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Abstract Muscle regeneration is a complex process due to dynamic and multiscale biochemical 
and cellular interactions, making it difficult to identify microenvironmental conditions that are benefi-
cial to muscle recovery from injury using experimental approaches alone. To understand the degree 
to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we devel-
oped an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic 
microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 
100 published studies to define over 100 parameters and rules that dictate the behavior of muscle 
fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic 
vessels, as well as their interactions with each other and the microenvironment. We utilized param-
eter density estimation to calibrate the model to temporal biological datasets describing cross-
sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. 
The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, 
and capillaries counts) to experimental observations. Predictions for eight model perturbations that 
varied cell or cytokine input conditions were compared to published experimental studies to vali-
date model predictive capabilities. We used Latin hypercube sampling and partial rank correlation 
coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to 
enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay 
and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual 
perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. 
These results enable guided development of therapeutic strategies that similarly alter muscle phys-
iology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as 
studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance 
muscle recovery after injury.
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Introduction
Skeletal muscle injuries account for more than 30% of all injuries and are one of the most common 
complaints in orthopedics (Quintero et  al., 2009; Barroso and Thiele, 2011; Valle, 2011). The 
standard treatment for muscle injuries is limited mostly to rest, ice, compression, elevation, anti-
inflammatory drugs, and immobilization (Quintero et al., 2009). These treatments lack a firm scientific 
basis and have varied outcomes, some resulting in incomplete functional recovery, formation of scar 
tissue, and high injury recurrence rates (Järvinen et al., 2007; Huard et al., 2022). Our fundamental 
understanding of the individual cellular and subcellular behaviors of muscle cells has advanced and 
made it clear that interactions between cells and their microenvironment is critical for healthy regen-
eration. These interactions are dynamic, involve feedback mechanisms, and lead to complex emer-
gent phenomena; therefore, there are numerous possible interventions that could enhance muscle 
regeneration.

Muscle regeneration requires an abundance of cells and cytokines to interact in a highly coordi-
nated mechanism involving five interrelated cascading phases including degeneration, inflammation, 
regeneration, remodeling, and functional recovery (Forcina et al., 2020). Following an acute muscle 
injury, there is a time-dependent recruitment of neutrophils, monocytes, and macrophages to remove 
necrotic tissue and release factors that regulate fibroblast behavior and SSC activation, proliferation, 
and division (Howard et al., 2020). Following initial inflammatory response, fibroblasts and SSCs acti-
vate and proliferate with the macrophages shifting from their pro- to anti-inflammatory phenotype. 
In healthy muscle, this process would be followed by remodeling of the muscle where the fibroblasts 
apoptose and SSCs differentiate and fuse to repair the myofibers (Westman et al., 2021). Each cell 
involved in this process secretes cytokines that help regulate cell recruitment and chemotaxes to 
modulate the dynamics of the recovery. It has also been shown that the molecular events implicated 
in angiogenesis occur at early stages of muscle regeneration to restore microvascular networks that 
are crucial for successful muscle recovery (Wagatsuma, 2007).

There are numerous cytokines involved in muscle regeneration, many of which have been individ-
ually studied to examine their influence on muscle regeneration (Chen et al., 2015). These cytokines 
play key roles in dictating cell behaviors and are major drivers of the regeneration cascade (Husmann 
et al., 1996). The dynamics of these cytokines control many aspects of the microenvironment and 
altering their properties to optimize treatments has been proposed in a variety of settings (Itoh, 
2022). Testing alterations in cytokine dynamics experimentally has proven to be complex and expen-
sive due to difficulties in cytokine identification and quantification as well as confounding factors due 
to pleiotropic activities of cytokines and interactions with soluble receptors (Ciano-Petersen et al., 
2022). These challenges make it difficult to holistically test different diffusion and decay properties for 
numerous cytokines (Ferrara, 2010). However, if we could better understand the synergistic effects of 
alteration in cytokines, we could design a more effective therapy for treating muscle injury.

There are over a million possible combinations of cytokine alterations, making it unrealistic to 
study all combinations with experiments alone. For this reason, an in silico approach is needed to 
fully explore the possible treatment landscape and make predictions on potential targets to enhance 
muscle recovery. Over the last several years, agent-based models (ABMs) of muscle regeneration 
have been developed to study muscle regeneration in a variety of applications (Westman et  al., 
2021; Virgilio et al., 2018; Martin et al., 2016; Khuu et al., 2021; Khuu et al., 2023; Virgilio et al., 
2021). These models were foundational for exploring the role of SSCs in a variety of muscle milieus 
(Westman et al., 2021; Virgilio et al., 2018; Khuu et al., 2021) and for demonstrating how ABMs 
can be used to simulate therapeutic interventions (Martin et al., 2016). However, previous models 
employed simplistic, non-spatial representations of cytokine behaviors and properties, which limited 
their ability to recapitulate cytokine alterations such as injection of transforming growth factor beta 
(TGF-β) (Virgilio et al., 2021). Furthermore, these prior models did not include microvessel adap-
tations and dynamic extracellular matrix (ECM) properties which are crucial for understanding the 
altered microenvironmental state following muscle injury. These critical limitations must be addressed 
in order for ABMs of muscle regeneration to provide meaningful insights into treatments for muscle 
injury.

The goals of this work were to: (1) develop an ABM of muscle regeneration that includes cellular and 
cytokine spatial dynamics as well as the microvascular environment, (2) calibrate the model to capture 
cell behaviors from published experimental studies, (3) validate model outcomes by comparison with 
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multiple published experimental studies, (4) conduct in silico experiments to predict how altering 
cytokine dynamics impacts muscle regeneration. For model calibration, we implemented an iterative 
and robust parameter density estimation protocol to refine the parameter space and calibrate to 
temporal biological datasets (Joslyn et al., 2021). Partial rank correlation coefficient (PRCC) was used 
to guide in silico experiments by identifying parameters and timepoints that were most critical for 
ideal regeneration metrics.

Results
ABM outputs align with calibration and validation data
Following parameter density-based calibration, the unknown parameters were narrowed into a final 
calibration parameter set (Supplementary file 1). The simulations captured SSC and fibroblast cellular 
behaviors, as well as CSA outcomes, that aligned with experimental studies (Figure 1; Figure 2A–C). 
The model data were consistent with the experimental trends, and the 95% confidence interval 
was within the standard deviation (SD) for all calibration data timepoints except for SSCs at day 3 
(Figure 2B). Macrophage (total, M1, and M2), neutrophil, and capillary counts, which were not used 
for model calibration, were also found to be consistent with experimental trends and allowed us to 
independently validate model outputs (Figure 2D–H).

ABM perturbations are consistent with published experiments
Overall, the model reproduced findings from multiple studies, replicating how altered condi-
tions lead to both improved and diminished muscle regeneration (Figure 3). Injections of vascular 
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Figure 1. Overview of agent-based model (ABM) simulation of muscle regeneration following an acute injury. (A) Simulated cross-sections of a muscle 
fascicle that was initially defined by spatial geometry from a histology image. Muscle injury was simulated by replacing a section of the healthy fibers 
with necrotic elements. In response to the injury, a variety of factors are secreted in the microenvironment which impacts the behavior of the cells. The 
colors correspond with those typically seen in H&E staining. (B) ABM screen captures show the spatial locations of the cells throughout the 28-day 
simulation. The agent colors were matched to those typically seen in IHC-stained muscle sections. Scale bar: 50 µm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overview of agent-based model (ABM) simulation with different initial histology configuration.

https://doi.org/10.7554/eLife.91924
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endothelial growth factor A (VEGF-A) led to faster CSA recovery, more damaged tissue clearance, 
and a concentration-dependent dose response, consistent with prior studies (Arsic et  al., 2004). 
Cell depletion simulations predicted decrease in all markers of regeneration, consistent with prior 
studies (Arsic et  al., 2004; Teixeira et  al., 2003; Liu et  al., 2017). When simulating hindered 
angiogenesis conditions, the model aligned with experimental studies showing detriments in CSA 
recovery, increased neutrophil and macrophage cells, and elevated ECM collagen density, indicating 
progression of fibrosis within the microenvironment (Hardy et al., 2019). There were a few cases in 
which model predictions did not align with published studies. First, simulations of tumor necrosis 
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Figure 2. Agent-based model (ABM) calibration and validation. ABM parameters were calibrated so that model outputs for cross-sectional area (CSA) 
recovery, satellite stem cell (SSC), and fibroblast counts were consistent with experimental data (A–C). (Murphy et al., 2011; Ochoa et al., 2007). 
Separate outputs from those used in calibration were compared to experimental data (Hardy et al., 2016; Ochoa et al., 2007; Wang et al., 2018; 
Nguyen et al., 2011) to validate the ABM (D–H). Error bars represent experimental standard deviation, and model 95% confidence interval is indicated 
by the shaded region. Cell count data were normalized by number of cells on the day of the experimental peak to allow for comparison between 
experiments and simulations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Overview of calibration methods.

