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Abstract In vivo neuroimaging studies have established several reproducible volumetric sex 
differences in the human brain, but the causes of such differences are hard to parse. While mouse 
models are useful for understanding the cellular and mechanistic bases of sex-specific brain devel-
opment, there have been no attempts to formally compare human and mouse neuroanatomical sex 
differences to ascertain how well they translate. Addressing this question would shed critical light 
on the use of the mouse as a translational model for sex differences in the human brain and provide 
insights into the degree to which sex differences in brain volume are conserved across mammals. 
Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging 
study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, 
we observe that in humans, males have significantly larger and more variable total brain volume; 
these sex differences are not mirrored in mice. After controlling for total brain volume, we observe 
modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions 
(r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By 
incorporating regional measures of gene expression in both species, we reveal that cortical regions 
with greater cross-species congruence in volumetric sex differences also show greater cross-species 
congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates 
primary sensory regions with high congruence of sex effects and gene expression from limbic 
cortices where congruence in both these features was weaker between species. These findings help 
identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in 
humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-
specific brain development in mice to brain regions that best echo sex-specific brain development in 
humans.

eLife assessment
In this important study, Guma and colleagues describe the use of structural neuroimaging to assess 
the cross-species convergence of sex differences in global and regional brain volumes in humans 
and mice. The goal of the work is to inform to what extent mouse studies of these aforementioned 
sex differences have relevance to humans. The authors suggest which aspects of brain anatomy (as 
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measured by volume) are conserved or not, across species, which has theoretical and practical impli-
cations beyond a single sub-field. The evidence to support the findings is solid, it uses methods and 
data analysis that are appropriate and validated.

Introduction
Humans show numerous sex differences in the prevalence, age of onset, and presentation of brain-
related conditions (Bao and Swaab, 2010). Early onset neurodevelopmental conditions, such as 
autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, and language 
impairments tend to disproportionately affect males. Adolescent and adult-onset conditions such 
as depression, anxiety, eating disorders, and Alzheimer’s disease tend to disproportionately affect 
females (Bölte et al., 2023). There is also evidence from multiple large-scale studies for sex differences 
in certain cognitive and behavioral traits such as in language and face processing (Herlitz and Lovén, 
2013; Olderbak et al., 2019), spatial rotation (Lippa et al., 2010), and aggression (Archer, 2004). 
These observations may reflect sex differences in brain organization arising from a complex mix of 
genetic and environmental influences. To date, the largest studies testing for sex differences in human 
brain organization have focused on anatomical measures extracted from in vivo structural magnetic 
resonance images (sMRI). While there is considerable heterogeneity in the findings of this literature 
(Eliot et al., 2021), owing potentially to variation in the methods used (Zhou et al., 2022), there are 
several large-scale studies that recover highly reproducible sex differences in regional human brain 
volume above and beyond sex differences in total brain size (DeCasien et al., 2022). These include 
larger limbic, and temporal regional volumes in males, and larger cingulate and prefrontal regional 
volumes in females (Liu et al., 2020; Lotze et al., 2019; Ruigrok et al., 2014; Williams et al., 2021).

Gaining a deeper understanding of the causes and consequences of sex differences in the human 
brain is challenging due to its relative inaccessibility, inability to perform invasive experiments, and 
potential environmental confounds. Significant advances in our understanding of sex differences in 
regional volume of the mammalian brain have come from rodent studies. This literature provides 
an important context for thinking about volumetric sex differences in the harder to study human 
brain. Highly robust sex differences in the regional volume of the rodent brain have been historically 
identified using classical histology (Gorski et al., 1978; Hines et al., 1992; Kim et al., 2017). These 
differences have also been recovered using sMRI methods, analogous to those used to study regional 
sex differences in human brain volume (Qiu et al., 2018; Spring et al., 2007). These histologically- 
and sMRI-resolvable sex differences in regional volume of the rodent brain include a larger volume of 
the bed nucleus of the stria terminalis (BNST), the medial amygdala (MeA), and the medial preoptic 
nucleus (MPON) in males. In addition to these canonical sex differences, sMRI has uncovered several 
other sex differences in regional brain volume (Qiu et al., 2018; Spring et al., 2007; Wilson et al., 
2022) including larger anterior cingulate cortex, hippocampus, and olfactory bulb volume in males and 
larger cerebellum, midbrain, caudoputamen, thalamus, and cortex volume in females. Modern tools 
for brain-wide histology in mice have established that foci of volumetric sex differences from sMRI are 
also salient foci of sex differences in cellular composition (Kim et al., 2017). Furthermore, they are 
concentrated within circuits subserving sex-specific reproductive and social behaviors in mice. Third, 
beyond allowing a paired description of sex differences in gross volume (using sMRI) and cellular 
composition (using histology), mice also enable mechanistic dissection of regional sex differences 
through genetic and environmental manipulations. For example, the four core genotype (FCG) model, 
in which the complement of sex chromosomes (XX vs. XY) is made independent of gonadal sex (testes 
vs. ovaries), has allowed researchers to appreciate the differential effects of gonadal sex (presence of 
testes or ovaries independent of chromosome complement) from sex chromosome complement (XX 
vs. XY mice of either gonadal sex) (Arnold and Chen, 2009; McCarthy and Arnold, 2011).

The above considerations drive a pressing need for systematic comparison of volumetric sex differ-
ences between the human and mouse brain. Such a comparison would provide two critical outputs. 
First, it would advance the understanding of brain evolution by formally testing for the conservation 
of sex-specific brain organization between two distantly related mammals. Second, any homologous 
brain regions that show congruent volumetric sex differences in humans and mice would represent 
high-priority targets for translational research - leveraging research opportunities in mice to scaffold 
studies on the causes and consequences of sex differences in the human brain.

https://doi.org/10.7554/eLife.92200
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Here, we characterize sex differences in global and regional brain volume in a large young adult 
human cohort from the Human Connectome Project (Van Essen et al., 2012) and the young adult 
mouse cohort (Ellegood et al., 2015). In addition to mean differences, we also assess sex differences 
in the variance of brain volume measures. We quantify the cross-species correspondence of sex-
specific brain volume changes in a subset of homologous brain regions based on the directionality and 
magnitude of volume changes. Furthermore, we build on these anatomical comparisons by assessing 
whether a brain region’s cross-species similarity for sex differences in neuroanatomy is related to its 
cross-species similarity in expression levels of homologous genes. These quantitative comparisons of 
neuroanatomical sex differences between humans and mice provide an important reference frame for 
future studies that seek to use the mouse as a translation model to study sex differences in the human 
brain. Defining those brain regions with volumetric sex differences that are highly conserved between 
humans and mice sheds light on evolutionary constraints on sex differences in brain development in 
mammals and highlights high-priority targets for future translational research.

Results
Males have larger brains than females in humans but not in mice
We first examined the effects of sex on total tissue volume (TTV) in humans (597 females/496 males) 
and mice (213 females/216 males) using structural MRI data from healthy young adults in both species. 
Replicating a well-established sex differences in prior studies (Liu et al., 2020; Lotze et al., 2019; 
Ruigrok et al., 2014; Williams et al., 2021), we observed in humans that males had significantly 
larger mean TTV than females (13.5% larger in males; beta=1.28, t=26.60, p<2e-16; Figure 1A). In 
contrast, we did not observe a statistically-significant sex difference in TTV for mice (0.3% larger in 
males; beta=0.091, t=0.706, p=0.481; Figure 1B). In addition to sex differences in TTV, we tested 
for sex differences in total gray matter and total white matter volume across species to understand 
whether one tissue type was more implicated in driving the sex difference in volume. In humans, males 
had significantly larger total gray matter volume (t=25.36, p<2e-16) and larger white matter volume 
(t=16.02, p<2e-16) after accounting for age and Euler number (Figure 1—figure supplement 1A, C). 
In contrast, in mice, there was no sex difference in total gray matter volume (t=0.56, p=0.68), while 
males had significantly larger white matter volume (t=2.01, p=0.045) after accounting for differences 
in age and background strain (Figure 1—figure supplement 1B, D).
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Figure 1. Effects of sex on total tissue volume (TTV) in humans and mice. Distributions of TTV are shown for the effects of sex in humans (A) and mice 
(B). Data are represented using individual points, boxplot, and half-violin plot. Linear model used to test for sex differences in each species (correcting 
for age in both species, Euler number in humans, and background strain in mice) ***p<0.0001 . M=male, F=female.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sex differences in total gray and white matter volume in humans and mice.

https://doi.org/10.7554/eLife.92200
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Sex differences in regional brain volume exist in both humans and mice
After correction for TTV and adjusting for multiple comparisons, we found that 65.8% of human 
regions showed statistically significant sex differences in volume, of which 63.8% were larger in 
females and 36.3% were larger in males. In mice, 58.6% of all regions showed statistically significant 
sex differences in volume, of which 53.0% were larger in females and 47.0% were larger in males. In 
humans, the median effect size (i.e. standardized beta coefficients) for female-biased (i.e., larger in 
females) regions was –0.09+/–0.09 standard deviation (SD) (range=−8.90e-16 to –0.44), while it was 
slightly larger, 0.15+/–0.19  SD (range=0.0008–0.84), for male-biased (i.e., larger in males) regions 
(Figure 2A). In mice, the median effect size across female-biased regions was –0.19+/–0.13 SD (−0.003 
to –0.6), similar to that of male-biased regions 0.20+/–0.20 SD (range=0.004–1.04) (Figure 2B). Next, 
we ensured that in humans, the observed sex effects were not influenced by the inclusion of twin or 
sibling pairs (Appendix 1). Furthermore, we repeated the regional analyses without co-varying for TTV 
and found that all regional volumes in humans were larger in male due to overall larger brain size. In 
mice, however, the patterns of sex differences in volume remained largely unchanged likely due to the 
similarity of total brain size between the sexes (Figure 2—figure supplement 1).

