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Abstract Our understanding of mitochondrial signaling in the nervous system has been limited 
by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic 
model Caenorhabditis elegans, we were able to manipulate and measure mitochondrial reactive 
oxygen species (mitoROS) signaling of individual mitochondria as well as neuronal activity of single 
neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitoROS 
signaling in dendrites of excitatory glutamatergic C. elegans interneurons. Specifically, we show that 
following neuronal activity, dendritic mitochondria take up calcium (Ca2+) via the mitochondrial Ca2+ 
uniporter (MCU- 1) that results in an upregulation of mitoROS production. We also observed that 
mitochondria are positioned in close proximity to synaptic clusters of GLR- 1, the C. elegans ortholog 
of the AMPA subtype of glutamate receptors that mediate neuronal excitation. We show that 
synaptic recruitment of GLR- 1 is upregulated when MCU- 1 function is pharmacologically or geneti-
cally impaired but is downregulated by mitoROS signaling. Thus, signaling from postsynaptic mito-
chondria may regulate excitatory synapse function to maintain neuronal homeostasis by preventing 
excitotoxicity and energy depletion.

Editor's evaluation
This study examines an interplay between synaptic mitochondria and glutamate receptor exocytosis 
in C. elegans. Collectively, the solid results support the idea that mitochondrial function influences 
receptor dynamics at postsynaptic sites. This is important because tight control of synaptic function 
likely integrates several mitochondrial functions: energy production, calcium buffering, and (here) 
reactive oxygen species signaling.

Introduction
As the predominant excitatory synapse type in the brain, glutamatergic synapses are important for 
organismal physiology and homeostasis as well as much of the brain’s processing. Plasticity, or the 
change in efficacy, of these synapses underlies learning and memory formation. Although presynaptic 
changes contribute to synaptic transmission strength, the number of ionotropic glutamate receptors, 
especially the α-amino- 3- hydroxy- 5- methyl- 4- isoxazole (AMPA) subtype (AMPARs), at the postsyn-
aptic membrane is a strong correlate of synaptic strength. Changes in synaptic expression of AMPARs 
is a calcium (Ca2+)- dependent, multi- step process involving long- distance transport of the receptors 
by molecular motors (Kim and Lisman, 2001; Setou et al., 2002; Hoerndli et al., 2013; Esteves da 
Silva et al., 2015; Hangen et al., 2018; Hoerndli et al., 2022), delivery of AMPAR- containing vesicles 
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to synaptic sites (Yang et al., 2008; Hoerndli et al., 2015), exocytosis and endocytosis of AMPARs 
to the membrane (Ehlers, 2000; Yudowski et al., 2007), as well as reorganization of postsynaptic 
proteins and cytoskeletal architecture (Choquet and Triller, 2013; Nakahata and Yasuda, 2018; Guti-
érrez et al., 2021).

The mechanisms underlying postsynaptic plasticity are metabolically demanding processes 
requiring the upregulation of mitochondrial metabolism to meet energy demands (Wacquier et al., 
2019; Faria- Pereira and Morais, 2022). There is growing evidence that mitochondria are also 
important for other cellular functions, including regulation of gene expression, Ca2+ homeostasis, 
inflammatory signaling, and lipid biogenesis (Chae et al., 2013; Hirabayashi et al., 2017). Interest-
ingly, the generation of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, 
by the mitochondrial respiratory chain and other matrix proteins (Angelova and Abramov, 2018) is 
gaining traction as an essential signaling mechanism with many identified downstream effectors in 
neurons (Sies and Jones, 2020; Hidalgo and Arias- Cavieres, 2016). It has become clear that ROS act 
as a physiological signal (Sies and Jones, 2020) that is necessary for neuronal development (Oswald 
et al., 2018b), excitatory and inhibitory neurotransmission (Biswas et al., 2022), as well as synaptic 
plasticity (Massaad and Klann, 2011; Oswald et al., 2018a).

For instance, evidence accumulated over the last 25 years has demonstrated that ROS signaling 
is required for normal synaptic expression of AMPARs. Early evidence came from results suggesting 
abnormal plasticity of glutamatergic synapses, learning and memory when ROS are elevated or dimin-
ished (Massaad and Klann, 2011; Klann et al., 1998; Knapp and Klann, 2002; Huddleston et al., 
2008). Since these studies, we and others have shown that ROS signaling can regulate the number of 
synaptic AMPARs via ROS- dependent regulation of AMPAR phosphorylation (Lee et al., 2012) or the 
long- distance transport and delivery of AMPARs to synapses (Doser et al., 2020; Doser and Hoerndli, 
2022). Despite our understanding of several downstream effectors of ROS signaling, it is unclear when 
or where ROS signaling originates in neurons in vivo. As previously mentioned, ROS is predominantly 
generated as a by- product of mitochondrial respiration but is also produced by NADPH oxidase and 
peroxisome enzymes (Sies and Jones, 2020). Despite mitochondria being the major source of ROS, 
it has not been assessed in vivo if or how mitochondrial ROS (mitoROS) production is regulated by 
neuronal activity. In addition, mitochondria are positioned at pre- and postsynaptic sites (Freeman 
et al., 2017) where they likely contribute to synaptic function. However, our understanding of the 
roles mitochondria play at synapses has been limited by our ability to study mitochondrial function in 
vivo under physiological conditions.

The transparent nematode Caenorhabditis elegans is a powerful genetic model that has been 
widely accepted for studying mitochondrial function, Ca2+ handling, and ROS signaling in vivo, espe-
cially in the context of aging and neurodegeneration (Back et al., 2012; Petriv and Rachubinski, 
2004; Morsci et al., 2016; Xu and Chisholm, 2014; Alvarez et al., 2020). Additionally, C. elegans 
has been used extensively in neuroscience research (Sengupta and Samuel, 2009) due to their rela-
tively simple nervous system composed of neurons whose gene expression and synaptic connections 
are completely mapped (Cook et al., 2019; Taylor et al., 2021). Importantly, most of the key players 
at glutamatergic synapses are conserved, including subunits of AMPARs and other glutamate receptor 
subtypes (Maricq et al., 1995), and are regulated in a similar fashion to their vertebrate orthologs 
(Hangen et al., 2018; Hoerndli et al., 2015; Rongo and Kaplan, 1999; Widagdo et al., 2017). Using 
C. elegans to study the regulation of glutamatergic synapses, we have shown that Ca2+ signaling 
regulates transport and delivery of GLR- 1, the C. elegans ortholog of the AMPAR subunit GluA1, to 
synapses. Moreover, our previous work revealed that ROS signaling interacts with Ca2+ signaling in the 
cell body and dendrites to control the amount of GLR- 1 transport and regulate synaptic delivery of 
GLR- 1 (Doser et al., 2020). Thus, an interplay between ROS and Ca2+ signaling at postsynaptic sites 
appears to be important for AMPAR localization to synapses, but the role of postsynaptic mitochon-
dria in this process has not been addressed.

Here, using in vivo imaging and optogenetic tools in C. elegans, we assessed the role of postsyn-
aptic mitochondria as signaling hubs that integrate neuronal activity and regulate AMPAR localization 
to synapses. We found that in response to neuronal activation, mitochondria take up Ca2+, resulting 
in an increase in their ROS production. Most dendritic mitochondria were located in close proximity 
to clusters of surface- localized GLR- 1, which are representative of postsynaptic sites. To demonstrate 
the functional relevance of activity- dependent mitoROS signaling, we show that activity- dependent 
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mitoROS production, requiring the mitochondrial Ca2+ uniporter MCU- 1, regulates transport, delivery, 
and recruitment of GLR- 1 to synapses. Since the number of glutamate receptors at a synapse controls 
the efficacy of excitatory transmission, activity- induced mitoROS production may constitute a critical 
inhibitory feedback mechanism that balances neuronal excitability with cellular energy capacity.

Results
Activity-dependent mitochondrial Ca2+ uptake regulates synaptic 
recruitment of GLR-1
As in vertebrates, the majority of neuronal activation in C. elegans are due to glutamatergic trans-
mission. Activation occurs when glutamate is released from a presynaptic neuron that binds to and 
opens the cation pore of postsynaptic glutamate receptors, including AMPARs. Influx of cations into 
the postsynaptic neuron initiates opening of voltage- gated Ca2+ channels that causes a rapid increase 
in cytoplasmic Ca2+. This Ca2+ activates a multitude of signaling cascades before being rapidly taken 
up by the endoplasmic reticulum and mitochondria or extruded to extracellular space (Brini et al., 
2013). Mitochondria in various neuronal subtypes have discrete Ca2+ handling capabilities (Márkus 
et al., 2016), so we first characterized mitochondrial Ca2+ uptake in vivo in the neurites of the AVA 
glutamatergic interneurons. To do this, we co- expressed the light- sensitive cation channel ChRimson 
(Klapoetke et al., 2014) with the mitochondrial calcium indicator mitoGCaMP (Ashrafi et al., 2020) 
targeted to the inner mitochondrial matrix (Figure 1A, Figure 1—video 1). This combination of tools 
allowed us to measure Ca2+ uptake by individual mitochondria following repetitive optical activation. 
It is important to note that our photoactivation protocol involved optical stimulation using a 1 s light 
pulse every 30 s (33.3 mHz), a rate that is similar to the spontaneous activity of AVA neurons (Doser 
et al., 2020). This assay revealed that there is diversity in Ca2+ handling among dendritic mitochon-
dria. Some mitochondria take up the most Ca2+ upon the first optical activation (Mito 1; Figure 1B 
and C, Figure 1—video 1), whereas others uptake more Ca2+ following the second or third stimulation 
(Mito 2; Figure 1B and C, Figure 1—video 1).