https://doi.org/10.7554/eLife.91924
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Figure 3. Agent-based model (ABM) perturbation outputs are compared to various literature experimental results. 
Each perturbation model output is compared to the available corresponding published result. The top triangles 
indicate the literature findings and the bottom triangles indicate the model outputs. Red triangles represent a 
decrease, blue represents an increase, and gray represents no significant change. Timepoints of comparison were 
based on which timepoints were available from published experimental data. Refer to Table 8 for model input 
conditions and Supplementary file 7 for information on experimental references.
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factor alpha (TNF-α) knockout (KO) predicted increased CSA recovery, while experiments measured 
decreased recovery of CSA. This difference is likely due to the fact that the model did not include 
cross-regulation with interferons which are upregulated with TNF-α KO (Cantaert et  al., 2010). 
Second, macrophage depletion simulations predicted decreased TGF-β concentrations throughout 
the simulation while experiments measured an initial decrease in concentration followed by increased 
concentrations at days 7 and 14. This difference may be due to the fact that macrophage depletion 
was experimentally induced with clodronate-containing liposomes which could have reduced consis-
tency of depletion across the time course and other downstream impacts that were not represented 
by decreasing macrophages in the model perturbation (Liu et al., 2017).
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Figure 4. Dose-dependent response with vascular endothelial growth factor A (VEGF-A) injection compared to hindered angiogenesis. VEGF-A 
concentration response to varied levels of VEGF injection (A). Hindered angiogenesis resulted in slower and overall decreased cross-sectional area 
(CSA) recovery (B). Capillary count was dependent on VEGF-A injection level (C). Total macrophage count was similar between control and VEGF-A 
injection perturbations but macrophage count was higher in later timepoints in the hindered angiogenesis simulation (D). Satellite stem cell (SSC) 
peak varied with VEGF-A injection level and counts were prolonged in the hindered angiogenesis simulations (E). The fibroblast peak was lower for 
the hindered angiogenesis perturbation and highest with the extra high VEGF-A injection. In contrast to the other simulations, the fibroblast count was 
trending upward at later timepoints in the hindered angiogenesis perturbation (F). Hepatocyte growth factor (HGF) levels were consistent between 
control and VEGF-A injection perturbations but was significantly elevated in the hindered angiogenesis perturbation (G). Monocyte chemoattractant 
protein-1 (MCP-1), transforming growth factor beta (TGF-β), and interleukin 10 (IL-10) concentrations were elevated at later stages of regeneration 
with hindered angiogenesis (H, I, L). Tumor necrosis factor alpha (TNF-α) was elevated with the extra high VEGF-A injection and lower with hindered 
angiogenesis (J). Matrix metalloproteinase-9 (MMP-9) concentration was lower at the simulation midpoint but elevated at late regeneration stages (K).

https://doi.org/10.7554/eLife.91924
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Analysis of ABM perturbations leads to new insights regarding 
cytokine and cell dynamics
The model allowed for new insights into the dynamics of muscle regeneration by providing additional 
timepoints and metrics to evaluate the response to exogenous delivery of VEGF-A and hindered 
angiogenesis. VEGF-A levels remained elevated compared to control simulations following the injec-
tion at day 5 post injury (Figure 4A). CSA recovery had the highest increase at 28 days post injury with 
the high (103 relative concentration delivered) VEGF-A injection followed by the extra high (2×103 rela-
tive concentration delivered) injection (Figure 4B). The medium (750 relative concentration delivered) 
and low (500 relative concentration delivered) VEGF-A injections had higher CSA recovery 15 days 
post injury but were not significantly different from the control at day 28. All VEGF-A injections had a 
higher capillary count and were proportional to the level of VEGF-A injection (Figure 4C). The impact 
of VEGF-A injection on peak SSC and fibroblast counts was dependent on dosage amount, with the 
extra high VEGF-A injection resulting in the largest peaks (Figure 4E and F). Cytokine concentration 
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Figure 5. Heatmaps of changes in cytokine concentration at various timepoints throughout regeneration following individual cytokine knockout (KO) 
demonstrating cross-talk between cytokines. With monocyte chemoattractant protein-1 (MCP-1) KO there was an increase in all cytokines except 
vascular endothelial growth factor A (VEGF-A) at 12 hr post injury. Over the course of regeneration there was continued increasing elevation of 
hepatocyte growth factor (HGF), increases in VEGF-A, and transforming growth factor beta (TGF-β) decreased at day 7 followed by a strong increase by 
day 28 post injury (A). In the tumor necrosis factor-alpha (TNF-α) KO simulations, there was an early decrease in TGF-β that shifts to strong increases by 
day 28. Matrix metalloproteinase-9 (MMP-9) increased throughout the duration, HGF and interleukin 10 (IL-10) were decreased, VEGF-A lagged in the 
beginning but was increased during mid to late timepoints (B). Following IL-10 KO there were increases in TNF-α, decreases in HGF and TGF-β, and 
elevated MMP-9 at day 7 that decreased by day 28 (C).
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trends were similar for all injections, but most peak levels were dosage dependent (Figure 4G–L). 
In contrast, hepatocyte growth factor (HGF) levels were elevated from days 5 to 28 with hindered 
angiogenesis, as were TGF-β and interleukin 10 (IL-10) (Figure 4I and L). Monocyte chemoattractant 
protein-1 (MCP-1) concentration had a lower overall peak level with elevated levels from days 21 to 28 
(Figure 4H). Hindered angiogenesis had lower CSA recovery throughout the simulation and did not 
achieve unaltered regeneration levels (Figure 4B).

Cytokine KO perturbations revealed cross-talk and temporal interplay between cytokines (Figure 5). 
For example, with MCP-1 KO there was an overall increase in cytokine levels for all other cytokines 
within the microenvironment except for VEGF-A at 12  hr post injury (Figure  5A). By 7  days post 
injury TNF-α, TGF-β, IL-10, and matrix metalloproteinase-9 (MMP-9) had decreased from unaltered 
regeneration day 7 levels but VEGF-A and HGF were elevated. With TNF-α KO there was a decrease 
in TGF-β at early timepoints but a strong increase by day 28 (Figure 5B). Following IL-10 KO there 
was an increase in TNF-α that peaked at 7 days post injury (Figure 5C). HGF was slightly decreased 
throughout and TGF-β was strongly decreased by day 7. MMP-9 was decreased at 12 hr and 28 days 
post injury but heavily increased at day 7.

Cytokine dynamic analysis leads to new model perturbations that 
predict improved regeneration
Latin hypercube sampling (LHS)-PRCC of cytokine decay and diffusion parameters elucidated temporal 
relationships between cytokine parameters and key regeneration metrics, such as positive correla-
tions between CSA and TGF-β and MMP-9 decay (Table 9). Of all cytokine parameters, the model 
outputs were most sensitive to HGF decay, with all outputs except M1 cell count being significantly 
impacted. PRCC plots showed that TGF-β and MMP decay were positively correlated and HGF decay 
was negatively correlated with CSA recovery, with higher significance at timepoints after 12  days 
(Figure 6—figure supplement 1). Correlation plots for various cytokine concentrations and regenera-
tion metrics showed trends in cytokine-dependent cell behaviors such as the TNF-α concentration that 
led to heightened fibroblast cell counts as well as the corresponding TNF-α concentration threshold 
that results in diminished fibroblast response (Figure 6—figure supplement 2). These PRCC trends 
guided cytokine parameter perturbations to include lower HGF and VEGF-A decay, higher TGF-β, 
MMP-9, and MCP-1 decay, and higher MCP-1 diffusion because each of the cytokine modifications 
indicated some form of enhanced regeneration outcome metrics (Supplementary file 2). All these 
perturbations except MCP-1 decay show increased CSA, increased healthy capillaries, and increased 
SSCs (Figure 6). Finally, a combination of all changes except for MCP-1 decay was simulated. The 
combined cytokine alteration resulted in the highest CSA recovery (Figure 6A), as well as increased 
M1 macrophage counts (Figure 6B), decreased M2 macrophage counts (Figure 6C), increased fibro-
blasts (Figure 6D) and SSCs cell counts (Figure 6E). Capillaries regenerated faster in the combined 
perturbation than under unaltered conditions (Figure 6F, Figure 6—figure supplement 3). It is likely 
that the combination of cytokines perturbed cell dynamics in a manner that promoted regeneration 
in both the early and later phases. During early regeneration, lower HGF decay, higher TGF decay, 
and MCP-1 diffusion contributed to increased SSCs while lowered VEGF decay increased angiogen-
esis. During late regeneration, lower HGF decay and higher MMP decay contributed to an increased 
anti-inflammatory state and SSC differentiation. The combined cytokine perturbation predicted a 
13% improvement in CSA recovery compared to the unaltered regeneration amount at 28 days. The 
combined cytokine perturbation also had higher peaks in SSC and fibroblast counts than any of the 
singular cytokine perturbations, indicating the synergistic effects of altering the cytokine dynamics in 
combination.

