
Chung et al. eLife 2023;12:RP92562. DOI: https://doi.org/10.7554/eLife.92562 � 1 of 34

Development of equation of motion 
deciphering locomotion including omega 
turns of Caenorhabditis elegans
Taegon Chung, Iksoo Chang, Sangyeol Kim*

Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea

Abstract Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous 
works on kinetic simulations of animals helped researchers understand the physical mechanisms of 
locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet 
to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles 
to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain 
model for the locomotion of C. elegans by developing Newtonian equations of motion for each 
body segment of C. elegans. Having accounted for friction-coefficients of the surrounding envi-
ronment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model 
(ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-
backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn naviga-
tion. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. 
elegans to allow investigation of the force distribution. This model will facilitate our understanding 
of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the 
surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, 
it can be used to research actuator-controller interaction between muscles and neuronal circuits.

eLife assessment
This useful study introduces a simple mechanical model of C. elegans locomotion that captures 
aspects of the worm's behavioral repertoire beyond forward crawling. While the kinetic model 
(ElegansBot) provides a compromise and starting point to help understand the mechanical compo-
nents of C. elegans behavior, the claim that this work improves on extant mechanical models is 
incomplete, including modeling a 3-dimensional turning behavior with a 2-dimensional model 
without sufficient justification. In addition, the results of the application of the model to previously 
unstudied behaviors are primarily qualitative and do not produce new predictions.

Introduction
With only a few hundred neurons, Caenorhabditis Elegans (C. elegans) perform various behaviors such 
as locomotion, sleeping, reproduction, and hunting (Hall and Altun, 2008). The connectome structure 
among 302 neurons and 165 somatic cells of C. elegans was discovered by pioneering works (Cook 
et al., 2019; White et al., 1986). C. elegans is a cost-efficient and widely used model in neuronal 
research. Its small body size and minimal nutritional requirements contribute to its cost efficiency. The 
organism matures in a shorter period, about three days, compared to other model animals such as 
fruit flies or mice. Its transparent body allows for easy microscopic observation of its internal structures 
or artificially expressed green fluorescent proteins. Moreover, due to the hermaphroditic nature of C. 
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elegans, offspring mostly share the same genotype as the parent, which simplifies the multiplication 
of the worm population for research purposes (Hall and Altun, 2008).

C. elegans bends its body with a sinusoidal wave pattern when moving forward or backward. The 
driving force for this movement comes from the difference between perpendicular and parallel fric-
tional forces, which it experienced from a surrounding environment. This thrust force pushes the worm 
along the ground surface with which the worm contacts (Berri et al., 2009; Boyle et al., 2012; Hu 
et al., 2009; Niebur and Erdös, 1991). Even if a worm has a sinusoidal modulation generated inside 
it, it has difficulties in forward and backward locomotion if it does not feel the difference in frictional 
forces from its surroundings.

Mechanical simulators of rod-shaped animals such as C. elegans (Boyle et al., 2012; Niebur and 
Erdös, 1991), fish (Ekeberg, 1993), and snakes Hu et al., 2009 have been used in various studies. 
These simulators demonstrate how the activities of muscle cells are represented as behavioral pheno-
types, which are determined by signals from a neuronal circuit simulator (Boyle et al., 2012; Ekeberg, 
1993; Niebur and Erdös, 1991). They also show how muscle cells return proprioceptive signals back 
to the neuronal circuit simulator and how animals intentionally distribute body weight for locomo-
tion patterns (Hu et al., 2009). Similarly, the kinematic simulator of fish (Ekeberg, 1993), which has 
a locomotion pattern in that the animal mostly undulates in a particular direction, was used with a 
neuronal network simulator to model the undulation of swimming behavior. This combination of kine-
matic simulator and neuronal network simulator was also used to model how the locomotion pattern 
changes due to a surrounding environment (Boyle et al., 2012) and how the central pattern generator 
arises from a few cells (Boyle et al., 2012; Izquierdo and Beer, 2018).

