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Abstract Alcohol consumption in pregnancy can affect genome regulation in the developing
offspring but results have been contradictory. We employed a physiologically relevant murine model
of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol
consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA
methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-
genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA
methylation that was mostly tissue-specific, with some perturbations likely originating as early as
gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regu-
latory potential indicative of broad effects of alcohol on genome regulation. Replication studies

in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable

at genes linked to disease-relevant traits including facial morphology, intelligence, educational
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attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and
choline protected against some of the damaging effects of early moderate PAE on DNA methyl-
ation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome
regulation even in the absence of overt phenotypic changes and highlight a role for preventative
maternal dietary interventions.

elLife assessment

This important study unveils the significant impact of prenatal alcohol exposure on epigenetic
patterns, offering new insights into its adverse health outcomes through solid evidence from both
mouse models and human data. The findings, which reveal how a high-methyl diet can mitigate
these epigenetic alterations, present a promising prenatal care strategy. Despite its solid data
overall, the study's small sample size and unaccounted confounders suggest the need for further
research to confirm these findings and explore their practical implications.

Introduction

Alcohol consumption in pregnancy is a leading cause of neurodevelopmental impairments in children
(Popova et al., 2023). Alcohol can pass through the placenta acting as a teratogen in fetal tissues
causing physical, cognitive, behavioural, and neurodevelopmental impairment in children at high
doses with lifelong consequences for health (Chung et al., 2021). Fetal alcohol spectrum disorder
(FASD) and fetal alcohol syndrome (FAS) can arise at binge levels of exposure, although not always at
lower levels of exposure. Whether prenatal alcohol exposure (PAE) is sufficient to induce overt physi-
ological abnormalities depends on multiple environmental and genetic factors including the dose and
timing of alcohol use during pregnancy, maternal diet, smoking, stress, and potentially other factors
that collectively influence fetal outcomes (Chung et al., 2021, Jacobson et al., 2021; Sambo and
Goldman, 2023).

Patterns of alcohol consumption in pregnancy vary, but epidemiological surveys suggest most
women in Western countries consume low to moderate levels between conception until recognition
of pregnancy (Tsang et al., 2022), after which time consumption largely ceases, apart from occasional
use (McCormack et al., 2017). While the effects of binge levels of exposure are well documented as
able to cause FASD, more subtle effects that reflect the more common patterns of drinking are unclear
and more research is needed to support public health initiatives to reduce alcohol consumption in
pregnancy.

Studies suggest alcohol can disrupt fetal gene regulation through epigenetic mechanisms (Bestry
et al., 2022). DNA methylation is one epigenetic mechanism involving the catalytic addition of methyl
groups to cytosine bases within cytosine-guanine (CpG) dinucleotide motifs during one-carbon metab-
olism. Methylation of DNA can alter chromatin density and influence patterns of gene expression in
a tissue-specific and developmentally appropriate manner and disruption to this process may cause
some of the difficulties experienced by people with FASD (Jin and Liu, 2018; Fransquet et al., 2016).
Previous studies on human participants (Lussier et al., 2018, Masemola et al., 2015; Jarmasz et al.,
2019; Portales-Casamar et al., 2016) and animals (Chen et al., 2013; Abbott et al., 2018, Downing
et al., 2011) report that alcohol can disrupt DNA methylation either globally (Jarmasz et al., 2019;
Portales-Casamar et al., 2016; Chen et al., 2013; Abbott et al., 2018) or at specific gene regions
(Masemola et al., 2015; Abbott et al., 2018; Downing et al., 2011). Our recent systematic review,
however, found limited replication of effects between studies suggesting the effects of alcohol on
DNA methylation may be stochastic and influenced by numerous confounding factors (Bestry et al.,
2022). PAE can either directly inhibit DNA methyltransferase enzymes or disrupt one-carbon metab-
olism via inhibition of bioavailability of dietary methyl donors, such as folate and choline to the fetus
(Chen et al., 2011; Hutson et al., 2012). Choline, in particular, has been explored in several clinical
trials to reduce cognitive deficits caused by PAE in affected individuals (Nguyen et al., 2016; Wozniak
et al., 2020), or when administered during pregnancy (Jacobson et al., 2018; Thomas et al., 2009),
with results suggesting a high methyl donor (HMD) diet could at least partially mitigate the adverse
effects of PAE on various behavioural outcomes.
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elLife digest Drinking excessive amounts of alcohol during pregnancy can cause foetal alcohol
spectrum disorder and other conditions in children that affect their physical and mental develop-
ment. Many countries advise women who are pregnant or trying to conceive to avoid drinking alcohol
entirely. However, surveys of large groups of women in Western countries indicate that most women
continue drinking low to moderate amounts of alcohol until they discover they are pregnant and then
stop consuming alcohol for the rest of their pregnancy. It remains unclear how this common drinking
pattern affects the foetus.

The instructions needed to build and maintain a human body are stored within molecules of DNA.
Some regions of DNA called genes contain the instructions to make proteins, which perform many
tasks in the body. Other so-called ‘non-coding’ regions do not code for any proteins but instead have
roles in regulating gene activity. One way cells control which genes are switched on or off is adding
or removing tags known as methyl groups to certain locations on DNA. Previous studies indicate that
alcohol may affect how children develop by changing the patterns of methyl tags on DNA.

