
tissue sections at 1-, 3-, 5-, 7-, 10, and 14 days post- lesion (dpl). We observed CD41+ platelet aggre-
gates within and around the lesion early after demyelination (3 dpl) (p- value <0.01; Figure 1A and 
B). However, this was transient as platelet aggregates subsequently decreased until no aggregates 
were detected at 14 dpl (Figure 1A and B). To assess whether platelet recruitment was specific to 
demyelination we injected PBS containing DAPI directly into the spinal cord. No signs of demyelin-
ation were observed under these conditions and platelet aggregation was minimal at 1- and 3 days 
post- PBS injection (Figure 1C). We next evaluated the localization of platelets within the lesion. Large 
platelet aggregates were found within the blood vessels and within the tissue parenchyma at 5 dpl 
(Figure 1D). Platelets often localized with Olig2+ cells around blood vessels, a scaffold used by OPCs 
for migration (Tsai et al., 2016; Figure 1D).

Depletion of circulating platelets alters OPC differentiation and 
remyelination in vivo
To investigate whether circulating platelets modulate OPC function in vivo, we used a platelet 
depletion model (Figure 2A). LPC- induced focal demyelinating lesions were performed in WT mice 

https://doi.org/10.7554/eLife.91757
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Figure 1. Platelets accumulate in response to demyelination. (A) LPC induced demyelinating lesions in spinal cord white matter of WT mice at 1, 3, 
7, and 14 dpl, stained for platelets (CD41+). Scale bar 100 μm. (B) Quantification of CD41+ signal within the demyelinated lesion at 1 (n=6), 3 (n=5), 5 
(n=5), 7 (n=6), 10 (n=4), and 14 dpl (n=4), and in NAWM (n=3). (C) Platelet staining (CD41+) in spinal cord white matter injected with PBS/DAPI. Scale bar 
50 μm. (D) Upper left panel: localization of platelets within blood vessels (ColIV+) and in close proximity with OPCs (Olig2+) at 5 dpl. Upper right panel: 
IMARIS 3D projection shows the spatial distribution of platelets. Scale bar 10 μm. Lower panels: magnification of the IMARIS projection showing platelet 
aggregation within the blood (left panel) and penetration into the parenchyma (right panel). Scale bars: 5 μm (left panel) and 7 μm (right panel). Data 
were analysed using a Kruskal Wallis test. Data represent the mean ± SD. ** p<0.01; ns (not significant), p>0.05.

https://doi.org/10.7554/eLife.91757
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Figure 2. Platelet depletion impairs remyelination in vivo. (A) Schematic representation of the LPC- induced 
demyelination model coupled with platelet depletion using anti- CD42b. (B) Quantitative analysis of CD41+ signal 
at 5 dpl in untreated (n=5) and platelet depleted mice (n=3). (C) Representative images of immunofluorescence 
staining of oligodendroglial lineage cells in untreated and platelet depleted mice at 7 dpl using Olig2+ (upper 

Figure 2 continued on next page
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followed by the administration of anti- CD42b at 3 dpl and every second day to prevent further platelet 
recruitment (Morodomi et al., 2020; de Sousa et al., 2023). We first confirmed that this depletion 
strategy leads to decreased numbers of recruited platelets, with no accumulation in the lesion (p- value 
<0.05; Figure 2B). At 7 dpl, there was no difference in the number of Olig2+ cells within the lesion 
between the platelet depleted and untreated group (Figure 2C, upper panels, and D), indicating that 
platelets do not alter OPC recruitment in response to demyelination. Through the detection of CC1 
expression, a marker that identifies mature oligodendrocytes (Figure 2C, lower panels), we found that 
platelet depletion significantly decreased the number and percentage of Olig2+/CC1+ cells compared 
to untreated mice (p- value <0.05; Figure 2E and F), indicating that platelet depletion impairs OPC 
differentiation. Consistently, at 14 dpl we observed a significant decrease in the extent of remye-
lination (p- value <0.01; Figure 2G and H) and the percentage of remyelinated axons compared to 
untreated animals (p- value <0.05; Figure 2I). Previous studies have shown that decreasing the number 
of circulating platelets increases blood vessel leakiness (Cloutier et al., 2012; Gupta et al., 2020). 
To assess whether impaired OPC differentiation might be due to fibrinogen extravasation (Petersen 
et al., 2017) or enhanced demyelination due to neutrophil infiltration (Rüther et al., 2017), we eval-
uated their presence within the lesion parenchyma after platelet depletion. There were no significant 
differences between neutrophil (Figure 2—figure supplement 1A, B) and fibrinogen extravasation 
(Figure 2—figure supplement 1C, D) after platelet depletion at 7 dpl, indicating that remyelination 
impairment likely derives from low numbers of circulating platelets rather than increased vascular 
leakiness.