Even though there were studies on kinematic simulation of rod-shaped animals (Boyle et al., 2012; 
Ekeberg, 1993; Hu et al., 2009), to our best knowledge, there was no kinetic model that reproduces 
complex locomotion behavior of C. elegans, which includes all of the various modes of locomotion 
of C. elegans such as forward locomotion, backward locomotion, and turn from experimental obser-
vations. Instead, muscle cell activities from Ansatz (Hu et al., 2009), a hypothesis of the solution, or 
signals from a neuronal circuit simulator (Boyle et al., 2012; Ekeberg, 1993) were applied to the kine-
matic simulators. A simulator should have an operational structure that imitates physical quantities 
from an experiment to reproduce the motion of C. elegans in the experiment. However, until now, no 
kinetic simulation has such a structure. If there is a simulator that reproduces the motion of individual 

Figure 1. Components of ElegansBot. (A) Chain model for C. elegans body. (B) Rods in chain model. (C) i-actuator, which is a damped torsional spring. 
(D) Frictional force (black arrow) due to the translation motion of a rod. (E) Frictional force (black arrow) due to the rotational motion of a rod. (F) Joint 
force (black arrows) acting on i-rod and (i+1)-rod.

https://doi.org/10.7554/eLife.92562
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experiments, analysis of the kinetics of motion of specific experiments, which provides information on 
the individual force that exerts on each body part of the animal, will be enabled. Also, as the kinetic 
simulation reproduces the motion of C. elegans, the behavioral phenotype that emerged from the 
muscle activity of neuronal circuit simulation will be more credible.

We built a Newtonian-mechanics two-dimensional rigid body chain model of C. elegans to repro-
duce its locomotion. We incorporated its body angle, related to the contraction of the body wall 
muscle of C. elegans, into the primary operating principle of our kinetic model so that the model simu-
lates measurable physical quantities of C. elegans from its experimental video. The model includes 
a chain of multiple rod rigid bodies, a damped torsional spring between the rigid bodies, and a 
control angle, which is the dynamic baseline angle from the value of the kymogram of a physical 
experiment. We formulated Newtonian equations of translational and rotational motion of the rigid 
body model and computed the numerical solution of the equations by numerical integration using the 
semi-implicit Euler method. As a result, we were able to demonstrate trajectories and kinetics of the 
general locomotion of C. elegans, such as crawling, swimming (Vidal-Gadea et al., 2011), omega-
turn, and delta-turn (Broekmans et al., 2016).

Results
Newton’s equation of motion for locomotion of Caenorhabditis 
elegans: How does ElegansBot work?
We introduce the simple chain model of C. elegans' body. C. elegans has an elongated body along 
the head-to-tail axis. Thus, the worm’s body can be approximated as a midline extended along the 
anterial-posterial axis in the xy-coordinate plane (Figure 1A). Let ‍M ‍ (=2 µg, details in ‘Worm’s mass, 
actuator elasticity coefficient, and damping coefficient’ of Appendix) be the mass and ‍L‍ (=1 mm) be 
the length of the worm. Midline was approximated as ‍n‍ (=25) straight rods, whose ends are connected 
to the ends of neighboring rods (Figure 1A). The mass, length, and moment of inertia of each rod is 
‍m = M/n‍ , ‍2r = L/n‍ , and ‍I = mr2/3‍, respectively. When numbering the rods in order, with the rod at the 
end of the head being labeled as ‘1-rod’ and the rod at the end of the tail being labeled as ‘n-rod,’ let 
us designate the i-th rod as ‘i-rod.’ The point where i-rod and (i+1)-rod meets is ‘i-joint.’.

The motion of the worm corresponds to the motion of all the rods. To describe the motion of each 
rod (i-rod), we need to determine the displacement vector (‍di‍), velocity vector (‍vi‍), the angle measured 
counterclockwise from the positive x-axis to the tangential direction of the rod (‍si‍) (Figure 1B), and 
angular velocity (‍ωi‍) of i-rod at a given time ‍t‍. However, the minimum information required to describe 
the motion of all rods includes the displacement vector (‍dc‍) and velocity vector (‍vc‍) of the worm’s 
center of mass, ‍si‍ and ‍ωi‍ for each rod (Details in ‘Minimum information required to describe the 
motion of each rod’ of Appendix).

