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Protein language model- embedded 
geometric graphs power inter- protein 
contact prediction
Yunda Si, Chengfei Yan*

School of Physics, Huazhong University of Science and Technology, Wuhan, China

Abstract Accurate prediction of contacting residue pairs between interacting proteins is very 
useful for structural characterization of protein–protein interactions. Although significant improve-
ment has been made in inter- protein contact prediction recently, there is still a large room for 
improving the prediction accuracy. Here we present a new deep learning method referred to as 
PLMGraph- Inter for inter- protein contact prediction. Specifically, we employ rotationally and trans-
lationally invariant geometric graphs obtained from structures of interacting proteins to integrate 
multiple protein language models, which are successively transformed by graph encoders formed 
by geometric vector perceptrons and residual networks formed by dimensional hybrid residual 
blocks to predict inter- protein contacts. Extensive evaluation on multiple test sets illustrates that 
PLMGraph- Inter outperforms five top inter- protein contact prediction methods, including Deep-
Homo, GLINTER, CDPred, DeepHomo2, and DRN- 1D2D_Inter, by large margins. In addition, 
we also show that the prediction of PLMGraph- Inter can complement the result of AlphaFold- 
Multimer. Finally, we show leveraging the contacts predicted by PLMGraph- Inter as constraints for 
protein–protein docking can dramatically improve its performance for protein complex structure 
prediction.

eLife assessment
This study presents a useful deep learning- based inter- protein contact prediction method named 
PLMGraph- Inter which combines protein language models and geometric graphs. The evidence 
supporting the claims of the authors is solid. The authors show that their approach may be used 
in cases where AlphaFold- Multimer performs poorly. This work will be of interest to researchers 
working on protein complex structure prediction, particularly when accurate experimental structures 
are available for one or both of the monomers in isolation.

Introduction
Protein–protein interactions (PPIs) are essential activities of most cellular processes (Alberts, 1998; 
Spirin and Mirny, 2003). Structure characterization of PPIs is important for mechanistic investiga-
tion of these cellular processes and therapeutic development (Goodsell and Olson, 2000). However, 
currently experimental structures of many important PPIs are still missing as experimental methods 
to resolve complex structures such as X- ray crystallography, nuclear magnetic resonance, and cryo- 
electron microscopy are costly and time- consuming (Berman et al., 2000). Therefore, it is necessary 
to develop computational methods to predict protein complex structures (Bonvin, 2006). Predicting 
contacting residue pairs between interacting proteins can be considered an intermediate step for 
protein complex structure prediction (Hopf et al., 2014; Ovchinnikov et al., 2014) as the predicted 
contacts can be integrated into protein–protein docking algorithms to assist protein complex structure 
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prediction (Dominguez et al., 2003; Li and Huang, 2021; Sun et al., 2020). Besides, the predicted 
contacts can also be very useful to guide protein interfacial design (Martino et al., 2021) and the 
inter- protein contact prediction methods can be further extended to predict novel PPIs (Cong et al., 
2019; Green et al., 2021).

Based on the fact that contacting residue pairs often vary co- operatively during evolution, coevo-
lutionary analysis methods Weigt et al., 2009 have been used in previous studies to predict inter- 
protein contacts (Hopf et  al., 2014; Ovchinnikov et  al., 2014). However, coevolutionary analysis 
methods do have certain limitations. For example, effective coevolutionary analysis requires a large 
number of interolog sequences, which are often difficult to obtain, especially for heteromeric PPIs 
(Hopf et al., 2014; Ovchinnikov et al., 2014), and it is difficult to distinguish inter- protein and intra- 
protein coevolutionary signals for homomeric PPIs (Uguzzoni et  al., 2017). Inspired by its great 
success in intra- protein contact prediction (Hanson et al., 2018; Ju et al., 2021; Li et al., 2019; Si and 
Yan, 2021; Wang et al., 2017), deep learning has also been applied to predict inter- protein contacts 
(Guo et al., 2022; Roy et al., 2022; Xie and Xu, 2022; Yan and Huang, 2021; Zeng et al., 2018). 
ComplexContact (Zeng et al., 2018), to the best of our knowledge, the first deep learning method 
for inter- protein contact prediction, has significantly improved the prediction accuracy over coevolu-
tionary analysis methods. However, its performance on eukaryotic PPIs is still quite limited, partly due 
to the difficulty of accurately inferring interologs for eukaryotic PPIs. In a later study, coming from the 
same group as ComplexContact, Xie et al. developed GLINTER (Xie and Xu, 2022), another deep 
learning method for inter- protein contact prediction. Compared with ComplexContact, GLINTER 
leverages structures of interacting monomers, from which their rotational invariant graph representa-
tions are used as additional input features. GLINTER outperforms ComplexContact in the prediction 
accuracy, although there is still large room for improvement, especially for heteromeric PPIs. It is worth 
mentioning that CDPred (Guo et al., 2022), a recently developed method, further surpasses GLINTER 
in prediction accuracy with 2D attention- based neural networks. Apart from these methods devel-
oped to predict inter- protein contacts for both homomeric and heteromeric PPIs, inter- protein contact 
prediction methods specifically for homomeric PPIs were also developed (Roy et al., 2022; Wu et al., 
2022; Yan and Huang, 2021) as predicting the inter- protein contacts for homomeric PPIs is generally 
much easier due to the symmetric restriction, relatively larger interfaces and the trivialness of inter-
ologs identification. For example, Yan et al. developed DeepHomo (Yan and Huang, 2021), a deep 
learning method specifically to predict inter- protein contacts of homomeric PPIs, which also signifi-
cantly outperforms coevolutionary analysis- based methods. However, DeepHomo requires docking 
maps calculated from structures of interacting monomers, which is computationally expensive and 
is also sensitive to the quality of monomeric structures. Besides, coming from the same group, Lin 
et al., 2023 further developed DeepHomo2 for inter- protein contact prediction for homomeric PPIs 
by including the multiple sequence alignment (MSA) embeddings and attentions from an MSA- based 
protein language model (PLM) (MSA transformer) (Rao et al., 2021b) in their prediction model, which 
further improved the prediction performance. At almost the same time as DeepHomo2, we proved 
that embeddings from PLMs (Rao et al., 2021a; Rives et al., 2021) are very effective features in 
predicting inter- protein contacts for both homomeric and heteromeric PPIs, and we further show the 
sequence embeddings (ESM- 1b [Rives et al., 2021]), MSA embeddings (ESM- MSA- 1b [Rao et al., 
2021b] and Position- Specific Scoring Matrix [PSSM]), and the inter- protein coevolutionary information 
complement each other in the prediction, with which we developed DRN- 1D2D_Inter (Si and Yan, 
2023). Extensive benchmark results show that DRN- 1D2D_Inter significantly outperforms DeepHomo 
and GLINTER in inter- protein contact prediction, although DRN- 1D2D_Inter makes the prediction 
purely from sequences.

In this study, we developed a structure- informed method to predict inter- protein contacts. Given 
the structures of two interacting proteins, we first build rotationally and translationally (SE(3)) invariant 
geometric graphs from the two monomeric structures, which encode both the inter- residue distance 
and orientation information of the monomeric structures. We further embedded the single- sequence 
embeddings (ESM- 1b), MSA embeddings (ESM- MSA- 1b and PSSM), and structure embeddings 
(ESM- IF [Hsu et al., 2022]) from PLMs in the graph nodes of the corresponding residues to build 
the PLM- embedded geometric graphs, which are then transformed by graph encoders formed by 
geometric vector perceptrons (GVPs) to generate graph embeddings for interacting monomers. The 
graph embeddings are further combined with inter- protein pairwise features and transformed by 
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residual networks formed by dimensional hybrid residual blocks (residual block hybridizing 1D and 2D 
convolutions) to predict inter- protein contacts. The developed method referred to as PLMGraph- Inter 
was extensively benchmarked on multiple tests with application of either experimental or predicted 
structures of interacting monomers as the input. The result shows that in both cases PLMGraph- 
Inter outperforms other top prediction methods, including DeepHomo, GLINTER, CDPred, Deep-
Homo2, and DRN- 1D2D_Inter by large margins. In addition, we also compared the prediction results 
of PLMGraph- Inter with the protein complex structures generated by AlphaFold- Multimer (Evans 
et al., 2022). The result shows that for many targets that AlphaFold- Multimer made poor predic-
tions, PLMGraph- Inter yielded better results. Finally, we show leveraging the contacts predicted by 
PLMGraph- Inter as constraints for protein–protein docking can dramatically improve its performance 
for protein complex structure prediction.