Depletion of circulating platelets does not alter macrophage/microglia 
numbers and polarization during remyelination
Blood- borne macrophages and CNS- resident microglia are essential for OPC differentiation during 
remyelination (Kotter et al., 2006; Miron et al., 2013). As platelets regulate macrophage function in 
neuroinflammation (Langer and Chavakis, 2013; Carestia et al., 2019; Rolfes et al., 2020) and since 
platelets are located near macrophages/microglia upon demyelination (Figure 2—figure supplement 
2A), we evaluated whether platelet depletion affects these cell populations (Figure 2—figure supple-
ment 2B). At 10 dpl, platelet depletion did not alter the total number of IBA- 1+ (Figure 2—figure 
supplement 2C), pro- inflammatory IBA- 1+/CD16/32+ (Figure  2—figure supplement 2D) or anti- 
inflammatory IBA- 1+/Arg- 1+ (Figure 2—figure supplement 2E) macrophages/microglia present within 
the remyelinating lesion. Furthermore, platelet depletion did not influence macrophage/microglia 
phagocytic activity as no difference in myelin debris clearance, detected by Oil- Red O, was observed 
(Figure 2—figure supplement 2F, G). Therefore, circulating platelets likely impact OPC differentia-
tion without interfering with macrophage/microglia numbers/polarization during remyelination.

Transient in vitro exposure to platelets enhances OPC differentiation
To confirm whether transient platelet exposure directly enhances OPC differentiation, OPCs were 
briefly exposed to washed platelets (WP) for 3 days (pulse) and differentiation was assessed 3 days after 
WP withdrawal. OPCs briefly exposed to 10% WP exhibited a significant increase in the percentage 
of Olig2+/MBP+ mature oligodendrocytes compared to the vehicle treated control (p- value <0.0001; 
Figure 3A and B), indicating that transient contact to platelets directly promotes OPC differentiation. 

panels) and mature oligodendrocytes using Olig2+/CC1+ (lower panels). Boxed areas represent high magnification 
images. (D–F) Quantitative analysis of oligodendroglia at 7 dpl in untreated (n=3) and platelet depleted mice 
(n=5). (G) Representative images of toluidine blue staining of remyelination in untreated (n=6) and platelet 
depleted mice (n=3) at 14 dpl and (H–I) its quantification by relative ranking analysis. Data were analysed using 
an Unpaired Student’s t- test or Mann- Whitney U test. Data represent mean ± SD. * p<0.05; ** p<0.01; ns (not 
significant), p>0.05. Scale bars, 100 μm.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Platelet depletion does not alter BBB permeability.

Figure supplement 2. Changes in circulating platelet numbers does not alter the macrophage/microglia 
population during remyelination.

Figure 2 continued

https://doi.org/10.7554/eLife.91757
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Figure 3. Prolonged exposure to platelets suppresses their ability to enhance OPC differentiation. 
(A) Representative fluorescence images of OPCs co- cultured with 1 (n=6), 5 (n=6), and 10% (n=6) washed 
platelets (WP) for 3 days in vitro (DIV), followed by WP removal for an additional 3 DIV (Pulse). Additionally, OPCs 
were co- cultured in the presence of 10% WP for 6 DIV (n=5) (Sustained). Vehicle treated OPCs represents the 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.91757
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Similar increases in the proportion of Olig2+/MBP+ mature oligodendrocytes were observed when 
OPCs were transiently exposed to 1% platelet lysate (PL) compared to vehicle- treated control, indi-
cating that this effect is, at least in part, mediated through platelet- contained factors and direct cell- 
cell contact is not essential (p- value <0.05; Figure 3C, D).