In humans, we observed statistically significantly larger regional volume in females than males in the 
frontal, cingulate, orbital, somatosensory, motor, parietal, parahippocampal, and precuneus cortex, as 
well as the nucleus accumbens. Males had statistically significantly larger volume in the visual, pareto-
occipital, piriform, insula, retrosplenial, medial prefrontal cortex, fusiform face complex, as well as 
the cerebellum, brainstem, hippocampus, amygdala (including the MeA), the BNST, and hypothal-
amus (including the MPON) (FDR threshold: t=2.23, q<0.05) (Figure 2C). In mice, females had signifi-
cantly larger regional volumes of the auditory, orbital, entorhinal, anterior cingulate, somatosensory, 
motor, frontal, and insular cortex, as well as in the caudoputamen and cerebellum. Males had signifi-
cantly larger regional volume of the olfactory bulb, hippocampus, subiculum, brainstem, amygdala 
(including MeA), BNST, and hypothalamus (including the MPON) (t=2.23, q<0.05) (Figure 2D). For 
the full list of regional sex differences in human or mouse brain volume, consult Source Data Files 1 
& 2, respectively. Notable cross-species congruences in regional volumetric sex differences included 
larger volume of the frontal, cingulate, orbital, somatosensory, motor, and auditory cortex in females 
and larger volume of the hypothalamus (including MPON), BNST, amygdala (including MeA), hippo-
campus, subiculum, brainstem, and cerebellum in males. Notable opposing sex differences between 
species included the nucleus accumbens, cerebellum, and frontal cortex (male-biased in humans and 
female-biased in mice) (Figure 2). Of note, there are several regions showing a sex-specific volume 
differences in mice for which we do not have a parcellation/segmentation in the human brain (either 
due to resolution or lack of atlases), so we cannot conclude that they are mouse-specific.

Human males have greater variance in brain volume than females, while 
mice show no sex differences in variance
Next, we evaluated sex differences in the variance of global and regional brain volumes in each 
species using Levene’s test for equality of variances. Variance in TTV was significantly greater in males 
than females for humans (Levene’s test: F=10.19, p=0.0014), whereas mice showed no sex differ-
ence in TTV variance (Levene’s test: F=0.765, p=0.382) (Figure 3AB). In humans, several regional 
brain volumes (residualized for TTV, age, and Euler number) showed greater variance in males than 
females after correction for multiple comparisons (with q<0.05, e.g. posterior parietal, temporal, 
frontal opercular, medial prefrontal, posterior cingulate, left amygdala, and hypothalamus). In mice, 
no brain regions (residualized for TTV, age, and background strain) showed sex differences in variance 
following multiple comparisons correction, however, at a relaxed threshold of p<0.05 mice showed sex 
differences in regional volumetric variance for some regions of the cerebellum, including the culmen, 
lingula, and fastigial nuclei, as well as in the olfactory bulbs (male >female) and visual, sensorimotor 
cortex, and CA1 (female >male) (Figure 3). These findings remained unchanged after repeating anal-
yses of regional volumetric variance without residualizing for TTV (Figure 3—figure supplement 1).

Sex differences in the size of homologous brain regions are similar 
across species
We next focused on a set of predefined homologous brain regions (n=60, 28 bilateral and 4 midline) 
with well-established homology based on comparative studies (Balsters et al., 2020; Beauchamp 

https://doi.org/10.7554/eLife.92200
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Figure 2. Effect of sex on regional brain volume in humans and mice. (A, B) Distribution of sex-specific standardized effect sizes across anatomical 
regions for humans (A) and mice (B). (C, D) Unthresholded (left) and significant (q<0.05; right) standardized effect sizes for the effect of sex displayed on 
the human (C) and mouse (D) brains. Regions in yellow-red are larger in males and regions in blue are larger in females; n for humans = 516F/454M, n 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.92200
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et al., 2022; Glasser et al., 2016; Gogolla, 2017; Swanson and Hof, 2019; Vogt and Paxinos, 2014) 
to achieve a formal quantitative cross-species comparison of regional sex differences in brain volume. 
The robust correlation (less sensitive to outliers Tabatabai et al., 2021, computed using the pbcor R 
library) of effect size for sex across all homologous brain regions was significant at r=0.30 (p=0.013) 
(Figure 4A), with a stronger correlation for cortex (r=0.33, p=0.10) than non-cortex (r=0.16, p=0.35) 
- although neither of these compartments showed a statistically significant correlation between 
species in isolation from each other (Figure 4B, but note the reduction in sample size in these intra-
compartment analyses).

Homologous brain regions that were statistically significantly larger in females (q<0.05) of both 
species include the bilateral primary somatosensory cortex (human |β|>0.22, mouse |β|>0.24), primary 
auditory cortex (right in humans [|β|>0.16] and bilateral in mice [|β|>0.20]), and anterior cingulate 
cortex (bilateral in humans [|β|>0.10] and right in mice, |β|>0.20). The right posterior parietal associa-
tion area was larger in females of both species but significant (q<0.05) only in humans (human|β|>0.25, 
mouse |β|>0.02), while the bilateral primary motor areas and left thalamus were larger in females of 
both species but only significant (q<0.05) in mice. Finally, the left thalamus and left ventral orbital area 
were larger in females but not significant in either species. Homologous regions that were statistically 
significantly larger in males of both species (q<0.05) include the bilateral amygdala (human |β|>0.20, 
mouse |β|>0.15) (bulk and MeA), bilateral globus pallidus (human |β|>0.14, mouse |β|>0.11), hippo-
campus (human |β|>0.12, mouse |β|>0.35; bilateral bulk and CA1, right in humans and bilateral in 
mice), BNST (human |β|>0.36, mouse |β|>0.92), hypothalamus (human |β|>0.62, mouse |β|>0.11; bulk 
and MPON), and brainstem (human |β|>0.35, mouse |β|>0.20; medulla and midbrain). Additionally, 
the left primary visual area, right retrosplenial area, and pons were larger in males in both species but 
only significant in humans, while CA3 was male-biased in both but only significant in mice (Table 1). 
Regions that showed an incongruent direction of volumetric sex differences between species (with a 
significant difference in at least one of the species at q<0.05) were the bilateral agranular insula and 
cerebellar cortex (female-biased in mice, but male-biased in humans) (Table 1; Figure 5).

As expected, given the robust sex differences for TTV in humans but not mice, we observed 
a weaker robust correlation for sex differences in the volume of homologous brain regions when 
repeating the above analyses without controlling for TTV, r=0.15 (p=0.25) for the effect of sex across 
homologous regions. Across cortical regions, there was a low correlation of r=−0.04 (p=0.86), while 
for non-cortex the correlation was slightly stronger, but negative, r=−0.20 (p=0.25). In humans, the 
subset of homologous regions was all larger in males due to the larger overall brain size in males. In 
mice, we observed the same patterns of sex-bias as we did in the analyses which contrived for TTV 
except for the right nucleus accumbens showing no sex bias and a male-bias in the pons (both female-
biased in the TTV controlled analysis; Figure 4—figure supplement 1; Appendix 2—table 1).

Regions that are more congruent between species in their volumetric 
sex differences tend to be more congruent in their gene expression 
signatures
Next, we explored whether regions that are more similar between species in their volumetric sex 
differences are also more similar in their gene expression profile. To derive a region-level measure of 
between-species congruence in anatomical sex differences (henceforth ‘anatomical sex effect simi-
larity score’) we multiplied the human and mouse sex effect sizes for each of the 60 homologous brain 
regions. To derive a region-level measure of cross-species transcriptional similarity, we leveraged gene 
expression data from the Allen Human and Allen Mouse Brain Atlases (Hawrylycz et al., 2012; Lein 
et al., 2007) within the subset of homologous regions defined above. We filtered the gene sets to only 

for mice = 213F/216M. Linear model used to test for sex differences in each species across all regions (correcting for age and TTV in both species, Euler 
number in humans, and background strain in mice). FDR correction used to identify regions with q<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Summary of volumetric sex differences across all regions of the human brain.

Source data 2. Summary of volumetric sex differences across all regions of the mouse brain.

Figure supplement 1. Effect of sex on regional brain volume in humans and mice without total tissue volume (TTV) correction.