To investigate the effect of moderate drinking during the early stages of pregnancy, Bestry et al.
exposed pregnant mice to alcohol and examined how this affected the patterns of methyl tags on
DNA in their offspring. The experiments found moderate levels of alcohol were sufficient to alter
the patterns of methyl tags in the brains and livers of the newborn mice. Most of the changes were
observed in non-coding regions of DNA, suggesting alcohol may affect how large groups of genes
are regulated. Fewer changes in the patterns of methyl tags were found in mice whose mothers had
diets rich in two essential nutrients known as folate and choline.

Further experiments found that some of the affected mouse genes were similar to genes linked
to foetal alcohol spectrum disorder and other related conditions in humans. These findings highlight
the potential risks of consuming even moderate levels of alcohol during pregnancy and suggest that
a maternal diet rich in folate and choline may help mitigate some of the harmful effects on the devel-
oping foetus.

Given the lack of clarity around the effects of typical patterns of alcohol consumption, which often
do not cause observable phenotypes, we conducted an epigenome-wide association study of early
moderate PAE in mice. Regions identified as sensitive to gestational alcohol exposure were replicated
in human cohorts. The study was a controlled intervention investigating the impact of early moderate
PAE on offspring DNA methylation comparing exposed and unexposed mice, with an additional arm
comparing the effect of alcohol exposure in the context of an HMD maternal diet. The exposure
period covers the equivalent of pre-conception up until the first trimester in humans when neurula-
tion occurs, reflecting a typical situation in which women may consume alcohol up until pregnancy
recognition (Tsang et al., 2022; Muggli et al., 2016). The primary outcome of the study was differ-
ences in offspring DNA methylation and secondary outcomes of behavioural deficits across neurode-
velopmental domains relevant to FASD were also examined. We employed whole-genome bisulfite
sequencing (WGBS) for unbiased assessment of CpG DNA methylation in newborn brain and liver,
two target organs affected by ethanol (Zakhari, 2006), to explore tissue specificity of effects and to
determine any ‘tissue agnostic’ effects which may have arisen prior to the germ layers separating in
early gastrulation. We also conducted candidate gene testing of regions identified in prior studies
as sensitive to early moderate PAE. Our study provides cogent evidence that common patterns of
drinking can have measurable effects on fetal gene regulation, highlighting a role for maternal dietary
support in public health interventions.

Results

Comparison of prenatal characteristics across treatment groups

To investigate the effects of early moderate PAE and an HMD diet across pregnancy on offspring
DNA methylation and behavioural outcomes, we employed a murine model with four treatment
groups. Treatment groups were designed to assess the effect of alcohol on offspring DNA methylation
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Figure 1. Overview of prenatal alcohol exposure (PAE) model. A schematic representation of the experiment design is shown in the figure. Fifteen dams

were allocated to each treatment group. PAE mice were exposed to ethanol (10% vol/vol in non-acidified reverse osmosis drinking water ad libitum)
from 1 week before pregnancy to gestational days 8-10 and the remaining mice received water (H,0). The PAE and H,O groups received either normal
chow (NC) or a high methyl donor (HMD) diet (NC containing 20 mg/kg folate and 4970 mg/kg choline) from 1 week before pregnancy until birth.

compared to control mice. An additional treatment group included a maternal diet high in methyl
donors, with and without alcohol exposure (Figure 1).

The trajectory of weight gain during pregnancy was similar across all treatment groups with
some evidence of more rapid weight gain in the HMD groups in the last 2 days (linear mixed effects
regression model; H,O-HMD: -2.282+0.918 g, p=0.0177; PAE-HMD: -1.656+0.814 g, p=0.0493;
Figure 2a), although the total amount of weight gained between days 1 and 17-19 was not signifi-
cantly different between treatment groups by linear mixed effects regression (Figure 2a and b). The
total amount of liquid consumed over the course of pregnancy was significantly lower in HMD dams
by unpaired t-test (Figure 2b and Figure 3c). There was no significant difference in the average litter
size (6.525+0.297 pups, Figure 2c) and pup sex ratios (Figure 2d) between treatment groups by
unpaired t-test.

Effects of early moderate PAE on DNA methylation in newborn mice
tissue
A subset of 16 newborn pups (n=4 per treatment) matched for sex and litter size were selected for
WGBS. Both neonatal brain and liver were harvested to investigate the effects of early moderate PAE
on fetal CpG DNA methylation. A total of 21,842,961 CpG sites were initially available for analysis.

Global levels of DNA methylation stratified across different genomic contexts were preserved
across treatment conditions, with no major differences in average DNA methylation content between
groups (Figure 4). To investigate region-specific effects of early moderate PAE on newborn DNA
methylation, we conducted genome-wide testing comparing exposed and unexposed mice on the
normal chow. We identified 78 differentially methylated regions (DMRs) in the brain and 759 DMRs
in the liver (p<0.05 and mean difference in methylation across the DMR with PAE (delta) >0.05)
from ~19,000,000 CpG sites tested after coverage filtering (Figure 5a and b). These regions were
annotated to nearby genes using annotatr and are provided in Supplementary file 1a and b. Two
of the DMRs overlapped in mouse brain and liver (tissue agnostic), but the remainder were tissue
specific. Among these tissue agnostic regions was the Impact gene on chromosome 18, which had
lower methylation in PAE+NC mice compared to H,O+NC mice in both the brain and liver (Figure 5¢
and d). The other tissue agnostic region was within 5 kb downstream of Bmf and had higher DNA
methylation in brain and liver tissue of PAE+NC mice.