Sustained increase in circulating platelets hampers OPC differentiation 
during remyelination
Chronically- demyelinated MS lesions have been reported to contain a substantial number of platelets 
and their derived molecules (Lock et al., 2002; Han et al., 2008; Langer et al., 2012; Simon, 2012; 
Steinman, 2012). To explore the effects of prolonged platelet exposure on OPC differentiation, we 
conducted experiments with sustained exposure to 10% WP. Contrary to the 3- day pulse- based expo-
sure, 6 days of sustained exposure to 10% WP suppressed the ability of platelets to enhance OPC 
differentiation (p- value <0.0001; Figure 3A and B). Similar findings were observed upon 9 days of 
sustained exposure to 1% PL (Figure 3E and F), indicating effects mediated by platelet- contained 
factors. To test whether this effect is reversible, PL was withdrawn upon 6 days of sustained exposure, 
and OPC differentiation was evaluated 3 days later. Interestingly, PL withdrawal rescued the capability 
of platelets to enhance OPC differentiation when compared to the vehicle- treated control and the 
sustained condition (p- value <0.05; Figure 3E, F - F).

To assess whether a permanent increase of circulating platelets may hamper OPC differentiation 
during remyelination, we used a conditional mouse knock- in model carrying a mutation within the 
calreticulin gene in a heterozygous fashion controlled by the Vav1 hematopoietic promoter, resulting 
in sustained thrombocytosis (2–3 times more circulating platelets) without alterations in other cell 
lineages (Li et al., 2018). We induced a demyelinating lesion by LPC injection in the spinal cord white 
matter of Calr+/- mice and evaluated platelet recruitment and OPC differentiation. As expected, at 5 
and 10 dpl, Calr+/- mice showed increased levels of circulating platelets (p- value <0.01; Figure 4B) as 
well as a higher number of recruited platelets into the lesion (p- value <0.05; Figure 4A and C). At 10 
dpl, Calr+/- mice displayed a reduced number of mature Olig2+/CC1+ oligodendrocytes (Figure 4D 
and F) and a significant decrease in the percentage of differentiated OPCs (p- value <0.05; Figure 4G) 
compared to WT mice, without alterations in the total number of Olig2+ cells (Figure 4E). Addition-
ally, we observed a negative correlation between the number of circulating platelets in Calr+/- mice 
with the number of mature oligodendrocytes (r=–0.87, p- value <0.01) (Figure  4H). Similar to the 
platelet depleted model, effects on OPC differentiation are not mediated by inflammation, as Calr+/- 
mice showed no alterations in macrophage/microglia numbers/polarization during remyelination 
(Figure 2—figure supplement 2B–E). These findings indicate that sustained exposure to platelets 
directly hampers OPC differentiation during remyelination.

Discussion
In conclusion, our study reveals that in response to myelin damage platelets transiently accumulate 
within the vascular niche and locate near OPCs. While transient contact to platelets support OPC 
differentiation, long lasting exposure to elevated numbers of circulating platelets hampers the gener-
ation of oligodendrocytes during remyelination. These findings argue in favour of a beneficial physio-
logical role of platelets in remyelination. However, we also highlight that sustained increased platelet 

control condition (n=6). (B) Graph represents the percentage of Olig2+MBP+ oligodendrocytes within the total 
Olig2 population (quantitative analysis of OPC differentiation). (C) Representative images of OPCs exposed to 
1% platelet lysate (PL) (n=5) for 6 DIV. Vehicle treated OPCs represents the control condition (n=5). (D) Graph 
represents the quantitative analysis of OPC differentiation as in B. (E) Representative images of OPCs exposed 
to either PL for 9 DIV (Sustained) (n=5) or 6 DIV with PL followed by its removal for an additional 3 more DIV 
(Withdrawn) (n=5). Vehicle- treated OPCs represents the control condition (n=5). (F) Graph shows the quantitative 
analysis of OPC differentiation as in B and D. Data were analysed using one- way ANOVA followed by Tukey’s post- 
hoc test, a Mann- Whitney U test, or Kruskal- Wallis test. Data represent the mean ± SD. * p<0.05; *** p<0.001; **** 
p<0.0001; ns (not significant), p>0.05. Scale bars, 50 μm.

