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Abstract Preserved communication abilities promote healthy ageing. To this end, the age-typical 
loss of sensory acuity might in part be compensated for by an individual’s preserved attentional 
neural filtering. Is such a compensatory brain–behaviour link longitudinally stable? Can it predict 
individual change in listening behaviour? We here show that individual listening behaviour and 
neural filtering ability follow largely independent developmental trajectories modelling electroen-
cephalographic and behavioural data of N = 105 ageing individuals (39–82 y). First, despite the 
expected decline in hearing-threshold-derived sensory acuity, listening-task performance proved 
stable over 2 y. Second, neural filtering and behaviour were correlated only within each separate 
measurement timepoint (T1, T2). Longitudinally, however, our results raise caution on attention-
guided neural filtering metrics as predictors of individual trajectories in listening behaviour: neither 
neural filtering at T1 nor its 2-year change could predict individual 2-year behavioural change, under 
a combination of modelling strategies.

eLife assessment
This study provides a valuable contribution to understanding the neural mechanisms underlying 
age-related changes in attention and speech understanding. The large dataset (N = 105) provides 
convincing evidence for how speech recognition behaviour and neural tracking of speech sepa-
rately evolve in about 2 y. The work would be of interest to psychologists, neuroscientists, and 
audiologists.

Introduction
Speech comprehension is an essential aspect of human communication, enabling us to understand 
and interact with others effectively. Preserved communication is therefore critical to social well-being 
and healthy ageing (Lindenberger, 2014). Any translational advance aimed at maintaining and 
restoring successful cognitive ageing crucially relies on understanding the factors that explain and 
predict individual trajectories of listening performance. However, the evidence on these potential 
factors is astonishingly limited.

As we age, our ability to comprehend speech can decline due to age-related changes in the audi-
tory system (i.e. sensory acuity) and in cognitive resources. Age-related hearing loss reduces the ability 
to detect and discriminate speech sounds, especially in noisy environments. However, it has long been 
recognised that increasing age and hearing loss cannot fully account for the considerable degree of 
inter-individual differences observed in listening behaviour and its lifespan change (Akeroyd, 2008; 
Houtgast and Festen, 2008; Humes et al., 2012).
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Recent research has focused on the neurobiological mechanisms that promote successful speech 
comprehension by implementing ‘neural filters’ that segregate behaviourally relevant from irrelevant 
sounds. Such neural filter mechanisms act by selectively increasing the sensory gain for behaviourally 
relevant inputs or by inhibiting the processing of irrelevant inputs (Cherry, 1953; Broadbent, 1958; 
Wöstmann et al., 2020). A growing body of evidence suggests that speech comprehension is neurally 
supported by an attention-guided filter mechanism that modulates sensory gain and arises from 
primary auditory and perisylvian brain regions: by synchronising its neural activity with the temporal 
structure of the speech signal of interest, the brain ‘tracks’ and thereby better encodes behaviourally 
relevant auditory inputs to enable attentive listening (Ding and Simon, 2012; Zion Golumbic et al., 
2013; Obleser and Kayser, 2019; Lakatos et al., 2008).

In a large age-varying cohort (N = 155; 39–80 y), we have previously shown how the fidelity of this 
neural filtering strategy can help explain differences in listening behaviour (i) from individual to indi-
vidual and (ii) within individuals from sentence to sentence (Tune et al., 2021; O’Sullivan et al., 2015; 
Mesgarani and Chang, 2012). As participants performed a challenging dual-talker listening task, we 
recorded their electroencephalogram (EEG). We observed that enhanced neural filtering—defined 
as stronger neural tracking of attended vs. ignored speech—led to more accurate and overall faster 
responses. Notably, we observed both neural filtering as well as its link to behaviour to be indepen-
dent of chronological age and severity of hearing loss (Tune et al., 2021; Figure 1A).

The observation of such brain–behaviour relationships critically advances our understanding 
of the neurobiological foundation of cognitive functioning by showing, for example, how neural 

eLife digest Humans are social animals. Communicating with other humans is vital for our social 
wellbeing, and having strong connections with others has been associated with healthier aging. For 
most humans, speech is an integral part of communication, but speech comprehension can be chal-
lenging in everyday social settings: imagine trying to follow a conversation in a crowded restaurant 
or decipher an announcement in a busy train station. Noisy environments are particularly difficult 
to navigate for older individuals, since age-related hearing loss can impact the ability to detect and 
distinguish speech sounds. Some aging individuals cope better than others with this problem, but the 
reason why, and how listening success can change over a lifetime, is poorly understood.

One of the mechanisms involved in the segregation of speech from other sounds depends on 
the brain applying a ‘neural filter’ to auditory signals. The brain does this by aligning the activity of 
neurons in a part of the brain that deals with sounds, the auditory cortex, with fluctuations in the 
speech signal of interest. This neural ‘speech tracking’ can help the brain better encode the speech 
signals that a person is listening to.

Tune and Obleser wanted to know whether the accuracy with which individuals can implement this 
filtering strategy represents a marker of listening success. Further, the researchers wanted to answer 
whether differences in the strength of the neural filtering observed between aging listeners could 
predict how their listening ability would develop, and determine whether these neural changes were 
connected with changes in people’s behaviours.

To answer these questions, Tune and Obleser used data collected from a group of healthy middle-
aged and older listeners twice, two years apart. They then built mathematical models using these 
data to investigate how differences between individuals in the brain and in behaviours relate to each 
other. The researchers found that, across both timepoints, individuals with stronger neural filtering 
were better at distinguishing speech and listening. However, neural filtering strength measured at 
the first timepoint was not a good predictor of how well individuals would be able to listen two years 
later. Indeed, changes at the brain and the behavioural level occurred independently of each other.

Tune and Obleser’s findings will be relevant to neuroscientists, as well as to psychologists and audi-
ologists whose goal is to understand differences between individuals in terms of listening success. 
The results suggest that neural filtering guided by attention to speech is an important readout of an 
individual’s attention state. However, the results also caution against explaining listening performance 
based solely on neural factors, given that listening behaviours and neural filtering follow independent 
trajectories.

https://doi.org/10.7554/eLife.92079


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tune and Obleser. eLife 2023;12:RP92079. DOI: https://doi.org/10.7554/eLife.92079 � 3 of 25

implementations of auditory selective attention support attentive listening. They also provide fruitful 
ground for scientific inquiries into the translational potential of neural markers. However, the potency 
of neural markers to predict future behavioural outcomes is often only implicitly assumed but seldom 
put to the test (Woo et al., 2017).

Using auditory cognition as a model system, we here aim to overcome this limitation by testing 
directly the hitherto unknown longitudinal stability of neural filtering as a neural compensatory mech-
anism upholding communication success. Going further, we ask to what extent an individual’s atten-
tional neural-filtering ability measured at a given moment is able to predict their future trajectory in 
listening performance. Only if this is the case, and only if such an association can plausibly be assumed 
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Figure 1. Schematic illustration of key assumptions and research questions. (A) Listening behaviour at a given timepoint is shaped by an individual’s 
sensory and neural functioning. Increased age decreases listening behaviour both directly and indirectly via age-related hearing loss. Listening 
behaviour is supported by better neural filtering ability, independently of age and hearing acuity. (B) Conceptual depiction of individual 2-year changes 
along the neural (blue) and behavioural (red) domain. Thin coloured lines show individual trajectories across the adult lifespan, while thick lines 
and black arrows highlight 2-year changes in a single individual. (C) Left schematic diagram highlighting the key research questions detailed in the 
introduction and how they are addressed in the current study using latent change score modelling. Right: across individuals, co-occurring changes in the 
neural and behavioural domain may be correlated (top) or independent of one another (bottom).
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to be causal for future changes in communication ability, neural filtering would be a potential trans-
lational target.