Lower DNA methylation with early moderate PAE in NC mice was more frequently observed in liver
DMRs (93.5% of liver DMRs), while brain DMRs were almost equally divided between lower and higher
DNA methylation with early moderate PAE (52.6% of brain DMRs had lower DNA methylation with
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Figure 2. PAE and HMD effects on dam characteristics. (a) Dam weight progression was significantly affected by HMD but not PAE by quadratic mixed
effects model without interaction. (b) Trajectory of liquid consumption across pregnancy was affected by PAE and HMD by quadratic mixed effects
model. PAE and HMD significantly interacted with trimester of pregnancy. (c) Litter size (N=40) and (d) pup sex ratios (N=36) were not significantly
associated with PAE or HMD by unpaired t-test or ANOVA. All line and bar plots show mean and standard deviation. NC = normal chow, HMD = high
methyl diet, PAE = prenatal alcohol exposure. Comparisons show p-value by unpaired t-test compared to the H,O-NC baseline treatment group.

early moderate PAE). Some DMRs localised to the same genes in both brain and liver, although they
were different regions. The three genes affected by PAE in both brain and the liver tissues were the
Autism Susceptibility Gene 2 (Auts2), Androglobin (Adgb), and RNA Binding Protein Fox 1 (RbfoxT)
genes (Table 1). In both brain and liver tissues, DMRs were enriched in non-coding intergenic and
open sea regions and relatively underrepresented in coding and CpG island regions (Figure 5e and f).
Using open chromatin assay and histone modification datasets from the ENCODE project, we found
enrichment (p<0.05) of DMRs in open chromatin regions (ATAC-seq), enhancer regions (H3K4me1),
and active gene promoter regions (H3K27ac), in mouse fetal forebrain tissue and fetal liver (Table 2).
Gene ontology enrichment analysis of liver DMRs that did localise to genes showed enrichment in
10 predominantly neuronal pathways, with neuron projection being the most significant (Figure 5g,
Supplementary file 1c and d).

HMD mitigates the effects of early moderate PAE on DNA methylation

To determine whether administration of an HMD throughout pregnancy could mitigate the effects of
PAE on offspring DNA methylation, we examined alcohol-sensitive DMRs identified in the previous
analysis in the HMD mice. Compared to control mice (H,O+NC), PAE+HMD mice exhibited signifi-
cant (p<0.05) DNA methylation differences in only 12/78 (15%) brain (Supplementary file 1g), and
124/759 (16%) liver (Supplementary file 1h) DMRs, suggesting the effects were predominantly miti-
gated. Effect sizes compared to mice on the normal chow were substantially lower, in some cases
more than 25% reduced in mice on the HMD diet (Figure 6).
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Figure 3. Prenatal alcohol exposure (PAE) and high methyl donor (HMD) effects on dam characteristics. There was no significant difference in the
average gain of weight in dams between (a) days 1-17 and (b) days 1-19 by treatment group. Both timepoints were included due to some pregnancies
ending by day 19. () Dams given supplemented chow consumed significantly lower total quantity of liquid across pregnancy. Bar plots show mean
and standard deviation for each treatment group. Each point represents one dam. (d) The trajectory of chow consumed by dams across pregnancy
significantly varied with the addition of treatments. Points show mean and standard deviation for each treatment group. Statistical analysis involved
linear mixed effects regression comparing trajectories of treatment groups to H,O-NC baseline control group. N=36.

Effects of early moderate PAE and HMD on behavioural outcomes in
adult mice

Remaining littermates from each treatment group were reared to adulthood and underwent
behavioural testing assessing various neurocognitive domains that can be affected in FASD including
locomotor activity, anxiety, spatial recognition, memory, motor coordination, and balance. There was
no evidence that early moderate PAE had a significant effect on any of the behavioural outcomes
tested (Figure 7). Mice exposed to HMD exhibited greater locomotor activity, in terms of distance
travelled (Figure 8).

Replication studies in human PAE and FASD case-control cohorts

We undertook validation studies by examining PAE-sensitive regions identified in our murine model
using existing DNA methylation data from human cohorts to address the generalizability of our find-
ings. Only 36 of the 78 (46.2%) brain DMRs, and 294 of the 759 (38.8%) liver DMRs, had homologous
regions in the human genome that were able to be tested. In this validation study, DNA methyla-
tion array data from 147 newborn buccal swabs from the Asking Questions About Alcohol in Preg-
nancy (AQUA) cohort (Muggli et al., 2022) were available from this cohort (96 moderate PAE and
51 controls). We performed differential testing on a total of 1898 CpG sites that corresponded to
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Figure 4. No evidence for global disruption of methylation by prenatal alcohol exposure (PAE). The figure shows methylation levels averaged across
cytosine-guanines (CpGs) in different regulatory genomic contexts. Neither brain tissue (a and b) nor liver tissue (c and d) were grossly affected by PAE

exposure (blue bars). Bars represent means and standard deviation.