Ca2+ entry into the matrix is gated by the Ca2+- sensitive mitochondrial uniporter MCU- 1 (Baughman 
et  al., 2011), which is encoded by the mcu- 1 gene in C. elegans. We characterized the effect of 
the mcu- 1(ju1154) loss of function allele (Álvarez- Illera et al., 2020) (hereafter called mcu- 1(lf)) on 
activity- dependent mitochondrial Ca2+ uptake by imaging mitoGCaMP in mcu- 1(lf) (Figure  1D–F). 
We found that the amplitude of evoked mitoGCaMP events in mcu- 1(lf) was drastically decreased 
compared to controls (Figure 1D–F). Additionally, the total mitoGCaMP activity, a combined measure 
of the amplitude and duration of all Ca2+ events, was also reduced in mcu- 1(lf) (Figure 1F). Due to the 
possibility of functional compensation in mcu- 1(lf), we also tested how acute treatment with the ruthe-
nium compound Ru360, an MCU- 1 blocker (Woods et al., 2019), alters activity- dependent mitochon-
drial Ca2+ uptake. Following a 10 min treatment with Ru360, we observed a decrease in the amplitude 
and total activity of evoked mitoGCaMP events that were similar to mcu- 1(lf). To test the specificity 
of Ru360 for inhibiting Ca2+ uptake via MCU- 1, we treated mcu- 1(lf) with Ru360 but did not detect 
additional inhibition of mitochondrial Ca2+ uptake (Figure 1D–F). This Ru360 treatment suppressed 
mitochondrial Ca2+ uptake out to 60 min post treatment (Figure 1G–I). This experiment showed that 
loss or inhibition of MCU- 1 almost completely prevents activity- dependent mitochondrial Ca2+ uptake.

While imaging mitochondrial- localized fluorescent indicators in the AVA glutamatergic interneu-
rons, we observed that around 61% of mitochondria are in close proximity (<1 μm) to clusters of 
surface- localized GLR- 1 (quantification not shown), indicative of postsynaptic sites, that were visu-
alized using GLR- 1 tagged with pH- sensitive GFP (SuperEcliptic pHlourin, SEP) on the N- terminal 
(Figure 2A). The regulation of mitochondrial function and signaling by Ca2+ appears to be integral 
to synaptic function and plasticity (Ashrafi et al., 2020; Stoler et al., 2022; Billups and Forsythe, 
2002; Sun et al., 2013; Marland et al., 2016), which led us to test if postsynaptic mitochondrial Ca2+ 
uptake is required for normal GLR- 1 localization to synapses. First, we quantified SEP::GLR- 1 fluores-
cence in AVA dendrites in vivo to assess if the number of GLR- 1 at synapses is altered by loss or inhi-
bition of MCU- 1. Initial observations revealed a dramatic increase in the fluorescence of SEP::GLR- 1 
puncta (indicative of synaptic sites) in mcu- 1(lf) mutants (Figure 2—figure supplement 1A), but not 
puncta density (data not shown), suggesting more GLR- 1 at synaptic sites. Acute Ru360 treatment 
slightly, but not significantly, increased the fluorescence of SEP::GLR- 1 puncta along the AVA neurite 
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Figure 1. Neuronal activity causes mitochondrial Ca2+ uptake via MCU- 1. (A) Illustration depicting transgenic expression and subcellular location 
of ChRimson and mitoGCaMP in the AVA neurons. (B) Representative images of mitoGCaMP fluorescence in a single Z- plane before and after four 
optical activations (strain: FJH 644). Scale bar = 5 µm. (C) Normalized mitoGCaMP fluorescence for the regions of interest in (B) during repetitive optical 
activation (+Light, 5 µW at 33.3 mHz). (D) Representative normalized mitoGCaMP traces (30 s) following optical stimulation (+Light) of the AVA neurons 
in worms pretreated with Ru360 and in untreated controls (strain: FJH 644) or mcu- 1(lf) (strain: FJH 647). (E) Quantification of the maximum ∆F/Fmin of 
mitoGCaMP events and (F) total mitoGCaMP activity during a 2.5 min recording of AVA neurons optically activated every 30 s (n ≥ 20 mitochondria from 
5 to 8 animals per group). (G) Normalized mitoGCaMP fluorescence following optical stimulation (+Light) of the AVA neuron in untreated controls as 
well as Ru360- treated worms at 0 or 60 min post treatment. (H) Quantification of the average maximum ∆F/Fmin of mitoGCaMP and (I) normalized total 
mitoGCaMP activity during a 2.5 min recording of AVA neurons optically activated every 30 s (n ≥ 20 mitochondria from 4 to 5 animals per group). Data is 
represented as mean ± s.e.m.; n.s., not significant, **p<0.005, ***p<0.0005 compared to controls using a one- way ANOVA with a Dunnett’s test. Source 
data is available at https://doi.org/10.5061/dryad.0gb5mkm71.

The online version of this article includes the following video for figure 1:

Figure 1—video 1. MitoGCaMP fluorescence in the AVA neurites.

https://elifesciences.org/articles/92376/figures#fig1video1

https://doi.org/10.7554/eLife.92376
https://doi.org/10.5061/dryad.0gb5mkm71
https://elifesciences.org/articles/92376/figures#fig1video1
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Figure 2. Decreased mitochondrial Ca2+ uptake affects transport and recruitment of GLR- 1 to synapses. (A) Single Z- plane fluorescent images of 
mitochondria (mito- TdTomato) and surface- localized GLR- 1 (SEP::GLR- 1) showing mitochondria localized at (arrows) or adjacent to (arrowheads) 
SEP::GLR- 1 puncta. (B, D) Representative images of (B) SEP::GLR- 1 (strains: FJH 214 and FJH 638) or (D) GLR- 1::GFP (strains: FJH 18 and FJH 576) 
fluorescence before, immediately after, 8, and 16 min post photobleach (PB). (C) Fluorescence (arbitrary units = a.u.) of SEP over 16 min post PB (n = 8 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.92376
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(Figure 2—figure supplement 1A). Next, we used fluorescence recovery after photobleaching (FRAP) 
of SEP::GLR- 1 to measure the rate of GLR- 1 recruitment to the synaptic membrane. SEP will only fluo-
resce when GLR- 1 is positioned at the plasma membrane and is quenched while in transport vesicles 
or synaptic endosomes (see Appendix 2—figure 1A). In addition, our FRAP protocol (see ‘Materials 
and methods’ for details) involves photobleaching a ~40–60 µm portion of the neurite proximally and 
distally to the imaging region that is intended to limit the influence of GLR- 1 lateral diffusion in the 
membrane on fluorescence recovery. Thus, the relative recovery of SEP fluorescence (%FRAP rate) in 
a photobleached neurite is representative of GLR- 1 that has been exocytosed to the membrane and 
the rate of GLR- 1 recycled via endocytosis. The rate of SEP fluorescence recovery (without individual 
normalization; see ‘Materials and methods’ for analysis details) was increased more than twofold in 
mcu- 1(lf) and slightly increased following Ru360 treatment (Figure 2B and C). When the fluorescence 
at each timepoint after photobleaching is normalized to the fluorescence before photobleaching, 
the %FRAP is unchanged between experimental groups (Figure 2—figure supplement 1B). Taken 
together, these analyses show that loss or inhibition of MCU- 1 leads to excessive recruitment of GLR- 1 
to synapses but proportional to the amount of GLR- 1 at synapses.