Discussion
We developed a novel ABM that recapitulates muscle regeneration and, unique from prior work, 
includes spatial interactions between cytokines and the microvasculature based on relevant litera-
ture (Westman et al., 2021; Virgilio et al., 2018; Martin et al., 2016). The creation of the model 
provides a more controlled environment for studying muscle regeneration, reducing error and varia-
tion commonly encountered with in vivo experiments. Model predictions aligned with experimental 
data under various altered inputs. Through in silico experiments, we gained new insight into how the 
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combination of key cytokine dynamic alterations could increase SSC cells and enhance CSA recovery. 
The ability for altered cytokine concentrations to change regeneration outcomes is consistent with 
studies that have found enhanced muscle recovery with delivery of platelet-rich plasma (PRP) which 
contain VEGF and TGF- β (Kunze et al., 2019). These model perturbations allow development of 
hypotheses and can provide the basis for future experiments and potential therapeutic interventions 
such as plasminogen activators to alter cytokines dynamics to enhance muscle recovery.

ABM provides biological insight on nonlinear effects of cytokine levels
The ABM offers valuable insights into the muscle regeneration dynamics under various altered condi-
tions, elucidating the complex interplay of cytokines, angiogenesis, and cell behaviors. System-
atic simulations reveal critical thresholds, nonlinear effects, and synergistic cytokine combinations 
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Figure 6. Combined alterations of various cytokine dynamics enhance muscle regeneration outcomes. All tested alterations except higher monocyte 
chemoattractant protein-1 (MCP-1) decay resulted in higher cross-sectional area (CSA) recovery compared to the control (A). M1 cell count was higher 
for all perturbations with the highest peaks with increased MCP-1 diffusion and the combined cytokine alteration perturbation (B). Higher MCP-1 decay 
resulted in the largest M2 peak and higher MCP-1 diffusion, higher transforming growth factor beta (TGF-β) decay, and the combined cytokine alteration 
had a lower M2 peak than the control (C). Fibroblasts had the largest increase in cell count with the higher TGF-β decay and the cytokine combination 
perturbations (D). All perturbations resulted in an increased satellite stem cell (SSC) count with the largest increase resulting from the combined cytokine 
alteration (E). All perturbations except the combined and higher matrix metalloproteinase-9 (MMP-9) decay resulted in increased capillaries as a result 
of additional capillary sprouts (F).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Partial rank correlation coefficient (PRCC) plots for various model outputs over time to illustrate how the significance of cytokine 
decay and diffusion parameters varies at different points throughout regeneration.

Figure supplement 2. Cytokine concentrations are correlated with cell counts and recovery metrics at various stages of regeneration.

Figure supplement 3. Non-perfused capillaries for each cytokine perturbation.

https://doi.org/10.7554/eLife.91924
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impacting regeneration. Perturbations varying VEGF-A injection doses showed increased CSA 
recovery up to a threshold (high VEGF-A injection simulation), beyond which further improvements 
in CSA recovery cease. Cytokine KO simulations revealed the complex nature of the relationship 
between cytokines; removal of one cytokine from the system has a cascading temporal impact. Rela-
tionships between cytokines and cellular outputs exhibit nonlinear effects, as seen with the limited 
impact of elevated HGF on CSA recovery beyond a threshold and the non-monotonic relationship 
between TNF-α and fibroblast counts (Figure 6—figure supplement 2). Further analysis revealed 
that specific combinations of cytokine perturbations could enhance regeneration beyond singular 
cytokine interventions. For example, a combined intervention of: (1) decreasing HGF and VEGF-A 
decay, (2) increasing TGF-β and MMP-9 decay, and (3) increasing MCP-1 diffusion enhanced muscle 
regeneration. Prior studies have shown that individually, increased HGF (Choi et al., 2019), VEGF-A 
(Arsic et  al., 2004), and MCP- (Liu et  al., 2023) stimulate muscle regeneration whereas reduced 
TGF-β (Girardi et al., 2021) and MMP-9 (Zimowska et al., 2012) stimulate muscle regeneration. The 
model suggests that combined alterations have a stronger regenerative effect than individual cytokine 
changes, enhancing muscle recovery through distinct mechanisms—increasing healthy capillaries, SSC 
counts, and reducing inflammatory cells.

Cytokine modifications intended to enhance muscle recovery can have clinical relevance and have 
been studied in various settings. For example, synthetic biomaterials coated with IL-4 have been 
implanted as a cytokine delivery vehicle and were successful in increasing M2 cells within the muscle 
(Dziki et al., 2018). Cytokine antagonist has been successful at promoting muscle regeneration, seen 
in prior work with anti-IL-6 (Fujita et al., 2014). Studies have also shown that activation of plasmin 
is able to induce the release of ECM-bound VEGF, increasing angiogenesis (Ferrara, 2010; Ismail 
et al., 2021). Due to the complex network of cytokines, studies that deliver simple modulation of 
one or two cytokines typically have an insufficient response to generate appreciable improvements. 
This suggests that using a combination of biological and synthetic biomaterials to modulate multiple 
cytokines is necessary, which aligns with our findings (Dziki et al., 2018). Multiple cytokines have been 
modulated through the use of PRP which contains VEGF-A and an array of other cytokines, but PRP 
has had mixed success in a clinical setting (Alsousou et al., 2013). Our model has the capability to test 
and optimize various combinations of cytokines, along with exploring different temporal schedules 
for delivering specific treatments. For instance, it can predict whether modified combinations of cyto-
kines prove beneficial at specific timepoints, aiding in the development of optimal treatment compo-
sitions aligned with the temporal dynamics of the regeneration cascade. These predictions provide 
novel concepts for future experiments and potential interventions. For example, the predictions from 
the model suggest that interventions that combine activation of plasmin for bound VEGF release 
(Ferrara, 2010; Ismail et al., 2021) with delivery of synthetic biomaterials coated with HGF (van de 
Kamp et al., 2013), TGF-β antagonist (Akhurst, 2002), nuclear factor-kappa B inhibitory peptide to 
inhibit MMP-9 (Li et al., 2009), and recombinant MCP-1 hydrogels (Lin et al., 2010) to alter diffusion 
rate would result in improved regeneration outcomes.

Advancements from prior muscle regeneration models
Previous studies have employed computational models to investigate muscle regeneration across 
diverse contexts, such as Duchenne muscular dystrophy (DMD) and volumetric muscle loss (Westman 
et al., 2021; Virgilio et al., 2018). Earlier muscle regeneration ABMs from our group have been used 
to test the effects of priming muscle with inflammatory cells prior to injury (Martin et al., 2016). While 
these models laid the foundation for simulating muscle adaptations, they were constrained by limited 
diffusion capabilities and an absence of critical features related to microvessel growth and remodeling 
throughout the regeneration process. Similarly, other ABMs from our group have examined altered 
microenvironments, but their omission of spatial cytokine diffusion hindered comprehensive represen-
tation of cell behaviors pivotal to regeneration (Westman et al., 2021; Virgilio et al., 2018.) Recently, 
new ABMs have been published that focus on cerebral palsy and the impact of injury type on eccentric 
contraction-induced damage (Khuu et al., 2021; Khuu et al., 2023).

The model presented here provides advancements over prior models in three areas: (1) explicit 
modeling of cytokine-specific diffusion and decay that depends on the ECM environment, (2) addi-
tion of microvasculature, and (3) incorporation of a robust and rigorous calibration and validation 
process. The addition of microvessel growth and remodeling dynamics empowers investigations into 
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how interventions impact angiogenesis during regeneration, thereby influencing muscle recovery 
outcomes. By considering the intricate relationship between microvessels and regeneration, our 
model opens avenues for evaluating the effects of interventions on the broader recovery process. 
Second, understanding how cytokines influence cell behaviors at different times during regenera-
tion is crucial for determining optimal treatment targets and dosing. While cytokine dynamics can 
be altered experimentally, doing so is expensive and time-consuming (Itoh, 2022; Ferrara, 2010) 
so exploring many combinations of alterations would be practically infeasible. Our model incorpo-
rates decay and diffusion dynamics of a subset of cytokines to allow testing of far more alterations 
in cytokines than would be reasonable to conduct experimentally. Lastly, we leveraged the CaliPro 
technique for parameter density estimation-based calibration and LHS-PRCC to gain biological insight 
by analyzing how altered microenvironmental parameters could benefit regeneration outcomes. This 
approach of implementing parameter identification to guide model perturbations demonstrates the 
capabilities of the model as a novel tool for generating new hypotheses and identifying mechanisms 
to target for enhanced regeneration outcomes.