Figure 3 continued

https://doi.org/10.7554/eLife.91757
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Figure 4. A sustained increase in circulating platelets impairs remyelination in- vivo. (A) Representative fluorescence images of platelets (CD41+) in LPC 
induced demyelinating lesions of spinal cord white matter of WT and Calr +/- mice at 5 and 10 dpl. Scale bar 50 μm. (B) Quantification of circulating 
platelets in WT vs Calr +/- mice at 5 (n=4 and n=5, respectively) and 10 dpl (n=5 and n=6, respectively). (C) Quantification of CD41+ signal in demyelinated 
lesions of WT vs Calr +/- mice at 5 dpl (n=5 and n=5, respectively) and 10 dpl (n=4 and n=4, respectively). (D) Representative immunofluorescence staining 
of oligodendroglial lineage cells in untreated and platelet depleted mice at 10 dpl using Olig2+ (upper panels) and mature oligodendrocytes using 
Olig2+/CC1+ (lower panels) (n=4). Scale bar 100 μm. (E–G) Quantitative analysis of oligodendroglia at 10 dpl. (H) Correlation between the circulating 
platelet number with the number of Olig2+/CC1+ cells within the demyelinated lesion. Data were analysed using a two- way ANOVA followed by 
Bonferroni’s post- hoc test, an unpaired t- test, Welch’s t- test, a Mann- Whitney U test, or Pearson’s correlation coefficient analysis. Data represent the 
mean ± SD. * p<0.05; ** p<0.01; ns (not significant), p>0.05.

https://doi.org/10.7554/eLife.91757
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counts, as occurs in MS- related conditions, negatively alter OPC function and contribute to remyelin-
ation failure in MS.

Although there is a need to reveal the underlying mechanism(s) by which platelets exert a bimodal 
action on OPC differentiation, our findings indicate that platelet- contained factors contribute to this 
effect. This study shows that the regeneration of oligodendrocytes rests on the transient vs sustained 
presence of platelets within demyelinated lesions. Platelet accumulation in MS lesions may result from 
blood- brain barrier damage (Broman, 1964; Zlokovic, 2008) and/or a clearance failure, but changes 
in their adhesiveness (Sanders et al., 1968) and hyperactivity observed during MS (Sheremata et al., 
2008) may contribute to such scenario. Strategies that restore platelet function, spatially and tempo-
rally, represent a future step for developing regenerative therapies in MS.

Materials and methods
Key resources table 

Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody CD41 rat monoclonal Abcam
Cat# ab33661;
RRID:AB_726487 Working dilution (1:200)

Antibody
CD16/32
rat monoclonal BD Biosciences

Cat # BD 553142
RRID:AB_394656 Working dilution (1:200)

Antibody Iba- 1 rabbit polyclonal WAKO

Cat#
019–19741;
RRID:AB_839504 Working dilution (1:500)

Antibody Arg- 1 goat polyclonal Santa Cruz
Cat# sc- 18351;
RRID:AB_2258542 Working dilution (1:200)

Antibody NIMP- R14 rat monoclonal Abcam
Cat# ab2557;
RRID:AB_303154 Working dilution (1:200)

Antibody Olig2 rabbit monoclonal Abcam
Cat# Ab109186;
RRID:AB_10861310

Working dilution
(1:200 in vivo)
(1:500 in vitro)

Antibody CC1 mouse monoclonal Millipore
Cat# OP80;
RRID:AB_2057371 Working dilution (1:1000)

Antibody MBP rat monoclonal Bio- rad
Cat# MCA409S;
RRID:AB_325004 Working dilution (1:500)

Antibody Collagen IV (ColIV) goat polyclonal Millipore
CAT# AB769;
RRID:AB_92262 Working dilution (1:100)

Antibody Fibrinogen rabbit polyclonal Abcam
Cat # ab34269
RRID:AB_732367 Working dilution (1:200)

Chemical compound, drug L-α-lysophosphatidylcholine Sigma- Aldrich Cat # L1381
Demyelinating agent, Working 
concentration 1%

Chemical compound, drug
CD42b (mixture of rat monoclonal 
antibodies)

Emfret Analytics; 
Evans et al., 2021

Cat #R300
RRID:AB_2721041

Platelet depletion antibody, Working 
concentration 0.6 μg/g

Strain, strain background (Mus 
musculus) Mouse: C7BL/6

Charles River 
Laboratories RRID:SCR_003792

Strain, strain background (Mus 
musculus) Mouse: Calrfl/+:Vav1- Cre mice Li et al., 2018

Strain, strain background 
(Rattus norvegicus)

Rat:
Sprague Dawley

Charles River 
Laboratories RRID:SCR_003792

Animals
All animal work at University of Cambridge complied with the requirements and regulations of the 
United Kingdom Home Office (Project Licenses PCOCOF291 and P667BD734). All the experiments at 
Universidad Austral de Chile were conducted in agreement with the Chilean Government’s Manual of 
Bioethics and Biosafety (CONICYT: The Chilean Commission of Scientific and Technological Research, 
Santiago, Chile) and according to the guidelines established by the Animal Protection Committee 
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of the Universidad Austral de Chile (UACh). The animal study was reviewed and approved by the 
Comité Institucional de Cuidado y Uso de Animales (CICUA)- UACh (Report Number # 394/2020). All 
the experiments at University of Helsinki followed the guidelines posed by the Academy of Finland 
and the University of Helsinki on research ethics and integrity (under Internal License KEK23- 022) and 
accordingly to the National Animal Ethics Committee of Finland (ELLA). Mice and rats had access to 
food and water ad libitum and were exposed to a 12 hr light cycle. For all in vivo studies animals were 
grouped randomly (treatment and time) as well as for all in vitro experiments.