Results
Overview of PLMGraph-Inter
The method of PLMGraph- Inter is summarized in Figure  1a. PLMGraph- Inter consists of three 
modules: the graph representation module (Figure 1b), the graph encoder module (Figure 1c), and 
the residual network module (Figure 1d). Each interacting monomer is first transformed into a PLM- 
embedded graph by the graph representation module, then the graph is passed through the graph 
encoder module to obtain a 1D representation of each protein. The two protein representations 
are transformed into 2D pairwise features through outer concatenation (horizontal and vertical tiling 
followed by concatenation) and further concatenated with other 2D pairwise features including the 
inter- protein attention maps and the inter- protein coevolution matrices, which are then transformed 
by the residual network module to obtain the predicted inter- protein contact map.

The graph representation module
The first step of the graph representation module is to represent the protein 3D structure as a 
geometric graph, where each residue is represented as a node, and an edge is defined if the  Cα  
atom distance between two residues is less than 18 Å. For each node and edge, we use scalars and 
vectors extracted from the 3D structures as their geometric features. To make the geometric graph 
SE(3) invariant, we use a set of local coordinate systems to extract the geometric vectors. The SE(3) 

Figure 1. Overview of PLMGraph- Inter. (a) The network architecture of PLMGraph- Inter. (b) The graph representation module. (c) The graph encoder 
module, s denotes scalar features, v denotes vector features. (d) The dimensional hybrid residual block (‘IN’ denotes Instance Normalization).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The graph representation of protein structures.

https://doi.org/10.7554/eLife.92184
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invariance of representation of each interacting monomer is important as in principle the inter- protein 
contact prediction result should not depend on the initial positions and orientations of protein struc-
tures. A detailed description can be found in the ‘Methods’ section. The second step is to integrate 
the single- sequence embedding from ESM- 1b (Rives et al., 2021), the MSA embedding from ESM- 
MSA- 1b (Rao et  al., 2021a), the PSSM calculated from the MSA, and structure embedding from 
ESM- IF (Hsu et al., 2022) for each interacting monomer using its corresponding geometric graph. 
Where ESM- 1b and ESM- MSA- 1b are pretrained PLMs learned from large datasets of sequences and 
MSAs respectively with masked language modeling tasks, and ESM- IF is a supervised PLM trained 
from 12  million protein structures predicted by AlphaFold2 (Jumper et  al., 2021) for fixed back-
bone design. The embeddings from these models contain high- dimensional representations of each 
residue in the protein, which are concatenated and further combined with the PSSM to form addi-
tional features of each node in the geometric graph. Since the sequence embeddings, MSA embed-
dings, PSSM, and structure embeddings are all SE(3) invariant, the PLM- embedded geometric graph 
of each protein is also SE(3) invariant.

The graph encoder module
The graph encoder module is formed by GVP and GVP convolutional layer (GVPConv) (Jing et al., 
2021a; Jing et al., 2021b). Where GVP is a graph neural network module consisting of a scalar track 
and a vector track, which can perform rotationally invariant transformations on scalar features and 
rotationally equivariant on vector features of nodes and edges; GVPConv follows the message passing 
paradigm of graph neural network and mainly consists of GVP, which updates the embedding of each 
node by passing information from its neighboring nodes and edges. A detailed description of GVP 
and GVPConv can be found in the ‘Methods’ section and also in the work of GVP (Jing et al., 2021a; 
Jing et al., 2021b). For each protein graph, we first use a GVP module to reduce the dimension of 
the scalar features of each node from 2586 to 256, which is then transformed successively by three 
GVPConv layers. Finally, we stitch the scalar features and the vector features of each node to form 
the 1D representation of the protein. Since the input protein graph is SE(3) invariant and the GVP 
and GVPConv transformations are rotationally equivariant, the 1D representation of each interacting 
monomer is also SE(3) invariant.

The residual network module
The residual network module is mainly formed by nine- dimensional hybrid residual blocks to transform 
the 2D feature maps to obtain the predicted inter- protein contact map. Our previous study illustrated 
the effective receptive field can be enlarged with the application of the dimensional hybrid residual 
block, thus helping in improving the model performance (Si and Yan, 2021). A more detailed descrip-
tion of the transforming procedure can be found in the ‘Methods’ section.

Evaluation of PLMGraph-Inter on HomoPDB and HeteroPDB test sets
We first evaluated PLMGraph- Inter on two self- built test sets which are non- redundant to the training 
dataset of PLMGraph- Inter: HomoPDB and HeteroPDB. Where HomoPDB is the test set for homo-
meric PPIs containing 400 homodimers and HeteroPDB is the test set for heteromeric PPIs containing 
200 heterodimers. For comparison, we also evaluated DeepHomo, GLINTER, DeepHomo2, CDPred, 
and DRN- 1D2D_Inter on the same datasets. Since DeepHomo and DeepHomo2 were developed 
to predict inter- protein contacts only for homomeric PPIs, their evaluation was only performed on 
HomoPDB. It should be noted that since HomoPDB and HeteroPDB are not de- redundant with the 
training sets of DeepHomo, DeepHomo2, CDPred, and GLINTER, the performances of the four 
methods may be overestimated.

In all the evaluations, the structural- related features were drawn from experimental structures 
of interacting monomers separated from complex structures of PPIs after randomizing their initial 
positions and orientations (DRN- 1D2D_Inter does not use structural information). Besides, we also 
used the AlphaFold2 predicted monomeric structures as the input, considering experimental struc-
tures of interacting monomers often do not exist. Since the interacting monomers in HomoPDB and 
HeteroPDB are not de- redundant with the training set of AlphaFold2, using default settings of Alpha-
Fold2 may overestimate its performance. To mimic the performance of AlphaFold2 in real practice and 
produce predicted monomeric structures with more diverse qualities, we only used the MSA searched 
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from Uniref100 ( Suzek et al., 2015) protein sequence database as the input of AlphaFold2 and set to 
not use the template. The predicted structures yielded a mean TM- score of 0.88, which is close to the 
performance of AlphaFold2 for CASP14 targets (mean TM- score 0.85) (Lin et al., 2023).

Table 1 shows the mean precision of each method on the HomoPDB and HeteroPDB when the top 
(5, 10, 50, L/10, L/5) predicted inter- protein contacts are considered, where L denotes the sequence 
length of the shorter protein in the PPI. (Note that GLINTER encountered errors for 81 [5 when using 
the predicted monomeric structures] targets in HomoPDB and 15 [3 when using the predicted mono-
meric structures] targets in HeteroPDB at run time and did not produce predictions, thus we removed 
these targets in the evaluation of the performance of GLINTER. The performances of HomoPDB and 
HeteroPDB for these methods after the removal of these targets which GLINTER failed in any case are 
shown in Supplementary file 1.) As can be seen from the table, whenever the experimental or the 
predicted monomeric structures were used as the input, the mean precision of PLMGraph- Inter far 
exceeds those of other algorithms in each metric for both datasets. Particularly, the mean precision of 
PLMGraph- Inter is substantially improved in each metric on each dataset compared to our previous 
method DRN- 1D2D_Inter, which used most features of PLMGraph- Inter except those drawn from 
the structures of the interacting monomers, illustrating the importance of the inclusion of structural 
information. Besides, GLINTER, CDPred, and DeepHomo2 also use structural information and PLMs, 
but have much lower performance than PLMGraph- Inter, illustrating the efficacy of our deep learning 
framework.