Figure 2 continued

https://doi.org/10.7554/eLife.92200
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Figure 3. Sex differences in the variability of regional brain volumes (accounting for TTV differences) in humans and mice. Distribution of z-scored 
total brain volume measures across all humans (A) and mouse subjects (B). Uncorrected (P<0.05; left) and significant (q<0.05; right) sex differences in 
variability (based on Levene’s test) shown on the human brain. Uncorrected (P<0.05) sex differences in variability in the mouse brain (purple = more 
variable in males; green = more variable in females). Note: all regional human volumes were residualized for TTV, age, and Euler, while regional mouse 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.92200
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human-mouse homologous genes (Beauchamp et al., 2022; Coordinators, 2018) and correlated the 
regional expression of the homologous genes to derive a measure of transcriptional similarity across 
species per brain region. These analyses considered the set of 56 homologous brain regions (4 of the 
original 60 did not have transcriptomic data: bilateral MeA and MPON) and 2835 homologous genes 
- with supplementary tests based on a priori defined subsets of brain regions and genes (Materials and 
methods ‘Testing if cross-species congruence for sex differences is related to cross-species similarity in 
gene expression’; Appendix 3). The steps outlined above yielded two measures for each of 56 homol-
ogous brain regions: an anatomical sex effect similarity score and a transcriptional similarity score.

The transcriptional similarity score ranged between 0.003 and 0.43 with a mean/median correla-
tion of 0.30, (0.10, interquartile range: 0.25–0.36; Figure 6—figure supplement 1). Across homolo-
gous brain regions, interregional variation in this transcriptional similarity was positively correlated 
with anatomical sex effect similarity, r=0.24 (p=0.08) (Figure 6A). Stratification by brain compartment 
showed that this relationship was stronger, and statistically significant, for cortical regions, r=0.60 
(p=0.0013), than non-cortical regions, r=0.03 (p=0.88) (Figure  6B). Visualizing these relationships 
indicated that cortical regions showing higher anatomical sex effect similarity scores (mainly primary 
sensory cortices) tended to show above average transcriptional similarity with each other (i.e. r>0.3), 
whereas cortical regions with lower anatomical sex effect similarity scores (mainly limbic cortex) showed 
below average transcriptional similarity. Subcortical regions failed to show a correspondence between 

volumes were residualized for TTV, age, and background strain; n for humans = 516F/454M, n for mice = 213F/216M. Levene’s test for equality of 
variances used to test for sex differences in variance (corrected for age and TTV in both species, Euler number in humans, and background strain in 
mice). P-values were corrected with FDR to derive q-values.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Sex differences in the variability of regional brain volumes (not accounting for TTV differences) in humans and mice.

Figure 3 continued

Figure 4. Correlation of sex effects on regional volume in homologous regions of the human and murine brain. (A) Standardized effect size correlation 
for the effect of sex in humans (x-axis) and mice (y-axis) (robust correlation coefficient, r=0.30). (B) Correlation of standardized effect sizes for the effect 
of sex across species for cortical regions (green, r=0.31), and non-cortical regions (purple, r=0.16); n for humans = 516F/454M, n for mice = 213F/216M. 
Robust correlation used to assess correlation between human and mouse sex effect sizes (corrected for TTV and age in both species, Euler number in 
humans and background strain in mice) yeild r and p values.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation of effects of sex in human and mouse homologous brain regions without total tissue volume (TTV) correction.

https://doi.org/10.7554/eLife.92200
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Table 1. Species-specific effect sizes for volumetric sex differences for 60 homologous brain regions.
Effect sizes are color-coded (blue: larger in males/yellow: larger in females) and asterisk/bold text 
denotes statistical significance. All results are from analyses covarying for total tissue volume (TTV).

Label
Glasser/Freesurfer# 
names Mouse atlas Hemisphere

Human 
effect size (β)

Mouse 
effect size 
(β)

Agranular insula AVI, AAIC, MI Agranular insular area L 0.200 * –0.558 *

R 0.164 * –0.522 *

Amygdala Amygdala# Cortical subplate L 0.305 * 0.163 *

R 0.201 * 0.151 *

Anterior cingulate 
area

A24pr, a24, p24pr, 
p24, 24dd, 24dv, 
p32pr, d32, a32pr, 
p32, s32

Anterior cingulate 
area

L –0.102 * –0.198

R –0.113 * –0.267 *

Bed nucleus of stria 
terminalis

Bed nucleus of stria 
terminalis

Bed nucleus of stria 
terminalis

L 0.466 * 0.918 *

R 0.360 * 0.971 *

Caudoputamen Caudate#, Putamen# Caudoputamen L 0.093 –0.224 *

R 0.059 –0.188 *

Cerebellar cortex Cerebellar cortex# Cerebellar cortex L 0.430 * –0.268 *

R 0.478 * –0.250 *

Dentate gyrus, 
molecular layer

Dentate gyrus, 
molecular layer

Dentate gyrus, 
molecular layer

L –0.029 0.247 *

R 0.041 0.232 *

CA1 CA1 CA1 L 0.151 * 0.385 *

R 0.109 0.377 *

CA3 CA3 CA3 L 0.004 0.307 *

R 0.004 0.411 *

Entorhinal cortex EC Entorhinal area L 0.470 * –0.090

R 0.567 * –0.138

Globus pallidus Globus Pallidus# Pallidum L 0.154 * 0.112 *

R 0.138 * 0.180 *

Hippocampus Hippocampus# Hippocampal region L 0.120 * 0.353 *

R 0.129 * 0.379 *

Hypothalamus Hypothalamus Hypothalamus L 0.631 * 0.185 *

R 0.617 * 0.109 *

Medial amygdalar 
nucleus

Medial amygdalar 
nucleus

Medial amygdalar 
nucleus

L 0.253 * 0.906 *

R 0.183 * 1.034 *

Medial preoptic area Medial preoptic area Medial preoptic area L 0.636 * 0.435 *

R 0.680 * 0.367 *

Nucleus accumbens Nucleus accumbens# Striatum ventral 
region

L –0.311 * –0.005

R –0.249 * 0.032

Perirhinal area PeEc, TF, PHA2, PHA3 Perirhinal area L 0.033 –0.120

R 0.086 –0.108

Table 1 continued on next page
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anatomical sex effect similarity and transcriptional similarity - but we noted that this could be driven by 
the influences of the BNST as an outlier region (Cook’s d: left BNST=0.20, right BNST=0.13). However, 
the correlation between anatomical sex effect similarity and transcriptional similarity remained low 
for subcortical regions after exclusion of the BNST from analysis (r=0.02, p=0.92) (Figure 6—figure 
supplement 2).

Finally, we asked if the observed correlations between anatomical sex effect similarity and tran-
scriptional similarity would be significantly modified by recomputing correlations using biologically 
informed subsets of homologous genes: (i) X-linked genes (n=91) or (ii) sex hormone genes (n=34). 
Across these sensitivity analyses, we observed a similar correlation when using X-linked genes (r=0.25, 
p=0.07) compared to the full gene set with stronger correlations in cortical (r=0.62, p=0.0007) vs. non-
cortical (r=0.30, p=0.11) regions (Appendix 3). Interestingly, we observed an exception to this pattern 
for the subset of sex hormone genes involved in androgen vs. estrogen and progesterone pathways. 
Transcriptional similarity scores based on androgen pathways were weakly correlated with anatomical 
sex effect similarity scores in the cortex (r=0.05, p=0.81), but were strongly correlated with anatomical 
sex effect similarity in the non-cortical regions (r=0.46, p=0.01). In contrast, the correlation between 

Label
Glasser/Freesurfer# 
names Mouse atlas Hemisphere

Human 
effect size (β)

Mouse 
effect size 
(β)

Piriform cortex Pir Piriform cortex L 0.460 –0.131

R 0.756 * –0.151

Posterior parietal 
association areas

5 m, 5 mv, 5 L Posterior parietal 
association areas

L –0.254 * 0.016

R –0.263 * 0.039

Primary auditory area A1 Primary auditory area L –0.163 –0.256 *

R –0.182 * –0.209 *

Primary motor area 4 Primary motor area L –0.124 –0.329 *

R –0.081 –0.357 *

Primary 
somatosensory area

1, 2, 3 a, 3b Primary 
somatosensory area

L –0.237 * –0.419 *

R –0.219 * –0.241 *

Primary visual area V1 Primary visual area L 0.175 * 0.029

R 0.199 * –0.102

Retrosplenial area RSC Retrosplenial area L 0.198 * 0.004

R 0.182 * 0.035

Subiculum PreS Subiculum L 0.182 * 0.317 *

R –0.031 0.338 *

Temporal association 
areas

FFC, PIT, TE1a, TE1p, 
TE2a, TF, STV, STSvp, 
STSva

Temporal association 
areas

L 0.057 0.085

R 0.042 –0.004

Thalamus Thalamus# Thalamus L –0.028 –0.098

R –0.060 –0.139 *

Ventral orbital area 10 r, 10 v Ventral orbital area L 0.083 –0.209 *

R –0.046 –0.171

Brain stem (midline) Brainstem# Midbrain, Hindbrain M 0.349 * 0.200 *

Medulla (midline) Medulla Medulla M 0.385 * 0.204 *

Midbrain (midline) Midbrain Midbrain M 0.423 * 0.191 *

Pons (midline) Pons Pons M 0.279 * 0.065

Table 1 continued
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anatomical sex effect similarity and transcriptional similarity based on estrogen/progesterone path-
ways was positive in the cortex (r=0.29, p=0.15) but negative in the non-cortex (r=−0.27, p=0.15) 
(Appendix  3—figure 1). For combined sex hormone analysis see Appendix  3—figure 1. Finally, 
we recomputed the transcriptional similarity by randomly resampling various subsets of homologous 
genes 10,000 times, and then correlated those similarity values to the anatomical sex congruence 
across regions (see Appendix 3—figure 2). Gene lists and available in Source data 1 while GO terms 
can be found in Source data 2.