The recruitment of GLR- 1 to the synaptic membrane depends on the local GLR- 1 reserves in 
synaptic endosomes (Gutiérrez et al., 2021). Resupplying of these local receptor pools occurs when 
GLR- 1- containing transport vesicles are delivered to endosomes or other local reserves (Petrini et al., 
2009). The delivery rate of new GLR- 1 can be measured by FRAP of GLR- 1::GFP (see Appendix 2—
figure 1B). In mcu- 1(lf), the rate of GLR- 1::GFP FRAP was decreased compared to controls but slightly 
increased in Ru360- treated animals (Figure 2D and E). Synaptic delivery and exocytosis of GLR- 1 are 
dependent upon the transport of GLR- 1- containing vesicles by molecular motors from the cell body 
where GLR- 1 is predominantly synthesized. So, to better understand our results above (Figure 2C 
and E), we analyzed GLR- 1 transport in mcu- 1(lf) and with Ru360 treatment. To do this, we visu-
alized individual GLR- 1::GFP transport by photobleaching a section (~40 µm) of the AVA neurites 
(Figure 2—video 1) as previously described (Hoerndli et al., 2022; Doser et al., 2020). Interestingly, 
we found that both mcu- 1(lf) and Ru360 treatment decreased the amount of GLR- 1 transport by ~50% 
(Figure 2F and G). Ru360 treatment of mcu- 1(lf) did not further decrease the amount of GLR- 1 trans-
port compared to mcu- 1(lf) alone. Mitochondrial matrix Ca2+ regulates oxidative phosphorylation via 
several mechanisms, so mcu- 1(lf) and/or Ru360 treatment could reduce GLR- 1 transport indirectly by 
decreasing ATP production. The processivity and velocity of molecular motor movement are highly 
coupled to ATP availability (Schnitzer et al., 2000) but the velocity of GLR- 1 transport was compa-
rable between controls and mcu- 1(lf) or with Ru360 (Figure 2—figure supplement 1C). This suggests 
that ATP availability is relatively unchanged by loss or inhibition of MCU- 1 or that basal rates of ATP 
production are sufficient to support normal transport velocities. Together, these results suggest that 
mitochondrial Ca2+ uptake differentially regulates GLR- 1 transport out of the cell body and synaptic 
recruitment of GLR- 1.

Previous work has shown that cytoplasmic Ca2+ signaling regulates transport and synaptic local-
ization of GLR- 1 (Hangen et al., 2018; Hoerndli et al., 2015; Doser et al., 2020), so we tested if 
decreased mitochondrial Ca2+ uptake alters the amplitude or duration of cytoplasmic Ca2+ transients 

animals per group). (E) Percent GFP fluorescence recovery after PB (FRAP) over 16 min (n ≥ 9 animals per group). *p<0.01, ****p<0.0001 using an extra 
sum- of- squares F- test with a Bonferroni correction. (F) 20 s representative kymographs of GLR- 1::GFP movement in AVA neurite in controls (strain: FJH 
18) and mcu- 1(lf) (strain: FJH 576) with or without Ru360 pretreatment. Time is represented on the y- axis and distance on the x- axis. (G) Total transport 
events quantified from kymographs in all conditions (n > 10 animals per group). (H) Representative traces of ∆F/Fmin of cytoplasmic GCaMP6f following 
optical stimulation. (I) The maximum ∆F/Fmin of cytoplasmic GCaMP6f events and (J) normalized total GCaMP6f activity during a 1.5 min recording with 
optical activation of AVA neurons every 30 s (n ≥ 10 animals per group). All scale bars = 5 µm. Data is represented as mean ± s.e.m.; n.s, not significant, 
****p<0.0001 compared to controls or indicated experimental group using a one- way ANOVA with a Dunnett’s test. Source data is available at https://
doi.org/10.5061/dryad.0gb5mkm71.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure supplement 1. Additional analysis of SEP::GLR- 1 fluorescence and fluorescence recovery after photobleaching (FRAP), and velocity analysis of 
GLR- 1 transport.

Figure 2—video 1. GLR- 1::GFP transport in AVA neurons.

https://elifesciences.org/articles/92376/figures#fig2video1

Figure 2 continued

https://doi.org/10.7554/eLife.92376
https://doi.org/10.5061/dryad.0gb5mkm71
https://doi.org/10.5061/dryad.0gb5mkm71
https://elifesciences.org/articles/92376/figures#fig2video1
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in dendrites following neuronal activation since this would impact downstream Ca2+ signaling and 
synaptic recruitment of GLR- 1. We expressed ChRimson and the cytoplasmic Ca2+ indicator GCaMP6f 
in the AVA neurons in mcu- 1(lf) and control animals. This approach bypasses activation by presynaptic 
inputs allowing direct activation of the AVA interneurons. We simultaneously optically activated the 
AVA neurons and recorded GCaMP6f fluorescence in mcu- 1(lf) and Ru360- treated controls in the same 
dendritic region of the AVA neurons where GLR- 1 transport and FRAP were analyzed. There were no 
significant changes in cytoplasmic Ca2+ transients in dendrites following AVA activation with ChRimson 
between mcu- 1(lf) or with Ru360 treatment compared to controls (Figure 2H–J), suggesting that loss 
or inhibition of MCU- 1 does not drastically alter activity- dependent cytoplasmic Ca2+ influx or the 
duration of a Ca2+ event in dendrites. In other words, the loss or inhibition of MCU- 1 does not seem to 
impact synaptic recruitment of GLR- 1 by indirectly modulating cytoplasmic Ca2+ signaling.

Neuronal excitation upregulates mitoROS signaling
Our previous work has shown that ROS regulate transport and synaptic delivery of GLR- 1 (Doser 
et al., 2020; Doser and Hoerndli, 2022). To further address the mechanism by which Ca2+ influx by 
MCU- 1 modulates GLR- 1, we tested if activity- dependent Ca2+ uptake regulates mitoROS production. 
To do this, we stimulated the AVA neuron with ChRimson using the same optical activation that initi-
ated mitochondrial Ca2+ uptake (Figure 1). Then, we measured ROS levels at dendritic mitochondria 
using a genetically encoded ratiometric ROS sensor that was localized to the outer mitochondrial 
membrane (mito- roGFP) (Morgan et al., 2011; Figure 3A). We found that the duration of repeti-
tive AVA stimulation positively correlated with the mito- roGFP fluorescence ratio (Fratio; 405/488 nm), 
indicating increased ROS following neuronal activation (Figure 3B and C). The Fratio was unchanged 
in controls that were not treated with Retinal, which is required for optical stimulation, and subjected 
to the light stimulation protocol. Similar to mitoGCaMP responses, we saw diversity among dendritic 
mitochondria in mito- roGFP Fratios following neuronal activation of the AVA neurons (Figure 3—figure 
supplement 1A and B). The frequency distribution of mito- roGFP Fratios of individual mitochondria 
without stimulation is unimodal (centered at 0.03) but becomes bimodal following 60 min of repetitive 
activation. One peak is slightly right shifted (centered at 0.05) and the other is strongly right shifted, 
corresponding to significantly higher mito- roGFP Fratios (centered at 0.09; Figure 3—figure supple-
ment 1A and B). These results suggest that mitochondria within these neurites differentially respond 
to activity in terms of their ROS production.

So, does this activity- dependent upregulation of mitoROS production require Ca2+ uptake through 
MCU- 1? Expression of ChRimson and mito- roGFP in mcu- 1(lf) revealed that the loss of MCU- 1 
prevented activity- induced increases in the mito- roGFP Fratio even after 60 min of repetitive optical 
activation (Figure 3D and E, Figure 3—figure supplement 1C). Pretreatment with Ru360 prior to 
optical activation similarly prevented the activity- induced increase in mito- roGFP Fratio (Figure 3F and 
G, Figure 3—figure supplement 1D). In summary, both the acute pharmacological inhibition and 
genetic loss of MCU- 1 prevented activity- dependent upregulation of mitoROS production. Since 
optical activation is artificial and does not rely on synaptic transmission, it is possible that mitoROS 
production is not upregulated by natural neuronal activation. To address this, we took advantage of 
the well- defined circuitry in C. elegans and designed an experiment to activate a subset of mecha-
nosensory neurons that detect physical touch and vibration (Schafer, 2015) and provide excitatory 
input to AVA neurons. This involved repetitively activating presynaptic mechanosensory neurons with 
vibration caused by dropping culture plates containing freely behaving worms from a short distance 
(~5 cm) onto the bench top every 30 s for a duration of 5 or 10 min. Then, worms were mounted for 
imaging to assess the Fratio of mito- roGFP. The mito- roGFP Fratio was slightly increased following 5 min 
and significantly increased by 10 min of repetitive mechano- stimulation (Figure 4A and B), indicating 
that mitoROS production is also increased by native means of neuronal activation.