We here aim to fill this gap by analysing 2-year changes in the sensory, neural, and behavioural 
domain in a longitudinal subsample (N = 105; 39–82 y) of the original AUDADAPT cohort (Tune et al., 
2021; Figure 2A). We apply a combination of advanced cross-sectional and longitudinal modelling 
strategies to address the following specific research questions (Figure 1).
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Figure 2. Key neural and behavioural metrics derived from a longitudinal cohort. (A) Longitudinal cohort of healthy middle-aged and older adults 
measured twice, 2 y apart. Circles represent individual participants at a given measurement time (dark grey: timepoint [T] 1, light grey: T2, white: 
dropouts after T1). Bottom: age distribution at T1 and T2 across 5-year bins. (B) Left: T1(N = 155) air conduction hearing thresholds per individual (thin 
grey lines) and age group (thick coloured lines). Note that for didactic purposes, throughout the article, thresholds are expressed as –dB HL to highlight 
the decrease in hearing acuity with age (left). Right: Pure-tone average hearing acuity (0.5, 1, 2, and 4 kHz across both ears; higher is better) negatively 
correlates with age (N = 155; r = –0.43, p=3.73 × 10–6). (C) Participants listened to two sentences presented simultaneously to the left and right ear. 
In 50% of trials, a preceding visual cue indicated the to-be-attended target sentence. Listening behaviour is quantified via the accuracy and speed in 
identifying the final word of the target sentence. (D) Left: neural speech tracking as a proxy of an individual’s neural filtering ability. Stimulus envelopes 
of attended and ignored sentences were reconstructed from source-localised electroencephalogram (EEG) activity in auditory cortex (see ‘Materials and 
methods’ for details) and correlated with the actual envelopes. Right: better neural filtering results from stronger neural tracking of attended compared 
to ignored speech. We analysed neural filtering derived from the entire sentence presentation period.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Experimental design and procedure.

https://doi.org/10.7554/eLife.92079
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First, by focusing on each domain individually, we ask how sensory, neural, and behavioural func-
tioning evolve cross-sectionally across the middle and older adult lifespan (Figure 1B). More impor-
tantly, we also ask how they change longitudinally across the studied 2-year period (Figure 1C, Q1), 
and whether ageing individuals differ significantly in their degree of change (Q2). We expect individ-
uals’ hearing acuity and behaviour to decrease from T1 to T2. Since we previously observed inter-
individual differences in neural filtering to be independent of age and hearing status, we did not 
expect any systematic longitudinal change in neural filtering.

Second, we test the longitudinal stability of the previously observed age- and hearing-loss-
independent effect of neural filtering on both accuracy and response speed (Figure 1A). To this end, 
we analyse the multivariate direct and indirect relationships of hearing acuity, neural filtering, and 
listening behaviour within and across timepoints.

Third, leveraging the strengths of latent change score modelling (LCSM) (McArdle, 2009; Kievit 
et al., 2018), we fuse cross-sectional and longitudinal perspectives to probe the role of neural filtering 
as a precursor of behavioural change in two different ways: we ask whether an individual’s T1 neural 
filtering strength can predict the observed behavioural longitudinal change (Q3), and whether 2-year 
change in neural filtering can explain concurrent change in listening behaviour (Q4). Here, irrespective 
of the observed magnitude and direction of T1–T2 developments, two scenarios are conceivable: 
Intra-individual neural and behavioural change may be either be correlated—lending support to a 
compensatory role of neural filtering—or instead follow independent trajectories (Oschwald et al., 
2019; Figure 1C).

Answering these questions is vital for understanding the neurobiological mechanisms of successful 
communication across the lifespan. Answering them will also critically inform the development of 
interventions targeted at maintaining or restoring communication success and therefore concerns 
basic and applied researchers alike.

Results
We studied an age-varying cohort of healthy middle-aged and older adults longitudinally (N = 105, 
39–82 y, median age at T2: 63 y). The mean time difference between the two measurement timepoints 
reported here was 23.2 (SD: 4.0) mo. We characterise the multivariate relationship of key measures of 
sensory, neural, and behavioural functioning to explain and predict individual trajectories of listening 
performance.

At each of two measurement timepoints, participants underwent audiological assessment followed 
by EEG recording during which they performed a difficult dual-talker dichotic listening task (Figure 2A 
and B; Tune et al., 2021; Alavash et al., 2021; Alavash et al., 2019). In each trial of the task, partic-
ipants listened to two temporally aligned but spatially separated five-word sentences. They then had 
to identify the final word in one of the two sentences from a visual array of four alternatives given a 4 s 
time limit (Figure 2C, Figure 2—figure supplement 1). In 50% of the trials, a visual spatial-attention 
cue indicated the side of target sentence presentation, the other half of trials were preceded by an 
uninformative neutral cue.

We extracted individuals’ mean accuracy and response speed (calculated as the inverse of reaction 
time) as key readouts of listening behaviour. On the basis of source-localised 1–8 Hz auditory cortical 
activity, we further quantified individuals’ neural filtering ability as their attention-guided neural 
tracking of relevant vs. irrelevant speech (Figure 2D; see also Tune et al., 2021 and ‘Materials and 
methods’ for details). Our main analyses focus on neural filtering and listening performance averaged 
across all trials and thereby also across two separate spatial-attention conditions. This choice allowed 
us to most directly probe the trait-like nature and relationships of neural filtering. It was additionally 
supported by our previous observation of a general boost in behavioural performance with stronger 
neural filtering, irrespective of spatial attention (Tune et al., 2021).

We follow a three-step analysis strategy to address our specific research questions. First, we 
provide a largely descriptive overview of the observed average 2-year change per studied domain. 
Second, we follow up on this fundamental analysis with a causal mediation analysis (Imai et al., 2010) 
and single-trial mixed-effect model analysis geared to assess the longitudinal stability of our recently 
reported effects of age, hearing acuity, and neural filtering on listening task performance. Third, we 
integrate and extend the first two analysis perspectives in a joint LCSM (McArdle, 2009) to most 
directly probe the role of neural filtering ability as a predictor of future attentive listening ability. 

https://doi.org/10.7554/eLife.92079
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Addressing our key change-related research questions at the latent rather than the manifest level 
supersedes the manual calculation of notoriously noisy differences scores and effectively removes the 
influence of each metric’s reliability on the estimation of change-related relationships (McArdle, 2009; 
Kievit et al., 2018; McArdle and Nesselroade, 1994).

Listening performance remains stable despite decreased hearing acuity
In a first analysis (Figure 3), we characterised how hearing acuity, neural filtering, and listening perfor-
mance change across the middle to older adult lifespan. Additionally, we analysed longitudinal change 
from timepoint 1 (T1) to timepoint 2 (T2). We used the same linear mixed-effect models to test cross-
sectional effects of age and longitudinal changes with time. We additionally quantified each measure’s 
test–retest reliability as their T1–T2 Pearson’s correlation.

Note that throughout the article and all analyses, we reversed the sign of pure-tone average (PTA) 
values to express them as an index of hearing acuity rather than hearing loss (i.e. higher values indi-
cating better acuity). Similarly, for more intuitive interpretation, accuracy is visually presented as mean 
proportion correct but was logit-transformed for all statistical analyses to satisfy model assumptions.