It can also be seen from the result that all the methods tend to have better performances on 
HomoPDB than those on HeteroPDB. One possible reason is that the complex structures of homod-
imers are generally C2 symmetric, which largely restricts the configurational spaces of PPIs, making 
the inter- protein contact prediction a relatively easier task (e.g., the inter- protein contact maps for 
homodimers are also symmetric). Besides, compared with heteromeric PPIs, we may be more likely to 
successfully infer the inter- protein coevolutionary information for homomeric PPIs to assist the contact 
prediction for two reasons: first, it is straightforward to pair sequences in the MSAs for homomeric 
PPIs, thus the paired MSA for homomeric PPIs may have higher qualities; second, homomeric PPIs 
may undergo stronger evolutionary constraints, as homomeric PPIs are generally permanent interac-
tions, but many heteromeric PPIs are transient interactions.

In addition to using the mean precision on each test set to evaluate the performance of each 
method, the performance comparisons between PLMGraph- Inter and other models on the top 50 
predicted contacts for each individual target in HomoPDB and HeteroPDB are shown in Figure 2 
(separate comparisons are shown in Figure  2—figure supplements 1 and 2). Specifically, when 
the experimental (predicted) structures were used as the input, PLMGraph- Inter achieved the best 
performance for 60% (53%) of the targets in HomoPDB and 58% (51%) of the targets in HeteroPDB. 

Table 1. The performances of DeepHomo, GLINTER, DRN- 1D2D_Inter, DeepHomo2, CDPred, 
and PLMGraph- Inter on the HomoPDB and HeteroPDB test sets using experimental structures 
(AlphaFold2 predicted structures).

Methods

HomoPDB (precision %) HeteroPDB (precision %)

L/5 L/10 50 10 5 L/5 L/10 50 10 5

DeepHomo
43.2
(39.3)

46.7
(42.7)

42.4
(38.8)

48.5
(44.8)

49.9
(46.2)

GLINTER
42.9
(47.3)

45.0
(50.1)

42.2
(52.1)

46.4
(51.9)

48.5
(53.6)

23.9
(25.1)

24.7
(27.0)

20.9
(21.9)

25.5
(25.8)

26.7
(26.2)

DRN- 1D2D_Inter 52.5 55.2 51.3 56.6 57.6 34.9 37.1 32.6 38.1 38.5

DeepHomo2
55.6
(52.4)

58.1
(53.9)

55.0
(51.7)

59.4
(55.7)

61.3
(56.7)

CDPred
59.4
(54.7)

61.3
(56.2)

58.4
(54.1)

62.4
(57.1)

62.9
(57.7)

30.0
(30.2)

31.0
(31.7)

27.6
(27.3)

32.0
(32.2)

32.1
(32.7)

PLMGraph- Inter
68.6
(61.8)

70.4
(63.6)

67.3
(60.9)

71.6
(65.0)

72.1
(65.25)

45.9
(41.9)

48.6
(43.6)

41.4
(37.8)

49.1
(44.1)

51.6
(45.0)

The highest mean precision (%) in each column is highlighted in bold.

https://doi.org/10.7554/eLife.92184
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Figure 2. The performances of PLMGraph- Inter and other methods on the HomoPDB and HeteroPDB test sets. (a, b) The head- to- head comparison 
of the precisions (%) of the top 50 contacts predicted by PLMGraph- Inter and other methods for each target in (a) HomoPDB and (b) HeteroPDB using 
experimental structures. (c, d) The head- to- head comparison of the precisions (%) of the top 50 contacts predicted by PLMGraph- Inter and other 
methods for each target in (c) HomoPDB and (d) HeteroPDB using AlphaFold2 predicted structures.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The head- to- head comparison of the precisions (%) of the top 50 contacts predicted by PLMGraph- Inter and other methods (a: 
DRN- 1D2D_Inter; b: DeepHomo; c: GLINTER ; d: CDPred; e: DeepHomo2) for each target in HomoPDB and HeteroPDB using experimental structures.

Figure supplement 2. The head- to- head comparison of the precisions (%) of the top 50 contacts predicted by PLMGraph- Inter and other methods (a: 
DRN- 1D2D_Inter; b: DeepHomo; c: GLINTER ; d: CDPred; e: DeepHomo2) for each target in HomoPDB and HeteroPDB using AlphaFold2 predicted 
structures.

Figure supplement 3. The mean precision versus contact density for the top 50 contacts predicted by PLMGraph- Inter, GLINTER, DeepHomo, 
DeepHomo2, CDPred, and DRN- 1D2D_Inter on the HomoPDB test set (a, c) and HeteroPDB test set (b, d) using experimental structures (first row) and 
AlphaFold2 predicted structures (second row).

Figure 2 continued on next page

https://doi.org/10.7554/eLife.92184
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Figure supplement 4. The mean precision versus log ( N
norm
eff  ) for the top 50 contacts predicted by PLMGraph- Inter, GLINTER, DeepHomo, 

DeepHomo2, and CDPred, DRN- 1D2D_Inter on the HomoPDB test set (a, c) and HeteroPDB test set (b, d) using experimental structures (first row) and 

Figure 2 continued

Figure 2 continued on next page

https://doi.org/10.7554/eLife.92184
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We further group targets in each dataset according to their inter- protein contact densities defined 
as  

# of contacts
LA∗LB   and the normalized number of the effective sequences  (N

norm
eff )  of paired MSAs. We 

found that all the methods tend to have lower performances for targets with lower contact densi-
ties (Figure 2—figure supplement 3), which is reasonable since obviously it is more challenging to 
identify the true contacts when their ratio is lower. We also found when the  N

norm
eff   is low (log  (N

norm
eff )  

< 3), the prediction performances of all methods tend to improve with  N
norm
eff  , but when  N

norm
eff   reaches 

certain thresholds (log  (N
norm
eff )  > 4), the performances of all the methods tend to fluctuate with  N

norm
eff   

AlphaFold2 predicted structures (second row).

Figure 2 continued

Figure 3. The performances of PLMGraph- Inter when using experimental and AlphaFold2 predicted structures as the input. (a, b) The performance 
comparison of PLMGraph- Inter when using experimental structures and AlphaFold2 predicted structures as the input on (a) HomoPDB and 
(b) HeteroPDB. (c) The performance gaps (measured as the difference of the mean precision of the top 50 predicted contacts) of PLMGraph- Inter with 
the application of AlphaFold2 predicted structures and experimental structures as the input when the protein–protein interactions (PPIs) are within 
different intervals of DTM- score. The upper panel shows the percentage of the total number of PPIs in each interval. (d) The comparison of the precision 
of the top 50 contacts predicted by PLMGraph- Inter for each target when using experimental structures and AlphaFold2 predicted structures as the 
input.

https://doi.org/10.7554/eLife.92184
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(Figure 2—figure supplement 4). However, PLMGraph- Inter consistently achieved the best perfor-
mances in most categories.

Impact of the monomeric structure quality on contact prediction
We further analyzed the performance difference of PLMGraph- Inter when using the AlphaFold2 
predicted structures and using the experimental structures as the inputs. As shown in Figure  3a 
and b, when the predicted structures were used by PLMGraph- Inter for inter- protein contact predic-
tion, mean precisions of the predicted inter- protein contacts in each metric on both HomoPDB and 
HeteroPDB test sets decreased by about 5% (also see Table 1), indicating qualities of the input struc-
tures do have a certain impact on the prediction performance.

We further explored the impact of the monomeric structure quality on the inter- protein contact 
prediction performance of PLMGraph- Inter. Specifically, for a given PPI, the TM- score (Zhang and 
Skolnick, 2004) was used to evaluate the quality of the predicted structure for each interacting 
monomer, and the TM- score of the predicted structure with lower quality was used to evaluate the 
overall monomeric structure prediction quality for the PPI, denoted as ‘DTM- score’. In Figure 3c, we 
show the performance gaps (using the mean precisions of the top 50 predicted contacts as the metric) 
between applying the predicted structures and applying the experimental structures in the inter- 
protein contact prediction, in which we grouped targets according to DTM- scores of their monomeric 
structure prediction, and in Figure 3d, we show the performance comparison for each specific target. 
From Figure 3c and d, we can clearly see that when the DTM- score is lower, the prediction using the 
prediction structure tends to have lower accuracy. However, when the DTM- score is ≥0.8, there is 
almost no difference between applying the predicted structures and applying the experimental struc-
ture, which shows the robustness of PLMGraph- Inter to the structure quality.