Using the photosensitizer KillerRed for artificial ROS production at 
dendritic mitochondria
We next wanted to address the possible role of ROS production at dendritic mitochondria in regu-
lating the multistep process required for synaptic recruitment of GLR- 1 in a cell- specific manner inde-
pendent of mitochondrial Ca2+ handling. To this end, we expressed the photosensitizer KillerRed that 
produces ROS upon photoactivation (PA) with green light (Bulina et al., 2006). In addition, we localized 

https://doi.org/10.7554/eLife.92376
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Figure 3. Mitochondrial reactive oxygen species (mitoROS) production is upregulated by neuronal activity and dependent on mitochondrial Ca2+ 
uptake via MCU- 1. (A) Illustration showing transgenic expression and subcellular localization of ChRimson and mito- roGFP in the AVA neurons. 
(B) Representative images of mito- roGFP fluorescence in a single Z- plane when excited with 488 nm or 405 nm light following optogenetic stimulation 
with or without all- trans- Retinal (strain: FJH 402). (C) Mito- roGFP fluorescence ratio (405/488 nm) following 0, 5, 20, or 60 min of repetitive optical 
stimulation (40 μW/mm2 at 33.3 mHz) with Retinal pretreatment and 60 min of repetitive optical stimulation without Retinal pretreatment (n > 30 
mitochondria from eight animals per group). (D, F) Representative images of mito- roGFP fluorescence in a single Z- plane when excited by 488 nm or 
405 nm light following 0 or 60 min of repetitive optical stimulation with Retinal pretreatment. (E) Mito- roGFP Fratio following 0 or 60 min of repetitive 
optical stimulation in mcu- 1(lf) (strain: FJH 706) and controls (strain: FJH 402), as well as non- Retinal- treated controls that underwent 60 min of 
stimulation (n ≥ 32 mitochondria from eight animals per group). Statistical comparisons are between groups and the 0 min control unless indicated by 
horizontal bar. (G) Mito- roGFP Fratio at 0 and 60 min following repeated optical stimulation with or without Ru360 treatment (n ≥ 38 mitochondria from 
eight animals per group; strain FJH 402). All scale bars = 5 µm. Data is represented as mean ± s.e.m.; n.s., not significant, ****p<0.0001 compared 
to controls or indicated experimental group using a one- way ANOVA with a Dunnett’s test. Source data is available at https://doi.org/10.5061/
dryad.0gb5mkm71.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Additional analysis of mito- roGFP reveals differential activity- induced reactive oxygen species (ROS) production at dendritic 
mitochondria.

https://doi.org/10.7554/eLife.92376
https://doi.org/10.5061/dryad.0gb5mkm71
https://doi.org/10.5061/dryad.0gb5mkm71
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KillerRed to mitochondria (mitoKR) by anchoring it to the outer mitochondrial membrane with the 
localization tag TOMM20 (Braeckman et al., 2016). First, we co- expressed mitoKR with mito- roGFP 
(Figure 4C and D) for optimization of a PA protocol that would artificially induce elevations in ROS 
levels (within the physiological range) at a subset of synapses (local, Figure 4E and F) or throughout 
the AVA neuron (global, Figure 4G and H). To test our local PA protocol, we used a microscopy setup 
that was equipped for targeted illumination (see ‘Materials and methods’) allowing us to direct a 
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*p<0.05, n.s., not significant using a one- way ANOVA with a Dunnett’s test. Source data is available at https://doi.org/10.5061/dryad.0gb5mkm71.
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green LED to a small portion (~10 µm) of the AVA neurites containing 1–3 mitochondria for 15 or 30 s 
(Figure 4E). The mito- roGFP Fratio was increased in the mitochondria that were targeted for 15 or 30 s 
of PA when compared to non- activated controls as well as neighboring mitochondria not targeted for 
PA (Figure 4F). Local PA of mitoKR increased the mito- roGFP Fratio by 2×, which is comparable to the 
effect of short- term AVA activation by ChRimson (Figure 3C) and mechano- stimulation (Figure 4A 
and B) on mitoROS production. In addition, local PA of mitoKR had no effect on the amount of GLR- 1 
transport (data not shown) or on GLR- 1 transport velocity (Figure 5—figure supplement 1A). Both 
of these processes rely on intact microtubules and normal microtubule dynamics that are sensitive to 
prolonged elevations in ROS (Doser et al., 2020; Wilson and González- Billault, 2015; Debattisti 
et al., 2017) and oxidative stress (Goldblum et al., 2021; Drum et al., 2016; Fang et al., 2012). In 
other words, local PA of mitoKR results in physiological elevations in mitoROS production.

Secondly, we optimized a protocol to modestly increase ROS production at mitochondria throughout 
AVA interneurons. More specifically, whole- cell PA of mitoKR was achieved by illuminating freely 
behaving worms for 5 or 10 min. We used mito- roGFP to measure the resultant ROS increase at mito-
chondria from whole- cell PA and observed a slight increase in the average mito- roGFP Fratio after 5 min 
of whole- cell PA and a significant increase in the Fratio following a 10 min whole- cell PA (Figure 4G and 
H). Although not significantly increased from the unstimulated control, the 5 min PA increased the Fratio 
of mito- roGFP to 0.4, which is similar to the mito- roGFP Fratio following 5 min of repetitive ChRimson 
activation (Figure 3C) or mechano- stimulation of AVA (Figure 4A and B). Therefore, we chose to do 
subsequent experiments using a whole- cell PA duration of 5 min. Finally, this global mitoKR activation 
protocol did not affect overall GLR- 1 transport velocity (Figure 5—figure supplement 1B), further 
supporting our choice of these conditions as relevant for signaling but non- toxic.

Mitochondrial ROS signaling regulates synaptic recruitment of GLR-1
Once we established non- toxic conditions for local (2–3 mitochondria) and global (entire AVA neuron) 
mitoKR activation, we proceeded to test the effect of cell- specific and subcellular mitoROS signaling 
on synaptic GLR- 1 recruitment. First, we used our local mitoKR protocol (15 s) to activate 2–3 mito-
chondria prior to assessing synaptic recruitment of GLR- 1 via FRAP of SEP::GLR- 1 (Figure 5A). These 
experiments required the generation of new transgenic animals expressing SEP::GLR- 1 in AVA with 
(strain: FJH 582) and without mitoKR (strain: FJH 635; see Appendix 1—key resources table). Inter-
estingly, local PA dramatically decreased SEP::GLR- 1 FRAP in mitoKR- expressing worms compared to 
controls (Figure 5B and C). The FRAP rate of non- activated mitoKR worms was significantly decreased 
compared to controls, but to a lesser extent than with PA (Figure 5—figure supplement 1C). This is 
likely due to activation of mitoKR during imaging of SEP fluorescence. This dramatic downregulation 
of GLR- 1 synaptic recruitment due to localized artificial mitoROS production could be caused by 
altered delivery of GLR- 1- containing transport vesicles. When we assessed GLR- 1 delivery via FRAP 
of GLR- 1::GFP following local PA of mitoKR, we observed that PA of mitoKR decreased the rate of 
GLR- 1::GFP FRAP in worms expressing mitoKR in comparison to controls lacking mitoKR (Figure 5D 
and E), as well as mitoKR- expressing animals without PA (Figure 5—figure supplement 1D). These 
results suggest that the delivery and retention of GLR- 1 to synaptic sites are negatively regulated by 
local mitoROS production.

We speculated that ROS production by mitoKR could also impact transport of GLR- 1 in a similar 
fashion to global ROS elevations shown previously (Doser et  al., 2020). To test this hypothesis, 
we subjected animals to our global mitoKR activation protocol prior to imaging GLR- 1 transport 
(Figure 5F) and found that cell- wide PA of mitoKR reduces the number of transport events (Figure 5G 
and H). These results coincide with our previous work showing that systemic elevations in ROS 
decrease export of GLR- 1 out of the cell body (Doser et al., 2020) and suggest that the mitochondria 
are a major source of the ROS involved in this regulation.

In summary, our results demonstrate that dendritic mitochondria take up Ca2+ in response to 
neuronal activity, leading to an upregulation in ROS production at mitochondria. We also show that 
cell- specific ROS production at mitochondria and loss or inhibition of MCU had opposite effects on 
GLR- 1 recruitment in AVA neurites (Figures 2C and 5C), so we hypothesized that local Ca2+ uptake 
by mitochondria and mitoROS production regulate the amount of GLR- 1 at the plasma membrane 
through the same signaling pathway. To test this, we subjected control or mitoKR- expressing worms 
to an acute Ru360 treatment, mounted them for imaging, and photoactivated a region of the AVA 