As expected, hearing acuity decreased linearly with increasing age (Figure 3A, β = –3.4, stan-
dard error [SE] = 0.71, p<0.001) and on average by 1.2 dB from T1 to T2 (β = –1.18, SE = 0.27, 
p<0.001; meanT1: –13.72 dB HL [SD: 7.8]; meanT2: –14.90 dB HL [8.3]). The effect of age did not 
change with time (age × timepoint β = –0.35, SE = 0.28, p=0.21). Assuming constant individual 
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The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Observed and projected hearing loss progression.
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progression rates, this observed change corresponds to a projected average decrease in hearing 
acuity per decade of –6.3 (SD: 15.3) dB HL (Figure 3—figure supplement 1). The magnitude of 
observed and projected hearing loss progression is well in line with recent large-sample reports 
(Linssen et al., 2014; Rigters et al., 2018; Wiley et al., 2008). Measurements of hearing acuity 
showed high test–retest reliability (r = 0.94, p<0.001), underscoring the high fidelity of our audio-
logical assessment.

In line with known deleterious effects of age, both behavioural outcomes (response speed and 
accuracy) declined with increasing age, and did so to a similar degree in T1 and T2 (Figure 3C and 
D; speed: β = –0.02, SE = 0.01, p=0.004; accuracy: β = –0.23, SE = 0.07, p=0.0001; timepoint × age 
p>0.12). At the same time and contrary to our expectations, average performance levels remained 
stable from T1 to T2 (speed: β = 0.004, SE = 0.01, p=0.44; meanT1: 0.62 s–1 [0.08]; meanT2: 0.62 s–1 
[0.08]; accuracy: β = 0.04, SE = 0.05, p=0.36, meanT1: 0.88% [0.09]; meanT2: 0.88% [0.11]). Accuracy 
and response speed showed moderately high test–retest reliability (speed: r = 0.70, p<0.001; accu-
racy: r = 0.72, p<0.001).

The analysis of change in neural filtering revealed that its strength varied independently of age 
at both timepoints (Figure 3B, β = 0.0003, SE = 0.0005, p=0.48; timepoint × age β = –0.0002, SE 
= 0.0006, p=0.79), confirming our previously reported T1 results (Tune et al., 2021). As shown in 
Figure 3 (bottom-left panel), magnitude and direction of observed longitudinal change are highly 
variable across individuals and age groups, and we did not find evidence of any systematic group-level 
change from T1 to T2 (β = 0.001, SE = 0.001, p=0.16). In addition, individual neural filtering strength 
correlated only weakly across time (r = 0.21, p=0.03).

We also assessed the reliability of two established neural traits using resting-state EEG from the 
same recording sessions: the individual alpha frequency (IAF) (Corcoran et al., 2018) and the slope 
of 1/f neural noise (Donoghue et al., 2020; Voytek et al., 2015). As expected, both metrics showed 
high test–retest reliability (IAF: r = 0.83, p<0.001; 1/f slope: r = 0.78, p<0.001). These findings provide 
a reference level on reliability, demonstrating that the weak reliability of the neural filtering metric is 
not due primarily to differences in EEG signal quality across sessions.

The temporal instability of neural filtering challenges its status as a candidate trait-like neural 
marker of attentive listening ability. At the same time, irrespective of the degree of reliability of neural 
filtering itself, across individuals it may still be reliably linked to the behavioural outcome (Figure 1). 
This will be addressed next.

Neural filtering reliably supports listening performance independent of 
age and hearing status
On the basis of the full (T1 and T2) dataset, we aimed to replicate our key T1 results and test whether 
the previously observed between-subjects brain–behaviour relationship would hold across time: we 
expected an individual’s neural filtering ability to impact their listening performance (accuracy and 
response speed) independently of age or hearing status (Tune et al., 2021). Given the moderately 
strong correlation of age and hearing acuity (r = –0.43; p<0.001; Figure 2B), we employed causal 
mediation analysis to model the direct as well as the hearing-acuity-mediated effect of age on the 
behavioural outcome (Imai et al., 2010). To formally test the stability of direct and indirect relation-
ships across time, we used a moderated mediation analysis. In this analysis, the inclusion of interactions 
by timepoint tested whether the influence of age, sensory acuity, and neural filtering on behaviour 
varied significantly across time.

Our expectations on the direct relationships were indeed borne out by the data: higher age was 
associated with poorer hearing ability (β = –0.43, SE = 0.09, p<0.001) and listening performance 
(speed: β = –0.33, SE = 0.06, p<0.001; accuracy: β = –0.26, SE = 0.06, p<0.001). Better hearing ability, 
on the other hand, boosted accuracy but not response speed (accuracy: β = 0.30, SE = 0.1, p=0.003; 
speed: β = –0.06, SE = 0.1, p=0.56). These direct effects remained stable from T1 to T2 (all interac-
tions by timepoint p>0.56; all log Bayes factors [logBF01] >2.5).

Age also impacted accuracy indirectly: the total effect of age was partially mediated via its detri-
mental effect on hearing acuity (average causal mediation effect [ACME], β = –0.12, SE = 0.04, 
p<0.001). We did not find evidence for an analogous indirect effect on speed (ACME: β = 0.008, SE = 
0.03, p=0.77). Again, the hearing-acuity-mediated effect of age on accuracy did not change from T1 
to T2 as evidenced by moderated mediation analysis (interaction by timepoint p=0.73).

https://doi.org/10.7554/eLife.92079
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Speaking to the robustness of our previous results, we observed the beneficial effect of stronger 
neural filtering fidelity on both measures of listening performance (accuracy: β = 0.21, SE = 0.09, 
p=0.02; speed: β = 0.33, SE = 0.09, p<0.001). Note that the magnitude of this direct brain–behaviour 
effect is comparable to that of the direct effect of age. Alternative models that included indirect, 
neural filtering-mediated paths from either age or hearing acuity to behaviour did not reveal any 
significant mediation effects.

Most importantly, the longitudinal stability of the observed direct brain–behaviour link was further 
supported by the absence of any significant changes with time (interactions by timepoint; all p>0.28, 
all logBF01 > 2.1).

In our previous T1 analysis (N = 155) (Tune et al., 2021), we had found evidence for the here anal-
ysed brain–behaviour link at two different levels of observation: (i) at the trait level—individuals with 
overall stronger neural filtering also performed better overall—and (ii) at the state level—stronger 
neural filtering in a given trial raised the chances of responding correctly. Aiming at replication of the 
state-level (i.e. within-participant) relationship, we ran a single-trial linear mixed-effect model analysis 
on our longitudinal N = 105 sample. This analysis utilised single-trial data of both T1 and T2.

Lending credibility to our previous results, stronger single-trial neural filtering was associated with 
higher listening success at both T1 and T2 (logistic mixed-effect model; within-participant effect of 
neural filtering on accuracy: odds ratio [OR] = 1.08, SE = 0.02, p<0.001; interaction neural filtering × 
timepoint: OR = 0.99, SE = 0.03, p=0.82; Figure 4C).

Accuracy is longitudinally stable but speed and neural filtering increase 
at T2
Having established the longitudinal stability of the beneficial impact of intact neural filtering on 
listening performance, we turned to our final, most comprehensive analysis.

In an LCSM, in its bivariate form sometimes termed a parallel process model (McArdle, 2009; 
Kievit et  al., 2018), we connected the neural and behavioural domain. This allowed us to most 
directly probe the potential role of neural filtering as a precursor of behavioural changes. Specifically, 
we asked: (i) Is an individual’s baseline (T1) level of neural filtering ability predictive of their 2-year 
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change in behaviour? (ii) Are individual differences in longitudinal dynamics in the behavioural domain 
associated with those in the neural domain?