Discussion
This study provides the first cross-species comparison of the effects of sex on human and mouse brain 
anatomy. Our findings suggest that sex differences in overall brain volume are not conserved across 
species, but that there is a meaningful degree of cross-species concordance for sex differences in 
regional volumes. Furthermore, regions with more similar sex effects between species also tended to 
show more similar transcriptional profiles - particularly amongst cortical brain regions. This work has 
consequences for understanding sex differences in the mammalian brain, the use of mice as transla-
tional models for human sex differences, and the broader topic of comparative structural neuroim-
aging between humans and mice.

First, in line with many previous observations (Liu et al., 2020; Lotze et al., 2019; Ruigrok et al., 
2014; Williams et al., 2021), we find that in humans, males have larger mean total brain volume 
than females. In contrast, we observed no sex differences in total brain size in mice, in line with a 
recent study reporting no sex differences in total brain volume, cell density, and total cell number 
(Elkind et al., 2023). In previous studies, only subtle sex differences in total brain size have been 

Figure 5. Homologous brain regions show either congruent or divergent sex bias across species. There are no regions that are larger in human females 
and mouse males (top left quadrant, light green). Several regions show male-bias (i.e., larger volume in males; top right quadrant in yellow) and female-
bias (i.e., larger volume in males; females; bottom left quadrant in blue) across species. A subset of regions shows male-bias in humans but female-bias 
in mice (bottom right quadrant in green). * denotes significant sex effect in both species; n for humans = 516F/454M, n for mice = 213F/216M. Ordering 
of quadrants matches the quadrants of the scatter plots in Figure 3 and Figure 5.

https://doi.org/10.7554/eLife.92200
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reported in C57BL6/J mice (2.5% larger male brain). However, this subtle difference in brain size is 
lost when accounting for sex differences in body weight (Spring et al., 2007), which is not the case 
in humans where the sex difference in brain size is dampened but not lost when accounting for body 
size (Dekaban, 1978; Williams et al., 2021).

As seen for sex differences in total brain volume, humans and mice also showed a striking contrast 
for sex differences in anatomical variance. In humans, males showed more variance for both total 
and regional brain volume measures, in line with previous findings (Forde et al., 2020). In mice, no 
sex differences in anatomical variance were observed. While variance in brain anatomy has not been 
previously studied in mice, greater male variability has been observed for morphological traits, while 
greater female variability has been observed for immunological and metabolic traits (Zajitschek et al., 
2020). The observation of greater neuroanatomical variance in human, but not mouse males ques-
tions the theory that males are more variable because they are heterogametic (have XY chromosomes) 
(Reinhold and Engqvist, 2013), since male mice are also heterogametic. Gaining an understanding of 
the causes of sex differences in the variability of brain structures may provide clues for understanding 
male-specific brain development or neurodevelopmental disorders (Wierenga et al., 2022).

After accounting for global brain size differences, we identified several sex-specific differences 
in regional volume in the human and mouse brain, several of which showed a consistent sex differ-
ence across species. For these regions, available mechanistic information in mice can be used to 
refine mechanistic hypotheses in humans. We find that males of both species have larger amygdala 
(including the MeA), hippocampus, BNST, and hypothalamus (including the MPON) volumes in line 
with a previous human (Lotze et al., 2019; Neudorfer et al., 2020; Ruigrok et al., 2014) and mouse 
neuroimaging studies (Qiu et al., 2018). Rodent studies have shown that the emergence of sMRI-
defined volume differences aligns with the developmental timing of sex differences in apoptosis in the 
BNST and MPON, (Chung et al., 2000), and sex differences in the synaptic organization in the MeA 
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Figure 6. Inter-species anatomical sex congruence and gene expression shows modest correlation across homologous brain regions. Correlation 
between similarity in volumetric sex differences and similarity in transcriptional profile using all homologous genes across all homologous regions is 
modest (A).There was a stronger correlation across cortical (green) compared to non-cortical (purple) regions (B). Robust correlation used to assess 
correlation between anatomical sex effect similarity and transcriptional similarity yeild r and p values.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Similarity matrix for cross-species homologous gene expression.

Figure supplement 2. Recomputing inter-species anatomical sex congruence and gene expression exlcuding BNST shows similar correlation to 
analysis including all homologous brain regions.

https://doi.org/10.7554/eLife.92200
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(Cooke and Woolley, 2005; Nishizuka and Arai, 1981); these male-biased regions also tend to show 
greater density than female-biased brain regions (Elkind et al., 2023). To further support the organi-
zational role of hormones, masculinized female mice display male-typical sex differences in the BNST 
and MeA (i.e., larger volume) as well as in behavior (McCarthy, 2020; Wu and Shah, 2011). Neuro-
imaging studies of FCG mice identified independent effects of sex hormones from sex chromosome 
dosage on brain anatomy. For example, the MeA is larger in mice with testes than mice with ovaries, 
but is smaller in XY than XX mice, which further points to the importance of sex hormones in sculpting 
this specific brain region (Corre et al., 2016; Vousden et al., 2018). While we do not have causal 
mechanistic data in humans, neuroimaging studies have shown that male-biased regional volume 
differences emerge in early development, and may be sensitive to the amount of fetal testosterone 
exposure (Knickmeyer et al., 2014; Lombardo et al., 2012). In females, we show that both species 
have a larger anterior cingulate, somatosensory, and primary auditory cortex in line with human (Lotze 
et al., 2019; Neudorfer et al., 2020; Ruigrok et al., 2014) and mouse studies (Qiu et al., 2018). 
While the mechanisms driving female-bias in regional brain volume are not as well understood, neuro-
imaging studies in both species find that female-specific volume enlargements tend to emerge during 
puberty (Knickmeyer et al., 2014; Qiu et al., 2018), which may point to an important role of pubertal 
hormones in shaping brain structure. Regions showing congruent sex difference across species, such 
as the primary somatosensory cortex, may be high-priority targets for conducting mechanistic studies 
in the mouse brain that have relevance to the human.

We also observe regions where there is a significant sex difference in volume in one species that 
is absent or inverted in the other, including the agranular insula and cerebellar cortex (male-biased 
in humans and female-biased in mice). This incongruence may be due to species differences in the 
composition of these regions. For example, a recent study comparing the cerebellum of humans, 
macaques, and mice identified a group of progenitor cells present in the human brain but not in the 
mouse or macaque (Haldipur et  al., 2019). Furthermore, a comparison of cell populations in the 
middle temporal gyrus of humans and mice found that in humans, there is greater interaction between 
neurons and non-neuronal cells as well as greater diversity and density of glia, which may in turn lead 
to cross-species differences in brain size (Fang et al., 2022). The divergence in sex effects may be due 
to a divergence in gene expression patterns. This idea is supported by our analyses that incorporate 
information on bulk regional gene expression, which is heavily shaped by cellular composition (Yao 
et al., 2021). Brain regions with more similar gene expression profiles between species (and likely 
more similar cellular compositions) also tend to show more similar volumetric sex differences across 
species. Finally, the lack of congruence in the cross-species sex effects may also be due to species 
differences in the function of the brain regions.

Our comparison of homologous brain regions based on the similarity of anatomical sex differences 
and homologous gene expression revealed good cross-species alignment between those metrics. 
This relationship was much stronger in the cortical areas than in non-cortical areas. Within cortical 
regions, the primary sensory areas showed stronger transcriptional and anatomical sex congruence, 
while limbic structures showed lower congruence. In non-cortical regions, the transcriptional similarity 
was consistent across regions, independent of anatomical sex congruence. Limiting the homologous 
gene set of X-linked genes did not alter the congruence between the anatomical effects and tran-
scriptional similarity, however, limiting the genes to include sex hormone genes did. The transcrip-
tional similarity based on androgen genes was weakly correlated with cortical sex effects but strongly 
correlated with non-cortical sex differences, while the transcriptional similarity based on estrogen and 
progesterone genes was positively correlated with cortical but negatively correlated with non-cortical 
sex effects. This interesting observation may indicate a differential role for sex hormones in patterning 
either cortical or non-cortical sex differences in the brain, which warrants further investigation.