Value of time-dependent variables such as ‍dc‍ , ‍vc‍ , ‍si‍ , and ‍ωi‍ at a given time, ‍t‍ will be expressed 
as ‍∗(t)‍. When initial values, ‍d(0)

c ‍ , ‍v(0)
c ‍ , ‍s

(0)
i ‍ , and ‍ω

(0)
i ‍ are given, the Newtonian equation of motion for 

acceleration, ‍ac‍ and angular acceleration, ‍{αi}i∈1,··· ,n‍ must be acquired and numerically integrated 
twice to find ‍d(t)

c ‍ , ‍v(t)
c ‍ , ‍s

(t)
i ‍ , and ‍ω

(t)
i ‍ at a given time, ‍t‍. To obtain the Newtonian equations of motion, 

we must find every force and torque acting on each rod. There are frictional force, muscle force, and 
joint force among types of forces acting on the rod, and there are frictional torque, muscle torque, and 
joint torque among types of torques whose descriptions are as follows.

The only external force acting on the worm is a frictional force from a ground surface such as an 
agar plate or water. The frictional force is an anisotropic Stokes frictional force, with a magnitude 
proportional to the speed and assumed different friction coefficients in perpendicular and parallel 
directions (Boyle et al., 2012), which guarantees that linearity in velocity is preserved in frictional 
force as well (Details in ‘Preservation of linearity in friction’ of Appendix). Because of this preservation 
of linearity, the frictional forces of translational motion (Figure 1D) and rotational motion (Figure 1E) 
can be calculated separately and added together to find total frictional force and torque. Previously 
known values of the friction coefficients in perpendicular and parallel directions are used (Boyle et al., 
2012).

Let the perpendicular and parallel friction coefficients be ‍b⊥‍ and ‍b∥‍ for a straightened worm, 
respectively. Each rod experiences ‍1/n‍ of the frictional force the worm gets. Thus, the perpendicular 
and parallel friction coefficients of each rod are ‍b⊥/n‍ , ‍b∥/n‍ , respectively. The ratio of perpendicular 

https://doi.org/10.7554/eLife.92562
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friction coefficient to parallel friction coefficient (‍b⊥/b∥‍) is 40 in agar plate and 1.5 in water (Berri et al., 
2009; Boyle et al., 2012). This ratio is an important determining factor in whether the locomotion 
would be crawling or swimming (Boyle et al., 2012). The total frictional force that i-rod receives is 

‍
Fb,i = − b∥

n
(
vi ·�ri

)�ri − b⊥
n

(
vi · �Ni

) �Ni‍
 (‘·’: dot product of vectors, 

‍
�ri ≡

[
cos(si) sin(si)

]T

‍
 : unit vector 

parallel to i-rod,  
‍
�Ni ≡

[
− sin(si) cos(si)

]T

‍
 : unit vector perpendicular to i-rod), and the total frictional 

torque that i-rod receives is ‍τb,i = − 1
3

b⊥
n r2ωi‍ (positive or negative values are for torque pointing away 

from or into the paper plane, respectively.) (The proof is in ‘Frictional torque by rotational motion’ of 
Appendix).

Mature hermaphrodite C. elegans has four muscle strands at the left dorsal, right dorsal, left 
ventral, and right ventral part of the body, and each muscle strand has 24, 24, 23, and 24 muscle cells, 
respectively (White et al., 1986). Muscle cells at similar positions on the anterior-posterior axis have 
an activity pattern in that muscles on one side (either dorsal or ventral) cooperate, and those on the 
opposite side have alternative activities. (Hall and Altun, 2008).