Our model predictions are generally consistent with these prior models, with added biological 
complexity that has yielded several new important insights. For example, simulation of hindered 
angiogenesis predicted a decrease in SSCs leading to poor CSA recovery, similar to how lower SSC 
counts resulted in lower CSA recovery in perturbations in both healthy and DMD simulations (Virgilio 
et al., 2018). Our model provides additional understanding about the corresponding spatial cyto-
kine changes that ultimately result in modulation of SSC dynamics within the microenvironment. The 
additional model advancements incorporated address prior muscle regeneration modeling gaps in 
understanding of how angiogenesis alters recovery outcomes as well as the response of complex 
spatial cell and cytokine dynamics.

Limitations and future work
There are some important limitations of this study that should be discussed. First, the model does 
not include all cell types and cytokines that are known to influence muscle regeneration and does not 
account for cytokine subtype or differences between endogenous and exogenous cytokines. These 
cells and cytokines likely have redundant functions, given the model effectively captures muscle 
regeneration using the included cells and cytokines. Second, the model does not currently represent 
hypertrophy during regeneration, which restricts CSA recovery from surpassing 100%; however, the 
cell dynamics it portrays remain consistent with those observed in studies that lead to hypertrophy 
following injury. Third, we assume a two-dimensional (2D) cross-section based on similar ABMs that 
have explored the relations of 2D to 3D simulations. These studies found that the diffusion accuracy 
is not greatly varied and that 2D is sufficient to predict the same mechanisms seen in 3D simulations 
(Marino et al., 2018; Sego et al., 2017). To determine the robustness of the 2D initial cross-section, 
preliminary testing has shown that the initial spatial configuration can be altered and still achieve 
similar results (Figure  1—figure supplement 1), but further examination is needed to determine 
sensitivity to numerous configurations. Fourth, the calibration and validation dataset integrated 
multiple datasets from diverse sources. We acknowledge inherent limitations arising from variations in 
sample sizes and experimental techniques across sources. Fifth, it is also possible that the calibrated 
parameters are unable to capture behaviors that were not exhibited within the experimental data-
sets used in parameterization. While we tested ranges for each parameter and settled on a single 
parameter set that best fits the calibration data, there may be additional parameter sets that fit the 
calibration data but have varied levels of stochasticity and altered reproducibility of replicate simula-
tions. Lastly, the current model was calibrated to male mice data despite known sex difference in skel-
etal muscle, regeneration mechanisms, and the timeline of recovery (Haizlip et al., 2015; Knewtson 
et al., 2022; Liu et al., 2023). Experimental measurements of female muscle regeneration are fairly 
limited because most muscle injury studies only use male mice or do not distinguish between sexes, 
making it difficult to incorporate sex differences into the model (Enns and Tiidus, 2010). Experiments 
that incorporate female mice and measure hormone levels are needed to accurately incorporate rules 
to distinguish between the sex-dependent dynamics of muscle regeneration.

This paper describes a significant advancement in modeling the complex process of muscle regen-
eration. Future efforts will extend the use of parameter density estimation to optimize the selection, 
doses, and timing of injections of exogenously delivered cytokines. Further refinement of analysis 
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methods could be pursued to disentangle specific underlying mechanisms of the dynamic feedbacks 
that drive the observed model outputs. Predictions from model simulations will also be used to inform 
future experiments by highlighting crucial timepoints to measure and predicted effect sizes for power 
analysis. Additionally, we aim to explore diverse muscle injury types and locations (i.e. injury relative to 
microvascular components) and their varying recovery responses, addressing challenges in comparing 
different acute injury techniques found in the literature. This study underscores the significance of 
cellular and cytokine spatial dynamics in muscle regeneration. Further inclusion of additional factors 
and hormones would provide a more holistic understanding of the system and how treatments may 
be altered based on microenvironmental conditions, providing a unique framework for the study of 
personalized muscle injury treatment.

Materials and methods
ABM development overview
ABMs represent the behaviors and interactions of autonomous agents, such as cells, which are 
governed by literature-derived rules (Virgilio et  al., 2018; Martin et  al., 2015; Ferrari Gianlupi 
et  al., 2022). Agent-based modeling (ABM) provides an excellent platform for studying complex 
cellular dynamics because they reveal how the interactions between individual cellular behaviors lead 
to emergent behaviors in the whole system.

We implemented the ABM in CompuCell3D (version 4.3.1), a Python-based modeling soft-
ware (Swat et  al., 2012). The ABM’s code is available for download (https://zenodo.org/records/​
10403014). To build the model, we extended upon about 40 rules developed in previous ABMs of 
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Figure 7. Flowchart of agent-based model (ABM) rules. The model starts with initialization of the geometry and the prescribed injury. This is followed by 
recruitment of cells based on relative cytokine amounts within the microenvironment. The inflammatory cells, SSCs, and fibroblasts follow their literature-
defined rules and probability-based decision tree to govern their behaviors. The boxes represent the behavior that the agent completes during that 
timestep given the appropriate conditions and the circles represent the uptake that occurs as a result of the simulated binding with microenvironmental 
factors for certain cell behaviors. ABM, agent-based model; SSC, satellite stem cell; ECM, extracellular matrix; TGF-β, transforming growth factor beta; 
HGF, hepatocyte growth factor; TNF-α, tumor necrosis factor alpha; VEGF-A, vascular endothelial growth factor A; MMP-9, matrix metalloproteinase-9; 
MCP-1, monocyte chemoattractant protein-1; IL-10; interleukin 10.
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muscle regeneration (Westman et al., 2021; Virgilio et al., 2018; Martin et al., 2016) in combina-
tion with a deep literature search referencing over 100 published studies to define approximately 100 
total rules that dictate the behavior of fiber cells, SSC, fibroblasts, neutrophils, and macrophages, 
as well as their interactions with the microenvironment, including microvasculature remodeling and 
cytokine diffusion and secretion (Figure 7). For a rule to be incorporated into the model, there had 
to be an established understanding within the literature supporting the behavior (i.e. multiple studies 
reporting similar findings or supported by other reputable publications). When available, we used 
experimental data to define the parameters associated with the model rules. There were 52 parame-
ters that could not be related to known physiological measurement; therefore, these parameters were 
calibrated using parameter density estimation which will be described below in Model calibration. 
Following calibration of model parameters, separate model outputs were validated by comparison 
with experimental data, and various model perturbations were conducted and compared to literature 
results. This process allowed us to have confidence in the predictive capabilities of the model so that 
we could simulate and predict the sensitivity of muscle regeneration to changes in cytokines.

Cellular-Potts modeling framework
Prior work to construct computational models to represent muscle recovery have used ordinary differ-
ential equation (Stephenson and Kojouharov, 2018) or agent-based modeling (ABM) software, such 
as Netlogo (Martin et al., 2016) or Repast (Virgilio et al., 2021). While these models have yielded 
great insights into skeletal muscle damage and recovery processes, they have limited capacity to 
represent the spatial diffusion of cytokines accurately and explicitly throughout the skeletal muscle. 
The Cellular-Potts model framework (Swat et  al., 2012) (CPM, also known as the Glazier-Graner-
Hogeweg model), proved an ideal choice because it allows for logic-based representation of cellular 
behavior and interactions characteristic of agent-based modeling (ABM) (see Supplementary file 3 
for CPM mathematical implementation, Supplementary file 4 for CPM adhesion parameters).

ABM design
The ABM spatially represents a 2D male murine skeletal muscle fascicle cross-section of approximately 
50 muscle fibers (Figure 1). The ABM depicts the microenvironment of the cross-section as well as the 
spatial migration of cells and diffusion of various cytokines (Supplementary file 5). The ABM simu-
lates the emergent phenomenon of muscle tissue from an acute injury over the course of 28 days. The 
spatial agents in the model include muscle fibers, necrotic muscle tissues, ECM, capillaries, lymphatic 
vessels, quiescent and activated fibroblasts, myofibroblasts, quiescent and activated SSCs, myoblasts, 
myocytes, immature myotubes, neutrophils, monocytes, resident macrophages, pro-inflammatory 
macrophages (M1), and anti-inflammatory macrophages (M2). In addition, the ABM includes seven 
diffusing factors, such as HGF, MCP-1, MMP-9, TGF-β, TNF-α, VEGF-A, and IL-10. A review of the 
literature led us to determine that these factors and cytokine isoforms were most critical for repre-
senting the behaviors of each cell during the regeneration cascade (Waldemer-Streyer et al., 2022; 
Rucavado et al., 2002).