mouse DMRs, comparing ‘never exposed’ newborns to ‘any exposure’ and found no evidence of
differential DNA methylation at these CpG (data not shown). We also accessed publicly available DNA
methylation array measurements from buccal swabs taken from a Canadian clinical cohort of children
with diagnosed FASD and controls (GSE109042). To avoid confounding due to ancestry, we anal-
ysed the 118 Caucasian individuals (30 FASD and 88 controls). Differential testing of a total of 2316
CpG sites that were homologous to mouse DMRs statistically replicated seven DMR associations with
FASD status (FDR p<0.05) after adjusting for participant age, sex, array number, and estimated cell
counts (Table 3). Visual comparisons of DNA methylation across these seven DMRs revealed striking
differences in effect sizes between people with FASD and our murine model (Figure 9). Genes asso-
ciated with these DMRs are linked to clinically relevant traits in the GWAS catalogue including facial
morphology (GADD45A; Indencleef et al., 2021), educational attainment (AP2B1; Okbay et al.,
2022), intelligence (RP9; Davies et al., 2019), autism and schizophrenia (ZNF823; Autism Spectrum
Disorders Working Group of The Psychiatric Genomics Consortium, 2017).

Candidate gene analysis of previously defined alcohol-sensitive regions
We also undertook a replication analysis in our murine data of previously published alcohol-sensitive
regions by undertaking a systematic review of previously published mammalian studies (Bestry et al.,
2022). Candidate gene studies identified 21 CpG sites (FDR<0.05) in the brain from 15,132 CpG sites
tested, including two sites in the Mest (Peg1) gene and 19 sites in Keng1 (KvDMR1) (Supplementary
file 1i). There were nine FDR-significant CpG sites identified in the liver out of 15,382 CpG sites
tested, all of which were in Peg3 (Supplementary file 1j). All FDR-significant CpG sites from both
tissues had higher DNA methylation in mice with PAE.
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Figure 5. Prenatal alcohol exposure (PAE) was associated with site-specific differences in offspring DNA methylation. The majority of differentially
methylated regions (DMRs) lost methylation with PAE in (a) brain and (b) liver of mice given normal chow (NC). Each point represents one DMR. Point
colour indicates change in DNA methylation with PAE. PAE was also associated with lower methylation in the DMRs identified in the promoter of the
Impact gene in (c) brain and (d) liver, within NC mice. Each plot represents a separate treatment group. Each blue vertical line indicates a cytosine-

Figure 5 continued on next page
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guanine (CpQ) site, with the height and corresponding left y-axis indicating the methylation ratio. The grey line and corresponding right y-axis indicate
coverage at each CpG site. The black horizontal dotted line indicates 40% methylation for comparison purposes. The x-axis indicates the base position
on chromosome 18, with the pink shaded area highlighting the DMR. DMR plots include 200 base pair flanking regions on each side of the DMR. DMRs
identified in (e) brain and (f) liver were enriched in intergenic and inter-CpG regions, whilst being underrepresented in CpG and gene regions. The

bar plot compares the number of whole-genome bisulfite sequencing (WGBS) DMRs in red to a set of equivalent randomly generated regions in blue.
(g) Gene ontology analysis of liver DMRs shows enrichment within neuronal cellular components and biological processes. BP/red point = biological

process, CC/blue point = cellular component. X-axis of point indicates FDR of ontology. Size of point indicates number of overlapping genes with
ontology. There were insufficient number of DMRs identified in the brain for a gene ontology analysis.

Discussion

In this study, we found that moderate early (first trimester) PAE was sufficient to induce site-specific
differences to DNA methylation in newborn pups without causing overt behavioural outcomes in adult
mice. Although global levels of DNA methylation were not significantly different with PAE, regional
analysis demonstrated widespread effects characterised predominantly by lower DNA methylation
with PAE, mostly at non-coding regions of the genome. In our model, alcohol effects on DNA methyla-
tion were predominantly tissue-specific, with only two genomic regions and four genes that were simi-
larly affected in both liver and brain. These perturbations may have been established stochastically
because of PAE to the early embryo and maintained in the differentiating tissue. Further analysis in
different germ layer tissues is required to formally establish this. Indeed, most of the observed effects
were tissue-specific, with more perturbations to the epigenome observable in liver tissue, which may
reflect the liver's specific role in metabolic detoxification of alcohol. Alternatively, cell-type composi-
tion differences between brain and liver might explain differential sensitivity to alcohol effects. Gener-
ally, DMRs were enriched in non-coding regions of the genome with regulatory potential, suggesting
alcohol has broad effects on genome regulation.

Both the human replication studies and the candidate gene analysis provide validity to our model
for recapitulating some of the genomic disturbances reported in patients with clinical FASD. It is
remarkable that some associations identified in our murine model of early moderate exposure were
recapitulated in human subjects with FASD despite species and biosample differences, suggesting
that at least some DNA methylation changes are stable over time. Notably the effect size for repli-
cated regions were strikingly smaller in blood samples from subjects with FASD suggesting the dose
and duration of exposure may need to exceed a high threshold to survive reprogramming in the
blood. We speculate this may explain lack of reproducibility in the AQUA cohort.