Human subjects
Human platelets were obtained from blood samples of healthy volunteers who signed a consent form 
before sampling. All procedures were approved by the Comité Ético y Científico del Servicio de Salud 
de Valdivia (CEC- SVS; ORD N° 510) to carry experiments at Universidad Austral de Chile and by the 
Ethical Committee of the University of Cambridge to perform experiments at this institution. The 
blood donors at Cambridge were approved by the human biology research ethics committee (refer-
ence number: HBREC.2018.13.).

Focal demyelination lesions
A focal demyelinating lesion was induced in C57BL/6 and Calr+/- mice between 2 and 4 months of 
age. Animals were anesthetized using Isoflurane/Oxygen (2–2.5%/1000  ml/min O2) and buprenor-
phine (0.05 mg/kg) was injected subcutaneously immediately before surgery. Local Lysolecithin- driven 
demyelination in mice was induced as previously described in Fancy et al., 2009. Briefly, the spinal 
cord was exposed between two vertebrae of the thoracic column and demyelination was induced 
by injecting 1 µL of 1% lysolecithin (L- lysophosphatidylcholine, Sigma) into the ventral funiculus at a 
rate of approximately 0.5 µl/min–1. The incision was then sutured, and the animal was left to recover 
in a thermally controlled chamber. Animals were monitored for 72 hr after surgery. Any signs of pain, 
dragging of limbs, or weight loss of more than 15% of pre- surgery weight, resulted in cessation of the 
experiment. Mice were sacrificed at 1, 3, 5, 7, 10, and 14 dpl by transcardial perfusion of 4% PFA or 
glutaraldehyde under terminal anaesthesia.

Platelet depletion
For platelet depletion, mice received an intraperitoneal injection (IP) of 0.6 µg/g of antiCD42b (Emfret 
Analytics) (Evans et al., 2021), diluted in saline solution, at 3 dpl, followed by IP injections every 
48 hr until the end of the experiment period. The effectiveness of platelet depletion was confirmed 
by measuring the number of circulating platelets using a VetAnalyzer (scil Vet abc Plus). Mice with a 
circulating platelet number below 200,000 platelets/µL were considered successfully depleted.

Preparation of washed platelets and platelet lysate
Washed platelets (WP) were prepared as described (Cazenave et al., 2004). Briefly, human blood 
samples were taken from the median cubital vein and collected in sodium citrate followed by centrifu-
gation for 20 min at 120 x g to separate the red blood cells from the plasma. Plasma was collected and 
centrifuged at 1400 x g to pellet platelets. Plasma was removed without disrupting the platelet pellet. 
PGI2 and sodium citrate were carefully added, followed by resuspension in Tyrode’s buffer. Platelet 
number was quantified using a Vet Analyzer and adjusted to a concentration of 1,000,000 platelets/
µL. WP were used fresh, meanwhile for the platelet lysate (PL) preparation, the suspension underwent 
two freeze- thaw overnight cycles. Platelet fragments were then eliminated by centrifugation at 4000 x 
g for 15 min and the supernatant was collected and stored at - 20 °C.

Primary OPC cultures
OPCs were obtained from Sprague- Dawley postnatal rats (p3 – p6) from both genders. Rat OPCs 
were isolated and prepared as described by Neumann et al., 2019. Cells were then seeded onto 
glass plates pre- coated with Poly- D- Lysine (PDL) in 24- well plates, with a seeding density of 7000 cells 
for differentiation assays. For differentiation conditions, T3 was added to the culture media. All exper-
imental conditions were replicated using two independent technical replicates. OPCs were either 
subjected to various concentrations of washed platelets (1%, 5%, and 10%) or to 1% of platelet lysate 
of the final volume.

https://doi.org/10.7554/eLife.91757
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Histology and immunofluorescence
After transcardial perfusion with 4% PFA, tissue was post- fixed overnight in 4% PFA at 4 °C. After 
fixation, spinal cords were left in 30% sucrose overnight. Tissue was then embedded in OCT and cut 
in 15 µm transverse sections on a Leica Cryostat. Samples were stored at - 80 °C until use.