https://doi.org/10.7554/eLife.92376
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neurites prior to carrying out the FRAP protocol for SEP::GLR- 1 (Figure 6A). This technique allowed 
us to acutely bypass mitochondrial Ca2+ uptake and artificially induce ROS production at dendritic 
mitochondria in order to test if mitoROS is sufficient to downregulate synaptic recruitment of GLR- 1 
in the AVA neurites. In this experiment, Ru360 treatment increased SEP::GLR- 1 %FRAP. This result 
is inconsistent with the effect of Ru360 on the %FRAP of SEP::GLR- 1 presented in Figure 2—figure 
supplement 1B, but we speculate that this discrepancy may be due to lower basal expression of 
SEP::GLR- 1 in these strains than those used previously (strains FJH 314 and FJH 638 used in Figure 2 
and Figure 2—figure supplement 1B; data not shown). Local PA of mitoKR decreased the recovery 
rate, and when combined with Ru360 treatment, the %FRAP of SEP::GLR- 1 was slightly delayed, but 
the relative fluorescence recovery after 16 min post- photobleach was nearly identical to local PA of 
mitoKR alone (Figure 6B and C). Interestingly, Ru360 treatment of mitoKR- expressing worms without 
PA had a %FRAP rate that was comparable to the non- activated, untreated mitoKR group (Figure 6—
figure supplement 1A). Since artificial mitoROS production was able to occlude the effect of Ru360 
on SEP::GLR- 1 FRAP, these results support that mitoROS is necessary and sufficient for downregu-
lating recruitment of GLR- 1 to synapses. Contrary to synaptic GLR- 1 recruitment, somatic export of 
GLR- 1 is paradoxically reduced by both artificial mitoROS production and inhibition of MCU- 1. To 
test if mitoROS and mitochondrial Ca2+ uptake regulate GLR- 1 transport out of the cell body via the 
same mechanism, we combined acute Ru360 treatment with 5 min of whole- cell PA of mitoKR prior 
to imaging GLR- 1 transport (Figure 6D). Both acute Ru360 treatment and whole- cell PA of mitoKR 
decreased the number of GLR- 1 transport events to a similar extent (Figures 2G and 5H). When 
combined, the amount of GLR- 1 transport was significantly decreased compared to Ru360 treatment 
alone and modestly decreased compared to mitoKR activation (Figure 6E and F). Ru360 treatment 
of mitoKR- expressing worms in the absence of PA had no additional effect on the amount of GLR- 1 
transport compared to untreated mitoKR- expressing worms (Figure 6—figure supplement 1B). The 
compounding effect of mitoROS production and decreased mitochondrial Ca2+ uptake indicates that 
mitoROS signaling and mitochondrial Ca2+ uptake modulate GLR- 1 transport via parallel regulatory 
pathways. This contrasts our observations of a Ca2+- dependent mitoROS signaling mechanism in the 
regulation of GLR- 1 recruitment to synapses (Figure 5D) and suggests that mitochondrial activation 
and signaling vary based on subcellular location. Taken altogether, our results reveal a physiological 
mitoROS signaling mechanism that is initiated by activity- dependent Ca2+ uptake and downregulates 
GLR- 1 recruitment to synapses.

Discussion
Taken together, our experimental results outline a possible novel activity- dependent mitochondrial 
signaling mechanism that negatively regulates excitatory synapse function. Our data suggest that 
mitochondrial Ca2+ uptake and ROS production are involved in different regulatory mechanisms based 
on subcellular location and/or process. In the cell body, mitochondrial Ca2+ uptake and ROS produc-
tion influence GLR- 1 export via parallel mechanisms (Figure 7A). Our results indicate that Ca2+ influx 
through MCU- 1 is required in the neuronal cell body for normal GLR- 1 transport, suggesting that 
mitochondrial Ca2+ positively regulates transport via unknown indirect signaling mechanisms (maybe 
ATP production, orange dashed arrow in Figure  7A). Independent of MCU- 1 function, mitoROS 
downregulates somatic export of GLR- 1 (red dashed inhibition arrow in Figure 7A), and as suggested 
by our previous work, this probably occurs by redox regulation of proteins involved in this process 
(Hoerndli et al., 2015; Doser et al., 2020). At postsynaptic sites, mitochondrial Ca2+ uptake and ROS 

****p<0.0001 using an extra sum- of- squares F- test with a Bonferroni correction. (F) Diagram of experimental procedure followed for (G, H) (see 
‘Materials and methods’). (G) 30 s representative kymographs of GLR- 1::GFP movement in the AVA with or without global PA. (H) Total number of 
transport events per minute quantified from 50- s- long kymographs (n = 8 animals per +mitoKR group, and n = 4 per control group). All scale bars = 
5 µm. Data is represented as mean ± s.e.m.; *p<0.05 compared to controls or indicated experimental group using a one- way ANOVA. Source data is 
available at https://doi.org/10.5061/dryad.0gb5mkm71.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Post hoc velocity analyses of GLR- 1 transport with mitoKR activation and non- photoactivation (non- PA) fluorescence recovery 
after photobleaching (FRAP) controls.

Figure 5 continued
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Figure 6. Regulation of synaptic recruitment of GLR- 1 by mitochondrial reactive oxygen species (mitoROS) requires Ca2+ uptake via MCU- 1. (A) Diagram 
of experimental procedure in (B, C) (see ‘Materials and methods’). (B) Representative images of SEP fluorescence prior to, immediately after, and at 8 
and 16 min post photobleach (PB). (C) Percent SEP fluorescence recovery after photobleaching (FRAP) throughout 16 min post PB in controls (strain: 
FJH 635) or mitoKR- expressing animals (strain: FJH 582) ± Ru360 treatment with photoactivation (PA) (n = 6 animals per group). **p<0.005, ****p<0.0001 
using an extra sum- of- squares F- test with a Bonferroni correction. (D) Diagram of experimental procedure for (E, F) (see ‘Materials and methods’). 
(E) 30- s- long representative kymographs of GLR- 1 transport in controls (strain: FJH 18) or mitoKR- expressing animals (strain: FJH 555) ± Ru360 
treatment with PA. (F) Total number of transport events quantified from 50- s- long kymographs (n ≥ 10 animals per group). All scale bars = 5 µm. Data 
is represented as mean ± s.e.m.; n.s., not significant, **p<0.005, ****p<0.0001 compared to controls or indicated experimental group using a one- way 
ANOVA. Source data is available at https://doi.org/10.5061/dryad.0gb5mkm71.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Additional non- photoactivation (non- PA) SEP fluorescence recovery after photobleaching (FRAP) and transport controls.
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production regulate the recruitment (and perhaps recycling) of GLR- 1 to the synaptic membrane via a 
linear signaling mechanism (Figure 7B). We speculate that neuronal activation leads to mitochondrial 
Ca2+ uptake via MCU- 1, causing an increase in mitoROS that indirectly downregulates synaptic recruit-
ment of AMPARs (Figure 7B). The effect of mitoROS signaling on AMPAR recruitment to synapses 
appears to be due to the compounding effect of decreased transport out of the cell body, synaptic 
delivery, as well as exocytosis of AMPARs to the synaptic membrane (Figure 5). This negative regula-
tion by mitoROS may be a homeostatic mechanism that is important for the prevention of excessive 
synaptic strengthening and the excitotoxicity that could result without this regulatory mechanism. 
This model (Figure 7) is in alignment with our overall experimental results. However, further investi-
gation about local GLR- 1 trafficking in the context of our proposed model, and the molecular players 
involved, will be required to test this mechanism.

Mitochondrial calcium handling in synaptic function and plasticity
Buffering of cytoplasmic Ca2+ by mitochondria is thought to shape the spatiotemporal dynamics of 
Ca2+ signaling and upregulate mitochondrial output to meet energy demands (Duchen, 2000). Fine 
regulation of synaptic Ca2+ is particularly important because synaptic function and plasticity rely on a 
multitude of Ca2+- dependent signaling pathways that are all sensitive to the amplitude and duration 
of elevated Ca2+ (Nakahata and Yasuda, 2018). It is known that Ca2+ handling by presynaptic mito-
chondria modulates various presynaptic mechanisms central to synaptic transmission and plasticity, 
including synaptic vesicle recycling (Billups and Forsythe, 2002; Marland et al., 2016) and release 
probability (Ashrafi et al., 2020; Sun et al., 2013; Lee et al., 2007; Devine et al., 2022). Electron 
microscopy has revealed that mitochondria in the pre- and postsynaptic compartments of excitatory 
synapses differ in both size and electron density (Freeman et al., 2017), hinting that postsynaptic 

Figure 7. Proposed model. In neurons, increased cytoplasmic Ca2+ due to activity- dependent opening of AMPARs, NMDARs, and voltage- gated 
calcium channels (VGCCs) results in mitochondrial Ca2+ uptake via voltage- dependent anion channels (VDACs) at the outer mitochondrial membrane 
and further entry into the mitochondrial matrix via MCU. Once in the matrix, Ca2+ can directly and indirectly upregulate mitochondrial respiration 
from which reactive oxygen species (ROS) is a by- product. The increased ROS can escape into the cytoplasm in the form of H2O2 and contribute to 
ROS signaling. This research points toward differential roles for and interactions between MCU and mitochondrial ROS (mitoROS) in regulating the 
subcellular trafficking of GLR- 1. The results presented here indicate that (A) in the neuronal soma, where GLR- 1 is synthesized and then exported, 
MCU- 1 function indirectly promotes (dashed orange arrow) GLR- 1 export, whereas mitoROS indirectly inhibits (dashed red inhibition arrow) it by acting 
on undetermined proteins. Alternatively, our data suggest that at postsynaptic sites, (B) ROS signaling resulting from Ca2+ uptake via MCU may target 
and modulate the function of undetermined proteins (dashed red line) that regulate the recruitment of AMPARs from transport vesicles or intracellular 
reserves (i.e., synaptic endosomes, left organelle) to the synaptic membrane and/or their synaptic retention.

https://doi.org/10.7554/eLife.92376
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mitochondrial specialization is different from their presynaptic counterparts. However, only a few 
recently published studies have investigated if and how mitochondrial Ca2+ handling in dendrites 
regulates synaptic function or plasticity (Groten and MacVicar, 2022; O’Hare et al., 2022), and none 
have assessed the direct link between mitochondrial signaling and postsynaptic function in healthy 
neurons.