In the candidate gene analysis we replicated previously published reports of decreased DNA meth-
ylation within Peg3 and KvDMR1 from South African children with FAS (Masemola et al., 2015).
Both genes are methylated in a parent-of-origin specific manner, suggesting that alcohol may affect
imprinting processes. Previous rodent and human studies have identified DNA methylation differ-
ences with PAE in imprinted regions such as the Igf2/H19 locus (Portales-Casamar et al., 2016;
Downing et al., 2011; Zhou et al., 2016), although results are not entirely consistent (Marjonen
et al., 2018; Stouder et al., 2011). On the balance of this, we speculate duration of exposure, dose,

Table 1. Table of differentially methylated regions (DMRs) identified in the intronic regions of genes
that contained DMRs in both the brain and liver.

Ameth indicates the percentage change in average methylation level within the DMR with prenatal
alcohol exposure (PAE) compared to non-PAE mice.

Gene Tissue  Intronic DMR Width No. CpGs Ameth p-Value
Auts2 Brain chr5:131510296-131510465 170 5 -23.5% <0.05
Auts2 Liver chr5:131621828-131621999 172 4 -22.5% <0.05
Adgb Brain chr10:10455557-10455883 327 4 -25.0% <0.05
Adgb Liver chr10:10353338-10353613 276 4 -25.9% <0.05
Rbfox1 Brain chr16:6813039-6813217 179 5 -24.3% <0.05
Rbfox1 Liver chr16:6781985-6782330 346 5 -22.6% <0.05
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Table 2. Number and percentage of brain and liver differentially methylated regions (DMRs) that
overlap with tissue-specific regulatory regions.

ATAC-seq, H3K4me1, and H3K27ac regions were obtained at 0 days postnatal from the ENCODE
database. p-Values for permutation testing using a randomisation strategy.

Assay type Brain DMRs Brain randomised regions Liver DMRs Liver randomised regions

21/78 (26.92%),
ATAC-seq  p=0.01 1/78 (1.28%), p=0.16 p=0.01

53/759 (6.98%)

22/759 (2.90%)
p=0.31

4/78 (5.13%) 2/78 (2.56%) 38/759 (5.01%)
H3K4dmel  p=0.03 p=0.18 p=0.05

35/759 (4.61%)
p=0.32

9/78 (11.54%) 2/78 (2.56%) 48/759 (6.32%)
H3K27ac p=0.01 p=0.74 p=0.01

19/759 (2.50%)
p=0.26

and other tissue-related factors all likely influence the extent to which genome regulation is perturbed
and manifests as differences in DNA methylation.

Our results are encouraging for biomarker studies and aid in the prioritisation of associations for
future follow-up, particularly in relation to diagnosis of FASD. For example, three genes that were vali-
dated in the Lussier et al., 2018 cohort are zinc finger proteins (RP9, PEX12, and ZNF823) that play an
important role in fetal gene regulation. Notably, PEX12 is associated with Zellweger syndrome, which
is a rare peroxisome biogenesis disorder (the most severe variant of peroxisome biogenesis disorder
spectrum), characterised by neuronal migration defects in the brain, dysmorphic craniofacial features,
profound hypotonia, neonatal seizures, and liver dysfunction (Konkol’ova et al., 2015).

Future studies could perform transcriptomic analysis to investigate. Another key finding from this
study was that HMD mitigated some of the effects of PAE on DNA methylation. Although a plau-
sible alternative explanation is that some of the PAE regions were not reproduced in the set of mice
given the folate diet, our data are consistent with preclinical studies of choline supplementation in
rodent models (Thomas et al., 2007; Thomas et al., 2000; Otero et al., 2012). Moreover, a subset
of PAE regions were statistically replicated in subjects with FASD, suggestive of robust associations.
Although our findings should be interpreted with caution, they collectively support the notion that
alcohol-induced perturbation of epigenetic regulation may occur, at least in part, through disruption
of the one-carbon metabolism. The most encouraging aspect of this relates to the potential utility for
evidence-informed recommendations for dietary advice or supplementation, particularly in popula-
tion groups with limited access to antenatal care or healthy food choices.

Strengths of this study include the use of controlled interventions coupled with comprehensive
assessment of the effects of PAE on multiple tissues. We also performed WGBS representing the
gold standard in DNA methylation analysis, which to our knowledge has not been performed before
in the context of murine PAE studies. Our findings were partially generalisable in replication studies
addressing the robustness of our experimental approach. Caveats of our study design include a
limited ability to determine the contribution of specific cell types within tissues to the methylation
differences observed, and we did not assess markers of brain or liver physiology. Additionally, we
employed an ad libitum alcohol exposure model rather than direct dosing of dams. Although the
trajectories of alcohol consumption were not statistically different between groups, this introduces
more variability into alcohol exposure patterns, and might impact offspring methylation data. Despite
these limitations, the results were meaningful in the context of typical patterns of alcohol consumption
in human populations.

In conclusion, this study demonstrates that early moderate PAE can disturb fetal genome regula-
tion in mice and humans and supports current public health advice that alcohol consumption during
pregnancy, even at low doses, may be harmful.