Ablation study
To explore the contribution of each input component to the performance of PLMGraph- Inter, we 
conducted an ablation study on PLMGraph- Inter. The graph representation from the structure of each 
interacting proteins is the base feature of PLMGraph- Inter, so we first trained the baseline model 
using only the geometric graphs as the input feature, denoted as model a. Our previous study in 
DRN- 1D2D_Inter has shown that the single- sequence embeddings, MSA 1D features (including the 
MSA embeddings and PSSMs), and 2D pairwise features from the paired MSA play important roles in 
the model performance. To further explore the importance of these features when integrated with the 
geometric graphs, we trained models b–d separately (model b: geometric graphs + sequence embed-
dings; model c: geometric graphs + sequence embeddings + MSA 1D features; model d: geometric 
graphs + sequence embeddings + MSA 1D features + 2D features). Finally, we included the struc-
ture embeddings as additional features to train the model e (model e uses all the input features of 
PLMGraph- Inter). All the five models were trained using the same protocol as PLMGraph- Inter on the 
same training and validation partition without cross- validation. We further evaluated performances of 
models a–e together with PLMGraph- Inter (i.e., model f: model e + cross- validation) on HomoPDB 
and HeteroPDB using experimental structures of interacting monomers respectively.

In Figure 4a, we show the mean precisions of the top 50 predicted contacts by models a–f on 
HomoPDB and HeteroPDB, respectively. It can be seen from Figure 4a that including the sequence 
embeddings in the geometric graphs has a very good boost to the model performance (model b 
versus model a), while the additional introduction of MSA 1D features and 2D pairwise features can 
further improve the model performance (model d versus model c versus model b). DRN- 1D2D_Inter 
also uses the same set of sequence embeddings, MSA 1D features, and 2D pairwise features as the 
input, and our model d shows a significant performance improvement over DRN- 1D2D_Inter (single 
model) (the model trained on the same training and validation partition without cross- validation) on 
both HomoPDB and HeteroPDB (the mean precision improvement: HomoPDB: 14%; HeteroPDB: 
5.6%), indicating that the introduced graph representation is important for the model performance. 
The head- to- head comparison of model d and DRN- 1D2D_Inter (single model) on each specific target 
in Figure  4b further demonstrates the value of the graph representation. Besides, the addition-
ally introduced structure embeddings from ESM- IF can further improve the mean precisions of the 
predicted contacts by 3–4% on both HomoPDB and HeteroPDB (model e versus model d) and the 
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 Research article      Computational and Systems Biology

Si and Yan. eLife 2023;12:RP92184. DOI: https://doi.org/10.7554/eLife.92184  10 of 24

application of the cross- validation can also improve the precisions by 1.0% on HomoPDB and 2.7% on 
HeteroPDB (model f versus model d) (see Supplementary file 2).

To demonstrate the efficacy of our proposed graph representation of protein structures, we also 
trained a model using the structural representation proposed in the work of GVP (Jing et al., 2021a; 
Jing et al., 2021b) (denoted as ‘GVP Graph’), as a control. Our structural representation differs signifi-
cantly from GVP Graph. For example, we extracted inter- residue distances and orientations between 
five atoms (C,O, Cα ,N, and a virtual  Cβ ) from the structure as the geometric scalar and vector features, 
in which the vector features are calculated in a local coordinate system. However, GVP Graph only 
uses the distances and orientations between  C  atoms as the geometric scalar and vector features and 
the vector features are calculated in a global coordinate system. In addition, after the geometric graph 
is transformed by the graph encoder module, GVP Graph only uses the scalar features of each node as 
the node representation, while we concatenate the scalar and vector features of the node as the node 
representation. In Figure 4c, we show the performance comparison between this model and our base 
model (model a). From Figure 4c, we can clearly see that our base model significantly outperforms 

Figure 4. The ablation study of PLMGraph- Inter on the HomoPDB and HeteroPDB test sets. (a) The mean precisions of the top 50 contacts predicted 
by different ablation models on the HomoPDB and HeteroPDB test sets. (b) The head- to- head comparisons of mean precisions of the top 50 contacts 
predicted by model d and DRN- 1D2D_Inter (single model) for each target in HomoPDB and HeteroPDB. (c) The head- to- head comparison of mean 
precisions of the top 50 contacts predicted by the model using our geometric graphs and the geometric vector perceptron (GVP) geometric graphs.

https://doi.org/10.7554/eLife.92184
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the GVP Graph- based model on both HomoPDB and HeteroPDB, illustrating the high efficacy of our 
proposed graph representation.

We also explored the performance of PLMGraph- Inter on the HomoPDB and HeteroPDB test sets 
when using different protocols to further remove potential redundancies between the training and 
the test sets. Specifically, although the ‘40% sequence identity’ used in our study is a widely used 
threshold to remove redundancy when evaluating deep learning- based PPI and protein complex 
structure prediction methods (Evans et al., 2022; Sledzieski et al., 2021), it is worth testing whether 
PLMGraph- Inter can keep its performance when more stringent threshold is applied. Besides, it is also 
worth evaluating whether PLMGraph- Inter can keep its performance on targets for which the folds 
of their interacting monomers are different from the targets in the training set (i.e., non- redundant in 
main chain structures of interacting monomers). To the best of our knowledge, all the previous studies 
failed to remove potential redundancies in folds of the interacting monomers when evaluating their 
methods.

In Table 2, we show mean precisions of the contacts (top 50) predicted by PLMGraph- Inter on the 
HomoPDB and HeteroPDB when various sequence identity thresholds (with MMseq2 [Steinegger and 
Söding, 2018]) and fold similarity thresholds (with TMalign [Zhang and Skolnick, 2005]) were further 
used in the de- redundancy (see section ‘Further potential redundancies removal between the training 
and the test’). It can be seen from that table that when using more stringent sequence identity thresh-
olds for de- redundancy, the performance of PLMGraph- Inter on both the HomoPDB and HeteroPDB 
datasets decreases very little. For example, even when using ‘10% sequence identity’ for de- redun-
dancy, mean precisions of the predicted contacts only decrease by 2–4%. Whereas when using fold 
similarities of the interacting monomers for de- redundancy, although the performance of PLMGraph- 
Inter on HeteroPDB decreases very little (only 3–4% when TM- score 0.5 is used as the threshold), the 
performance of PLMGraph- Inter on HomoPDB decreases significantly (17–19% when TM- score 0.5 is 
used as the threshold). One possible reason for the performance decrease on HomoPDB is that the 
binding mode of the homomeric PPI is largely determined by the fold of its monomer, thus the model 
does not generalize well on targets whose folds have never been seen during the training.

Evaluation of PLMGraph-Inter on DHTest and DB5.5 test sets
We further evaluated PLMGraph- Inter on DHTest and DB5.5. The DHTest test set was formed by 
removing PPIs redundant to our training set from the original test set of DeepHomo, which contains 
130 homomeric PPIs. The DB5.5 test set was formed by removing PPIs redundant to our training 

Table 2. The performance of PLMGraph- Inter when using different sequence identity and fold 
similarity thresholds to further remove potential redundancies in HomoPDB and HeteroPDB.