Postsynaptic plasticity mechanisms are also highly sensitive to the concentration and duration of 
elevated Ca2+ (Huganir and Nicoll, 2013; Citri and Malenka, 2008), so Ca2+ uptake by postsynaptic 
mitochondria could shape Ca2+ events, and therefore synaptic transmission (O’Hare et al., 2022). 
The importance of postsynaptic mitochondria for synaptic function could also be inferred from the 
decreased presence of synaptic mitochondria in Alzheimer’s and Parkinson’s disease that is observed 
before synaptic dysfunction (Sheng, 2014). Interestingly, mitochondrial transport in neurites is regu-
lated by relative Ca2+ levels such that mitochondria deposition occurs at regions of high Ca2+, such 
as at pre- and postsynaptic sites (Sheng, 2014). If mitochondrial Ca2+ buffering truly contributes to 
cytoplasmic Ca2+ signaling, then one would expect an increase in cytoplasmic Ca2+ levels when mito-
chondrial Ca2+ uptake is diminished. It has been shown that loss of MCU- 1 increases the amplitude 
and/or duration of cytoplasmic Ca2+ events in both invertebrate and vertebrate neurons (Groten and 
MacVicar, 2022; Bisbach et al., 2020; Nichols et al., 2017). However, we did not detect a significant 
change in activity- dependent Ca2+ influx in the AVA neuron’s cytoplasm due to loss or inhibition of 
MCU- 1 (Figure 2H–J). This discrepancy may be due to GCaMP6f’s high affinity for Ca2+ occluding 
slight changes in cytoplasmic Ca2+. Alternatively, mitochondrial Ca2+ uptake in AVA neurons, and 
perhaps C. elegans neurons in general, may be less reliant on MCU- 1 function. It is also important to 
note that in our hands the loss or pharmacological inhibition of MCU- 1 did not completely abolish 
mitochondrial Ca2+ uptake. However, our observations are consistent with previous studies in which 
MCU- 1 was conditionally or completely knocked out (Álvarez- Illera et al., 2020; Hamilton et al., 
2018).

In addition to the importance of mitochondrial Ca2+ buffering for cytoplasmic signaling, there are 
many Ca2+- dependent processes within mitochondria. First, mitochondrial Ca2+ uptake can upregulate 
OXPHOS, and therefore ATP production, via several direct and indirect mechanisms (Rossi et  al., 
2019). For example, Ca2+ binds to and modulates the activity of multiple tricarboxylic acid cycle 
enzymes (Rizzuto et al., 2012; Giorgi et al., 2018; O’Hare et al., 2022), which upregulates produc-
tion of the OXPHOS substrates NADH and FAD2 to indirectly impact ATP and ROS production. Ca2+ 
can also more directly upregulate OXPHOS by binding to components of the electron transport chain 
and ATP synthase (Rizzuto et  al., 2012; Giorgi et  al., 2018; O’Hare et  al., 2022). It is possible 
that loss or inhibition of MCU- 1 prevents activity- dependent upregulation of ATP that may indirectly 
impact endergonic mechanisms, including GLR- 1 transport, delivery, and exocytosis (Schnitzer and 
Block, 1997; Hanley, 2007; Araki et al., 2010). However, our observations of upregulated GLR- 1 
delivery and exocytosis when MCU- 1 is mutated or inhibited (Figure 2C) suggest that when mito-
chondrial Ca2+ uptake is decreased, ATP levels remain sufficient for local GLR- 1 trafficking. Secondly, 
since ROS are a by- product of OXPHOS, Ca2+ uptake can upregulate ROS production via several Ca2+- 
dependent mechanisms (Görlach et al., 2015). In fact, activity- induced mitoROS production via an 
MCU- 1- dependent mechanism has been described in C. elegans in epidermal wound healing (Xu and 
Chisholm, 2014). There is also evidence from in vitro studies in various human cell lines that MCU- 
dependent mitoROS signaling occurs in pathophysiological contexts such as during inflammation or 
hypoxia (Dong et al., 2017). Lastly, mitochondrial Ca2+ uptake appears to be central to the patho-
physiological plasticity mechanism that underlies hyperalgesia (Kim et al., 2011). However, this work, 
in addition to these previous studies, prompts more questions than it answers regarding postsynaptic 
roles of Ca2+- dependent mitoROS production.

Regulation of AMPAR trafficking by mitochondrial ROS signaling
The characteristics of ROS production and methods of action make them a diverse messenger mole-
cule in various cell types, especially in the brain where metabolic activity and antioxidant mechanisms 
are higher than that in other tissues (Biswas et  al., 2022; Vicente- Gutiérrez et  al., 2021). ROS 
signaling can be localized and compartmentalized due to the localization of ROS sources such as at 
the plasma membrane via NADPH oxidase or at mitochondria that is balanced by rapid cytoplasmic 
ROS scavenging (Niemeyer et  al., 2021; Sies, 2017). This is estimated to limit ROS diffusion to 
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around 1 µm from its source (Lim et al., 2015). Reversible protein oxidation by ROS is reminiscent 
of phosphorylation in that it can regulate protein folding, activation, and interactions (Miseta and 
Csutora, 2000). Interestingly, the proportion of oxidizable protein residues is increased fourfold in 
mammals compared to prokaryotes, suggesting that ROS signaling may contribute to organismal 
complexity (Go and Jones, 2013).

Although mitochondria are regarded as the predominant source of ROS, there has been very 
little investigation of physiological mitoROS signaling in neurons in vivo. Recently, however, mitoROS 
production was shown to promote secretion of a neuropeptide from sensory neurons in C. elegans, 
which activates antioxidant mechanisms in distal tissues (Jia and Sieburth, 2021). There are also a few 
studies that demonstrate the functional relevance and versatility of mitoROS signaling in vertebrate 
neurons and their circuitry (Bao et al., 2009; Accardi et al., 2014). Our results support an important 
mitochondrial signaling role and suggest a mechanism in which activity- dependent mitoROS produc-
tion can regulate AMPAR recruitment. A comprehensive understanding of this mechanism would 
require systematically analyzing how protein oxidation alters the functionality of key players that regu-
late AMPAR delivery and recruitment to synapses.

There are several oxidizable candidate proteins and signaling molecules that regulate synaptic 
recruitment of AMPARs in neurons. Two major components of the Ca2+- signaling cascade that positively 
regulate AMPAR transport are calmodulin (CaM) and Ca2+/CaM- dependent protein kinase II (CaMKII) 
(Hangen et al., 2018; Hoerndli et al., 2015; Doser et al., 2020), which are functionally regulated 
by oxidation. CaM has two conserved methionines, and when oxidized, the binding and activation 
of CaM to CaMKII are reduced (Robison et al., 2007). When CaMKII is in its active Ca2+/CaM- bound 
conformation, oxidation of the regulatory domain enhances kinase activity (Erickson et al., 2008). 
Alternatively, when CaMKII is inactive, oxidation within the CaM binding domain prevents association 
of Ca2+/CaM with CaMKII (Konstantinidis et al., 2020). At postsynaptic sites, recycling of AMPARs 
is regulated in a CaM/CaMKII- dependent manner, meaning redox modification of these proteins can 
also influence AMPAR exocytosis and endocytosis at synapses (Bayer and Schulman, 2019). Other 
proteins that regulate this process include protein kinase C (PKC) (Boehm et al., 2006) and the PDZ 
domain- containing scaffold protein interacting with C kinase 1 (PICK- 1) (Fiuza et al., 2017). Activation 
of PKC following synaptic activation increases AMPAR insertion at synaptic membranes (Ren et al., 
2013), whereas PICK- 1 regulates AMPAR endocytosis (Fiuza et al., 2017). Interestingly, ROS signaling 
can bidirectionally modulate PKC activity (Steinberg, 2015) and oxidation of PICK- 1 prevents its 
association with the synaptic membrane (Shi et al., 2010). Although the effect of PICK- 1 oxidation 
on synaptic expression of AMPARs has not been characterized, there is evidence that this redox 
mechanism regulates glutamatergic transmission and is protective during oxidative stress (Wang 
et al., 2015). Thus, the current study opens the door to other questions regarding redox regulation 
of synaptic function and plasticity.