Materials and methods

Murine subjects and housing

To study the effects of early moderate PAE on offspring DNA methylation processes, we adapted a
murine model study design that has previously reported DNA methylation changes at the A” locus
in Agouti mice (Kaminen-Ahola et al., 2010; Figure 1). This study received animal ethics approval
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Figure 6. High methyl donor (HMD) partially mitigated effects of prenatal alcohol exposure (PAE) on offspring DNA methylation. Average DNA
methylation effect sizes above 30% with PAE were observed in some (a) brain and (b) liver differentially methylated regions (DMRs) in normal chow (NC)
mice. Mean absolute difference in methylation with PAE is reduced within the HMD mice in (c) brain and (d) liver. Each point represents one DMR. Point
colour indicates change in DNA methylation with PAE. Points with a high number of cytosine-guanines (CpGs) and methylation difference are annotated
with associated gene if located within a genic region. HMD was associated with (e) higher methylation in the DMR identified proximal to Lamb1 on
chromosome 12 in brain and (f) lower methylation in the DMR identified proximal to Socs5 on chromosome 17 in liver. Each plot represents a separate
treatment group. Each blue vertical line indicates a CpG site, with the height and corresponding left y-axis indicating the methylation ratio. The grey line
and corresponding right y-axis indicate coverage at each CpG site. The black horizontal line indicates (e) 40% and (f) 80% methylation for comparison
purposes. The x-axis indicates the base position on the chromosome, with the pink shaded area highlighting the DMR. DMR plots include 200 base pair

flanking regions on each side of the DMR.

from the Telethon Kids Institute Animal Ethics Committee (Approval Number: 344). Sixty nulliparous
C57BL/6J female mice aged ~8 weeks were mated with equivalent stud male mice. Pregnant dams
were randomly assigned to one of four treatment groups (n=15 dams per group) that varied based on
composition of the drinking water and chow given to the dams:

i.  PAE-NC (prenatal alcohol exposure-normal chow): 10% (vol/vol) ethanol in non-acidified water
ad libitum from 10 days prior to mating until gestational days (GD) 8-10. This is intended to
replicate typical patterns of drinking during the first trimester of pregnancy in humans. Dams

Bestry et al. eLife 2023;12:RP92135. DOI: https://doi.org/10.7554/eLife.92135

11 0of 20


https://doi.org/10.7554/eLife.92135

e Llfe Research article

Developmental Biology | Genetics and Genomics

a
80 : L
I 0.75 :
8 04
S 60- Q °
N
5]
g
i 40.
o o
5 . 0 ° &2
X 20 P og=®
O_
o & L '
& & & &
C < <Q
1 0.44
077
>< r 1
(0] 0.14
B 08 e
c Do
2 o o 73°
£ 04 ° 0% o ° o
i= oaf° o Jo e ke2)
o
R
T 0.0
o o ©
o]
8
Q
o & S &
£ X o &
b Q v
J <&
500+
T 0'8 1
i 0.14 !
& 4007 05
° o ? o
£ 3001 oo o o°
o % 3 o
< %o
Soof g o oo N
e o 40
1004
0-
£ 4 5 &
< Q é\’ &

% time open arms

(o

discrimination index

=h

rotarod time (s)

T 0‘3 1
40/ ' 0.29 |
0.97
o o
30 o o 0%
o] o0 o
20- % om ©  o8d°o0 olo
©0 % o 2
10
0.
£ é’ & &
£ 4 S &
N ] & &K
L
r 1
0.82
1.01 ~ os !
o]
o [e]
o o
0.5 ° o ] %
° oo ° o o © o
& © o
0.0
o %o 00 o g %o o B
o 00 0%
-0.5 [e] o] °
o
$ 4 & &
< Q L s
500+
400
3001
064
200 038
| 098
4 . o]
0-
£ £ & S
§ 4 53 &
< Q & X

Figure 7. PAE had no significant effect on other assessed behavioural outcomes. PAE and HMD had no significant effect on anxiety as evident by

no significant difference by unpaired t-test in the (a) percent time in the inner zone in the open field test (N=104) and (b) percent time open arms in

the elevated plus maze test (N=85). PAE and HMD had no significant effect on spatial recognition as evident by no significant difference by unpaired
t-test in the discrimination index in (c) object recognition (N=108) and (d) object in place test (N=98). PAE and HMD had no significant effect on motor
coordination and balance as evident by no significant difference by unpaired t-test in times in (e) first rotarod test (N=112) and (f) second rotarod test
(N=87). Bars show mean and standard deviation. Each point represents one mouse. NC = normal chow, HMD = high methyl diet, PAE = prenatal alcohol
exposure. Time interval for each mouse was (a—c) 300 s and (d) 180 s.
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Figure 8. HMD was associated with increased locomotor activity. HMD was associated with increased locomotor activity compared to NC, indicated by
significantly greater total distance travelled in the (a) open field test (N=104), (b) object recognition test (N=108), (c) elevated plus maze test (N=88), and
(d) object in place test (N=98) by unpaired t-test. Bars show mean and standard deviation. Each point represents one mouse. NC = normal chow, HMD
= high methyl diet, PAE = prenatal alcohol exposure. Time interval for each mouse was (a—c) 300 s and (d) 180 s.

received non-acidified reverse osmosis water for the remainder of pregnancy and normal chow
(Rat and Mouse Cubes, Speciality Feeds, Glen Forrest, Australia) throughout pregnancy.
PAE-HMD (prenatal alcohol exposure-high methyl donor diet): 10% (vol/vol) ethanol in non-
acidified water ad libitum from 10 days prior to mating until GD8-10 and non-acidified reverse
osmosis water for remainder of pregnancy. Isocaloric HMD chow consisting of 20 mg/kg folate
and 4970 mg/kg choline throughout pregnancy (Speciality Feeds, Glen Forrest, Australia).
H,O-NC (water-normal chow): non-acidified water and normal chow throughout pregnancy.