Therefore, we modeled a group of about four muscle cells, which are left dorsal, right dorsal, 
left ventral, and right ventral, at the same position on the anterior-posterior axis as one actuator 
(Figure 1C) so that there is a total of 24 (‍≃

(
24 + 24 + 23 + 24

)
/4‍) actuators in the worm. On i-joint 

of the chain, there is an actuator labeled as i-actuator. As the number of actuators is 24, we set the 
number of rod(‍n‍) as 25, which is one more than the number of actuators. The actuator was modeled 
as a damped torsional spring due to the viscoelastic characteristics of muscle (Boyle et al., 2012; Hill, 
1938). If the dorsal muscles of i-actuator contract more than the ventral muscles, i-actuator will bend 
to the dorsal direction and vice versa. To express this phenomenon by an equation, we defined the 
torque that i-actuator exerts on i-rod as ‍τi = τκ,i + τc,i‍ that the elastic term is ‍τκ,i = κ

(
θi − θctrl,i

)
‍ and 

the damping term is ‍τc,i = c
(
ωi+1 − ωi

)
‍ where ‍θctrl,i‍ is control angle, ‍θi = si+1 − si‍ , and ‍κ‍ and ‍c‍ are the 

elasticity and damping coefficients of an actuator, respectively.
Control angle (‍θctrl,i‍) is a variable inside the elastic part of the muscle torque (‍τκ,i‍), to which ‍τκ,i‍ 

drives ‍θi‍ close. Also, the control angle (‍θctrl,i‍), which can be expressed by a heatmap (Figures 2A, C, 

Figure 2. Simulated locomotion from a sine kymogram. (A) Crawling kymogram. Kymogram indicates the angle of i-joint which is located between i-rod 
and (i+1)-rod. Red and blue color mean i-joint bend in the dorsal and ventral directions, respectively. (B) Crawling trajectory. The yellow circle indicates 
the position of the worm’s head. The Orange and sky-blue lines show the worm’s head and tail trajectories, respectively. (C) Swimming kymogram. 
(D) Swimming trajectory.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Locomotion propulsion mechanism.

https://doi.org/10.7554/eLife.92562
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Figure 3. Simulated locomotion from a kymogram of a real worm locomotion video. The length and direction of a black arrow indicate the magnitude 
and direction of the frictional force (‍−F(t)

b,i‍) that the corresponding body part, which is the starting point of the arrow, exerts on the surface. (A) Escaping 
behavior kymogram. Triangles over the heatmap indicate the corresponding time of snapshots shown in Figure (C). (B) Delta-turn kymogram. Triangles 
over the heatmap indicate the corresponding time of snapshots shown in Figure (D). (C) Escaping behavior trajectory. (D) Delta-turn trajectory. The arrow 
length scale is different from Figure (C) to clearly show the arrows' directions and head and tail tracks.

The online version of this article includes the following video(s) for figure 3:

Figure 3—video 1. Reproduced escaping behavior of experimental video (Broekmans et al., 2016).

https://elifesciences.org/articles/92562/figures#fig3video1

Figure 3 continued on next page

https://doi.org/10.7554/eLife.92562
https://elifesciences.org/articles/92562/figures#fig3video1
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3A and B), is an input value based on experimental data, a numerical model, or a neuronal network 
model. ‍τc,i‍ represents the damping effect of muscle cells and somatic cells near i-actuator. The elas-
ticity coefficient (‍κ‍) and damping coefficient (‍c‍) of an actuator were induced from previously known 
values (Boyle et al., 2012) (Details in ‘Worm’s mass, actuator elasticity coefficient, and damping coef-
ficient’ of Appendix).

By assuming that i-rod receives torque (‍τi‍) from i-actuator, and (i+1)-rod receives torque (‍−τi‍), we 
can depict the bending that arises from the differential contraction of the dorsal and ventral muscles 
in i-actuator. The total muscle torque that i-rod receives from damped torsional springs on both ends 
is ‍τcκ,i = τi − τi−1‍ . The total muscle force (‍Fcκ,i‍) that i-rod receives from both of its ends is as follows 
(Details in ‘Proof of muscle force’ of Appendix).