The findings presented here indicate that there is modest cross-species alignment for regional 
sex differences, but that humans and mice show very different effects of sex on overall brain size. 
Interpretation of this cross-species difference is challenged by our limited causal understanding of 
the mechanisms driving sex differences in overall brain size within humans. It has been theorized 
that a potential evolutionary driver for sex differences in body size (and the contributions of this to 
brain size) is sexual selection for larger body size in species where there is higher competition for 
mates (Plavcan, 2012). However, evolutionary causes for inter-species variation in the sex effects on 
total brain volume are hard to test empirically. In contrast, there is empirical evidence for the role 

https://doi.org/10.7554/eLife.92200
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of sex hormones and sex chromosomes in shaping sex differences in brain size, therefore, species 
differences in the modulation of these biological processes may contribute to species differences 
in brain size (McCarthy and Arnold, 2011). Large-scale neuroimaging studies in humans suggest 
that sex differences in total brain volume are already apparent in toddlerhood (Bethlehem et al., 
2022), at birth (Dean et al., 2018; Gilmore et al., 2007), and even prenatally (Conte et al., 2018; 
Griffiths et al., 2023). These differences are, therefore, likely to reflect pre- and perinatal influences 
of sex differences in circulating sex steroids and/or sex chromosome dosage on the human brain, 
where males are exposed to a perinatal testosterone surge and females are not (McCarthy, 2020). 
While sex differences in the total brain size of mice have not been well characterized in prenatal 
and early postnatal life, there is some experimental in vitro evidence of differential gonadal steroid 
effects on early neurogenesis in humans vs. mice. In human brain organoids (both XX and XY) in 
vitro androgen exposure (as a model for the perinatal ‘mini-puberty’ seen in humans Kelava et al., 
2022) has been associated with an increased proliferation of excitatory cortical progenitors and 
radial glia, increasing the neurogenic niche (Kelava et al., 2022). In contrast, in mouse brain organ-
oids, estradiol, but not testosterone exposure leads to an increase in progenitor cell proliferation 
(Kelava et al., 2022). This species difference aligns with evidence that gonadal steroids masculinize 
the mouse brain via activation of the estrogen E2 receptor by aromatized testosterone, whereas 
the masculinizing effects of gonadal steroids on the primate brain are more dependent on direct 
activation of the androgen receptor by testosterone (Schwarz and McCarthy, 2008; Zuloaga et al., 
2008). There is also some evidence that sex chromosome dosage may be differentially related to 
brain size in humans vs. mice. In humans with sex chromosome aneuploidy, increased dosage of 
Y-chromosomes is associated with increased total brain size, while increased X-chromosome dosage 
is associated with decreased total brain size (Guma et al., 2023; Raznahan et al., 2016). Impor-
tantly, these global differences are not recapitulated in the mouse brain, where extra X- or Y-chro-
mosome dosage is not associated with any differences in brain size (Guma et al., 2023). This may 
be, in part, explained by species differences in the size and gene content of the Y-chromosome; 
mice have an expanded proportion of ampliconic genes compared to primates (Soh et al., 2014), as 
well as in the process of XCI, where more genes escape inactivation in humans (12–15%) than mice 
(2–5%) (Deng et al., 2014).

The work presented here should be considered in light of some caveats and limitations. First, 
while we used detailed segmentation to characterize sex differences in the human and mouse brain, 
several canonically sex-biased nuclei in mice are difficult to detect with human MRI. Second, as with 
our previous study (Guma et al., 2023), we employ a parcellation-based approach which is limited to 
anatomically defined brain structures for which one-to-one mapping across species may not always be 
accurate (Mars et al., 2018). Third, we focus on the comparison of brain anatomy in young adulthood, 
but extending across different spatial and temporal scales would be critical to our understanding of 
the emergence and evolution of sex differences across species. Fourth, our incorporation of gene 
expression data relied on available atlases that are largely (humans) or exclusively (mice) derived 
from male brains. Fifth, while the comparison of humans and mice provides an important first step 
in comparative analyses of sex-biased brain development in mammals, the formal phylogenetic anal-
ysis will require the incorporation of data from other animals including non-human primates. Lastly, 
although we carefully characterize sex differences in brain anatomy, it is important to stress that such 
differences provide no information regarding brain function or behavior (DeCasien et  al., 2022). 
Moreover, sex differences in human brain development are likely to be uniquely shaped by the closely 
related but distinct construct of gender, which is typically considered to be absent in all non-human 
animals including mice.

Notwithstanding these limitations and caveats, we show that sex differences in global brain size 
are not well conserved across species, but that sex differences in regional brain volume do show some 
congruence between humans and mice. Furthermore, we find that human-mouse congruence in volu-
metric sex differences of a subset of homologous brain regions is stronger for cortical as compared to 
non-cortical structures, and - especially in the cortex - echoed by cross-species similarities in regional 
gene expression. In conclusion, this quantitative comparison of sex-biased neuroanatomy across 
humans and mice may inform future translational studies aimed at using mice to better understand 
sex differences in the human brain.

https://doi.org/10.7554/eLife.92200
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Materials and methods
Human participants and neuroimaging data
Data acquisition
The human sample included 3T T1-weighted 0.7 mm3 sMRIs from healthy young adults 
(597 females/496 males aged 22–35 years) from the Human Connectome Project (HCP) 1200 release. 
Recruitment procedures and scan acquisition parameters (T1-MPRAGE: TR=2400 ms; TE=2.14 ms; 
TI=1000 ms; Flip angle=8 deg; FoV=224 × 224 mm) are detailed in the original publication. All indi-
viduals provided informed consent to participate in the study (Van Essen et al., 2012; Glasser et al., 
2013). HCP data were provided (in part) by the Washington University – the University of Minnesota 
Consortium of the Human Connectome projects (principal investigators: David Van Essen and Kamil 
Ugurbil: 1U54MH091657). For more information about applying to get access to the HCP restricted 
data and for the HCP restricted data use terms see: https://www.humanconnectome.org/study/hcp-​
young-adult/document/wu-minn-hcp-consortium-restricted-data-use-terms. Participant characteris-
tics are detailed in Table 2.

Data processing
Cortical morphometry
T1-weighted sMRI data were preprocessed using the PreFreesurfer pipeline, described in detail here 
(Glasser et  al., 2013). Next, we used Freesurfer’s (version 7.1.0) (Fischl, 2012) recon-all with the 
highres flag to reconstruct and parcellate the cortex of all individuals at the original resolution of the 
data (Zaretskaya et al., 2018). This pipeline is freely available for download, documented (http://​
surfer.nmr.mgh.harvard.edu/), and well described in previous publications (Dale et al., 1999; Dale 
and Sereno, 1993; Desikan et al., 2006; Fischl et al., 2004a; Fischl et al., 2002; Fischl et al., 2001; 
Fischl et al., 1999; Fischl et al., 1998; Fischl and Dale, 2000; Han et al., 2006; Jovicich et al., 2006; 
Kuperberg et al., 2003; Reuter et al., 2010). The mri_anatomical_stats utility was used to extract 
several features including cortical volume from the cortical surfaces. These vertex-level measures were 
averaged across 360 regions from the multimodally informed Glasser Human Connectome Project 
atlas (Glasser et al., 2016).

Table 2. Demographics for human sample.

Females Males Statistics

Sample size 516 454

Age Mean 29.41 27.9 F(1,1082)=57.13, p=8.67e-14 ***

SD 3.68 3.61

Range 22–36 22–37

Education (in years) Mean 14.96 14.84 F(1,1082)=1.465, p=0.226

SD 1.83 1.77

Range 11–17 11–17

Euler number Mean –52.47 –58.26 F(1,1082)=25.72, p=4.65e-07 ***

SD 17.66 19.25

Range –126 to –16 –136 to –16

Zygosity Monozygotic 102 49 X2=26.281, p=8.33e-06

Dizygotic 163 131

Not Twin 251 274

*p<0.01 **p<0.001 for ANOVA test of significant difference between groups (males vs. females). SD=standard 
deviation.

https://doi.org/10.7554/eLife.92200
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Subcortical morphometry
For subcortical segmentation, each voxel is assigned one of 43 labels using the Freesurfer ‘aseg’ 
feature (version 7.1.0; see Fischl et al., 2004b; Fischl et al., 2002 for full details). Of the 40 labels, 
20 were included in analyses as they segmented gray matter structures. We aimed to build upon the 
standard segmentations above to include more nuclei previously shown to be sex-biased. We used 
FreeSurfer’s joint segmentation of hippocampal subfields (Iglesias et al., 2015a), sub-nuclei of the 
amygdala (Saygin et al., 2017), and brainstem (Iglesias et al., 2015b). Since the hypothalamus 
and related nuclei including the BNST are not available through FreeSurfer, we used a different 
published atlas (Neudorfer et  al., 2020) (https://zenodo.org/record/3942115). Segmentation 
was performed by registering the atlas labels to our study-specific average (using deformation-
based morphometry processing with ANTs-based tools https://github.com/CoBrALab/optimized_​
antsMultivariateTemplateConstruction (Devenyi, 2024a), Appendix 4). Voxel-wise volume differ-
ences were summed within the regions of interest of the hypothalamic atlas to generate structure 
volumes. Finally, each segmentation (cortical and subcortical) was visually quality controlled to 
ensure region boundaries matched anatomy, and excluded if there was a segmentation fault. Addi-
tionally, participants with an Euler number (extracted from each individual’s cortical reconstruction) 
less than –200 were excluded from statistical analyses based on previous reports (Rosen et al., 
2018).