H,O-HMD (water-high methyl donor diet): non-acidified water and HMD chow throughout
pregnancy.

WGBS of newborn mouse tissues

Pups selected for WGBS in each intervention group were matched on sex and litter size to mini-
mize variability in exposure. Two male and two female pups per treatment group (n=16 total) were
euthanised by intraperitoneal injection with ketamine and xylazine on the day of birth for WGBS
of their brain and liver tissues. Mouse tissue samples were stored at —-80°C. Remaining littermates
grew until adulthood for behavioural testing. Ten milligrams of tissue were collected from each liver
and brain and lysed in Chemagic RNA Tissue10 Kit special H96 extraction buffer. Total nucleic acid
was extracted from the tissues using the Chemagic 360 instrument (PerkinElmer) and quantified with
Qubit DNA High Sensitivity Kit (Catalogue Number: Q32854, Thermo Scientific). 100 ng of genomic
DNA was spiked with 0.5 ng of unmethylated lambda DNA (Catalogue Number: D1521, Promega)
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Table 3. Differentially methylated regions (DMRs) identified in the murine model that were validated in the Lussier et al., 2018
human case-control cohort for a clinical diagnosis of fetal alcohol spectrum disorder (FASD).
The upper section describes properties of Lussier et al., 2018 human DMRs. The lower section describes properties of the

equivalent murine model DMRs.

Developmental Biology | Genetics and Genomics

DMR Organism Tissue Chr Start End Width No.CpGs FDR Meandiff  Gene

1 Human Buccal 1 68151571 68152310 740 5 0.028636  —0.00497 GADD45A

2 Human Buccal 19 13000782 13002357 1576 1 0.000197  -0.00203 GCDH

3 Human Buccal 7 33148815 33149316 502 11 0.001149  -0.00011 RP9

4 Human Buccal 17 33905444 33905888 445 14 0.000171  -0.00359 AP2B1, PEX12

5 Human Buccal 17 27181503 27182342 840 11 0.018536  -0.00246 ERAL1, FAM222B
6 Human Buccal 19 12992181 12992479 299 9 0.037431  -0.00179 CTD-2265021.7, DNASE2
7 Human Buccal 19 11849531 11850013 483 9 0.022724  -0.00244 ZNF823

1 Mouse Liver 6 67034885 67035082 197 4 <0.05 -0.220833  E230016M11Rik
2 Mouse Liver 8 84901298 84901544 246 5 <0.05 -0.234457 Kif1

3 Mouse Liver 9 22453836 22453893 57 5 <0.05 -0.226427  Rp9

4 Mouse Brain 14 21403570 21403622 52 4 <0.05 -0.234193  Adk

5 Mouse Liver 11 78069463 78070002 539 9 <0.05 -0.255864  Mir144, Mir451a
6 Mouse Liver 11 78072079 78072313 234 4 <0.05 -0.215227  Mir144, Mir451a
7 Mouse Liver 2 177091927 177092945 1018 5 <0.05 -0.224354  Intergenic

to assess the bisulfite conversion efficiency. Each sample was digested with 2 ul RNase A (Invitrogen)
at 37°C for 20 min to remove RNA. 100 ng of genomic DNA from each sample was sheared using a
Covaris M220 (300 bp settings, Covaris). Libraries were prepared using the Lucigen NxSeq AmpFREE
Low DNA Library Kit (Catalogue Number: 14000-1, Lucigen), according to the manufacturer’s instruc-
tions. Nextflex bisulfite-seq barcodes (Catalogue Number: Nova-511913, PerkinElmer) were used as
the adapters with incubation at 25°C for 30 min. The libraries were bisulfite converted using the
Zymo EZ DNA Methylation-Gold Kit (Catalogue Number: D5005, Zymo Research) and PCR amplified
using the KAPA HiFi Uracil PCR Kit (Catalogue Number: ROC-07959052001, Kapa Biosystems). The
final libraries were assessed with the Agilent 2200 Tapestation System using D1000 Kit (Catalogue
Number: 5067-5582). WGBS was performed by Genomics WA sequencing core on a NovaSeq 6000
(Illumina) using 2x150 bp chemistry on an S4 flow cell. The bisulfite conversion rate in each tissue
sample was at least 99%. The overall mean coverage in each sample was 9.69x (range: 6.51-12.12x).

Behavioural testing in adult mice

Littermates who were not sacrificed at birth were reared on normal chow and drinking water ad libitum
until adulthood (~8 weeks after birth) when they underwent behavioural tests assessing five neurode-
velopmental domains that can be affected by PAE including locomotor activity, anxiety, spatial recog-
nition, memory, motor coordination, and balance. These tests included the open field test (locomotor
activity, anxiety) (Seibenhener and Wooten, 2015), object recognition test (locomotor activity, spatial
recognition) (Lueptow, 2017), object in place test (locomotor activity, spatial recognition) (Murai
et al., 2007), elevated plus maze test (locomotor activity, anxiety) (Komada et al., 2008), and two
trials of the rotarod test (motor coordination, balance) (Deacon, 2013). Between mouse subjects,
behavioural testing equipment was cleaned with 70% ethanol. Video recording was employed for
all behavioural tests, except for the rotarod, and the assessment process was semi-automated using
ANY-maze software (Stoelting Co., Wood Dale, IL, USA).