	﻿‍

Fcκ,i =
0∑

j=−1

(
−1

)j−1
τi+j sin

θi+j
2

r cos2 θi+j
2




cos
(

si+j + si+j+1
2

)

sin
(

si+j + si+j+1
2

)



‍�

Two neighboring rods (i-rod and (i+1)-rod) are connected at i-joint. Therefore, when a force is 
applied to i-rod, (i+1)-rod also receives distributed force (Figure 1F) which we name as ‘joint force.’ The 
joint force that (i+1)-rod exerts on i-rod is symbolized as ‍Fi ≡ F(

i+1
)

i‍ . By Newton’s third law of motion 
about action and reaction, the joint force that i-rod exerts on (i+1)-rod is ‍Fi

(
i+1

) = −F(
i+1

)
i = −Fi‍ 

(Figure 1F). Joint force (‍Fi‍) can be calculated from the previously introduced given values (‍si‍ , ‍Fcκ,i‍ , 

‍Fb,i‍ , ‍τcκ,i‍ , ‍τb,i‍) (Details in ‘Joint force calculation method’ of Appendix). When ‍F0 = Fn = 0‍ , then the 
total joint force that i-rod receives is ‍Fjoint,i = Fi − Fi−1‍ and the total torque caused by joint force is 

‍τ joint,i =
[
ri ×

(
Fi + Fi+1

)]
‍ where ‘×’ between two vectors means cross-product.

As all forces and torques are found, ‍d(t)
c ‍ , ‍v(t)

c ‍ , ‍s
(t)
i ‍ , ‍ω

(t)
i ‍ can be calculated by solving transla-

tional and rotational Newtonian equations of motion with numerical integration. The time-step 
(‍∆t‍) used in this work is ‍10−5‍ s unless otherwise noted. Because the only external force exerts 

on the worm is the frictional force, the equation of translational motion is ‍ac =
∑

i Fb,i
M ‍ . If friction 

coefficients (‍b⊥‍ , ‍b∥‍) are significantly greater than ‍
M
∆t‍ , numerical integration using the explicit 

Euler method (‍v
(t+∆t)
c = v(t)

c + a(t)
c ∆t = v(t)

c +
∑

i Fb,i
M ∆t‍) becomes unstable (Butcher, 2003). So, 

we tackled this instability of numerical integration by developing semi-implicit Euler Method 

(
‍
v(t+∆t)

c = v(t)
c + a(t+∆t)

c ∆t ≃ v(t)
c + 1

1+ b⊥∆t
M

∑
i F(t)

b,i
M ∆t

‍
), which makes numerical integration stable when any 

frictional coefficients greater than or equal to 0 is given (Details in ‘Proof of numerical integration for 
the translational motion of a worm using semi-implicit Euler method’ of Appendix).

The equation of rotational motion of i-rod is ‍Iαi = τtotal,i = τb,i + τcκ,i + τjoint,i‍ . When the friction-
related value (‍b∥r2

‍), elasticity-related value (‍κ∆t‍), or damping coefficient(‍c‍) is significantly larger than 

‍
I
∆t‍ , numerical integration using explicit Euler method (‍ω

(t+∆t)
i = ω(t)

i + α(t)
i ∆t = ω(t)

i + τ (t)
total,i
I ∆t‍) becomes 

unstable (Butcher, 2003). To solve this instability, we constructed a semi-implicit Euler method for 
rotational motion and an error-corrected equation for angular momentum (Details in ‘Numerical inte-
gration of the rotational motion of i-rod using semi-implicit Euler method’ and ‘Correction formula for 
the rotational inertia of the entire worm’ of Appendix). By using these semi-implicit Euler methods, 
solutions for ‍d(t)

c ‍ , ‍v(t)
c ‍ , ‍s

(t)
i ‍ , ‍ω

(t)
i ‍ of a worm at a given time can be available for the ground surface of 

agar whose ‍b⊥‍ , ‍b∥‍ are significantly larger than ‍
M
∆t‍ , water which has smaller friction coefficients than 

agar, or frictionless ground surface.