HomoPDB HeteroPDB

Count
Precision
(Top 50 [%]) Count

Precision
(Top 50 [%])

Sequence identity
(MMSeqs2)

Original 400 67.3 (60.9) 200 41.4 (37.8)

40% 341 68.7 (62.5) 160 38.6 (35.6)

30% 257 64.7 (58.7) 144 38.1 (35.1)

20% 211 63.2 (56.3) 138 38.5 (35.3)

10% 211 63.2 (56.3) 138 38.5 (35.3)

Fold similarity
(TM- align)

0.9 370 65.2 (58.3) 185 39.7 (35.7)

0.8 281 61.8 (53.4) 153 38.1 (34.1)

0.7 179 56.5 (45.8) 126 38.8 (34.6)

0.6 124 50.4 (39.9) 102 37.4 (34.1)

0.5 70 49.6 (41.3) 83 36.5 (34.5)

The results using experimental structures are shown outside the parentheses, and the results using the 
AlphaFold2 predicted structures are shown inside the parentheses.

https://doi.org/10.7554/eLife.92184
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dataset from the heterodimers in Protein- protein Docking Benchmark 5.5, which contains 59 hetero-
meric PPIs. Still, both the experimental structures and the predicted structures (generated using 
the same protocol as in HomoPDB and HeteroPDB) of the interacting monomers were used respec-
tively in the inter- protein contact prediction. It should be noted that since DHTest and DB5.5 are not 
de- redundant with the training sets of CDPred and GLINTER, particularly, all PPIs in the DHTest test 
set are included in the training set of CDPred, thus the performances of the two methods may be 
overestimated.

As shown in Figure 5a and b, when using the experimental structures in the prediction, the mean 
precisions of the top 50 contacts predicted by PLMGraph- Inter are 71.9% on DHTest and 29.5% on 
DB5.5 (also see Supplementary file 3), which are dramatically higher than DeepHomo, GLINTER, 
DeepHomo2, and DRN- 1D2D_Inter. (Note that GLINTER encountered errors for 47 targets in DHTest 
and 3 targets in DB5.5 at run time and did not produce predictions, thus we removed these targets 
in the evaluation of the performance of GLINTER. The performances of other methods on DHTest 
and DB5.5 after the removal of these targets are shown in Supplementary file 4.) We can also see 
that although PLMGraph- Inter achieved significantly better performance than CDPred on DB5.5, 
its performance on DHTest is quite close to CDPred. However, it should be noted that the perfor-
mance of CDPred on DHTest might be grossly overestimated since PPIs in DHTest are fully included 
in the training set of CDPred. The distributions of the precisions of the top 50 predicted contacts by 

Figure 5. The performances of PLMGraph- Inter and other methods on the DHTest and DB5.5 test sets. (a, b) The mean precisions of the top 50 contacts 
predicted by PLMGraph- Inter, GLINTER, DeepHomo2, CDPred, and DeepHomo on (a) DHTest and (b) DB5.5 when using experimental structures and 
AlphaFold2 predicted structures as the input, where the green lines indicate the performance of DRN- 1D2D_Inter. (c) The performance gaps (measured 
as the difference of the mean precision of the top 50 predicted contacts) of PLMGraph- Inter with the application of AlphaFold2 predicted structures and 
experimental structures as the input when the protein–protein interactions (PPIs) are within different intervals of DTM- score. The upper panel shows the 
percentage of the total number of PPI’s in each interval. (d, e) The distributions of precisions of the top 50 contacts predicted by PLMGraph- Inter and 
other methods for PPIs in (d) DHTest and (e) DB5.5. (f) The mean precisions of the top 50 contacts predicted by PLMGraph- Inter on PPIs within different 
intervals of contact densities in DB5.5. The upper panel shows the percentage of the total number of PPIs in each interval.

https://doi.org/10.7554/eLife.92184
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different methods on DHTest and DB5.5 are shown in Figure 5d and e, from which we can clearly see 
that PLMGraph- Inter can make high- quality predictions for more targets on both DHTest and DB5.5.

When using the predicted structures in the prediction, the mean precisions of the top 50 contacts 
predicted by PLMGraph- Inter show a reasonable decrease to 61.1% on DHTest and 23.8% on DB5.5, 
respectively (see Figure 5a and b and Supplementary file 3). We also analyzed the impact of the 
monomeric structure quality on the inter- protein contact prediction performance of PLMGraph- Inter. 
As shown in Figure 5c, when the DTM- score is ≥0.7, there is almost no difference between applying 
the predicted structures and the experimental structures, which is consistent with our analysis in 
HomoPDB and HeteroPDB.

We noticed that the performance of PLMGraph- Inter on the DB5.5 is significantly lower than that on 
HeteroPDB, and so are the performances of other methods. That the targets in DB5.5 have relatively 
lower mean contact densities (1.01% vs 1.29%) may partly explain this phenomenon. In Figure 5f, we 
show the variations of the precisions of predicted contacts with the variation of contact density. As 
can be seen from Figure 5f, as the contact density increases, precisions of predicted contacts tend 
to increase regardless of whether the experimental structures or predicted structures are used in 
the prediction. 37.29% targets in DB5.5 are with inter- protein contact densities lower than 0.5%, for 
which precisions of predicted contacts are generally very low, making the overall inter- protein contact 
prediction performance on DB5.5 relatively low.

Comparison of PLMGraph-Inter with AlphaFold-Multimer
After the development of AlphaFold2, DeepMind also released AlphaFold- Multimer, as an exten-
sion of AlphaFold2 for protein complex structure prediction. The inter- protein contacts can also be 
extracted from the complex structures generated by AlphaFold- Multimer. It is worth making a compar-
ison between the performances of AlphaFold- Multimer and PLMGraph- Inter on inter- protein contact 
prediction. Therefore, we also employed AlphaFold- Multimer (version 2.2) with its default settings to 
generate complex structures for all the PPIs in the four datasets which we used to evaluate PLMGraph- 
Inter. We then selected the 50 inter- protein residue pairs with the shortest heavy atom distances in 
each generated protein complex structures as the predicted inter- protein contacts. It should be noted 
that AlphaFold- Multimer used all protein complex structures in the Protein Data Bank deposited 
before April 30, 2018, in the model training, thus these PPIs may have a large overlap with the training 
set of AlphaFold- Multimer. Therefore, there is no doubt that the performance of AlphaFold- Multimer 
would be overestimated here. It should also be noted that although AlphaFold- Multimer makes the 
prediction from sequences, it automatically searches templates of the interacting monomers. When 
we checked our AlphaFold- Multimer runs, we noticed for 99% of the targets (including all the targets 
in the four datasets: HomoPDB, HeteroPDB, DHTest, and DB5.5), at least 20 templates were identified 
(AlphaFold- Multimer only employed the top 20 templates), and AlphaFold- Multimer employed the 
native template (i.e., the template which has the same PDB id with the target) for 87.8% of the targets. 
Besides, AlphaFold- Multimer employs multiple sequence databases including a huge metagenomics 
database (Jumper et al., 2021), but PLMGraph- Inter only employs the UniRef100, thus the compar-
ison is not on the same footing.

In Figure 6a, we show the relationship between the quality of the generated protein complex 
structure (evaluated with DockQ) and the precision of the top 50 inter- protein contacts extracted from 
the protein complex structure predicted by AlphaFold- Multimer for each PPI in the homomeric PPI 
(DHTest + HomoPDB) and heteromeric PPI (DB5.5 + HeteroPDB) datasets. As can be seen from the 
figure, the precision of the predicted contacts is highly correlated with the quality of the generated 
structure. Especially when the precision of the contacts is higher than 50%, most of the generated 
complex structures have at least acceptable qualities (DockQ ≥ 0.23), in contrast, almost all the gener-
ated complex structures are incorrect (DockQ < 0.23) when the precision of the contacts is below 50%. 
Therefore, 50% can be considered as a critical precision threshold for inter- protein contact prediction 
(the top 50 contacts).