The muscle cross-section geometry was created by importing a histology image stained with 
laminin α2 into a custom MATLAB script that masked the histology image to distinguish between the 
fibers and ECM. The mask was imported into an initialization CC3D script that defined the muscle 
fibers, ECM, and microvasculature to specific cell types and generated a PIF file that was imported 
into the ABM as the starting cross-section. The injury is simulated by stochastically selecting a region 
within the cross-section to replace the fiber elements with necrotic elements, where the percentage of 
CSA damage is an input parameter. When a threshold of fiber elements within a muscle fiber becomes 
damaged, the entire muscle fiber turns necrotic and requires clearance. If the damage is below the 
threshold, only the region of necrosis must be removed and the SSCs can fuse to the remaining fiber. 
During model initialization, the injury criteria can be altered to simulate various degrees of myotoxin 
injury by changing the percent of necrotic tissue following injury.

Each Monte Carlo step (mcs) represents a 15 min timestep, and the model simulations were run 
until 28 days post injury. The cell velocity is limited by how many times the Cellular-Potts algorithm is 
run, so we set 45 Cellular-Potts evaluations per mcs to ensure stability in migratory agent behavior. 
The number of Cellular-Potts evaluations per mcs and the lambda chemotaxis parameters were tuned 
in a simplified simulation of individual cells and their respective chemotactic gradients so we could 
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obtain cell speeds that were consistent with speeds derived from literature sources (Table 7). At each 
mcs, the agent behaviors are governed by rules that were derived from experimental data found in 
the literature. The behaviors of each agent are based on environmental conditions, such as nearby 
cells and cytokine gradients, as well as probability-based rules. As an example, a capillary located 
near a damaged fiber has a probability of becoming non-perfused and then senses the amount of 
VEGF-A and MMP-9 at its location to decide if the levels are adequate to induce angiogenesis (Table 
6). Model outputs include CSA recovery (sum of total healthy fiber elements normalized by the initial 
CSA), capillary and collagen density, cell counts, relative cytokine abundance, and spatial coordinates 
of cells and cytokines.

Table 1. Neutrophil agent rules.

Neutrophil agent behavior Sources

Recruitment signal: necrosis Madaro and Bouché, 2014

Neutrophils are brought to site of injury via capillaries Wang et al., 2020

Phagocytose necrosis Butterfield et al., 2006

Secretes MMP-9, MCP-1, TNF-α during phagocytosis Martin et al., 2016; Madaro and Bouché, 2014; Wang, 2018; Soehnlein et al., 2008

Undergoes apoptosis after phagocytosis or 12.5 hr Fox et al., 2010

Migrates toward areas of high HGF Molnarfi et al., 2015

Migration speed ~7.5 µm/min Zhao et al., 2020; Heit et al., 2008

Table 2. Macrophage agent rules.

Macrophage agent behavior Sources

Initial count: 1 resident macrophage per 5 myofibers Oishi and Manabe, 2018

Recruitment signal: MCP-1 Vogel et al., 2014; Chazaud et al., 2003

Monocytes are brought to the site of injury via microvessels Kratofil et al., 2017

Resident macrophages secrete MMP-9, MCP-1, and TNF-α and 
chemotax along MCP-1 and HGF

Elkington et al., 2009; Chen and Nuñez, 2010; Lacy and Stow, 2011; 
Vogel et al., 2014; Molnarfi et al., 2015; Furrer and Handschin, 2017

Monocytes chemotax along MCP-1, VEGF-A, and TGF-β
Chazaud et al., 2003; Owen and Mohamadzadeh, 2013; Reibman et al., 
1991; Martin et al., 2017

Monocyte migration speed ~4 µm/min van den Bos et al., 2020

M1 macrophages secrete VEGF-A, MMP-9, and TNF-α and chemotax 
along MCP-1 Corliss et al., 2016; Newby, 2008; Lu et al., 2018; Cui et al., 2018

Monocytes, resident, and M1 macrophages phagocytose apoptotic 
neutrophils and necrosis

Greenlee-Wacker, 2016; Watanabe et al., 2019; Uribe-Querol and 
Rosales, 2020

Monocytes and macrophages secrete MMP-9, HGF, TGF-β, and IL-10 
during phagocytosis

Martin et al., 2016; Yoon et al., 2016; D’Angelo et al., 2013; Popov 
et al., 2010; Arnold et al., 2007; Chung et al., 2007

Monocyte transitions into M1 occurs when TNF-α threshold is met or 
based on literature means and standard deviation properties Arnold et al., 2007; Mosser and Edwards, 2008

M1 transition into M2 is mediated by the amount of IL-10 and the 
amount the M1 has phagocytosed

Martin et al., 2016; Arnold et al., 2007; Saini et al., 2016; Das et al., 
2015

M2 macrophages secrete TGF-β and IL-10 and chemotax along MCP-1
Martin et al., 2016; Vogel et al., 2014; Arabpour et al., 2021; da Silva 
et al., 2015

Macrophages can proliferate following the transition to the anti-
inflammatory (M2) state Arnold et al., 2007

Macrophage migration speed ~0.62 µm/min van den Bos et al., 2020

Macrophages apoptose in a Poisson distribution Moncayo, 2007

https://doi.org/10.7554/eLife.91924
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Overview of agent behaviors
Simulated behaviors (Figure 1B) of the neutrophils and macrophages include cytokine-dependent 
recruitment, chemotaxis, phagocytosis of damaged fibers (neutrophils, monocytes, and M1 macro-
phages), phagocytosis of apoptotic neutrophils (monocytes and M1 macrophages), secretion and 
uptake of cytokines, and apoptosis. The SSC and fibroblast agent behaviors also include cytokine-
dependent recruitment, chemotaxis, secretion and uptake of cytokines, and apoptosis, in addition to 
quiescence, activation, division, and differentiation. The biological intricacy of some cell types, such as 
SSCs which have a more complex cell cycle and are regulated by dynamic interplay of intrinsic factors 
and an array of microenvironmental stimuli, led to the necessity for adding more rules that govern 
their behaviors (Yin et  al., 2013).The neutrophils have 18 parameters for 7 agent rules (Table 1), 
macrophages have 31 parameters for 15 agent rules (Table 2), SSCs have 33 parameters dictating 
the 17 agent rules (Table 3), fibroblasts have 27 parameters for 11 agent rules (Table 4), fibers have 
18 parameters for 4 agent rules (Table 5), and microvessels have 22 parameters for 6 agent rules 
(Table  6). At each mcs, cytokines are secreted by agents if certain conditions were met. For cell 
recruitment, the levels of recruiting cytokines for each agent are checked, and if the concentration 
is high enough to signal cell recruitment, a new agent is added to the field at the location of the 
highest concentration. The agents also undergo chemotaxis by sensing the surrounding cytokine 
gradients and move toward higher concentrations of cytokines, binding and removing that cytokine 
as they move along it to simulate physical binding of the cytokine to the receptor. Agents that are 
in a quiescent state require a certain threshold level of cytokines to become activated and cannot 
chemotax, secrete, divide, or differentiate until this threshold is reached. Our model assumes each 
unique cell type secretes the same concentration of cytokines per timestep for all relevant cytokines 

Table 3. SSC agent rules.

SSC agent behavior Sources

Initial count: 1 SSC per 4 fibers Virgilio et al., 2018; Reimann et al., 2000

Recruitment signal: HGF + MMP-9 - TGF-β
Virgilio et al., 2018; Kawamura et al., 2004; Wang et al., 2009; Allen 
and Boxhorn, 1989; González et al., 2017

Activation signal: HGF
Virgilio et al., 2018; González et al., 2017; Allen et al., 1995; Miller 
et al., 2000; Tatsumi et al., 1998

Activated SSCs secrete MCP-1 and VEGF-A Chazaud et al., 2003

Activated SSCs migrate toward areas of high MMP-9 Wang et al., 2009; Chen and Li, 2009

Myoblasts migrate toward high TNF-α Torrente et al., 2003

Division signal: TNF-α + VEGF-A - TGF-β
Virgilio et al., 2018; Allen and Boxhorn, 1989; Bakkar et al., 2008; 
Saclier et al., 2013

Differentiation signal: 3*IL-10 - HGF - TNF-α - TGF-β
Virgilio et al., 2018; Saini et al., 2016; Perandini et al., 2018; Gal-
Levi et al., 1998; Ten Broek et al., 2010

Activated SSCs differentiate into myoblasts, myoblasts into myocytes, and 
myocytes into myotubes/myofibers Cooper et al., 1999; Flamini et al., 2018; Bentzinger et al., 2012

Differentiated myocytes fuse at damaged fiber edge or fuse together to form 
new, immature myotubes

Yin et al., 2013; Wang et al., 2014; Nguyen et al., 2019; Ruiz-Gómez 
et al., 2002

50% cell divisions are symmetric, 50% asymmetric Virgilio et al., 2018; Kuang et al., 2007; Yennek et al., 2014

Division probability decreases with each cell division; first division 85%; 
second 65%; third 20% Virgilio et al., 2018; Siegel et al., 2011

VEGF-A and macrophages nearby can block apoptosis Chazaud et al., 2003; Arsic et al., 2004; Sonnet et al., 2006

TGF-β triggers apoptosis Cencetti et al., 2013

Time to divide: 10 hr Virgilio et al., 2018; Siegel et al., 2011; Rocheteau et al., 2012

Migration speed ~0.94 µm/min Otto et al., 2011

Return activated SSCs to quiescence without sustained HGF González et al., 2017

https://doi.org/10.7554/eLife.91924
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to drive model agent decisions. Each computational timestep represents 15 min of real-world time. 
We assume that this is of sufficient resolution to accurately reproduce immune cell agent behaviors 
during regeneration.