Can C. elegans in ElegansBot crawl or swim?
A kymogram is a heatmap that shows body angle, ‍θ

(t)
i ‍ (‍i ∈ {1, · · · , n − 1}‍) at a given time, ‍t‍. By fitting 

a sine function to the kymogram of previous work (Vidal-Gadea et al., 2011), we obtained linear-
wavenumber (after this referred to as wavenumber) and period of C. elegans crawling on the agar plate 
and swimming in water. The wavenumber (‍ν‍) and the period (‍T ‍) are, respectively, 1.832 and 1.6 (s) on 

Figure 3—video 2. Reproduced delta-turn of experimental video (Broekmans et al., 2016).

https://elifesciences.org/articles/92562/figures#fig3video2

Figure 3 continued

https://doi.org/10.7554/eLife.92562
https://elifesciences.org/articles/92562/figures#fig3video2
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the agar plate and 0.667 and 0.4 (s) in water. For both crawling and swimming, amplitude (‍A‍) was set to 
0.6 (rad) arbitrarily to match the trajectory shown in the experimental video (Vidal-Gadea et al., 2011). 
Each kymogram of crawling (Figure 2A) and swimming (Figure 2C) was calculated by substituting 
amplitude (‍A‍), wavenumber (‍ν‍), and period (‍T ‍) into into ‍θ

(t)
ctrl,i = A cos

(
2π

(
ν
(
i − 1

)
/
(
n − 2

)
− t/T

))
‍ .

Crawling trajectory, which performs sinusoidal locomotion in the positive x-axis direction, was 
obtained by inputting a crawling kymogram as ‍θ

(t)
ctrl,i‍ input to ElegansBot (Figure  2B). Regarding 

crawling, the head track and the tail track have similar shapes. However, the tail track is more toward 
the negative x-axis direction than the head track. The difference between the head and tail tracks indi-
cates that the worm pushes the ground surface by the distance between the head track and tail track 
to obtain thrust (Figure 2B). Indeed, we found that the body part placed diagonally with respect to 
the direction of the worm’s locomotion is pushing along the ground surface (Figure 2—figure supple-
ment 1A). The thrust force of the worm cancels out most of the drag force, which enables the worm to 
move at nearly constant velocity. The average velocity of the worm is 0.208 (mm/s), which is consistent 
with the known values (Cohen et al., 2012; Jung et al., 2016; Omura et al., 2012; Shen et al., 2012).

In the previous work, the worm showed swimming behavior in a water droplet on an agar plate 
(Vidal-Gadea et al., 2011). As the friction coefficient of water is smaller than that of agar, even though 
the area that the worm swept was wider during swimming than crawling, the worm did not move 
forward much in comparison to the area it swept (Figure 2D). The worm gained significant momentum 
in the forward direction of locomotion when the body bent in the c-shape (Figure 2—figure supple-
ment 1B). In contrast to crawling, during swimming, the worm did not receive constant thrust force 
over time. Thus, the speed of the worm exhibited significant oscillations over time (Figure 2—figure 
supplement 1B), and the average velocity was 0.223 (mm/s).

ElegansBot exhibits more complex behavior including the turn motion
Unlike previous C. elegans body kinematic simulation studies, our simulation can replicate the worm’s 
behavior using a kymogram (Figure 3A and B) derived from experimental videos. We utilized open-
source software, Tierpsy Tracker (Javer et al., 2018) and WormPose (Hebert et al., 2021), to obtain 
the kymogram input (‍θ

(t)
ctrl,i‍) for the ElegansBot. Through simulation, we aimed to reproduce the 

omega-turn and delta-turn behaviors observed in the experimental videos (Broekmans et al., 2016). 
When we used the vertical and horizontal friction coefficients ‍b⊥‍ and ‍b∥‍ on agar, as proposed in the 
previous work (Boyle et al., 2012), the trajectory was not accurately replicated. Given that the friction 
coefficients could vary depending on the concentration of the agar gel, we used ‍b⊥/100‍ and ‍b∥/100‍ 
for the vertical and horizontal friction coefficients, respectively, which resulted in a better trajectory 
replication (Details in ‘Proper selection of friction coefficients’ in Appendix).

The trajectory (Figure 3C and D, Figure 3—videos 1 and 2) obtained from ElegansBot accurately 
reproduces the experimental video (Broekmans et al., 2016). The changes in the direction of move-
ment caused by turns are well replicated. Additionally, during the omega-turn or delta-turn, the body 
briefly performs a deep bend, and we newly discovered the mechanism that gains significant propul-
sion from the deep bend region to change direction using ElegansBot (Figure 3C and D). Moreover, 
the ElegansBot accurately reproduces not only the turns but also complex behaviors like the sequence 
of forward-backward-turn-forward, also known as escaping behavior.