As a technical note, it is worth reiterating that in the present data the highly variable, weakly 
reliable surface measure of neural filtering was nonetheless robustly connected to the behavioural 
outcome (see above and Figure  4). It is in such scenarios that the LCSM framework comes with 
particular methodological benefits: by expressing individuals’ T1 and T2 levels, as well as their T1–
T2 change as latent variables instead of manifest indicators, these types of models circumvent the 
calculation of notoriously unreliable noisy difference scores. They also avoid potential regression to 
the mean due to random errors (Kievit et al., 2018; McArdle and Nesselroade, 1994). Instead, the 
measurement errors of both, latent variables and their associated indicators, are explicitly modelled 
and thus effectively removed from the estimates of individual differences and relationships of interest 
(McArdle, 2009).

Accordingly, for our metrics, we estimated T1 and T2 latent variables of behavioural and neural 
filtering from two manifest indicators each. These indicators were the average of each metric across 
the first and second half of the experiment, respectively (see ‘Materials and methods’ for details). 
For all measurement models, the standardised factor loadings were significant (all ps<0.05; all stan-
dardised λ > 0.55). The assumption of strict factorial invariance across time could be maintained for 
all models (all Δχ2

(df = 1) < 3.4, all p>0.07).
We then constructed univariate LCSMs to test for significant mean change in each metric from T1 

to T2 while adjusting for their respective baseline (T1) level. The univariate models had acceptable 
(speed: χ2

(df = 5) = 9.7, p=0.085, comparative fit index [CFI] = 0.988, root mean square error of approx-
imation [RMSEA] = 0.094) to excellent fit (accuracy: χ2

(df = 5) = 5.1, p=0.40, CFI = 0.999, RMSEA = 
0.016; neural filtering: χ2

(df = 5) = 0.6, p=0.99, CFI = 1, RMSEA = 0) according to established indices 
(Raykov and Marcoulides, 2006).

On average, listening task accuracy remained stable (b0 = 0.053, SE = 0.045, Δχ2
(df = 1) = 1.33, 

p=0.25). Response speed, on the other hand, showed a significant mean increase over time (b0 
= 0.13, SE = 0.03, Δχ2

(df = 1) = 12.79, p<0.001; Figure 5A). Similarly, the model of neural filtering 
showed a (marginally) significant mean increase (b0 = 0.24, SE = 0.11, Δχ2

(df = 1) = 2.98, p=0.08; 
Figure 5A).

As a proof of principle, we extracted latent factor scores for T1/T2 neural filtering and response 
speed from their respective univariate LCSM. By correlating T1 and T2 factor scores per domain, we 
show how the explicit modelling of measurement errors helps to improve the test–retest reliability 
compared to that observed at the level of manifest variables (see insets in Figure 5A; neural filtering: 
r = 0.65, p<0.001, response speed: r = 0.75, p<.001).

Baseline neural functioning does not predict future change in listening 
behaviour
Based on the univariate results, we then connected the two metrics that showed a significant mean 
change, namely speed and neural filtering, in a bivariate model of change (Figure  5B; see also 
Figure 5—figure supplement 1 for full model details).

In line with our hypotheses, we modelled the longitudinal impact of T1 neural functioning on the 
change in speed and tested for a change–change correlation. Since the analyses conducted up to 
this point have either directly shown or have suggested that longitudinal change per domain may be 
affected by age, we included individuals’ age at T1 as a time-invariant covariate in the final model. 
We modelled the influence of age on neural and behavioural functioning at T1 but also on individual 
change per domain. By accounting for linear effects of age on longitudinal change, we also mini-
mise its potential impact on the estimation of change–change relationship of interest. Note that we 
refrained from fitting separate models per age group due to both limited and different number of 
data points per age group. The model fit the data well (χ2

(df = 27) = 25.65, p=0.54, CFI = 1, RMSEA = 
0, 95% CI [0.07]).

Having ensured factorial invariance and goodness of fit, we can confidently interpret the estimates 
of individual differences and bivariate relationships that speak to our specific research questions. 
Crucial to our change-related inquiries, we observed reliable variance (i.e. individual differences) in 
the longitudinal change in both speed (standardised estimate ϕ = 0.88, SE = 0.07, Δχ2

(df = 5) = 94.07, 
p<0.01) and neural filtering (ϕ = 0.81, SE = 0.14, Δχ2

(df = 4) = 25.64, p<.001).

https://doi.org/10.7554/eLife.92079
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Individuals’ baseline levels of both speed and neural filtering strength were predictive of their 
respective longitudinal change: individuals with relatively strong neural filtering or fast responses at 
T1 showed a smaller increase from T1 to T2, possibly indicating ceiling effects (speed: β = –0.43, SE = 
0.12, Δχ2

(df = 1) = 8.75, p=0.003; neural filtering: β = –0.44, SE = 0.16, Δχ2
(df = 1) = 4.17, p=0.04).

We also observed that participants’ age at T1 covaried with the individual degree of change in 
speed but not with that in neural filtering: The older a participant at T1, the smaller their longitudinal 
increase in speed (speed: ϕ = –0.24, SE = 0.11, Δχ2

(df = 1) = 4.38, p=0.037; neural filtering: ϕ = –0.02, 
SE = 0.14, Δχ2

(df = 1) = 0.02, p=0.89).
Importantly, however, an individual’s latent T1 level of neural filtering strength was not predictive 

of the ensuing latent T1–T2 change in response speed (β = 0.02, SE = 0.16, Δχ2
(df = 1) = 0.02, p=0.90). 

We did not have any a priori hypotheses on the influence of T1 speed on the individual T1–T2 change 
in neural filtering. Still, in a control analysis that freely estimated the respective path, we found that an 
individual’s latent T1 level of response speed was not predictive of the ensuing latent T1–T2 change 
in neural filtering (β = –0.11, SE = 0.21, Δχ2

(df = 1) = 0.31, p=0.58).

Neural filtering ability and listening behaviour follow independent 
developmental trajectories in later adulthood
Finally, we turn to the last piece in our investigation where we address the question of whether indi-
vidual differences in the neural and behavioural longitudinal change are connected. In other words: 
Are the contemporaneous changes along the two studied domains correlated or do they occur largely 
independently of one another?

Change score modelling revealed that longitudinal change in the neural and the behavioural 
domain occurred largely independent of one another despite their systematic relationship within 
each separate measurement timepoint (ϕ = 0.25, SE = 0.15, Δχ2

(df = 1) = 2.74, p=0.1). In other words, 
those individuals who showed the largest change in neural filtering were not necessarily the ones who 
also changed the most in terms of their behavioural functioning (see Figure 5C, bottom panel, and 
Figure 5—figure supplement 2).

Control analyses: The weak correlation of behavioural and neural 
change is robust against different quantifications of neural filtering
Taken together, our main analyses revealed that inter-individual differences in behavioural change 
could only be predicted by baseline age and baseline behavioural but not neural functioning, and did 
not correlate with contemporaneous neural changes.

However, one could ask in how far core methodological decisions taken in the current study, namely 
our focus on (i) the differential neural tracking of relevant vs. irrelevant speech as proxy of neural 
filtering, and (ii) on its trait-level characterisation that averaged across different spatial-attention 
conditions may have impacted these results. Specifically, if the neural filtering index (compared to the 
neural tracking of attended speech alone) is found to be less stable generally, would this also impact 
the chances of observing a systematic change–change relationship? Relatedly, did the analysis of 
neural filtering across all trials underestimate the effects of interest?