In contrast to the regulation of synaptic recruitment of AMPARs by mitoROS signaling (Figure 6B 
and C), we observed a compounding effect of MCU- 1 inhibition and artificial mitoROS production on 
AMPAR export from the cell body (Figure 6E and F). These results suggest that AMPAR transport out 
of the cell body is regulated by mitochondrial Ca2+ handling and mitoROS production via two parallel 
signaling pathways. Since somatic mitochondria are morphologically distinct from their dendritic and 
axonal counterparts (Lee et al., 2018), it is possible that they are functionally different as well. Alto-
gether, these results open the door to questions regarding how functional diversity among mito-
chondria may allow mitochondrial signaling to differentially regulate signaling pathways based on 
subcellular location.

Implications and conclusion
Synaptic diversity is thought to enhance the computing power of the nervous system allowing for 
complex behaviors, a broad range of emotional states, and nearly endless memory storage. Interest-
ingly, the proteomes of synaptic and non- synaptic mitochondria suggest that synaptic diversity may be 
enhanced by their resident mitochondria (Stauch et al., 2014; Graham et al., 2017). The proteomes 
of synaptic mitochondria allow for specialized functions, including activity- dependent regulation of 
ATP production and discrete Ca2+ handling abilities (Faria- Pereira and Morais, 2022; Brown et al., 
2006). The functional significance of enhanced energy capability and Ca2+ handling has been assessed 
for presynaptic mitochondria, but not in the context of postsynaptic sites. Here, we provide data 
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indicating that postsynaptic mitochondria are functionally diverse and play a novel signaling role in 
regulating postsynaptic function.

In conclusion, we present evidence for a novel role of mitochondria in regulating the number of 
AMPARs at the synaptic membrane. This study proposes a model in which Ca2+ signaling regulates 
mitoROS production differentially at the soma and synapses, providing a means of negative regulation 
of synaptic excitability in a way that may be important for synaptic homeostasis and prevention of 
excitotoxicity. This role for ROS signaling challenges the long- held misconception that elevated ROS 
is only detrimental to cells causing dysfunction and death (Sies and Jones, 2020). Instead, mitoROS 
signaling acts as a physiological signal integrating synaptic function and mitochondrial output to link 
neuronal connectivity and metabolic capacity. Although additional studies are required to test and 
refine our working model, it opens the door to many new and impactful questions.

Materials and methods
Plasmid construction
See Appendix 1—key resources table for details on plasmids used in this study. Plasmids were created 
using In- Fusion Cloning (Takara Bio) or the Gateway recombination (Invitrogen) method. DNA primers 
were created using Takara Bio’s online In- Fusion Primer Design Tool for In- Fusion Cloning and with the 
open- source ApE Plasmid Editor (M. Wayne Davis) for the Gateway recombination method.

C. elegans strains
C. elegans strains were maintained under standard conditions (Stiernagle, 2006) (NGM with OP50 
20°C). All animals used in the experiments were 1- day- old adult hermaphrodites that were selected 
24 hr prior to the experiments at the L4 stage. Transgenic strains (see Appendix 1—key resources table) 
were created by microinjection (Evans, 2006) of lin- 15(n765ts) worms with DNA mixes composed 
of the plasmids described in Appendix 1—key resources table. All DNA mixes included a plasmid 
containing lin- 15(+) to allow for phenotypic rescue of transgenic strains (Praitis and Maduro, 2011). 
All strains used in optogenetic experiments were also mutant for the lite- 1 gene (allele: ok530) to limit 
off- target effects of our optical stimulation protocols due to LITE- 1 (Gong et al., 2016). This protocol 
for the introduction of recombinant DNA into C. elegans has been approved by the National Institutes 
of Health Institutional Biosafety Committee (protocol no. 18- 043B).

Confocal microscopy
All imaging was done using a Yokogawa CSUX1 spinning disc incorporated into a confocal microscope 
(Olympus IX83) with 405, 488, and 561 nm diode lasers (100–150 mW each; Andor ILE Laser Combiner). 
Images were captured using an Andor iXon Ultra EMCCD (DU- 867) camera and a ×100/1.40NA oil 
objective (Olympus). Devices were controlled remotely for image acquisition using MetaMorph 7.10.1 
(Molecular Devices).

In vivo imaging of the AVA neurites
One- day- old adult hermaphrodites were mounted for imaging by placing a single worm on an agar 
pad (10% agarose dissolved in M9 buffer) on a microscope slide with 1.6 µL of a solution containing 
equal measures of polystyrene beads (Polybead, Cat# 00876- 15, Polysciences Inc) and 30  mM 
muscimol (Cat# 195336, MP Biomedicals). Once the muscimol slowed worm movement (~5 min), a 
coverslip was dropped onto the agar pad, physically restraining the worm. The worm’s orientation 
was manually adjusted by sliding the coverslip to reorient the positioning of the AVA interneurons for 
imaging (Doser et al., 2023).

Whole-cell neuronal stimulation with ChRimson
Worms from strains expressing ChRimson were picked at the L4s stage onto an NGM/OP50 plate 
coated with a 100 µM concentration of all- trans- Retinal (Sigma- Aldrich, Cat# R2500- 25; diluted with 
M9 buffer). Worms were left overnight on Retinal plates before optical neuronal activation via an 
LED array (613 nm, CoolBase 7 LED module from LuxeonStar). ChRimson expression was verified in 
these strains behaviorally by testing light- induced reversals (data not shown). For ChRimson activa-
tion before mito- roGFP imaging, freely behaving 1- day- old adults were placed onto a fresh NGM/
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OP50 plate 2 inches beneath a 613 nm LED array. LED intensity was adjusted at the beginning of 
each experiment to 40 µW/mm2 using a custom potentiometer in combination with a digital optical 
power console (ThorLabs, PM100C) and photodiode sensor (ThorLabs, S170C). The pattern generator 
pulsed the LED for 1 s every 30 s (33.3 mHz) for 5–60 min before worms were mounted for imaging.

Localized ChRimson activation
To activate ChRimson within discrete regions of the AVA neurons, the neurites were located using 
a ×100 objective, the co- expressed fluorescent reagents (i.e., mito- roGFP, GCaMP, or mitoGCaMP), 
and the 488 nm imaging laser. Briefly, a fluorescent image of the co- expressed reagent in a single 
Z- plane was acquired and a region mask was created on the AVA neurites. Then, the green LED 
(with a 605+20 nm filter; Chroma) from an LED illumination system (CoolLED pE300ultra) illuminated 
the masked region via projection through a Mosaic II digital mirror device (DMD; Andor Mosaic 3) 
controlled remotely using MetaMorph. LED intensity was adjusted to a total output of 5 µW using a 
digital optical power console (ThorLabs, PM100C) and microscope slide thermal sensor (ThorLabs, 
S175C). During the acquisition of an image stream, the master shutter of the DMD was controlled 
using MetaMorph’s ‘Trigger Components’ function to illuminate the masked region for 3 s every 30 s.

Ratiometric fluorescence imaging and analysis of mito-roGFP
Immediately after ChRimson or mechano- stimulation, worms were mounted for imaging in a 15 mM 
Muscimol solution. The AVA neurites containing roGFP+ mitochondria were located, and images were 
collected with a 500 ms exposure every 0.25 µm to capture a stack of images (5.25 µm) around the 
neurites. The 525 nm emission was imaged with 405 nm, then 488 nm illumination at each Z- plane. 
The average roGFP 525 nm fluorescence from 405 or 488 nm excitation was measured at individual 
mitochondria using MetaMorph’s region measurement tool in a single Z- plane where the roGFP fluo-
rescence due to 488 nm excitation was the highest. The average background fluorescence near each 
mitochondrion was also collected. The mitochondria region trace was copied to the fluorescence 
image collected with 405 nm excitation at the corresponding Z- plane, then roGFP and background 
fluorescence values were logged.

Whole-cell mitoKR activation
Individual 1- day- old adults of transgenic strains (csfEx168, csfEx195, or csfEx188) containing pRD36 
(Pflp- 18::TOMM20::KillerRed::let- 858) as determined by the absence of the multi- vulva phenotype 
were transferred onto a fresh NGM/OP50 culture plate and placed 2 inches below a 567 nm LED array 
(CoolBase 7 LED module from LuxeonStar). The light intensity was adjusted to 25 µW/mm2 with our 
potentiometer, digital optical power console, and photodiode sensor (S130C). Worms were illumi-
nated for 5 or 10 min before being immediately mounted for imaging.

Local mitoKR activation
For localized photoactivation of mitoKR (TOMM20::KillerRed), the AVA neurites were located using a 
×100 objective, the co- expressed fluorescent reagents (i.e., mito- roGFP, GLR- 1::GFP, or SEP::GLR- 1), 
and the 488  nm imaging laser. An image of mitoKR fluorescence in a single Z- plane was briefly 
acquired using a 100 ms exposure time and 561 nm imaging laser. Using this image, a region mask 
was created around a small region (100–300 µm2) containing mitoKR+ mitochondria. The green LED 
(with a 590+20 nm filter; Chroma) from our LED illumination system illuminated the masked region 
via projection of the green light through our DMD controlled using MetaMorph. LED intensity was 
adjusted to a total output of 10 µW using a digital optical power console (ThorLabs, PM100C) and 
photodiode sensor (ThorLabs, S130C). By remotely opening the DMD master shuttler, the masked 
region was illuminated for 15 s.