Additionally, we calculated the mechanical power of the worm as a quantitative indicator to explain 
its locomotion during sequenced locomotive behavior, based on behavior classification (forward, 
backward locomotion, or turn, as defined in Methods). During escaping behavior, the worm produced 
an average power of 2094 fW in the initial forward locomotion, followed by an average of 16,437 fW 
(7.85 times that of the initial forward locomotion) in backward locomotion, and an average of 11,118 
fW (5.31 times that of the initial forward locomotion) during turning (Figure 4A). After turning and 
resuming forward locomotion, it produced an average power of 5480 fW (2.62 times that of the initial 
forward locomotion). This indicates that the worm produced more power than that of initial forward 
locomotion to escape sudden threats. Let’s denote the average of a quantity for all given ‍i‍ as ‍⟨∗⟩i‍ . 
At the moment the worm formed a deep bend (t=11.2 s), the average magnitude of frictional force 

of the body part forming the deep bend (
‍

⟨���F(t)
b,i

���
⟩

i‍
 where i=4 to 15) was 3536 pN, compared to the 

average magnitude of the remaining parts (
‍

⟨���F(t)
b,i

���
⟩

i‍
 = 1737 pN where i=1 to 3 or i=16 to 25), which 

was 2.04 times greater (Figure 3C, Figure 4A). We analyzed delta-turn in the same manner. The worm 

https://doi.org/10.7554/eLife.92562
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Figure 4. Frictional force on each rod. (A) Escaping behavior. The top panel represents the frictional force ‍F
(t)
b,i‍ experienced by i-rod. As indicated on 

the color wheel to the right, the hue of this heatmap represents the direction of the force, and the saturation represents the magnitude of the force. 

The second panel from the top shows the magnitude of the frictional force 
‍

∣∣∣F(t)
b,i

∣∣∣
‍
 . The third panel from the top represents the average 

‍

⟨���F(t)
b,i

���
⟩

i‍
 (black 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.92562
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produced an average power of 3514 fW in the initial forward locomotion, followed by an average of 
11,176 fW (3.18 times that of the initial forward locomotion) in subsequent backward locomotion. In 
the relatively short duration of forward locomotion following the backward locomotion, the worm 
produced an average power of 17,544 fW (4.99 times that of the initial forward locomotion), and an 
average of 13,046 fW (3.71 times that of the initial forward locomotion) during turns (Figure 4B). After 
the turn, when resuming forward locomotion, the worm produced an average power of 6429 fW (1.83 
times that of the initial forward locomotion). At the moment the worm formed a deep bend (t=6.1 s), 

the average magnitude of frictional force of the body part (
‍

⟨���F(t)
b,i

���
⟩

i‍
 where i=16 to 25) was 10,497 pN, 

compared to the average magnitude of the remaining parts (
‍

⟨���F(t)
b,i

���
⟩

i‍
 = 2,677 pN where i=1 to 15), 

which was 3.92 times greater (Figure 3D, Figure 4B). In both escaping behavior and delta-turn, the 
worm consistently produced more power in the subsequent backward locomotion and turn than in 
the initial forward locomotion.

ElegansBot presents body shape ensembles of C. elegans from a shape 
in water en route to agar
While there have been studies on how locomotion patterns change in agar and water by merging 
neural and kinematic simulations (Boyle et al., 2012), there have been none that solely used kinetic 
simulation to analyze how speed manifests depending on the frequency and period of locomotion. 
We demonstrate this aspect. We studied the locomotion speed of the worm under different friction 
coefficients, which represent the influence of water, agar, and intermediate frictional environment, 
using ElegansBot. The vertical and horizontal friction coefficients in water are ‍bwater,⊥ = 5.2 × 103

‍ (μg/
sec) and ‍bwater,∥ = bwater,⊥/1.5‍ , respectively, while in agar, these values are ‍bagar,⊥ = 1.28 × 108

‍(μg/sec) 
and ‍bagar,∥ = bagar,⊥/40‍ (Boyle et al., 2012). For environmental index ‍σ ∈

[
0, 1

]
‍ , we have defined the 

vertical and horizontal friction coefficients in the environment between water (‍σ = 0‍) and agar (‍σ = 1‍) 
as ‍bσ,⊥ = b1−σ

water,⊥bσagar,⊥‍ and 
‍
bσ,∥ = b1−σ

water,∥bσagar,∥‍
 , respectively.