Statistical analysis
Dam characteristics and pup behavioural testing results were generally assessed using unpaired t-tests
comparing each treatment group to the baseline control group that was given non-acidified reverse
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Figure 9. Seven prenatal alcohol exposure (PAE) differentially methylated regions (DMRs) identified in the murine model were successfully replicated in
the Lussier et al., 2018 human fetal alcohol spectrum disorder (FASD) cohort. Examples of two PAE DMRs that had significantly lower DNA methylation
with a clinical diagnosis of FASD in the Lussier et al., 2018 cohort (a and ¢), while their mouse liftover DMR also had significantly lower DNA
methylation with PAE in the murine model experiment (b and d).

osmosis water and normal chow throughout pregnancy. Trajectories of liquid consumption and weight
gain across pregnancy were assessed using a quadratic mixed effects model and the trajectory of chow
consumption across pregnancy was assessed using a linear mixed effects model. To examine the effect
of alcohol exposure on behavioural outcomes we used linear regression with alcohol group (binary) as
the main predictor adjusted for diet and sex. For sequencing data, raw fastq files were mapped to the
mm10 mouse reference genome with BSseeker 2 (version 2.1.8) (Guo et al., 2013) and CG-maptools
(version number 0.1.2) (Guo et al., 2018) using a custom bioinformatics pipeline. CGmap output files
were combined as a bsseq object in the R statistical environment (R Development Core Team, 2021).
We filtered the sex chromosomal reads and then combined reads from mice in the same treatment
group using the collapseBSseq function, to maximise coverage prior to differential DNA methylation
analysis. CpG sites with an aggregated coverage below 10x in each tissue type were removed prior
to modelling to ensure there was sufficient coverage in all assessed CpG sites. This retained 94.9%
of CpG sites in the brain and 93.8% of CpG sites in the liver. DMRs were identified within each tissue
using a Bayesian hierarchical model comparing average DNA methylation ratios in each CpG site
between PAE and non-PAE mice using the Wald test with smoothing, implemented in the R package
DSS (Wu et al., 2015). False discovery rate (FDR) control was achieved through shrinkage estimation
methods. We declared DMRs as those with a local FDR p-value<0.05 based on the p-values of each
individual CpG site in the DMR, and minimum mean effect size (delta) of 5%. Gene ontology analysis
was performed on the brain and liver DMRs using the gene set enrichment analysis computational
method (Subramanian et al., 2005) to determine if the DMRs were associated with any transcription
start sites or biological processes. Brain and liver DMRs were tested for enrichment within ENCODE
Project datasets (Luo et al., 2020) by an overlap permutation test with 100 permutations using
the regioneR package. The ENCODE Project datasets that were assessed included ENCFF845WSI,
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ENCFF764NTQ, ENCFF937JHP, ENCFF269TLO, ENCFF676TSV, and ENCFF290MLR. DMRs were
then tested for enrichment within specific genic and CpG regions of the mouse genome, compared
to a randomly generated set of regions in the mouse genome generated with resampleRegions in
regioneR, with equivalent means and standard deviations. For candidate gene analysis, we compiled
a set of key genes and genomic regions identified in previous mammalian PAE studies for site-specific
testing based on our prior systematic review (Bestry et al., 2022), which identified 37 candidate
genes (Supplementary file 1e and f). Murine brain and liver datasets were filtered to candidate gene
regions and differential testing was then performed across the entire coding sequence, separately in
the brain and liver of the mice on a normal diet using the callDML feature in DSS.

Validation studies in human cohorts

We used existing human datasets to validate observations from our murine model (GSE109042),
focusing on regions identified in our early moderate PAE model. Validation studies in human cohorts
with existing genome-wide DNA methylation datasets and matching PAE data are described in the
Supplementary Material. Briefly, lllumina Human Methylation array. iDAT files were pre-processed
using the minfi package (Aryee et al., 2014) from the Bioconductor project (http://www.biocon-
ductor.org) in the R statistical environment (http://cran.r-project.org/, version 4.2.2). Sample quality
was assessed using control probes on the array. Between-array normalization was performed using
the stratified quantile method to correct for Type 1 and Type 2 probe bias. Probes exhibiting a p-de-
tection call rate of >0.01 in one or more samples were removed prior to analysis. Probes containing
SNPs at the single base extension site, or at the CpG assay site were removed, as were probes
measuring non-CpG loci (32,445 probes). Probes reported to have off-target effects in McCartney
et al., 2016, were also removed. Mouse DMRs were converted into human equivalent regions using
an mm10 to hg19 genome conversion with the liftover tool in the UCSC Genome Browser (Kent
et al., 2002). A minimum 0.1 ratio of bases that must remap was specified as recommended for lift-
over between regions from different species and multiple output regions were allowed. Differential
testing of candidate mouse DMRs was carried out using the R package DMRcate (Peters et al., 2021)
for each dataset and DMRs were declared as minimum smoothed FDR<0.05. Cell heterogeneity in
each sample including the composition of epithelial, fibroblast, and immune cells was estimated from
DNA methylation reads using the R package EpiDISH (Teschendorff et al., 2017).
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