To evaluate the impact of these consideration on our main findings, we conducted two additional 
control analyses. First, we repeated the main analyses using the neural filtering index (and response 
speed) averaged across selective-attention trials, only. Second, we repeated the main analyses focused 
on the neural tracking of attended speech only, again averaged across selective-attention trials.

As shown in Figure 6, taken together, the control analyses provide compelling empirical support 
for the robustness of our main results: linking response speed and neural filtering under selective 
attention strengthened their relationship at T1 (ϕ = 0.54, SE = 0.15, Δχ2

(df = 1) = 2.74, p=0.1; Figure 6B; 

refer to the highlighted paths in panel (B). Top panel shows that baseline-level neural filtering did not predict 2-year change in behavioural functioning, 
while bottom panel shows the absence of a significant change–change correlation. All panels include data of N = 105 individuals.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Full bivariate latent change score model of response speed and neural filtering.

Figure supplement 2. Change in neural filtering does not predict change in response speed.

Figure 5 continued
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see also Figure 6—figure supplement 1) but did not yield any significant effects for the influence of 
T1 neural filtering on behavioural change (β = 0.13, SE = 0.21, Δχ2

(df = 1) = 0.43, p=0.51), or for the 
relationship of neural and behavioural change (ϕ = 0.26, SE = 0.14, Δχ2

(df = 1) = 3.1, p=0.08; please 
note the close correspondence to path estimates reported in Figure 5).

The second control analysis revealed a substantially higher manifest-level test–retest reliability of 
neural tracking of attended speech (r = 0.65, p<0.001; Figure 6C, see also Figure 6—figure supple-
ment 2 for neural tracking of ignored speech) compared to that of the neural tracking index. However, 
when linked to longitudinal changes in response speed, this analysis provided even less evidence for 
systematic change-related relationships: baseline levels of attended-speech tracking did not predict 
future change in response speed (β = 0.18, SE = 0.11, Δχ2

(df = 1) = 2.73, p=0.10), and changes in neural 
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The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Cross-sectional and longitudinal change in accuracy and response speed averaged across selective-attention trials, only.

Figure supplement 2. Cross-sectional and longitudinal change in neural tracking of ignored speech averaged across selective-attention trials, only.

https://doi.org/10.7554/eLife.92079
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and behavioural functioning occurred independently of one another (ϕ = –0.03, SE = 0.12, Δχ2
(df = 1) 

= 0.06, p=0.81).
In sum, the two control analyses provide additional empirical support for the results revealed by 

our main analysis.

Discussion
Successfully comprehending speech in noisy environments is a challenging task, particularly for ageing 
listeners whose hearing ability gradually declines (Peelle and Wingfield, 2016). A much-researched 
neural support mechanism here is attention-guided neural ‘tracking’ of behaviourally relevant speech 
signals, as one neural strategy to maintain listening success (Wöstmann et al., 2020; Ding and Simon, 
2012; Zion Golumbic et al., 2013; Obleser and Kayser, 2019; Mesgarani and Chang, 2012; Power 
et al., 2012; O’Sullivan et al., 2019; Gross et al., 2013).

However, to date, it is unknown whether the fidelity with which an individual implements this 
filtering strategy does represent a stable neural trait-like marker of individual attentive listening 
ability. Of direct relevance to any future translational efforts building on neural speech tracking, it 
is also unknown whether differences in neural filtering strength observed between ageing listeners 
are predictive at all of how their attentive listening ability will develop in the future. We here have 
addressed these questions leveraging a new representative prospective cohort sample of healthy 
middle-aged to older listeners.

Over 2 y from T1 to T2, individuals’ hearing ability worsened as expected (Linssen et al., 2014; 
Rigters et  al., 2018; Wiley et  al., 2008). Their listening performance, however, stayed stable. In 
addition, an individual’s baseline (T1) neural filtering strength proved to be a strikingly poor indicator 
of their future (T2) level of neural filtering. On the other hand, bolstering previous results, neural 
filtering reliably supported listening behaviour within the same session—both at T1 and T2—at two 
levels of granularity: individuals with generally stronger neural tracking of target vs. distractor speech 
performed the listening task on average more accurately and faster. They were also more likely to 
respond correctly in a given trial with relatively stronger neural filtering in that trial.

Crucially, however, momentary states of neural functioning were not predictive of future behavioural 
change, and the dynamics of longitudinal change at the neural and behavioural level appear to follow 
largely independent trajectories. Notably, these key findings hold for different definitions of neural-
attentional filtering and under different spatial-attention conditions (see ‘Control analyses’).

Neural filtering fidelity as a trait-like neural marker of individual 
attentive listening ability?
In recent years, the enhanced representation of behaviourally relevant sounds via their prioritised 
neural tracking has been reported in numerous listening studies investigating different acoustic envi-
ronments, participant populations, and stages of auditory processing (Tune et al., 2021; O’Sullivan 
et al., 2015; Fiedler et al., 2019; Kaufman and Zion Golumbic, 2023; Kraus et al., 2021; Brodbeck 
et al., 2020; Forte et al., 2017; Fuglsang et al., 2020).

This neural signature is commonly interpreted as a neural instantiation of selective auditory atten-
tion in the service of successful speech comprehension. Note however that its link to behaviour is 
not always explicitly established (but see Tune et al., 2021; O’Sullivan et al., 2015; Mesgarani and 
Chang, 2012; Orf et al., 2023; Schmitt et al., 2022). Given how robustly the current data show the 
enhanced neural tracking of attended vs. ignored speech at the group level, the weak reliability of 
individual neural filtering strength may come as a surprise. At the same time, stronger neural filtering 
was reliably linked to better behavioural performance within both T1 and T2.

How can these two findings be reconciled? Based on the current and previous results, what may 
be concluded about the role of neural filtering as a potential neural marker of individual attentive 
listening ability?

Previous studies on attention-guided neural speech tracking have not provided any direct evidence 
on the temporal stability of neural filtering nor on its relationship with behaviour. Studies on related 
neural signatures such as speech-aligned auditory brainstem responses or the entrainment of audi-
tory cortical activity to rhythmic (non-speech) stimulation reported moderate to high reliability (Song 
et al., 2011; Easwar et al., 2020; Cabral-Calderin and Henry, 2022; Panela et al., 2024). However, 
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these studies have (i) investigated the temporal stability across sessions spaced only days or weeks 
apart, (ii) focused on younger normal-hearing populations, or (iii) quantified the neural encoding of 
speech or non-speech stimulation that involved less or no attentional control. In contrast, we here 
explicitly focused on a definition of neural filtering that incorporated the neural tracking of attended 
and ignored speech to highlight the dependence of communication success on the attention-guided 
differential neural encoding of relevant vs. irrelevant input. These differences render a direct compar-
ison to our approach difficult, but there is reason to consider a model-derived, latent representation of 
neural filtering as employed here the more generalisable metric (Hertzog and Schaie, 1988). Leaving 
the latent-variable framework aside, it is worth emphasising that the neural tracking of attended 
speech alone proved to be substantially more stable over time, with a retest reliability in the rtt = 0.6 
range.

Our current results broadly align with a view of attention-guided neural speech tracking as a form 
of ‘neural entrainment in the broad sense’ that reflects a listener’s neural attentional state (Obleser 
and Kayser, 2019; Lakatos et al., 2016; Lakatos et al., 2019).