In Figure 6b, we show the comparison of the precisions of top 50 contacts predicted by AlphaFold- 
Multimer and PLMGraph- Inter for each target when using the experimental monomeric structures 
as the input for PLMGraph- Inter respectively (also see Supplementary file 5, and the comparison 
when using the AlphaFold2 predicted structures is shown in Figure  6—figure supplement 1b). 
It can be seen from the figure that although for most of the targets AlphaFold- Multimer yielded 
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Figure 6. The comparison of PLMGraph- Inter with AlphaFold- Multimer. (a) The head- to- head comparison between the qualities of the protein 
complex structures generated by AlphaFold- Multimer (evaluated with DockQ) and the precision of the top 50 inter- protein contacts extracted from the 
generated protein complex structures. The red horizontal lines represent the threshold (DockQ = 0.23) to determine whether the complex structure 
prediction is successful or not. (b) The head- to- head comparisons of precisions of the top 50 inter- protein contacts predicted by PLMGraph- Inter and 
AlphaFold- Multimer for each target in the homomeric protein–protein interaction (PPI) and heteromeric PPI datasets. (c, d) The mean precisions of 
top 50 inter- protein contacts predicted by PLMGraph- Inter and AlphaFold- Multimer on the PPI subsets from (c) ‘DHTest + HomoPDB’ and (d) 'DB5.5 + 
HeteroPDB’ in which the precision of the top 50 inter- protein contacts predicted by AlphaFold- Multimer is lower than 50% or the DockQ of the complex 
structure predicted by AlphaFold- Multimer is lower than 0.23 or the ‘iptm + ptm’ of the complex structure predicted by AlphaFold- Multimer is lower 
than 0.5.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. The comparison of PLMGraph- Inter with AlphaFold- Multimer.

https://doi.org/10.7554/eLife.92184
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better results, but for a significant number of the targets AlphaFold- Multimer made poor predictions 
(precision <50%), the results of PLMGraph- Inter can have certain improvement over the AlphaFold- 
Multimer predictions.

We further explored the performance of PLMGraph- Inter on the PPIs which AlphaFold- Multimer 
failed to make correct predictions. Specifically, we denoted a PPI for which the precision of the top 
50 inter- protein contacts predicted by AlphaFold- Multimer is lower than 50% or the DockQ of protein 
complex structure predicted by AlphaFold- Multimer is less than 0.23 as ‘precision- Failed’, ‘DockQ- 
Failed’. The ‘iptm + ptm’ metrics output by AlphaFold- Multimer for each target also has a certain 
ability to characterize the quality of the predicted complexes. Our DockQ versus ‘iptm + ptm’ anal-
ysis shows that 0.5 can be reasonably chosen as the cutoff of ‘iptm + ptm’ to evaluate whether the 
prediction of AlphaFold- Multimer is successful or not (see Figure 6—figure supplement 1a), so we 
denoted a prediction for which the ‘iptm + ptm’ of the prediction is lower than 0.5 as ‘pTM- Failed’. 
Then the mean precisions of top 50 contacts predicted by PLMGraph- Inter and AlphaFold- Multimer 
on the ‘precision- Failed’, ‘pTM- Failed’, and ‘DockQ- Failed’ sub- test sets from ‘DHTest + HomoPDB’ 
and ‘DB5.5 + HeteroPDB’ are shown in Figure 6c and d (see Figure 6—figure supplement 1c and 
d for the comparison when using the AlphaFold2 predicted structures). From Figure 6c and d we 
can see that the mean precisions of contacts predicted by PLMGraph- Inter are higher than the mean 
precisions of contacts predicted by AlphaFold- Multimer, further demonstrating that PLMGraph- Inter 
can complement AlphaFold- Multimer in certain cases.

PLMGraph-Inter can significantly improve protein–protein docking 
performance
Prior to AlphaFold- Multimer, protein–protein docking is generally used for protein complex struc-
ture prediction. HADDOCK (Honorato et  al., 2021; van Zundert et  al., 2016) is a widely used 
information- driven protein–protein docking approach to model complex structures of PPIs, which 
allows us to encode predicted inter- protein contacts as constraints to drive the docking. In this study, 
we used HADDOCK (version 2.4) to explore the contribution of PLMGraph- Inter to protein complex 
structure prediction.

We prepared the test set of homomeric PPIs by merging HomoPDB and DHTest and the test set 
of heteromeric PPIs by merging HeteroPDB and DB5.5, where the monomeric structures generated 
previously by AlphaFold2 were used as the input to HADDOCK for protein–protein docking, in which 
the top 50 contacts predicted by PLMGraph- Inter with the application of the predicted monomeric 
structures were used as the constraints. Since HADDOCK generally cannot model large conformational 
changes in protein–protein docking, we filtered PPIs in which either of the AlphaFold2- generated 
interacting monomeric structure has a TM- score lower than 0.8. Finally, the homomeric PPI test set 
contains 462 targets, denoted as homodimer, and the heteromeric PPI test set contains 174 targets, 
denoted as heterodimer.

For each PPI, we used the top 50 contacts predicted by PLMGraph- Inter and other methods as 
ambiguous distance restraints between the alpha carbons （ Cα ）of residues (distance = 8 Å, lower 
bound correction = 8 Å, upper- bound correction = 4 Å) to drive the protein–protein docking. All 
other parameters of HADDOCK were set as the default parameters. In each protein–protein docking, 
HADDOCK output 200 predicted complex structures ranked by the HADDOCK scores. As a control, 
we also performed protein–protein docking with HADDOCK in ab initio docking mode (center of mass 
restraints and random ambiguous interaction restraints definition). Besides, for homomeric PPIs, we 
additionally added the C2 symmetry constraint in both cases.

As shown in Figure 7a and c, the success rate of docking on homodimer and heterodimer test sets can 
be significantly improved when using the PLMGraph- Inter predicted inter- protein contacts as restraints. 
Whereas on the Homodimer test set, the success rate ( DockQ ≥ 0.23 ) of the top 1 (top 10) predic-
tion of HADDOCK in ab initio docking mode is 15.37% (39.18%), and when predicted by HADDOCK 
with PLMGraph- Inter predicted contacts, the success rate of the top 1 (top 10) prediction is 57.58% 
(61.04%). On the heterodimer test set, the success rate of top 1 (top 10) predictions of HADDOCK in 
ab initio docking mode is only 1.72% (6.32%), and when predicted by HADDOCK with PLMGraph- Inter 
predicted contacts, the success rate of top 1 (top 10) prediction is 29.89% (37.93%). From Figure 7a and 
b we can also see that integrating PLMGraph- Inter predicted contacts with HADDOCK not only allows 
for a higher success rate, but also more high- quality models in the docking results.

https://doi.org/10.7554/eLife.92184
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Figure 7. Protein–protein docking performances on the homodimer and heterodimer test sets. (a, b) The protein–protein docking performance 
comparison between HADDOCK with and without (ab initio) using PLMGraph- Inter predicted contacts as restraints on (a) homodimer and 
(b) heterodimer. The left side of each column shows the performance when the top 1 predicted model for each protein–protein interaction (PPI) is 
considered, and the right side shows the performance when the top 10 predicted models for each PPI are considered. (c) The head- to- head comparison 
of qualities of the top 1 model predicted by HADDOCK with and without using PLMGraph- Inter predicted contacts as restraints for each target PPI. The 
red lines represent the threshold (DockQ = 0.23) to determine whether the complex structure prediction is successful or not. (d) The success rates (the 
top 1 model) for protein complex structure prediction when only including targets for which precisions of the predicted contacts are higher than certain 
thresholds.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. 3D structure of the homodimer (PDB: 3DFU).

Figure supplement 2. The comparison of HADDOCK (with PLMGraph- Inter contact constraints) with AlphaFold- Multimer in protein complex structure 
prediction.

https://doi.org/10.7554/eLife.92184
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We further explored the relationship between the precision of the top 50 contacts predicted 
by PLMGraph- Inter and the success rate of the top prediction of HADDOCK with PLMGraph- Inter 
predicted contacts. It can be clearly seen from Figure 7d that the success rate of protein–protein 
docking increases with the precision of contact prediction. Especially, when the precision of the 
predicted contacts reaches 50%, the docking success rate of both homologous and heterologous 
complexes can reach 80%, which is consistent with our finding in AlphaFold- Multimer. Therefore, 
we think this threshold can be used as a critical criterion for inter- protein contact prediction. It is 
important to emphasize that for some targets, although precisions of predicted contacts are very high, 
HADDOCK still failed to produce acceptable models. We manually checked these targets and found 
that many of these targets have at least one chain totally entangled by another chain (e.g., PDB 3DFU 
in Figure 7—figure supplement 1). We think large structural rearrangements may exist in forming 
the complex structures, which is difficult to model by traditional protein–protein docking approach.