Neutrophil agents
Neutrophils are recruited through capillaries to sites of necrotic tissue (Table 1). Neutrophils move to 
areas of necrotic tissue with high concentrations of HGF by chemotaxing along the HGF gradient to 
reach areas of necrosis (Madaro and Bouché, 2014; Wang et al., 2020). Neutrophils phagocytose 
necrotic tissue and facilitate remodeling into ECM with low collagen density. During phagocytosis, 
neutrophils secrete MMP-9, MCP-1, and TNF-α (Butterfield et al., 2006; Madaro and Bouché, 2014; 
Wang, 2018; Soehnlein et al., 2008). Individual neutrophil agents apoptose after phagocytosing two 
necrotic cells (based on calibration) or 12.5 hr after their recruitment (Fox et al., 2010).

Macrophage agents
Resident macrophages are distributed randomly throughout the tissue at a ratio of 1 macrophage per 
5 myofibers at model initialization and secrete MCP-1 (Oishi and Manabe, 2018; Table 2). Resident 
macrophages chemotax along MCP-1 and HGF chemical gradients and secrete MMP-9, TNF-α, and 
MCP-1 during simulation (Elkington et al., 2009; Chen and Nuñez, 2010; Lacy and Stow, 2011; 
Vogel et al., 2014; Molnarfi et al., 2015; Furrer and Handschin, 2017). After tissue injury, monocytes 
are recruited through healthy capillary microvasculature and chemotax along MCP-1, VEGF-A, TGF-β 
(Kratofil et al., 2017; Chazaud et al., 2003; Owen and Mohamadzadeh, 2013; Reibman et al., 
1991). Monocytes infiltrate into the tissue if the MCP-1 concentration is above a specified threshold 
at a capillary site. Resident macrophages, monocytes, and the M1 macrophages differentiated from 

Table 4. Fibroblast agent rules.

Fibroblast agent behavior Sources

Initial count: 1 fibroblast per every 2 fibers Virgilio et al., 2018; Murphy et al., 2011

Activation signal: TGF-β Gibb et al., 2020

Fibroblasts move to low collagen ECM Virgilio et al., 2018; Dickinson et al., 1994

Fibroblasts secrete TNF-α, TGF-β, MMP-9, VEGF-A. Collagen is 
secreted at low-density ECM

Virgilio et al., 2018; Zou et al., 2008; Sanderson et al., 1986; Yokoyama et al., 
1999; Skutek et al., 2001; Lindner et al., 2012; Newman et al., 2011

Fibroblast division signaled by SSC division Virgilio et al., 2018; Murphy et al., 2011

Division probability decreases with each cell division; first division 
100%; second 25%; third 6% Alberts et al., 2002

Fibroblast differentiation into myofibroblasts with extended TGF-β 
exposure Virgilio et al., 2018; Desmoulière et al., 1993; Wipff et al., 2007

Myofibroblasts secrete double the amount of collagen and 
secretion is not dependent on collagen density Virgilio et al., 2018; Petrov et al., 2002

Fibroblasts apoptose with sustained exposure to TNF-α Virgilio et al., 2018; Lemos et al., 2015

Fibroblast migration speed ~0.73 µm/min Cornwell et al., 2004

Sufficient TGF-β can block fibroblast apoptosis Virgilio et al., 2018; Lemos et al., 2015

Table 5. Fiber agent rules.

Fiber agent behavior Sources

Damaged muscle fibers secrete HGF and TGF-β Miller et al., 2000; Kim and Lee, 2017

Healthy fibers secrete VEGF-A Huey, 2018

Fibers that are fully necrotic are fusion incompetent, but damaged fibers are fusion 
competent Snijders et al., 2015

Immature myotubes gain functional capacity as they fully mature over time
Nguyen et al., 2019; Abmayr and Pavlath, 2012; Isesele and 
Mazurak, 2021

https://doi.org/10.7554/eLife.91924
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monocytes may phagocytose areas of necrotic tissue and apoptotic neutrophil agents (Greenlee-
Wacker, 2016; Watanabe et  al., 2019; Uribe-Querol and Rosales, 2020). During phagocytosis, 
these agents secrete MMP-9, HGF, TGF-β, and IL-10 (Yoon et  al., 2016; D’Angelo et  al., 2013; 
Popov et al., 2010; Arnold et al., 2007; Chung et al., 2007).

Monocytes transition to M1 polarized macrophages when the monocyte agent experiences a large 
enough TNF-α concentration or if enough time has passed that a predefined transition time threshold 
is met. Each monocyte agent at creation has a defined transition time sampled from a Gaussian distri-
bution with mean and SD set to reproduce literature-defined populations of M1 macrophages over 
time (Arnold et al., 2007; Mosser and Edwards, 2008).

M1 macrophages may transition to M2 macrophages if the M1 macrophage agent experiences 
an IL-10 concentration that exceeds a threshold value or if the M1 macrophage has phagocytosed 
enough to meet a calibrated threshold value (as discussed in Model calibration) (Arnold et al., 2007; 
Saini et al., 2016; Das et al., 2015). Following the transition to the anti-inflammatory phenotype, the 
M2 macrophages can proliferate, secrete TGF-β and IL-10, and chemotax along an MCP-1 gradient 
(Vogel et al., 2014; Arnold et al., 2007; Arabpour et al., 2021).

SSC agents
The model is initialized with 1 quiescent SSC per every 4 fibers and upon injury (Reimann et al., 2000). 
Additional SSCs are recruited based on the amount of HGF, MMP-9, and TGF-β (Kawamura et al., 
2004; Wang et al., 2009; Allen and Boxhorn, 1989; González et al., 2017; Table 3). For SSC activa-
tion there has to be enough HGF at the location of the quiescent SSC to induce activation (González 
et al., 2017; Allen et al., 1995; Miller et al., 2000; Tatsumi et al., 1998). The SSCs also chemotax 
up the MMP-9 gradient, removing some of the MMP-9 as they move along it. Activated SSCs can 
also undergo symmetric or asymmetric division and differentiation given that the required cytokine 
signaling is met locally. Activated SSCs differentiated into myoblasts and myoblasts differentiate into 
myocytes (Cooper et al., 1999; Flamini et al., 2018; Bentzinger et al., 2012). Myocytes can fuse to 
other myocytes to form new myotubes or fuse to fibers as long as the fiber is not fusion incompetent 
(i.e. fully necrotic) (Yin et al., 2013; Wang et al., 2014; Nguyen et al., 2019; Ruiz-Gómez et al., 
2002). Maturation of myotubes is required for fusion of additional myocytes to the new fiber (Nguyen 
et al., 2019; Abmayr and Pavlath, 2012; Isesele and Mazurak, 2021). If the damage signal is not 
sustained, activated SSCs return to quiescence. If there is enough TGF-β to induce apoptosis and 
not enough VEGF-A or macrophages nearby to block it, the SSC undergoes cell death and leaves 
the simulation (Chazaud et al., 2003; Arsic et al., 2004; Sonnet et al., 2006; Cencetti et al., 2013).

Fibroblast agents
For model initialization, fibroblasts are randomly placed within the ECM at a population size that is 
proportional to the number of fibers (Murphy et al., 2011; Table 4). Fibroblasts are activated based 
on the concentration of TGF-β around the fibroblast (Beanes et  al., 2003; Chellini et  al., 2019). 
Fibroblasts include an additional expression in their effective energy function that directs their migra-
tion toward areas of low-density collagen ECM (Dickinson et al., 1994). Specifically, fibroblasts can 
form spring-like links to drag them toward areas of low-density ECM which are implemented with the 

Table 6. Microvasculature rules.