Under this interpretation, the stable link of neural filtering to listening behaviour at different levels 
of granularity is noteworthy: an individual’s ability to exert top-down selective attention to priori-
tise the neural encoding of behaviourally relevant information is far from stable but it fluctuates at 
different time scales (Schroeder and Lakatos, 2009; Schroeder et al., 2010; Helfrich et al., 2018; 
Buschman and Kastner, 2015). This entails that at a longer time scale, here captured by two distinct 
measurement timepoints, ageing individuals will differ with respect to their overall level of neural 
filtering and associated listening behaviour. Their level of neural and behavioural functioning will differ 
from other individuals’ levels at the same timepoint but also from their own level at a different time-
point. Moreover, a listener’s behavioural outcome at either timepoint is not only shaped by their broad 
neural attentional state with which they enter a communication situation. It is also critically influenced 
by short-term fluctuations in neural filtering strength around their current overall level of neural func-
tioning (Figure 4C; Tune et al., 2021). As our control analyses have revealed, these fluctuations are 
more pronounced if neural filtering is defined by the tracking of both attended and ignored speech 
rather than by attended-speech tracking alone.

What does this mean for the potential translational value of neural tracking? Their highly dynamic 
nature gives neural tracking-based metrics value as online neural indicators of a listener’s momentary 
attentional focus. As such, they could serve as critical neural read-outs in novel brain–computer inter-
faces such as neurally steered hearing aids (Van Eyndhoven et al., 2017; Ceolini et al., 2020; O’Sul-
livan et al., 2017). At the same time, however, their non-stationarity over time limits their potential 
as translational targets for diagnosis and therapeutic intervention (Panela et al., 2024; Gillis et al., 
2021; Di Liberto et al., 2022).

Individual trajectories of listening behaviour cannot be explained by 
changes within a single domain
As a second central query of the current study, we went beyond the establishment of robust brain–
behaviour relationships and directly probed the potency of neural filtering to predict behavioural 
change over time (Woo et al., 2017). We asked whether individual trajectories of listening behaviour 
could be predicted by past levels of neural filtering or by co-occurring changes in neural filtering.

Past studies have observed enhanced cortical speech tracking in ageing compared to young 
adults. This suggests a compensatory role of increased speech–brain coupling to counteract the dele-
terious effect of age or of hearing loss on speech comprehension (Schmitt et al., 2022; Gillis et al., 
2022a; Presacco et al., 2019; Presacco et al., 2016; Decruy et al., 2019; Decruy et al., 2020). As 
a corollary of this relationship, typically observed cross-sectionally, one might expect an individual’s 
neural filtering strength to be connected not only to present but also to future trajectories of listening 
behaviour.

Such relationships, if shown to be causal, would provide the strongest evidence for the role of 
neural speech tracking as a neural compensatory mechanism supporting communication success 
(Peelle and Wingfield, 2016). However, when analysed in our longitudinal sample of ageing listeners, 
irrespective of the precise definition of neural filtering, we did not find evidence for a predictive role 
of neural filtering despite supporting brain–behaviour links observed within each timepoint. What are 
the potential reasons for this absent connection (Figure 5)?

https://doi.org/10.7554/eLife.92079
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One obvious explanation, both in statistical and substantive terms, may lie in the low retest reliability 
of our neural filtering metric as discussed above. Analytically, however, we were able to mitigate this 
problem by adopting a modelling approach which effectively removes the influence of measurement 
error (McArdle and Nesselroade, 1994; shown in Figure 5A). Still, individual change in response 
speed could only be predicted by an individual’s baseline speed and age but not by baseline neural 
filtering nor by its longitudinal change. Moreover, our control analysis of attended-speech tracking 
provided additional empirical support for the absence of such a predictive link despite the neural 
metric’s moderate manifest-level reliability. These findings call for a more substantive explanation that 
transcends methodological details.

While most desirable from a translational perspective and a core quest in the cognitive neurosci-
ence of ageing, predicting change in cognitive functioning, here listening behaviour, from baseline 
or longitudinal change in brain function or structure is a non-trivial endeavour. Connecting individual 
trajectories of neural or cognitive functioning goes beyond the establishment of domain-specific age 
trends (Lindenberger et al., 2011; Tucker-Drob et al., 2022). It also goes beyond the mere extrap-
olation of (age-independent) brain–behaviour relationships observed at a given moment (Boker and 
Martin, 2018; Raz and Lindenberger, 2011). Indeed, empirical evidence—and to some degree also 
theoretical grounds—for robust brain–behaviour baseline–change or change–change associations is 
limited (Oschwald et al., 2019).

Most empirical studies reporting such significant cross-domain change–change correlations have 
in fact connected behavioural change to alterations in brain structure rather than brain function (Raz 
et al., 2005; McArdle et al., 2004; Bender et al., 2016; Ritchie et al., 2015; Lövdén et al., 2014; 
Persson et al., 2016). Focusing on structural change may be advantageous: not only can structural 
feature be quantified more directly and reliably, they also follow systematic age-dependent trajec-
tories, thereby providing clearer causal pathways for ensuing behavioural change (Bennett and 
Madden, 2014; Grady, 2012). Still, less than half of the studies testing such cross-domain associ-
ations have indeed observed them (Oschwald et  al., 2019). From the perspective of theoretical 
models of neurobiological and cognitive ageing (Reuter-Lorenz and Park, 2014; Cabeza et  al., 
2018; Stern et al., 2019), the absence of correlated trajectories of neural and cognitive functioning 
may indeed be the more expected result. These models highlight the multifaceted nature of healthy 
cognitive ageing in which environmental variables, neurobiology, and cognition are dynamically inter-
related (Freund et al., 2013). Neural compensatory mechanisms, such as the neural filtering correlate 
targeted here, are thought to offset structural decline but are themselves influenced by a number 
of factors. This leads to increased inter-individual variability that may circumvent the emergence of 
group-level correlated change relationships.

Importantly, the behavioural outcome of interest, that is, the speed and accuracy with which 
an ageing individual solves a difficult listening situation, involves the orchestration of different 
perceptual and cognitive processes (Anderson et al., 2013; Peelle, 2016). We here focused on 
one candidate neurobiological implementation of an auditory attentional filter to help explain 
inter-individual differences in listening behaviour and its lifespan trajectories. Yet, ageing individ-
uals may rely on different alternative neural or cognitive strategies (Tune et al., 2018). A complete 
understanding of inter-individual differences in listening behaviour in ageing adults will therefore 
depend on a number of different factors among which the attention-modulated tracking of rele-
vant speech constitutes one, potentially necessary, but not sufficient neural correlate (Wöstmann 
et al., 2020; Obleser and Kayser, 2019; Tune et al., 2021; Gillis et al., 2022b; Strauß et al., 
2014).

Not least, there are a number of methodological choices that might constrain the conclusions 
afforded by our current study. First, the current study was limited to two distinct timepoints spaced 
only 2 y apart. This limits the ability to model linear as well as non-linear dynamics of change. Second, 
it also does not allow the separation of distinct patterns of change co-occurring at the same time: 
one continuous, constant change with age along with a separate process in which relative change is 
proportional to the level observed at prior timepoints (Jacobucci et al., 2019). Third, we here focus 
on a single dichotic listening task from which both neural and behavioural functioning are derived. 
We therefore cannot assess whether the observed pattern would generalise to other listening tasks. 
Lastly, denser sampling across a longer time interval would have also increased statistical power to 
detect correlated change (Rast and Hofer, 2014). It would have also allowed to more directly test 
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hypotheses on causal pathways by which change in the neural domain should precede change in the 
behavioural domain.

The conclusion stands, though, that individual trajectories in listening behaviour cannot be 
explained by longitudinal change along a single dimension. Instead, a better understanding of the 
influences shaping individual listening behaviour across the adult lifespan will critically rely on uncov-
ering the relative contribution and age-dependent dynamics of sensory, neural, and cognitive factors.