Pharmacological inhibition of MCU-1 with Ru360
Ru360 (Sigma- Aldrich, Cat# 557440) was reconstituted in water at a concentration of 2 mM, then 
distributed into 15 µL aliquots (in light safe microcentrifuge tubes) and stored at 4°C. Immediately 
before treatment an Ru360 aliquot was diluted to 100 µM with M9 buffer. Then, 2–3 animals were 
placed on an NGM plate with OP50 and 200 µL of 100 µM Ru360 solution was pipetted onto the OP50 
lawn where the animals resided, completely covering the lawn. Treatment was applied for 10 min, 
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after which the animal was removed to be used in the outlined imaging protocols. For long- term 
optogenetic experiments, animals were bathed in the Ru360 treatment for ~10 min before the Ru360- 
containing media naturally absorbed into the NGM/OP50 plate. The animals remained on this plate 
while undergoing the optical activation protocol for 5–60 min (see ‘Whole- cell neuronal stimulation 
with ChRimson’ and ‘Whole- cell mitoKR activation’).

Transport imaging and analysis
All transport imaging was conducted on strains containing akIs141 in the glr- 1 null background 
(ky176). The AVA neurites were located using the ×100 objective and a 488 nm excitation laser to 
visualize GFP fluorescence. A consistent Z- plane was held in focus for the entire imaging session using 
the continuous focus function of a Z drift compensator (Olympus, IX3- ZDC2) controlled remotely 
using MetaMorph. Then, a proximal section of the neurites was photobleached using a 3 W, 488 nm 
Coherent solid- state laser (Genesis MX MTM; 0.5 W output; 1 s pulse) directed to the region defined in 
MetaMorph using a Mosaic II digital mirror device (Andor Mosaic 3). Then, 30 s after photobleaching, 
an image stream was collected with the 488 nm excitation laser and a 100 ms exposure time. Meta-
Morph’s Kymograph tool was used to generate kymographs as previously reported (Hoerndli et al., 
2013). Transport events were quantified by manually counting all transport events from the resultant 
kymographs. Instantaneous transport velocities were quantified from kymographs using the ImageJ 
plugin KymoAnalyzer (Neumann et al., 2017) as previously described (Doser et al., 2020).

Fluorescence recovery after photobleaching (FRAP)
Strains expressing either GLR- 1::GFP or SEP::GLR- 1 were mounted for imaging as described above. 
Using the SEP or GFP fluorescence, a proximal region of the AVA neurites was localized. The stage 
position was memorized using MetaMorph’s stage position memory function and the ideal Z- plane was 
set using the ZDC control dialogue. An image stack of SEP/GFP fluorescence was then acquired using 
the 488 nm excitation laser set to a 500 ms exposure. The Z- stack captures the entire width of the AVA 
process (21 Z- planes; 0.25 µm steps, ± 2.5 µm around the neurite). If photoactivation was required for 
experiment, the shutter for the CoolLED system (pE- 300ultra) was opened for the appropriate duration. 
Then, ~40 µm sections of the neurite proximal and distal to the imaging region were photobleached 
using the same photobleaching settings as described for GLR- 1 transport imaging. Lastly, the imaging 
region (40–50 µm) was photobleached. Immediately following, an image stack of SEP/GFP fluores-
cence was acquired for the 0 min timepoint. Subsequent image stacks were acquired every 2 min out 
to 16 min. The resultant image stacks were processed and analyzed as previously described (Doser 
et al., 2020), with the exception of the SEP FRAP dataset in Figure 2C. The individual timepoints in 
this dataset were not normalized to the initial fluorescence value per animal because initial SEP::GLR- 1 
fluorescence was significantly higher in mcu- 1(lf) (Figure  2—figure supplement 1A). Instead, the 
0 min fluorescence values were subtracted from the raw fluorescence values for all subsequent time-
points. Analysis of the fluorescence before photobleaching was analyzed by creating a data file (.log) 
of fluorescence values along the bleached region of the AVA neurite using MetaMorph’s linescan tool 
(line width = 20 pixels). The resultant output file was analyzed using a custom MATLAB (R2021a) script 
to obtain the average area of fluorescent puncta (area under the peak).

Imaging of mitoGCaMP and cytoplasmic GCaMP
The AVA neurite was located and continuous autofocus was set as described above. Image streams 
(100 ms exposure) were collected with a 488 nm imaging laser (power = 0.1%; attenuation = 10). 
Localized ChRimson activation (see ‘Localized ChRimson activation’) was triggered every 30 s using 
MetaMorph’s ‘Trigger Components’ feature starting 30 s after the start of the image stream. Imaging 
of mitoGCaMP fluorescence was continuous throughout the entire protocol covering all aspects of 
activation and rest.

The AVA neurite was located and continuous autofocus set as described above. Then, a 90 s image 
stream was collected with a 488 nm imaging laser (set to 0.1% power and an attenuation of 10) and 
a 250 ms exposure. Localized ChRimson activation (see ‘Localized ChRimson activation’) was trig-
gered every 30 s using MetaMorph’s ‘Trigger Components’ feature starting 15 s after the start of the 
stream acquisition. Imaging of GCaMP6f fluorescence was continuous throughout the optical activa-
tion protocol.
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Experimental design and statistical analyses
All relevant controls were included for each set of biological replicates and all datasets combine 2–5 
replicates conducted on different days. Appropriate sample size for each experiment was based on 
previously published experiments (Hoerndli et al., 2013; Doser et al., 2020). A post hoc Pearson’s R 
correlation test was conducted for each dataset to ensure a small effect size (|r| < 0.3). When manual 
quantification was required (i.e., for quantification of transport events from kymographs), the dataset 
was blinded to the genotype and experimental condition. Outliers were removed from datasets using 
the ROUT method (Q = 1%). For FRAP datasets, animals were excluded if 50% or more of the time-
points were considered outliers. Experimental groups were considered significantly different if their 
comparison using a Student’s t- test (for comparing two groups) or one- way ANOVA with correction 
for multiple comparisons (Dunnett’s or Bonferroni’s; for comparisons >2) yielded a p- value<0.05. To 
compare the FRAP rate between conditions, we used an extra sum- of- squares F- test comparing the 
best- fit curve for each experimental group with a Bonferroni correction for multiple comparisons. 
Curves were considered different if a comparison yielded a p- value<0.01.

Image and data presentation
All images were acquired under non- saturating conditions. Representative images were selected as 
they represent the average. Postprocessing was done following analysis as needed to visualize corre-
sponding quantifications. Images processed for data representation were performed using Photo-
shop (2023), and all images in each figure panel were identically processed. Graphs were created in 
GraphPad Prism (9.3.1) and exported as an enhanced metafile for integration into figures that were 
compiled in Adobe Illustrator (24.3). All data are represented as the mean ± the standard error of the 
mean. Illustrations were created in their entirety in Adobe Illustrator.

Code/software
Custom Excel modules (created in Excel’s Visual Basic Editor) were used for the analysis of cytoplasmic 
and mitochondrial calcium imaging. The modules are available online at https://github.com/rachel-
doser/GCaMP_Analysis_Excel_VBA (Doser, 2021).
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Appendix 2
FRAP assays of tagged GLR-1
Appendix 2—figure 1A illustrates the differential effect of photobleaching (PB) on SEP- tagged GLR- 
1 based on subcellular location. Recovery of SEP fluorescence after PB is indicative of the balance 
between GLR- 1 recruitment (i.e., via exocytosis from transport vesicles or synaptic endosomes) and 
recycling (i.e., via receptor endocytosis). As illustrated in Appendix 2—figure 1B, GLR- 1::GFP allows 
for visualization of all GLR- 1 molecules, including those positioned at the synaptic membrane or in 
endosomes. Following PB of GFP, the fluorescence recovery indicates that new GLR- 1 has been 
transported and delivered to the synaptic membrane or endosome within the region of interest.

A

B
GLR-1::GFP

PB

SEP::GLR-1

PB

SEP States:
Fluorescing pH Quenched Photobleached

GFP States: Fluorescing Photobleached

Appendix 2—figure 1. FRAP assays of tagged GLR- 1. (A) Illustration of subcellular SEP::GLR- 1 localization. 
Following photobleaching (PB) of fluorescing SEP (attached to GLR- 1 positioned at the synaptic membrane), 
recovery of SEP fluorescence is indicative of the rate of GLR- 1 exocytosis from transport vesicles or synaptic 
endosomes and receptor endocytosis. (B) Illustration depicting the localization of GLR- 1::GFP to the synaptic 
membrane or in endosomes. Following PB of GFP, the fluorescence recovery indicates that new GLR- 1 has been 
transported and delivered to the synaptic membrane or endosome within the region of interest.
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