Microvessel agent behavior Sources

Initial count: ~4 capillaries per fiber, 1 lymphatic vessel per fascicle Wickler, 1981; Gehlert et al., 2010

Capillaries near necrosis will become damaged and unable to perfuse Jacobsen et al., 2021

With sufficient VEGF-A damaged capillaries will undergo angiogenesis Frey et al., 2012

MMP-9 is elevated during capillary growth Haas et al., 2000; Qutub et al., 2009

Increasing capillary-to-myofiber ratio during muscle regeneration from new sprouting capillaries at areas 
with enough MMP-9 and VEGF-A

Jacobsen et al., 2021; Hardy et al., 2016; 
Haas et al., 2000

Cells and cytokines near lymphatic vessel will be drained via the vessel and removed from 
microenvironment Hampton and Chtanova, 2019

https://doi.org/10.7554/eLife.91924
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relation ‍λij
(
lij − Lij

)2
‍, where ‍λij‍ denotes a Hookean spring constant of a link between cells i and j, l 

represents the current distance between the centers of mass between the two cells (in our case, fibro-
blast and low collagen ECM), and L is the target length of the spring-like link. In addition to the cyto-
kines secreted by fibroblasts (Table 4), collagen is secreted at low-density collagen ECM (Zou et al., 
2008; Sanderson et al., 1986; Yokoyama et al., 1999; Skutek et al., 2001; Lindner et al., 2012; 
Newman et al., 2011). Fibroblasts divide when they are near dividing SSCs and can differentiate into 
myofibroblasts with extended exposure to TGF-β (Murphy et al., 2011; Desmoulière et al., 1993; 
Wipff et al., 2007). The myofibroblasts can secrete more collagen regardless of the ECM density 
(Petrov et al., 2002). Fibroblasts can undergo apoptosis if there are adequate levels of TNF-α at the 
site of the cell but it can be blocked if there is sufficient TGF-β (Lemos et al., 2015).

ECM agents
ECM elements surround the fiber elements and are assigned a collagen density parameter which 
varies based on the amount of necrotic tissue removed and the extent of fibroblast/myofibroblast 
collagen secretion. When necrotic elements are removed, the phagocytosing inflammatory cells 
secrete MMP-9s which degrade some of the collagen within that section of the ECM, thereby causing 
that element to have a lower collagen density (Madaro and Bouché, 2014). The collagen density 
of the ECM alters the diffusivity of the secreted factors, and fiber placement is dependent on the 
collagen density (discussed below). The fibroblasts help rebuild the ECM by secreting collagen on low 
collagen density ECM elements (Zou et al., 2008). Myofibroblasts can secrete collagen on any ECM 
element and if prolonged results in high-density collagen elements, representing a fibrotic state.

Fiber and necrotic agents
Upon model initialization, a portion of the muscle fiber agents are converted to necrotic fibers based 
on the user prescribed injury. Fibers that reach a damaged threshold became fully necrotic whereas 
those surrounding the area of necrosis were damaged but not fully apoptotic cells. Healthy fiber 
elements secrete VEGF-A, and necrotic elements secrete HGF and TGF-β (Miller et al., 2000; Kim 
and Lee, 2017; Huey, 2018; Table 5). Phagocytosing agents chemotax along those gradients to clear 
the necrosis, but before a new fiber can be deposited, the collagen has to be restored so that there is 
a scaffold to hold the fiber in place (Oishi and Manabe, 2018). Fully necrotic fibers are fusion incom-
petent and require myocyte-to-myocyte fusion to form a new myofiber and require maturation before 
additional myocyte fusion (Nguyen et al., 2019; Abmayr and Pavlath, 2012; Isesele and Mazurak, 
2021). Damaged fibers are regenerated by myocytes fusion to the healthy fiber edge (Snijders et al., 
2015).

Capillary and lymphatic agents
The muscle fascicle environment includes approximately 4 capillaries per fiber and 1 lymphatic vessel 
(Wickler, 1981; Gehlert et al., 2010; Table 6). The model defines perfused capillaries as capillary 
agents that can transport neutrophils and monocytes into the system proportional to the concentra-
tion of recruiting cytokines (Wang et al., 2020; Kratofil et al., 2017). The neutrophils and monocytes 
are added to the simulation at the lattice sites above capillaries (within the cell layer; Figure 1B) 
and chemotax along their respective gradients. The recruitment of the neutrophils and monocytes 
are distributed among the healthy capillaries with a higher affinity for capillaries at locations with 
higher concentrations of HGF and MCP-1, respectively. Under physiologically reasonable chemotactic 
gradient conditions, the recruited immune cells dispersed efficiently, with no aggregation. Capillaries 
that are neighboring areas of necrosis become non-perfused and therefore are unable to transport 
cells into the microenvironment until regenerated (Jacobsen et al., 2021). Angiogenesis can occur as 
long as there is enough VEGF-A present at the non-perfused capillary (Frey et al., 2012). Similar to 
published studies, there is an increase in the capillary-to-myofiber ratio during muscle regeneration, 
which is due to the formation of new capillary sprouts modulated in part by local MMP-9 and VEGF-A 
levels (Jacobsen et al., 2021; Hardy et al., 2016; Haas et al., 2000).

The lymphatic vessel uptakes cytokines at lattice locations corresponding to the lymphatic vessel 
and will remove cells located in lattice sites neighboring those corresponding to the lymphatic vessel 
(Hampton and Chtanova, 2019). In addition, we have included a rule in our ABM to encourage 
cells to migrate toward the lymphatic vessel utilizing CompuCell3D External Potential Plugin 

https://doi.org/10.7554/eLife.91924
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(ExternalPotential Plugin, 2024). The influence of this rule is inversely proportional to the distance 
of the cells to the lymphatic vessel.

Binding, diffusivity, and collagen density
For many of the agent behaviors described above, there are associated binding events that play key 
roles in regulation of the cytokine fields. Any cytokine-dependent behavior is coupled with removal of 
a portion of that cytokine once the behavior is initiated. For example, upon SSC activation the amount 
of HGF required to activate is taken up by the SSC and removed from the cytokine field to simu-
late the ligand binding and endocytosis resulting from SSC activation. Similar binding events were 
modeled for SSC and fibroblast division and differentiation, macrophage transitions, cell apoptosis, 
and chemotaxis along a cytokine gradient.

Due to limited data availability quantifying the diffusion constants of the modeled cytokines in 
the context of the tissue microenvironment (which includes diffusion-altering elements including 
collagen and glycosaminoglycans [GAGs]), we applied a diffusivity estimation technique (Filion and 
Popel, 2005). To do so, previously developed methods (Equation 1) were applied to account for the 

Table 7. Model parameters of spatial mechanisms.

Parameter Value Source/justification

Volume parameters

Target volume neutrophil 12
Chosen for an average cell diameter of 12 μm 
(Tigner et al., 2021)

Target volume SSC 10
Chosen for an average cell diameter of 10 μm 
(Garcia et al., 2018)

Target volume macrophage 21
Chosen for an average cell diameter of 21 μm 
(Krombach et al., 1997)

Target volume monocyte 8.5
Chosen for an average cell diameter of 8.5 μm 
(Downey et al., 1990)

Target volume fibroblast 15
Chosen for an average cell diameter of 15 μm 
(Freitas, 1999)

Volume multiplier ‍λvolume‍ 50
Volume constraint to maintain target (Swat et al., 
2012)

Diffusion coefficients

HGF 66.38 μm2/s

Estimated diffusivity within the ECM accounting 
for baseline GAGs and collagen (Filion and 
Popel, 2005)

MMP-9 63.40 μm2/s

MCP-1 189.27 μm2/s

VEGF-A 112.10 μm2/s

TGF-β 90.33 μm2/s

TNF-α 138.95 μm2/s

IL-10 135.17 μm2/s

Chemotaxis parameters ‍λc‍

Neutrophils 750
Chosen for a cell velocity between 1 and 20 µm/
min (Zhao et al., 2020)

Macrophage 9.3
Chosen for a cell velocity around 0.62 µm/min 
(van den Bos et al., 2020)

Monocyte 75
Chosen for a cell velocity around 4 µm/min (van 
den Bos et al., 2020)

SSC 11.3
Chosen for a cell velocity around 0.94 µm/min 
(Otto et al., 2011)

Fibroblast 23
Chosen for a cell velocity around 0.73 µm/min 
(Westman et al., 2021)

https://doi.org/10.7554/eLife.91924
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combined effects of collagen and GAGs (Table 7; Filion and Popel, 2005). The expression includes 
the radius of the cytokine (rs), the radius of the fiber (rf), the volume fraction (‍ϕ‍), D and D∞ are the 
diffusivities of the cytokines in the polymer solution and in free solution, respectively. This estimation 
technique allowed for consistent conditions for cytokine diffusion calculations and fluctuations based 
on changes in collagen density within the model.

	﻿‍

D = D∞


−ϕ

1
2 rs

rf




collagen

× exp


−ϕ

1
2 rs

rf




GAG‍�

(1)

Throughout the model simulation, the diffusivity is recalculated with the updated collagen volume 
fraction, as the collagen density changes throughout the microenvironment. This allows the changes 
in collagen density within the ECM to be reflected in the diffusion rate of each of the cytokines in the 
model.