Mouse subjects and neuroimaging data
Data acquisition
Mice included in this study were all wild-type controls from a large collection of autism mouse 
models made up of separate cohorts from diverse labs, sent to the Mouse Imaging Centre in 
Toronto for neuroimaging (Ellegood et  al., 2015). To model normative sex differences in the 
young adult mouse brain, we included wild-type mice from lab cohorts that had a minimum of five 
males and five females (to allow for appropriate covariation of potential background genotype and 
strain effects) on a C57BL6 (J or N) background strain. This yielded n=216 males (mean age=post-
natal day [PND] 62.7+/−8.5; range=PND 56–90) and n=213 females (mean age=PND 62.0+/−7.5; 
range=PND 56–90). We harmonized neuroimaging measures between cohorts within background 
strain (134  F/141  M C57BL6J mice from 12 cohorts, 79  F/75  M C57BL6N mice from 6 cohorts, 
Table 3 & Appendix 5) using ComBat from the sva library in R. This method is a popular adjustment 
method initially developed for genomics data (Johnson et  al., 2007), but adapted to neuroim-
aging harmonization to harmonize measurements across scanners (Fortin et al., 2018; Fortin et al., 
2017).

Young adult mice were transcardially perfused following a standard protocol which was consistent 
across mouse cohorts (Cahill et al., 2012). Fixed brains (kept in the skull to avoid distortions) were 
scanned at the Mouse Imaging Centre on a multichannel 7.0 T scanner with a 40 cm diameter bore 
magnet (Varian Inc, Palo Alto, CA). A T2-weighted fast spin echo sequence was used with the following 
scan parameters: T2W 3D FSE cylindrical k-space acquisition sequence, TR/TE/ETL=350 ms/12 ms/6, 
two averages, FOV/matrix-size=20×20×25  mm/ 504 × 504 × 630, total-imaging-time = 14 hr (Spencer 
Noakes et al., 2017). All procedures were approved by the animal care committees of the originating 
labs. The data presented here was compliant with all ethical regulations concerning animal experi-
mentation and was approved by the animal care committee at The Centre for Phenogenomics (AUP-
0260H) at the University of Toronto and all the other institutions that provided animals.

Data processing
sMRIs were registered using an unbiased deformation-based morphometry registration pipeline 
(Avants et al., 2011; Avants et al., 2009; Collins et al., 1994; Eskildsen et al., 2012; Friedel et al., 
2014). This results in an average brain, from which log-transformed Jacobian determinants can be 
calculated (Chung et al., 2001); these encode voxel-wise volume differences between each individual 
mouse brain and the average brain. sMRIs were also segmented into 355 unique brain regions using 
previously published atlases (Dorr et al., 2008; Richards et al., 2011; Steadman et al., 2014; Ullmann 
et al., 2013) with the MAGeT brain algorithm (Chakravarty et al., 2013; Pipitone et al., 2014). Visual 
quality control was performed to evaluate the accuracy of registrations and segmentations.

https://doi.org/10.7554/eLife.92200
https://zenodo.org/record/3942115
https://github.com/CoBrALab/optimized_antsMultivariateTemplateConstruction
https://github.com/CoBrALab/optimized_antsMultivariateTemplateConstruction
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Gene expression data
Human gene expression data
Human gene expression data were obtained from the Allen Human Brain Atlas (Hawrylycz et al., 
2012), downloaded from the Allen Institute’s API (http://api.brain-map.org), and preprocessed using 
abagen package in Python (https://abagen.readthedocs.io/en/stable/) (Arnatkeviciute et al., 2019; 
Hawrylycz et al., 2012; Markello et al., 2021) as previously described by Beauchamp et al., 2022. 
Data from all six donors was preprocessed as described in Beauchamp et al., 2022 yielding a gene-
by-sample expression matrix with 15,627 genes and 3702 samples across all donors.

Mouse gene expression data
Mouse gene expression data were obtained from the Allen Mouse Brain Atlas (Lein et al., 2007). 
Briefly, the whole-brain in-situ hybridization expression data were downloaded using Allen Institute’s 

Table 3. Demographics for mouse sample.
For details regarding the origin of each mouse cohort refer to Appendix 5—table 1.

Female Male Statistics

Sample size 213 216

Age

Mean 62.0 62.8

F(1,70)=0.78, p=0.38

SD 7.5 8.6

Range 56–90 56–90

Background Strain

C57BL-6J 134 141

C57BL-6N 79 75

Mouse Cohort for C57BL6J

A 10 12

X2=5.46, p=0.91

B 15 15

C 27 29

D 13 7

E 8 11

F 9 10

G 7 9

H 10 10

I 7 9

J 10 6

K 9 8

L 9 15

Mouse Cohort for C57BL6N

M 13 19

 � X2=5.745, p=0.332

N 10 8

O 25 13

P 9 9

Q 9 13

R 13 12

https://doi.org/10.7554/eLife.92200
http://api.brain-map.org
https://abagen.readthedocs.io/en/stable/
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API (http://help.brain-map.org/display/api/Downloading+3-D+Expression+Grid+Data) coronal 
in-situ hybridization experiments and reshaped into 3D images in the Medical Image NetCDF (MINC) 
format and preprocessed as previously described by Beauchamp et al., 2022. The result of this pre-
processing pipeline was a gene-by-voxel expression matrix with 3958 genes and 61,315 voxels.

Expression matrices for homologous genes within homologous regions
To obtain gene expression data for each homologous brain region described above, the human 
atlases used to perform the segmentations were registered into MNI ICBM 152 2009 c non-linear 
symmetric space (Fonov et al., 2011; Fonov et al., 2009), and each human sample was annotated 
with one of the 60 (28 bilateral and 4 midline) brain region labels. Several regions were missing 
expression data from the human right hemisphere, including the right hypothalamus, BNST, DG, 
and CA3, so we reflected the left hemisphere data to the right hemisphere to increase our sample 
for subsequent analyses. Furthermore, the MeA and MPON were missing transcriptomic data and 
were excluded from these analyses, yielding a total of 56 homologous brain regions. Similarly, the 
mouse atlas was registered into the Allen Mouse Brain Common Coordinate Framework (CCFv3) 
space (Wang et al., 2020) and each voxel was annotated with one of the 56 brain region labels. 
Next, we created a gene-by-region expression matrix for the human and mouse. For the human, 
we weighted the average of gene expression data based on the volume of the region of interest; 
this was particularly important since we combined several regions within the human atlases to 
obtain our homologous regions. For the mice, we averaged voxel-level gene expression data 
within regions of interest. To obtain homologous genes, each species’ full gene set was intersected 
with a list of 3331 homologous genes obtained from the NCBI HomoloGene database (Coordi-
nators, 2018), yielding 2835 homologous genes present in both species’ expression matrices, as 
described by Beauchamp et al., 2022. Each matrix was z-scored across brain regions to normalize 
gene expression measures.

Statistical analysis
Sex differences in mean global and regional brain volume
Human
All statistical analyses were performed in R version 3.4.2. A linear model was used to test for the effect 
of sex (β1: male vs. female) on z-scored global or regional brain volumes, with mean-centered age (β2), 
TTV (β3), and Euler number (β4) as covariates (Ɛ: error term). The beta-value for the effect of sex (β1) 
is referred to as a standardized effect size as it was computed on standardized (z-scored) volumes. 
The false discovery rate (FDR) correction (Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 
2001) was applied to control for multiple comparisons with the expected proportion of false posi-
tives(q) set to 0.05. The formula, using ‘ROI volume’ as the example region:

ROI volume ~intercept + β1(Sex: male vs. female) + β2(age−mean age) + β3(TTV) + β4(Euler number) 
+ Ɛ

To ensure that the effects we observed were not driven by the inclusion of twin or sibling pairs, 
we re-ran the same model on a subset of the data that randomly included only one of the two twin 
pairs. Additionally, we ran a linear-mixed effects model on the full data set with family ID as a random 
intercept. We correlated the standardized effect size for sex from both of these models to the ones 
generated from our main model to ensure that the effects were equivalent (Appendix 1).

Mouse
The analysis performed in humans was replicated in mice by using a linear model to test for the effect 
of sex (β1: male vs. female) on z-scored global or regional brain volume. Mean-centered age (β2), TTV 
(β3), and background strain (β4) were also included as covariates (Ɛ: error term). Again, the beta-value 
for sex (β1) is referred to as a standardized effect size.