Conclusion
The results presented here support the role of attention-guided neural filtering as a readout of an 
individual’s neural attentional state. At the same time, the state-like nature of neural tracking-based 
metrics limits their translational potential as predictors of longitudinal change in listening behaviour 
over middle to older adulthood. Our data caution against explaining audiology-typical listening 
performance solely from changes in aspects of neural functioning as listening behaviour and neural 
filtering ability follow largely independent developmental trajectories. Our results critically inform 
translational efforts aimed at the preservation and restoring of speech comprehension abilities in 
ageing individuals.

Materials and methods
Data collection
The analysed data are part of a large-scale longitudinal study on the neural and cognitive mechanisms 
supporting adaptive listening behaviour in a prospective cohort of healthy middle-aged and older 
adults (‘The listening challenge: How ageing brains adapt (AUDADAPT)’; https://cordis.europa.eu/​
project/rcn/197855_en.html). This project encompassed the collection of different demographic, audi-
ological, behavioural, and neurophysiological measures across initially two timepoints spaced approx-
imately 2 y apart. The analyses carried out on the data aim at relating adaptive listening behaviour 
to changes in different neural dynamics. Given the longitudinal nature of the current study, all proce-
dures concerning data collection, as well as EEG recording and analysis, are identical to those detailed 
in our recently published analysis of T1 data using the same experimental paradigm (Figure 2—figure 
supplement 1; Tune et al., 2021).

Participants and procedure
We here report on a total N = 105 right-handed German native speakers (median age at T2 63 y; age 
range 39–82 y; 61 females) who underwent audiological, behavioural, and EEG assessment at two 
separate timepoints. On average, the measurement timepoints were spaced 23.2 (± SD 4.0) mo apart.

At T1, we had screened a total of N = 184 participants. Included participants had normal or 
corrected-to-normal vision, and did not report any neurological, psychiatric, or other disorders. They 
were also screened for mild cognitive impairment using the German version of the 6-Item Cogni-
tive Impairment Test (6CIT [Jefferies and Gale, 2012] and the MoCA [Nasreddine et al., 2005]). 
Only participants with normal hearing or age-adequate mild-to-moderate hearing loss were included 
(Figure 2B for individual audiograms at T1). Handedness was assessed using a translated version of 
the Edinburgh Handedness Inventory (Oldfield, 1971). As a result of the initial screening procedure, 
17 participants were excluded prior to EEG recording due to a medical history or non-age-related 
hearing loss. Three participants dropped out of the study prior to EEG recording and an additional 
nine participants were excluded from analyses after EEG recording due to incidental findings after 
structural MR acquisition (N = 3) or due to EEG data quality issues (N = 9). Again, all detailed criteria 
can be found in Tune et al., 2021.

At T2, N = 115 participants returned for follow-up measurements. All individuals passed the repeat 
screening procedures identical to those at T1. Ten participants had to be excluded from the analyses 
reported here: three participants had dropped out prior to EEG recording, three participants were 
excluded due to EEG data quality issues, and four participants because their EEG data had been 
excluded at T1. This resulted in a final longitudinal sample of N = 105 individuals.

Dropout at T2 could not be predicted from participants’ T1 age, hearing loss, behavioural perfor-
mance (accuracy, speed), or neural filtering strength (all p>0.13). This indicates that compared to the 
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full T1 cohort reported on in previous studies (Tune et al., 2021; Alavash et al., 2021) our reduced 
longitudinal sample was not biased in terms of sensory, cognitive, or neural functioning.

At each measurement timepoint, participants underwent detailed pure-tone and speech audio-
metric measurements, along with an extensive battery of cognitive tests and personality profiling 
(see Tune et al., 2018 for details). On a separate day, we recorded participants’ EEG during rest 
(5 min each of eyes-open and eyes-closed measurements) followed by six blocks of the same dichotic 
listening task (see Figure 2C and Tune et al., 2021 for details).

Participants gave written informed consent and received financial compensation (10€ per hour). 
Procedures were approved by the ethics committee of the University of Lübeck and were in accor-
dance with the Declaration of Helsinki.

Dichotic listening task
At each timepoint, participants performed a previously established dichotic listening task (Alavash 
et al., 2019). We provide full details on trial structure, stimulus construction, recording, and presen-
tation in our previously published study on the first (N = 155) wave of data collection (but see also 
Figure 2—figure supplement 1; Tune et al., 2021).

In short, in each of the 240 trials, participants listened to two competing, dichotically presented 
five-word sentences spoken by the same female speaker. They were probed on the sentence-final 
noun in one of the two sentences. Participants were instructed to respond within a given 4 s time 
window beginning with the onset of a probe screen showing four alternatives. They were not explic-
itly instructed to respond as quickly as possible. The probe screen showed four alternative words 
presented either on the left or right side of the screen, indicating the probed ear. Two visual cues 
preceded auditory presentation. First, a spatial-attention cue either indicated the to-be-probed ear, 
thus invoking selective attention, or did not provide any information about the to-be-probed ear, thus 
invoking divided attention. Second, but irrelevant to the current study, a semantic cue specified a 
general or a specific semantic category for the final word of both sentences, thus allowing to utilise a 
semantic prediction. Cue levels were fully crossed in a 2 × 2 design and presentation of cue combina-
tions varied on a trial-by-trial level. All participants listened to the same 240 sentence pairs at each of 
the two measurement timepoints. The order of sentence pair presentation was randomised for each 
participant and at each timepoint.

To account for differences in hearing acuity within our group of participants, all stimuli were 
presented 50 dB above the individual sensation level.

EEG recording and analysis
The approach for EEG recording, pre-processing, and subsequent analysis is identical to the proce-
dures carried out for T1 data collection and analysis (Tune et al., 2021).

In short, 64-channel EEG data were recorded, cleaned for artefacts using a custom ICA-based pipe-
line, downsampled to 125 Hz, filtered between 1 and 8 Hz, and cut into single-trial epochs covering 
the presentation of auditory stimuli. Following source localisation via beamforming, we focused on 
auditory cortical activity to train and test decoding models of attended and ignored speech using 
cross-validated regularised regression. Models were trained on selective-attention trials, only, but 
then also tested on divided-attention trials. As results, we obtained single-trial reconstruction accu-
racy (Pearson’s r) estimates as metrics of the degree of attended and ignored neural speech tracking, 
respectively.

We then calculated a neural filtering index across the entire sentence presentation period. The 
index quantifies the difference in neural tracking of the to-be-attended and of the to-be-ignored 
sentence [neural filtering index = (rattended − rignored)/(rattended +rignored)], and thus indexes the strength of 
neural filtering at the single-trial level. Positive values indicate successful neural filtering in line with 
the behavioural goal.

The EEG analyses were carried out in MATLAB 2016b using the Fieldtrip toolbox (v. 2017-04-28), 
the Human Connectome Project Workbench software (v1.5), FreeSurfer (v.6.0), and the multivariate 
temporal response function (mTRF) toolbox (v1.5) (Crosse et al., 2016).

Behavioural and audiological data analysis
We evaluated participants’ behavioural performance in the listening task with respect to accuracy and 
response speed. For the binary measure of accuracy, we excluded trials in which participants failed to 
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answer within the given 4 s response window (‘timeouts’). Spatial stream confusions, that is, trials in 
which the sentence-final word of the to-be-ignored speech stream were selected, and random errors 
were jointly classified as incorrect answers. The analysis of response speed, defined as the inverse of 
reaction time, was based on correct trials only.