For immunofluorescence staining of tissues, samples were left to thaw for 30 min and washed with 
PBS. Samples were blocked for 1 hr, using a blocking solution that contained; 10% horse serum, 1% 
bovine serum albumin, 0.1% cold fish gelatine, 0.1% Triton X- 100, and 0.05% Tween 20, diluted in 
PBS. After blocking, samples were incubated overnight at 4 °C with primary antibody diluted in PBS 
containing 1% bovine serum albumin, 0.1% cold fish gelatine, and 0.5% Triton X- 100. The following 
primary antibodies were used: rat anti- CD41 (1:200 Abcam), rat anti- CD16/32 (1:200, BD Biosciences), 
rabbit anti- Fibrinogen (1:200, Abcam), rabbit anti- IBA1 (1:500, WAKO), goat anti- Collagen IV (ColIV) 
(1:100, Millipore), rabbit anti- Olig2 (1:200, Abcam), goat anti- Arg1 (1:200, Santa Cruz), mouse anti- 
CC1 (1:1000, Calbiochem), rat anti- NIMP- R14 (1:200, Abcam). Samples were washed three times for 
5 min in PBS. After washing, samples were incubated with secondary antibody and DAPI for 1 hr, 
diluted in the same solution as the primary antibody. Samples were washed three times for 5 min 
in PBS. Samples were mounted with Fluromount. All secondary antibodies were diluted 1:500. For 
imaging of spinal cord tissue, the entire lesion area was imaged for five technical replicates.

For immunofluorescence staining of cell cultures, samples were initially washed three times with 
PBS for 5 min after fixation. The cells were then blocked with 10% Donkey Serum (DKS) in PBS for 1 hr, 
followed by incubation with the primary antibody overnight, diluted in the same blocking solution. 
The following primary antibodies were utilized: Rat Anti- Myelin Basic Protein (MBP; 1:500, Bio- Rad) 
and Rabbit Anti- Oligodendrocyte transcription factor 2 (Olig2; 1:500, Abcam). The cells were then 
washed three times with PBS 1 x for 5 min, followed by incubation with secondary antibodies, diluted 
in the blocking solution, for 1 hr. The cells were washed three more times with PBS 1 x for 5 min.

Images were captured using a Leica SP8 Laser Confocal, a Zeiss LSM 980 Confocal or an Olympus 
IX81FV1000. For cell culture imaging, 8–10 photos per well were quantified for each well using an 
automated macro in ImageJ/Fiji. For in vivo imaging, three to five photos were quantified per animal 
by a blinded observer. For tissue image analysis and 3D reconstruction of platelet localisation, ImageJ/
Fiji (version 2.1.0/1.53 hr) and Imaris (Bitplane, version 9.3.1, and 9.9.0) were used.

Oil-Red O staining
To analyse myelin debris clearance, tissue sections were stained with Oil- Red O as previously described 
by Kotter et al., 2005. Briefly, sections were stained with freshly prepared Oil- Red O and incubated at 
37 degrees for 30 min. Slides were washed and mounted using an aqueous mounting medium. Image 
J was used to threshold and quantify Oil- Red O images.

Remyelination ranking analysis
For remyelination studies, tissue was fixed with 4% glutaraldehyde and embedded in resin. Semi- 
thin sections of the lesion were cut and stained with Toluidine Blue. Three blinded observers ranked 
the level of remyelination for each biological individual, giving the most remyelinated individual the 
highest score, and the individual with the lowest degree of remyelination the lowest. The average for 
each animal was calculated from the three independent observer rankings.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 10. In vivo data were obtained from three to 
six animals per groups (n value). In vitro studies were performed considering, at least, three technical 
replicates and statistical analysis was performed from five to six independent biological experiments 
(n value). The distribution of data were first tested using a Shapiro- Wilks test. Two- way ANOVA, One- 
way ANOVA or a Kruskal Wallis one- way analysis, with the corresponding post- hoc test, were used to 
compared multiple groups, and a Mann- Whitney U- test, an unpaired t- test or Welch’s t- test were used 
to compare between groups. Pearson’s correlation coefficient analysis was used for studies involving 
data correlation. p- Values were represented as *<0.05, **<0.01, ***<0.001, ****<0.0001.

https://doi.org/10.7554/eLife.91757
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