Model calibration
Known parameters were fixed to literature values, and uncertain parameters were calibrated by 
comparing simulation outcomes to published experimental data. Calibration data included published 
findings from injury models that have synchronous regeneration after tissue necrosis (i.e. cardiotoxin, 
notexin, and barium chloride) (Hardy et al., 2016). The metrics that were used to calibrate the model 
included time-varying CSA (Ochoa et al., 2007), SSC counts (Murphy et al., 2011), and fibroblast 
counts (Murphy et  al., 2011). These metrics were used for calibration because of their key roles 
in the regeneration of muscle and the complex interplay between these outputs. Cell count data 
were normalized by the number of cells on the day of the experimental peak to allow for compar-
ison between experiments and simulations. For CSA, the experimental and model outcomes were 
normalized using fold-change from pre-injury to compare model-simulated with experimental CSA, as 
percent change from baseline is commonly used experimentally (Pratt et al., 2015; You et al., 2023). 
Model cell counts were normalized by the number of cells at the peak timepoint in the experimental 
data. SSC and fibroblast counts were normalized to day 5. Neutrophil counts were normalized to day 
1. Total macrophage, M1, and M2 counts were normalized to day 3. The capillaries were normalized 
to fiber area, as done in the experimental data.

Initial ranges for the 52 unknown parameters were determined by literature review or by running 
the model to test possible upper and lower thresholds for parameters (Supplementary file 1). To 
narrow the parameter ranges beyond those initial ranges, we used a recently published calibration 
protocol, CaliPro, which utilizes parameter density estimation to refine parameter space and calibrate 
to temporal biological datasets (Joslyn et al., 2021). CaliPro was selected as the calibration method 
because it is model-agnostic which allows it to handle the complexities of stochastic models such as 
ABMs, selects viable parameter ranges in the setting of a very high-dimensional parameter space, and 
circumvents the need for a cost function, a challenge when there are many objectives, as in our case. 
Briefly, Latin hypercube sampling (LHS) was used to generate 600 samples which were run in triplicate. 
These runs were then evaluated against a set of pass criteria, and the density functions of the passing 
runs and failing runs were calculated (Supplementary file 6). Parameter ranges were narrowed by 
alternative density subtraction, where the new ranges were determined by the smallest and largest 
parameter values where the density of passing is higher than the density of failing. The sensitivity of 
the model outputs to the parameters was examined using LHS in combination with PRCC (Marino 
et al., 2008). LHS/PRCC methods have been used for various differential equation models and ABMs 
(Segovia-Juarez et  al., 2004). PRCC was computed using MATLAB to determine the correlation 
between ABM parameters (i.e. cytokine threshold for activation) and the ABM output (i.e. fibroblast 
cell count). Correlations with a p-value less than 0.05 were assumed to be statistically significant. This 
helped refine initial parameter bounds as well as make model adjustments based on the parameter 
dynamics elucidated from PRCC. This process of sampling parameter ranges, evaluating the model, 
and narrowing parameter ranges was repeated in an iterative fashion while updating pass criteria until 
a parameter set was identified that consistently met the strictest criteria (Figure 2—figure supple-
ment 1). The final passing criteria were set to be within 1 SD of the experimental data for CSA 
recovery and 2.5 SD for SSC and fibroblast count. These criteria were selected so that the model 
followed experimental trends and accounted for both model stochasticity and experimental variability 

https://doi.org/10.7554/eLife.91924
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in datasets that had narrower SDs for certain timepoints. Early iterations had a wide parameter range 
to avoid missing portions of the realistic parameter space. At first, narrowing the parameter space 
increased passing simulations, but upon reaching the ideal parameter space, further narrowing elim-
inated viable parameters, resulting in fewer passing runs. Following eight iterations of narrowing the 
parameter space with CaliPro, we reached a set of parameters that had fewer passing runs than the 
previous iteration. We then returned to the runs from the prior iteration and set the bounds such that 
all three runs from the parameter set fell within the final passing criteria. The final parameter set was 
run 100 times to verify that the variation from the stochastic nature of the rules did not cause output 
that was inconsistent with experimental trends.

Model validation
We compared model outputs M1, M2, and total macrophage counts (Hardy et  al., 2016; Wang 
et  al., 2018), neutrophil counts (Nguyen et  al., 2011), and capillary counts (Ochoa et  al., 2007) 
that were kept separate from the calibration criteria with published experimental data to verify that 
these outputs followed trends from the experimental data without requiring extra model tuning. In 
addition, we also altered various model input conditions (cell input conditions, cytokine dynamics, and 
microvessel dynamics) to simulate an array of model perturbations (Table 8) which allowed compar-
ison of a set of model outputs with separate published experiments (Supplementary file 7). For 
example, we simulated an IL-10 KO condition by eliminating IL-10 secretion and adjusting the diffu-
sion and decay parameters so that the concentration of IL-10 throughout the simulation was reduced, 
decreasing the behaviors driven by the cytokine as a result of the KO condition. One hundred repli-
cates of each model perturbation were performed, and perturbation outputs were compared with 
control simulation outputs via a two-sample t-test with a significance level of 0.05. We were then able 
to compare how the model outputs aligned with published experimental findings to determine if the 
model could capture the altered regeneration dynamics.

Sensitivity analysis
A sensitivity analysis was performed using LHS-PRCC to examine the impact of cytokine-related 
parameters on model outputs of interest. Diffusion coefficients and decay rates for the seven cyto-
kines (HGF, TGF-β, MMP-9, TNF-α, VEGF-A, IL-10, MCP-1) were sampled across a range from 0.1 to 
10 times the calibrated value while holding the other parameters constant. Three hundred samples 
were generated, and these parameter sets were simulated in triplicate. PRCCs were calculated with 
α=0.05 and a Bonferroni correction for the number of tests every 10 ticks/hr for CSA and cell counts 

Table 8. Model perturbation input conditions and corresponding published experimental results.

Perturbation Specific model conditions Published outcomes

IL-10 knockout
Adjust diffusion and decay parameters so IL-10 is removed 
from the system

Attenuates shift to M2, disrupted SSC differentiation, 
slowed regeneration (Deng et al., 2012)

Neutrophil depletion Lower neutrophil recruitment proportion
Abundant necrotic tissue 7 days post injury (Teixeira 
et al., 2003)

Macrophage depletion Lower macrophage recruitment proportion
Decreased HGF, increased TGF-β and TNF-α, impaired 
regeneration (Liu et al., 2017)

MCP-1 knockout
Adjust diffusion and decay parameters so MCP-1 is 
removed from the system

Increased necrosis at day 7, lower CSA at day 21, 
impaired phagocytosis (Lu et al., 2011)

Directed M2 polarization (anti-
inflammatory nanoparticles) Require less phagocytosis and IL-10 for transition

Improved muscle histology and inflammatory resolution 
(Raimondo and Mooney, 2018)

TNF-α knockout
Adjust diffusion and decay parameters so TNF-α is removed 
from the system

Impaired recovery at days 5 and 12, increased 
inflammation (Chen et al., 2005)

Hindered angiogenesis
Increase VEGF-A and MMP-9 threshold required for 
angiogenesis

Delayed regeneration with toxin injury, and persistent 
immune cell infiltration with freeze injury (Hardy et al., 
2019)

VEGF-A injection

Add VEGF-A at specified concentration (100 for low and 
1000 relative concentration for high), radius (300 pixels), and 
timepoint (5 days post injury)

Lower injury area at day 20 post injury with injection 
5 days after damage (Arsic et al., 2004)

https://doi.org/10.7554/eLife.91924
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for SSCs, fibroblasts, non-perfused capillaries, myoblasts, myocytes, neutrophils, M1 macrophages, 
and M2 macrophages.

In silico experiments
To gain insight into the recovery response with altered angiogenesis, we simulated different levels of 
VEGF-A injections to test how increases in VEGF-A impacted regeneration outcomes. In addition, we 
simulated conditions of hindered angiogenesis in which damaged capillaries were unable to reperfuse 
following injury (n=100 for each simulation condition). Simulations were also conducted to examine 
correlations between cytokines and their impact on various cell behaviors and regeneration outcomes. 
Next, a sensitivity analysis was performed to understand how alterations in cytokines influence key 
metrics of regeneration. LHS-PRCC was used to quantify the impact of cytokine-related parameters 
(i.e. diffusion rates and decay coefficients) on outputs of interest (CSA, SSC, fibroblasts, non-perfused 
capillaries, myoblasts, myocytes, neutrophils, M1, and M2). A single timepoint for each output is 
summarized in Table 9, and these were chosen at the timepoint when PRCC values were peaking, with 
complete results available in Figure 6—figure supplement 1.

This sensitivity analysis was then used to guide in silico experiments based on which cytokine 
parameters promoted favorable regeneration outcomes (i.e. improved recovery, fewer non-perfused 
capillaries, increased SSCs). Following individual cytokine parameter alterations, we combined the 
cytokine alterations based on beneficial outcomes from the initial in silico experiments to determine 
if the benefits would be cumulative.
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