We defined participants’ hearing acuity as their PTA composed of (air-conduction) hearing thresh-
olds at the frequencies of 0.5, 1, 2, and 4 kHz. Individual PTA values were then averaged across the 
left and right ear.

Statistical analysis
For statistical analyses focused on between-participant (‘trait-level’) effects, behavioural performance 
metrics and neural filtering index values were averaged across all trials and experimental conditions to 
arrive at one trait-level estimate per participants. This approach was also motivated by previous results 
based on T1 data: here, we had observed that stronger neural speech tracking led to overall faster 
and to more trials with accurate responses irrespective of the specific cue-cue condition (Tune et al., 
2021). Accuracy was logit-transformed for statistical analysis but expressed as proportion correct for 
illustrative purposes. Similarly, for more intuitive interpretation, we reversed the sign of PTA values for 
higher values to correspond to better hearing ability.

All analyses were performed in R (v.4.2.2; R Development Core Team, 2019) using the packages 
lme4 (v.1.1-31; Bates et al., 2015), mediation (v4.5.0; Tingley et al., 2014), lavaan (v0.6-12; Rosseel, 
2012), and OpenMx (v2.21.8; Neale et al., 2016).

Linear mixed-effect modelling
As the first step of our three-part analysis approach, we applied general linear mixed-effect models 
to test for cross-sectional and longitudinal changes in trait-level sensory acuity, neural filtering, and 
listening performance. These models included age, timepoint, and their interaction as fixed effect 
regressors and allowed random participant-specific intercepts.

In the second step of the analysis, we also aimed at replicating the previously observed single-trial 
state-level relationship of neural filtering and accuracy. To this end, we applied a single generalised 
linear mixed-effect model (binomial distribution, logit link function) on single-trial data of both T1 and 
T2. This model represents an adapted version of the brain–behaviour model reported in Tune et al., 
2021. In short, we included all experimental manipulation predictors, as well as age, hearing acuity, 
and neural filtering metrics. We omitted previously shown to be non-significant higher-order interac-
tions and additionally included interactions by timepoint to directly test for any longitudinal change in 
the effect of neural filtering on behaviour.

To tease apart state-level (i.e. within-participant) and trait-level (i.e. between-participants) effects, 
we included two separate neural regressors: for the between-participant effect regressor, we aver-
aged single-trial neural filtering values per individual across all trials. By contrast, the within-participant 
effect of interest was modelled by the trial-by-trial deviation from the subject-level mean (Bell et al., 
2019). We included participant- and item-specific random intercepts as well as random slopes for the 
effect of the spatial-attention cue and the probed ear.

We used deviation coding for categorical predictors and z-scored all continuous regressors. 
p-Values for individual model terms in general linear mixed-effect models are based on the Satter-
thwaite approximation for degrees of freedom, and on z-values and asymptotic Wald tests for the 
generalised linear mixed-effect model of accuracy (Luke, 2017).

Causal mediation analysis
We performed causal mediation analysis to model the direct as well as the hearing-acuity-mediated 
effect of age on accuracy and response speed (Imai et al., 2010). Critically, these models also included 
a direct (i.e. independent of age and hearing loss) path of neural filtering on behaviour. To formally 
test the stability of direct and indirect relationships across time, we used a moderated mediation 
analysis (Preacher et  al., 2007). In this analysis, the inclusion of interactions by timepoint tested 
whether the influence of age, sensory acuity, and neural functioning on behaviour varied across time. 
We z-scored all dependent and independent variables, and estimated the magnitude of direct and 
mediated effects along with percentile-based confidence intervals on the basis of 1000 replications.
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Bayes factor calculation
To facilitate interpretation of non-significant effects, we calculated the Bayes factor (BF) based on 
the comparison of Bayesian information criterion (BIC) (Wagenmakers, 2007). We report log Bayes 
factors, with a log BF01 of 0 representing equal evidence for and against the null hypothesis; log BF01 
with a positive sign indicating relatively more evidence for the null hypothesis than the alternative 
hypothesis, and vice versa. Magnitudes >1 are taken as moderate, >2.3 as strong evidence for either 
of the alternative or null hypotheses, respectively (Lee and Wagenmakers, 2014).

Latent change score modelling
In the third and final step of our analysis approach, we used structural equation modelling (SEM) to 
investigate the role of neural filtering as a predictor of behavioural change. We used LCSM (McArdle, 
2009; Kievit et al., 2018) to test (i) whether an individual’s T1 neural filtering strength can be predic-
tive of 2-year changes in behaviour, and (ii) whether 2-year changes in neural filtering and listening 
behaviour are systematically related. All models were specified and fitted with the R-based package 
lavaan (Rosseel, 2012) using maximum likelihood estimation.

To bring all manifest variables onto the same scale while preserving mean differences over time, 
we first stacked them across timepoint and then rescaled them using the proportion of maximum 
scale (‘POMS’) method (Moeller, 2015; Little, 2013). We assessed model fit using established indices 
including the χ2 test, the RMSEA, and the CFI (Raykov and Marcoulides, 2006; Kline, 2023). Like-
lihood ratio tests helped us decide whether (i) constraining individual parameters to be equal signifi-
cantly decreased model fit and (ii) individual parameter estimates were statistically significant. We 
report standardised parameter estimates.

In a first step, we specified separate unstructured measurement models of accuracy, speed, and 
neural filtering to establish factorial invariance across time using a series of tests (Kievit et al., 2018; 
Polk et al., 2022). Latent variables representing each metric at T1 and T2 were constructed from the 
observed individual means averaged across the first and second half of the experiment, respectively. 
Covariances between T1 and T2 latent variables were freely estimated, and residual covariances were 
set to be equal for the first and second half of the experiment. The factor loading and mean of the first 
manifest variable were set to 1 and 0, respectively, to ensure model identification (Little, 2013). Given 
our choice of POMS transformation of raw values to preserve mean differences over time, the mean of 
the second manifest variable had to be freely estimated to avoid model misfit. We sequentially tested 
for metric (i.e. identical factor loadings), strong (i.e. identical means), and strict (i.e. identical residuals) 
time invariance using likelihood ratio tests.

Next, for those metrics surviving factorial invariance testing, we constructed separate (i.e. univar-
iate) change score models to test for group-level mean change following the tutorial by Kievit et al., 
2018. We included a regression path from the T1 latent variable to the latent change variable to 
test how baseline functioning impacted the degree of longitudinal change. A likelihood ratio test of 
nested models (with mean change being freely estimated vs. constrained to be 0) determined the 
significance of group-level mean change.

In the last and final step, we constructed the bivariate LCSM that connected changes in response 
speed and neural filtering, which both significantly increased over time (see Figure 5—figure supple-
ment 1 for full model details). We modelled the covariance between the baseline neural filtering and 
speed, as well as the covariance between neural and behavioural change. In addition, we included a 
regression path from T1 neural filtering to the T1–T2 change in response speed to directly test the 
predictive potency of baseline neural functioning to explain behavioural change.

Following the logic of a generalised variance test (Brandmaier et al., 2018), we tested for signif-
icant inter-individual differences in neural and behavioural change. Note that such reliable variance 
in change is a necessary prerequisite for testing change–change correlations. In short, per domain 
(neural, behaviour), a likelihood ratio test compared the full model with a restricted model in which all 
paths pointing to or connected with the latent change variable are fixed to 0.

Finally, we asked whether neural and behavioural change covaried significantly. We ran a likelihood 
ratio test on the full model compared to a restricted model in which the covariance parameter was 
fixed to 0. For visualisation of results, we refit the final model using OpenMx (Neale et al., 2016) to 
predict latent factor scores based on maximum likelihood.
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