Finally, we compared the qualities of the complex structures predicted by HADDOCK (with 
PLMGraph- Inter predicted contacts) and AlphaFold- Multimer. Although for some targets (e.g., PDB 
5HPS in Figure 7—figure supplement 2a), the qualities of the structures predicted by HADDOCK 
were higher than those by AlphaFold- Multimer, for most targets, AlphaFold- Multimer generated 
higher quality structures (Figure 7—figure supplement 2b and c). Several reasons can account for 
the performance gap. First, precisions of the PLMGraph- Inter predicted contacts are still not enough, 
especially for heteromeric PPIs; second, HADDOCK cannot model large structural rearrangements in 
protein–protein docking, as we can see that for some targets, HADDOCK made poor predictions with 
high precisions of contact constraints (Figure 7d); and third, it is difficult to provide an objective eval-
uation of the true performance of AlphaFold- Multimer since many targets have already been included 
in the training set of AlphaFold- Multimer.

Discussion
In this study, we proposed a new method to predict inter- protein contacts, denoted as PLMGraph- 
Inter. PLMGraph- Inter is based on the SE(3) invariant geometric graphs obtained from the struc-
tures of interacting proteins which are embedded with multiple PLMs. The predicted inter- protein 
contacts are obtained by successively transforming the PLM- embedded geometric graphs with graph 
encoders and residual networks. Benchmarking results on four test datasets show that PLMGraph- 
Inter outperforms five state- of- the- art inter- protein contact prediction methods including GLINTER, 
DeepHomo, CDPred, DeepHomo2, and DRN- 1D2D_Inter by large margins, regardless of whether 
the experimental or predicted monomeric structures are used in building the geometric graphs. The 
ablation study further shows that the integration of the PLMs with the protein geometric graphs 
can dramatically improve the model performance, illustrating the efficacy of the PLM- embedded 
geometric graphs in protein representations. The protein representation framework proposed in 
this work can also be used to develop models for other tasks like protein function prediction, PPI 
prediction, etc. Recently, Fang et al. have also shown in their work that the incorporation of PLMs in 
geometric networks can significantly improve the model performances on a variety of protein- related 
tasks, including protein–protein interface prediction, model quality assessment, protein–protein rigid 
docking, and binding affinity prediction (Wu et  al., 2023), which further supports this claim. We 
further show that PLMGraph- Inter can complement the result of AlphaFold- Multimer and leveraging 
the inter- protein contacts predicted by PLMGraph- Inter as constraints in protein–protein docking 
implemented with HADDOCK can dramatically improve its performance for protein complex struc-
ture prediction.

We noticed that although PLMGraph- Inter has achieved remarkable progress in inter- protein 
contact prediction, there is still room for further improvement, especially for heteromeric PPIs. Using 
more advanced PLMs, larger training datasets, and explicitly integrating physicochemical features 
of interacting proteins are directions worthy of exploration. Besides, since protein–protein docking 
approach generally has difficulties in modeling large conformational changes in PPIs, developing 
new approaches to integrate the predicted inter- protein contacts in the more advanced folding- and- 
docking framework like AlphaFold- Multimer or directly incorporating an additional structural module 
for protein complex structure generation in the network architecture can also be the future research 
directions.

https://doi.org/10.7554/eLife.92184


 Research article      Computational and Systems Biology

Si and Yan. eLife 2023;12:RP92184. DOI: https://doi.org/10.7554/eLife.92184  18 of 24

Methods
Training and test datasets
We used the training set and test sets prepared in our previous work DRN- 1D2D_Inter (Si and Yan, 
2023) to train and evaluate PLMGraph- Inter. More details for the dataset generation can be found 
in the previous work. Specifically, we first prepared a non- redundant PPI dataset containing 4828 
homomeric PPIs and 3134 heteromeric PPIs (with sequence identity 40% as the threshold), and after 
randomly selecting 400 homomeric PPIs (denoted as HomoPDB) and 200 heteromeric PPIs (denoted 
as HeteroPDB) as independent test sets, the remaining 7362 homomeric and heteromeric PPIs were 
used for training and validation.

DHTest and DB5.5 were also prepared in the work of DRN- 1D2D_Inter by removing PPIs that are 
redundant (with sequence identity 40% as the threshold) to our training and validation set from the 
test set of DeepHomo and Docking Benchmark 5.5. DHTest contains 130 homomeric PPIs, and DB5.5 
contains 59 heteromeric PPIs. Therefore, all the test sets used in this study are non- redundant (with 
sequence identity 40% as the threshold) to the dataset for the model development.

Inter-protein contact definition
For a given PPI, two residues from the two interacting proteins are defined to be in contact if the 
distance of any two heavy atoms belonging to the two residues is smaller than 8 Å.

Preparing the input features
Geometric graphs from structures of interacting monomers
We first represent the protein as a graph, where each residue is represented as a node, and an edge 
is defined if the  Cα  atom distance between two residues is less than 18 Å. (In our small- scale tests, 
increasing the cutoff used for defining edges can slightly increase the performance of the model. 
However, due to GPU memory limitations, we set the cutoff as 18 Å.) For each node and edge, we use 
scalars and vectors extracted from the 3D structures as their geometric features.

For each residue, we use its C,O, Cα ,N, and a virtual  Cβ  atom coordinates to extract information, 
the virtual  Cβ  coordinates are calculated using the following formula (Dauparas et al., 2022): b = 
 Cα  – N, c = C –  Cα , a = cross(b, c),  Cβ  = –0.58273431 * a + 0.56802827 * b – 0.54067466 * c +  Cα .

To achieve an SE(3) invariant graph representation, as shown in Figure 1—figure supplement 1b, 
we define a local coordinate system on each residue (Jumper et al., 2021; Pagès et al., 2019). Specif-
ically, for each residue, the unit vector in the  Cα− C  direction is set as the  

→x   axis, the unit vector in 
the  Cα - C- N plane and perpendicular  

→x   to is used as  
→y   , and the z- direction is obtained through the 

cross- product of  
→x   and  

→y   .
For the ith node, we use the three dihedral angles (ϕ, ψ, ω) of the corresponding residue as the 

scalar features of the node (Figure 1—figure supplement 1a), and the unit vectors between the  Ci  , 

 Ni  ,  Oi  ,  Cαi  , and  Cβi  atoms of the corresponding residue and the  Ci−1  ,  Ni−1  ,  Oi−1  ,  Cαi−1  , and  Cβi−1  
atoms of the forward residue and the  Ci+1  ,  Ni+1  ,  Oi+1  ,  Cαi+1  , and  Cβi+1  atoms of backward residue as 
the vector features of the node. In total, for each node, the dimension of the scalar features is 6 (each 
dihedral angle is encoded with its sine and cosine) and the dimension of the vector features is 50 *3.

For the edge between ith node and jth node, we use the distances and directions between the 
atoms of the two residues as the scalar features and vector features (see Figure 1—figure supple-
ment 1c). The distances between the  Ci  ,  Ni ,  Oi ,  Cαi , and  Cβi  atoms of ith residue and the  Cj  ,  Nj  ,  Oj  
,  Cαj  , and  Cβj  atoms of the jth residue are used as scalar features after encoded with the 16 Gaussian 
radial basis functions (Jing et al., 2021b). The position difference between i and j (j – i) is also used 
as a scalar feature after sinusoidal encoding (Vaswani et al., 2017). The unit vectors between the  Ci  , 

 Ni  ,  Oi  ,  Cαi  , and  Cβi  atoms of ith residue and the  Cj  ,  Nj  ,  Oj  ,  Cαj  , and  Cβj  atoms of the jth residue 
are used as vector features. In total, for each edge, the dimension of the scalar features is 432 and the 
dimension of the vector features is 25 * 3.