ROI volume ~intercept + β1(Sex: male vs. female) + β2(age−mean age) + β3(TTV) + β4(Background 
Strain) + Ɛ

In both species, we repeated the regional analyses described above without covarying for TTV. 
Finally, we used a Levene’s test to assess sex differences in variance of global and regional brain 
volume in each species.

https://doi.org/10.7554/eLife.92200
http://help.brain-map.org/display/api/Downloading+3-D+Expression+Grid+Data
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Cross-species comparison
Sex-biased brain anatomy
To test for the convergence between sex effects in humans and mice, we considered a subset of 60 
brain regions for which there is well-established homology based on comparative structural and func-
tional studies (Balsters et al., 2020; Beauchamp et al., 2022; Glasser et al., 2016; Gogolla, 2017; 
Swanson and Hof, 2019; Vogt and Paxinos, 2014). We leveraged previous work which maps brain 
regions between humans and mice using six cytoarchitectonic and MRI-derived human atlases, and 
three cytoarchitectonic mouse atlases (as well as two rat atlases) in order to narrow down regions with 
cross-species homologs (Swanson and Hof, 2019). We computed the standardized effect sizes of sex 
on the volume of each of these regions as described in the section above for humans and mice. We 
used a robust correlation to determine the similarity of sex differences in regional brain volume across 
species by correlating the effect size for sex between species across regions. We also repeated this 
analysis using effect size estimates derived in each species without covarying for TTV.

Testing if cross-species congruence for sex differences is related to 
cross-species similarity in gene expression
To derive a regional measure for the cross-species concordance of sex differences in volume we multi-
plied the effect size of sex for each species. This product (i.e. ‘anatomical sex effect similarity score’) is 
positive for regions showing congruent sex differences between species (i.e. larger in males for both 
or larger in females for both), and negative for regions showing incongruent sex effects (e.g. larger 
in males for females for humans but larger in males for mice). Next, to derive a regional measure of 
cross-species transcriptional similarity, we computed the Pearson correlation between scaled expres-
sion values for all homologous genes in humans and mice per brain region. These steps created two 
measures per brain region - one for the cross-species similarity of volumetric sex differences (anatom-
ical sex effect similarity) and another for the cross-species similarity in gene expression - which we 
could then correlate across brain regions to test if regions with more conserved sex differences show 
more conserved gene expression. We estimated this correlation using a robust correlation - once using 
measures from all brain regions and all genes and again using subsets of brain regions and genes. 
Specifically, we compared the correlation between conserved sex effects and conserved expression 
for cortical vs. subcortical regions and recomputed these correlations using the following subsets of 
homologous genes: (i) X-linked genes (n=91) or (ii) sex hormone signaling genes (n=34). Next, we 
split the sex hormone genes into either (i) androgen-signaling related genes (n=11), or (ii) estrogen or 
progesterone-signaling related genes (n=23). The sex hormone signaling genes were identified based 
on Gene Ontology data for biological process modules from the Bader Lab (University of Toronto, 
http://baderlab.org/GeneSets). For each analysis using subsets of genes, we generated a null distri-
bution of correlations based on 10,000 randomly sampled gene sets of the same size (i.e. 91 to match 
X-chromosome genes), and compared the observed correlations with these null distributions using 
the ‘get_p_value’ function in R’s infer package (Appendix 3).
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Appendix 1
Ensuring there is no bias due to relatedness of twin pairs
To ensure that the relatedness of some of the human subjects did not impact our estimations of 
sex-differences in brain anatomy, we recomputed our standardized effect sizes in two ways. First, 
we randomly removed one of the twin pairs from the sample and recomputed the effect size for sex 
by running the same linear model as described in the main text (see ‘Sex differences in mean global 
and regional brain volume: Human’), which included the main effects of sex, mean-centered age, 
TTV, and Euler number (β4). Second, we ran a linear mixed-effects model on the full sample testing 
again for effects of sex, mean-centered age, TTV, and Euler number, and accounted for relatedness 
by modeling a family ID as the random intercept. From both models, we extracted the standardized 
effect size (beta-coefficient) for the main effect of sex and correlated with the effect size for the main 
effect of sex generated from our main model (‘Sex differences in mean global and regional brain 
volume: Human’).

Comparison of sex-biased maps when accounting for relatedness in the 
human sample
Sex-differences in regional brain volume were not affected by the relatedness of twin pairs; both 
unthresholded and thresholded maps for the effect of sex are identical across our three different 
models (Appendix 1—figure 1A, B). The random exclusion of one twin pair yielded regional effect 
size estimates for sex that were highly correlated to those generated from the model that did not 
exclude a twin pair (r=0.955, t=228.25, df = 489, p-value<2.2e-16). Similarly, regional effect size 
estimates for sex generated from the linear mixed-effects model that accounted for relatedness 
were highly correlated to those generated from the linear model that did not account for relatedness 
(r=0.993, t=190.35, df = 490, p-value<2.2e-16) (Appendix 1—figure 1C, D).

https://doi.org/10.7554/eLife.92200
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Appendix 1—figure 1. Effect of sex on regional brain volume in humans when accounting for relatedness. 
Distribution of sex-biased standardized effect sizes for humans when one twin-pair is excluded (A) or when 
Appendix 1—figure 1 continued on next page

https://doi.org/10.7554/eLife.92200
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relatedness is accounted for using linear mixed-effects modeling (B). Unthresholded (left) and significant (q<0.05; 
right) standardized effect sizes for the effect of sex displayed on the human brains. Regions in yellow-red are 
male-biased and regions in blue are female-biased. (C) Pearson correlation of standardized effect size for sex 
generated from a linear model with no twin pairs with effect size for sex generated from linear model with twin 
pairs included (r=0.995). (C) Pearson correlation of standardized effect size for sex generated from a linear model 
including twin pairs with effect size for sex generated from a the linear mixed-effects model which included twin 
pairs, but accounting for relatedness by using a family ID as a random effect. Human sample size excluding twin 
pairs: n=412F/403M; sample size including twin pairs: n=516F/454M.

Appendix 1—figure 1 continued

https://doi.org/10.7554/eLife.92200


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Neuroscience

Guma et al. eLife 2024;13:RP92200. DOI: https://doi.org/10.7554/eLife.92200 � 31 of 37

Appendix 2

Appendix 2—table 1. Mapping of homologous human-mouse brain regions (not TTV-corrected 
standardized effect sizes).
Blue shade highlights female-biased regions, while yellow shade highlights male-biased regions. In 
humans, the subset of homologous regions was all male-biased due to the larger overall brain size in 
males. In mice, we observed the same patterns of sex-bias as we did in the analyses which contrived 
for total tissue volume (TTV) except for the right nucleus accumbens showing no sex bias and a 
male-bias in the pons (both female-biased in the TTV controlled analysis).

Label Glasser/Freesurfer# names Mouse atlas Hemisphere
Human effect 
size

Mouse 
effect size

Agranular insula AVI, AAIC, MI
Agranular 
insular area

L 1.025 * –0.484 *

R 0.985 * –0.453 *

Amygdala Amygdala#
Cortical 
subplate

L 1.194 * 0.265 *

R 1.135 * 0.240 *

Anterior cingulate 
area

A24pr, a24, p24pr, p24, 24dd, 
24dv, p32pr, d32, a32pr, p32, 
s32

Anterior 
cingulate area

L 0.946 * –0.107

R 0.958 * –0.173

Bed nucleus of 
stria terminalis Bed nucleus of stria terminalis

Bed nucleus of 
stria terminalis

L 1.160 * 0.937 *

R 1.131 * 0.959 *

Caudoputamen Caudate#, Putamen# Caudoputamen

L 0.986 * –0.158

R 0.993 * –0.132

Cerebellar cortex Cerebellar cortex#
Cerebellar 
cortex

L 1.123 * –0.220 *

R 1.192 * –0.218

Dentate gyrus, 
molecular layer Dentate gyrus, molecular layer

Dentate gyrus, 
molecular layer

L 0.885 * 0.292 *

R 0.935 * 0.275 *

CA1 CA1 CA1

L 0.936 * 0.427 *

R 0.925 * 0.417 *

CA3 CA3 CA3

L 0.593 * 0.382 *

R 0.663 * 0.460 *

Entorhinal cortex EC Entorhinal area

L 0.925 * 0.038

R 0.984 * –0.047

Globus pallidus Globus Pallidus# Pallidum

L 1.040 * 0.167 *

R 1.049 * 0.229 *

Hippocampus Hippocampus#
Hippocampal 
region

L 1.045 * 0.414 *

R 1.033 * 0.426 *

Hypothalamus Hypothalamus Hypothalamus

L 1.374 * 0.245 *

R 1.354 * 0.170

Medial amygdalar 
nucleus Medial amygdalar nucleus

Medial 
amygdalar 
nucleus

L 0.547 * 0.926 *

R 0.654 * 1.057 *

Medial preoptic 
area Medial preoptic area

Medial preoptic 
area

L 1.205 * 0.472 *

R 1.275 * 0.388 *

Appendix 2—table 1 Continued on next page
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Label Glasser/Freesurfer# names Mouse atlas Hemisphere
Human effect 
size

Mouse 
effect size

Nucleus 
accumbens Nucleus accumbens#

Striatum ventral 
region

L 0.596 * 0.079

R 0.709 * 0.106

Perirhinal area PeEc, TF, PHA2, PHA3 Perirhinal area

L 0.839 * –0.014

R 0.821 * –0.029

Piriform cortex Pir Piriform cortex

L 0.988 * –0.020

R 1.076 * –0.039

Posterior parietal 
association areas 5 m, 5 mv, 5 L

Posterior 
parietal 
association 
areas

L 0.519 * 0.028

R 0.554 * 0.066

Primary auditory 
area A1

Primary auditory 
area

L 0.352 * –0.192

R 0.357 * –0.183

Primary motor area 4
Primary motor 
area

L 0.785 * –0.237 *

R 0.795 * –0.269 *

Primary 
somatosensory 
area 1, 2, 3 a, 3b

Primary 
somatosensory 
area

L 0.743 * –0.332 *

R 0.671 * –0.162

Primary visual area V1
Primary visual 
area

L 0.729 * 0.098

R 0.703 * –0.085

Retrosplenial area RSC
Retrosplenial 
area

L 0.838 * 0.010

R 0.770 * 0.062

Subiculum PreS Subiculum

L 0.643 * 0.370 *

R 0.433 * 0.382 *

Temporal 
association areas

FFC, PIT, TE1a, TE1p, TE2a, 
TF, STV, STSvp, STSva

Temporal 
association 
areas

L 1.084 * 0.159

R 1.060 * 0.024

Thalamus Thalamus# Thalamus

L 1.019 * –0.040

R 0.994 * –0.087

Ventral orbital area 10 r, 10 v
Ventral orbital 
area

L 0.666 * –0.121

R 0.605 * –0.093

Brain stem 
(midline) Brainstem#

Midbrain, 
Hindbrain M 1.209 * 0.226 *

Medulla (midline) Medulla Medulla M 1.111 * 0.255 *

Midbrain (midline) Midbrain Midbrain M 1.280 * 0.194 *

Pons (midline) Pons Pons M 1.101 * 0.101

Appendix 2—table 1 Continued
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Appendix 3
Correlating the anatomical sex effect similarity score to the similarity 
of homologous gene expression across homologous brain regions
We limited our homologous genes to those that were only expressed on the X-chromosome 
to determine whether their regional expression would be more highly correlated to patterns of 
sex-biased neuroanatomy. The robust correlation between anatomical sex similarity score and 
transcriptional similarity of X-chromosome genes (n=91) was slightly stronger, although very similar 
to that of the full homologous gene set (n=2835), r=0.25 (p=0.07). As with the full gene set, the 
relationship was stronger, and statistically significant, for cortical regions, r=0.62 (p=0.0007), than 
non-cortical regions, r=0.30 (p=0.11).

Filtering genes associated with sex steroid hormones based on Gene Ontology annotations 
(n=30) yielded a weak, and negative correlation, r=−0.11 (p=0.44). Interestingly, the relationship 
for cortical regions was positive and similar to the relationships described above, r=0.29, (p=0.14), 
while the correlation in the subcortex was negative, r=−0.13 (p=0.50) (Source data 1 for gene lists 
with GO terms and Source data 2 for those lists filtered to include only homologous genes). Lastly, 
we examined whether limiting sex hormone genes to more male-biased (androgen signaling genes, 
n=11) or more female-biased (estrogen and progesterone signaling genes, n=23) genes affected the 
correlation between anatomical sex similarity score and gene expression similarity. We found that 
androgen genes were positively correlated (r=0.23, p=0.08) with the anatomical sex similarity score, 
with a weak correlation for cortex (r=0.05, p=0.81) but a strong one for non-cortex (r=0.46, p=0.01). 
In contrast, estrogen and progesterone genes were negatively correlated with the anatomical sex 
similarity score (r=−0.21, p=0.13), with a positive correlation in the cortex (r=0.29, p=0.15) and a 
negative relationship in the non-cortex (r=−0.27, p=0.15).

Finally, we recomputed the transcriptional similarity by randomly resampling various subsets of 
homologous genes 10,000 times, and then correlated those similarity values to the anatomical sex 
congruence across regions. The subsets were chosen to reflect the number of genes selected for the 
various hypothesis-driven subsets, i.e., n=91 for X-chromosome genes, n=34 for sex hormone genes, 
n=11 for androgen genes, and n=23 for estrogen and progesterone genes. For the distribution 
based on 91 genes, we observed a mean r of 0.05 (min = −0.20, max = 0.32); for 34 genes we 
observed a mean r of 0.04 (min = −0.34, max = 0.39); for 11 genes we observed a mean r of 0.03 
(min = −0.42, max = 0.46), and for 23 genes we observed a mean r of 0.04 (min = −0.33, max = 0.38). 
Relative to the null distribution of correlated values, the relationship anatomical sex congruence 
and transcriptional similarity were significant for the subset of X-chromosome genes (n=91, pnull = 
0.0014), trending towards significant for the subset of sex hormone genes (n=34, pnull = 0.08), and 
for androgen genes (n=11, pnull = 0.06), and significant for the subset of estrogen and progesterone 
genes (n=23, pnull = 0.01).
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Appendix 3—figure 1. Robust correlation of anatomical similarity of sex effects and transcriptional similarity of 
homologous brain regions across species. Robust correlation of anatomical similarity and transcriptional similarity 
using only X-chromosome homologous genes (n=91; A, B), using only sex hormone genes androgen, estrogen, 
progesterone genes (n=30; C, D), just androgen genes (E, F), or just estrogen and progesterone genes (G, H) 
across all homologous regions or split into cortical and non-cortical.
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Appendix 3—figure 2. Generating a null distribution of correlation coefficients for the anatomical vs. 
transcriptional similarity. Correlations are significant relative to null distribution (shown in green) generated by 
randomly sampling subsets of 2835 homologous genes corresponding to the biologically informed subsets, 
recomputing the transcriptional similarity, and correlating that with the anatomical similarity 10,000 times. We 
have subsets of 91 genes in (A) corresponding to X-linked genes, 34 genes in (B) corresponding to sex hormone 
genes, 11 genes in (C) corresponding to androgen games, and 23 genes in (D) corresponding to estrogen and 
progesterone genes. For each, the observed correlation was compared to the null correlation to generate a p-
value, displayed on the graph.
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Appendix 4
Deformation-based morphometry for hypothalamus segmentation
T1-weighted structural MRI scans were converted to the MINC file format (https://www.mcgill.ca/bic/​
software/minc) and processed using the minc-bpipe-library preprocessing pipeline (https://github.​
com/CobraLab/minc-bpipe-library, copy archived at Devenyi, 2024b) which performs an iterative 
whole-brain bias field correction using N4ITK (Avants et al., 2011). Images were cropped to remove 
excess data around the head to improve subsequent image processing steps. A brain mask was 
computed using the BEaST patch-based segmentation technique (Eskildsen et  al., 2012) which 
was used to generate skull-stripped brains for subsequent steps. Preprocessed, skull-stripped T1-
weighted images were then registered using antsMulitvariateTempalteConstruction tools (https://​
github.com/CoBrALab/optimized_antsMultivariateTemplateConstruction). Briefly, this was used to 
affinely and nonlinearly register brains to create a consensus average. The initial target was the MNI 
ICBM NLIN 09 c model (1 mm isotropic resolution), but a subsequent study-specific average was 
created, and then upsampled to 0.5 mm isotropic. The registration procedure yielded deformation 
fields from which we can extract absolute Jacobian determinants that encode the contributions from 
the affine and nonlinear transforms between subject and average, as well as the relative Jacobians 
which have the affine (linear) component removed. Finally, Jacobians were smoothed with a 2 mm 
Full Width Half Maximum (FWHM) 3D Gaussian smoothing kernel.

https://doi.org/10.7554/eLife.92200
https://www.mcgill.ca/bic/software/minc
https://www.mcgill.ca/bic/software/minc
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Appendix 5

Appendix 5—table 1. Information about the origin laboratory of wild-type (WT) mice was included 
in the study.

Background strain Study cohort key Origin laboratory

C57BL6J

A University of Michigan; Dr. Diane Robinson

B KAIST; Dr. Eunjoon Kim

C University of Western Ontario; Dr. Nathalie Berube

D UT Southwestern; Dr. Genevieve Konopka

E Duke University; Dr. Christelle Golzio

F Duke University; Dr. Christelle Golzio

G Lost Angeles Children’s Hospital; Dr. Pat Levitt

H Columbia University; Dr. Jeremy Veenstra-VenderWeele

I Scripps Research Institute; Dr. Gavin Rumbaugh

J McMaster University; Dr. Karun Singh

K McMaster University; Dr. Jane Foster

L University of Toronto Center for Phenogenomics

C57BL6N

M The Hospital for Sick Children; Dr. Lauryl Nutter

N UC Davis - MIND Institute; Dr. Alex Nord

O The Hospital for Sick Children; Dr. Lauryl Nutter

P UCSD; Dr. Lilia Iakoucheva

Q UT Southwestern; Dr. Graig Powell

R UC Davis; Dr. Alexander Nord

https://doi.org/10.7554/eLife.92200
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