Embeddings of single sequence, MSA, and structure
The single- sequence embedding is obtained by feeding the sequence into ESM- 1b, and the structure 
embedding is obtained by feeding the structure into ESM- IF. To obtain the MSA embedding, we 
first search the Uniref100 protein sequence database for the sequence using JACKHMMER (Potter 
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et al., 2018) with the parameter (--incT L/2) to obtain the MSA, which is then inputted to hhmake 
(Steinegger et al., 2019) to get the HMM file, and to the  LoadHMM. py script from RaptorX_Contact 
(Wang et al., 2017) to obtain the PSSM. The number of sequences of MSA is limited to 256 by hhfilter 
(Steinegger et al., 2019) and then input to ESM- MSA- 1b to get the MSA embedding. The dimen-
sions of the sequence embedding, PSSM, MSA embedding, and structural embeddings are 1280, 20, 
768, and 512, respectively. After adding embeddings to the scalar features of the nodes, the dimen-
sion of the scalar features of each node is 2586.

2D feature from paired MSA
For homomeric PPIs, the paired MSA is formed by concatenating two copies of the MSA. For hetero-
meric PPIs, the paired MSA is formed by pairing the MSAs through the phylogeny- based approach 
described in https://github.com/ChengfeiYan/PPI_MSA-taxonomy_rank (Yan, 2024; Si and Yan, 
2022). We input the paired MSA into CCMpred (Seemayer et  al., 2014) to get the evolutionary 
coupling matrix and into alnstats (Jones et al., 2015) to get mutual information matrix, APC- corrected 
mutual information matrix, and contact potential matrix. The number of sequences of paired MSA is 
limited to 256 by hhfilter (Steinegger et al., 2019) and then input to ESM- MSA- 1b to get the atten-
tion maps. In total, the channel of 2D features is 148.

GVP and GVPConv
GVP is a two- track neural network module consisting of a scalar track and a vector track, which can 
perform SE(3) invariant transformations on scalar features and SE(3) equivariant transformations on 
vector features. A detailed description can be found in the work of GVP (Jing et al., 2021a; Jing 
et al., 2021b).

GVPConv is a message passing- based graph neural network, which mainly consists of a message 
function and a feedforward function. Where the message function contains a sequence of three GVP 
modules and the feedforward function contains a sequence of two GVP modules. GVPConv is used to 
transform the node features. Specifically, the input node features are first processed by the message 
function. We denote the features of node i by  hi  , the feature of edge (j → i) by  hj→i  , the set of nodes 
connected to node i by  εi  , and the three GVP modules of the message function by gm, then the node 
features processed by the message function can be represented as

 

hi
m = 1

len
(
εi
)

∑

j∈εi

gm
(

concat
(

hi, hj→i, hj
))

  
(1)

where  len
(
εi
)
  denotes the number of nodes connected to node i. After sequential normalization 

(Equation 2) and feedforward function (Equation 3), the features of node i updated by GVPConv 
Layer are obtained:

 
hi

m = LayerNorm
(

hi
m + Dropout

(
hi

m

))
  (2)

 
hi

out = LayerNorm
(

hi
m + Dropout

(
gs

(
hi

m

)))
  (3)

where gs denotes the two GVP modules of the feedforward function, and  hi
out  denotes the outputs of 

GVPConv Layer.

The transforming procedure in the residual network module
We first use a convolution layer with kernel size of 1 * 1 to reduce the number of channels of the input 
2D feature maps from 1044 to 96, which are then transformed successively by nine- dimensional hybrid 
residual blocks and another convolution layer with kernel size of 1 * 1 for the channel reduction (from 
96 to 1). Finally, we use the sigmoid function to transform the feature map to obtain the predicted 
inter- protein contact map.

Training protocol
Our training set contains 7362 PPIs, and we used sevenfold cross- validation to train PLMGraph- Inter. 
Specifically, we randomly divided the training set into seven subsets, and each time, we selected 
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six subsets as the training set and the remaining subset as the validation set. Seven models were 
trained in total, and the final prediction was the average of the predictions from the seven models. 
Each model was trained using AdamW optimizer with 0.001 as the initial learning rate, in which the 
singularity enhanced loss function proposed by us in our previous study (Si and Yan, 2021) was used 
to calculate the training and validation loss. During training, if the validation loss did not decrease 
within two epochs, we would decay the learning rate by 0.1. The training stopped after the learning 
rate decayed twice and the model with the highest top 50 mean precision on the validation dataset 
was saved as the prediction model.

PLMGraph- Inter was implemented with pytorch (v.1.11) and trained on one NVIDIA TESLA A100 
GPU with batch size equaling 1. Due to memory limitation of GPU, the length of each protein sequence 
was limited to 400. When a sequence was longer than 400, a fragment with sequence length equaling 
400 was randomly selected in the model training.

Quality assessment of the predicted protein complex structures
We evaluated the models generated by AlphaFold- Multimer and HADDOCK using DockQ (Basu and 
Wallner, 2016), a score ranging between 0 and 1. Specifically, a model with DockQ < 0.23 means that 
the prediction is incorrect; 0.23 ≤ DockQ < 0.49 means the model is an acceptable prediction; 0.49 
≤ DockQ < 0.8 corresponds to a medium- quality prediction; and 0.8 ≤ DockQ corresponds to a high- 
quality prediction.

Further potential redundancies removal between the training and the 
test sets
Removing potential redundancies using different sequence similarity 
thresholds
CD- HIT (Li et al., 2001) was originally used in removing redundancies between the training and test 
sets used in this study. Since the lowest sequence identity threshold accepted by CD- HIT is 40%, 
to use more stringent threshold in the redundancy removal, we further clustered all the monomer 
sequences from the training set and the test sets (HomoPDB, HeteroPDB) using MMSeq2 (Steine-
gger and Söding, 2018) with different sequence identity thresholds (40%, 30%, 20%, 10%). Under 
a certain threshold, each sequence is uniquely labeled by the cluster (e.g., cluster 0, cluster 1, …) to 
which it belongs, from which each PPI can be marked with a pair of clusters (e.g., cluster 0–cluster 1). 
The PPIs belonging to the same cluster pair (note: cluster n – cluster m and cluster n – cluster m were 
considered as the same pair) were considered redundant with this sequence identity threshold. For 
each PPI in the test set, if the pair cluster it belongs to contains any PPI belonging to the training set, 
we remove that PPI from the test set.

Removing potential redundancies using different fold similarity thresholds of 
interacting monomers
We used TM- align (Zhang and Skolnick, 2005) to evaluate the fold similarities (in TM- scores) 
between the experimental structures of the interacting monomers in the training set and the test 
sets (HomoPDB, HeteroPDB). Specifically, for any two targets A–B and A’–B’ in the training set and 
test sets, respectively, where A, B, A’, and B’ represent the interacting monomers. We calculated the 
MTM- score defined as

 

MTM-score=max





min
(
TM − scoreAA′ , TM − scoreBB′

)

min
(
TM − scoreAB′ , TM − scoreBA′

)
  

(4)

between the two targets. The MTM- score higher than a certain value means that both the two inter-
acting monomers in the two targets have fold similarity scores (TM- scores) higher than this value. 
When a threshold is chosen, we remove targets in the test tests if they have MTM- scores higher than 
this threshold when compared with any target in the training set. In this study, different thresholds, 
including 0.9, 0.8, 0.7, 0.6, and 0.5, were used in the study. 0.5 was chosen as the lowest threshold for 
protein pairs with TM- score < 0.5 mainly not in the same fold.
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Calculating the normalized number of the effective sequences of paired 
MSA
We define the normalized number of the effective sequences ( N

norm
eff  ) as follows:

 
Nnorm

eff = 1√
L

N∑
n=1

1∑N
m=1 I

[
Sm,n ≥ 0.8

]
  

(5)

where L is the length of the paired MSA, N is the number of sequences in the paired MSA,  Sm,n  is the 
sequence identity between the mth and nth sequences, and I[ ] represents the Iverson bracket, which 
means  I

[
Sm,n ≥ 0.8

]
= 1  if  Sm,n  ≥ 0.8 or 0 otherwise.
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