Under an environmental index ‍σ‍, for various pairs of frequency-period (‍ν‍, ‍T ‍) when the control angle 

is 
‍
θ(t)

ctrl,i = A cos
(

2π
(
ν i−1

23 − t
T

))
‍
 (with  ‍A‍ = 0.6 (rad)), we have found the (‍ν‍, ‍T ‍) that maximizes the 

worm’s average velocity(optimal (‍ν‍, ‍T ‍)) (Figure 5A). The optimal (‍ν‍, ‍T ‍) exhibits a nearly linear distri-
bution (Figure 5B). We noticed a transition from swimming body shape to crawling body shape as ‍σ‍ 
varies (Figure 5, Figure 5—figure supplement 1). The optimal (‍ν‍, ‍T ‍) for  ‍σ‍=0(water) is (0.65, 0.4 s), 
matching the actual (‍ν‍, ‍T ‍) value of swimming behavior (Vidal-Gadea et al., 2011). The optimal (‍ν‍, ‍T ‍) 
for  ‍σ‍=1(agar) is (1.9, 0.8 s), and the optimal ‍ν‍ (1.9) matches the actual ‍ν‍ value (1.832) for crawling 
behavior (Vidal-Gadea et al., 2011), with the optimal T (0.8 s) being half the actual T value (1.6 s).

We wanted to understand the impact of the environmental index ‍σ‍ not only on forward locomotion 
but also on sequenced locomotive behavior. First, we analyzed the effect of the environmental index 
‍σ‍ on escaping behavior as follows. Let’s denote the set of a quantity for all pairs of index ‍i‍ and time ‍t‍ 
as ‍{∗}i,t‍ . When the escaping behavior kymogram input 

‍

{
θ(t)

ctrl,i

}
i,t‍

 was same as Figure 3A, we explored 

the effect of vertical and horizontal friction coefficients on the worm’s motion. Where ‍σ‍ ranged from 

1.0 to 0, the trajectory varied with ‍σ‍ (Figure 5—figure supplement 2A), and 
‍
Eθ =

⟨���θ(t)
i − θ(t)

ctrl,i

���
⟩

i,t‍
 

decreased as ‍σ‍ decreased (Figure 5—figure supplement 2B). From  ‍σ‍ = 1.0 to ‍σ‍ = 0.1, the total 

absolute angular change (
‍
S =

∑T−∆t
t=0

���
⟨

s(t+∆t)
i

⟩
i
−

⟨
s(t)
i

⟩
i

���
‍
 where ‍T ‍ is the total time of the experi-

mental video.) increased as ‍σ‍ decreased. However, from  ‍σ‍ = 0.7 to ‍σ‍ = 0, ‍S‍ remained constant 

within the error of 0.33 rad, and the total traveled distance(
‍
∑

t

���v(t)
c ∆t

���
‍
) decreased as ‍σ‍ decreased. The 

maximum total traveled distance was at  ‍σ‍ = 0.8. Using the same analysis method with the kymogram 

solid line) of each column in the middle panel and the power (red dotted line), which is the amount of energy the worm consumes per unit time. The 
bottom panel represents the classification of the worm’s behavior (blue: forward locomotion, red: backward locomotion, green: turn) (The definitions of 
behavioral categories are in Methods). The triangles over each panel indicate the corresponding time of the snapshots depicted in Figure 3C. (B) Delta-
turn. The triangles over each panel indicate the corresponding time of the snapshots depicted in Figure 3D.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Process of defining behavioral categories.

Figure 4 continued

https://doi.org/10.7554/eLife.92562
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input 
‍

{
θ(t)

ctrl,i

}
i,t‍

 same as Figure 3B, we analyzed the impact of the environmental index ‍σ‍ on delta-turn. 

Where ‍σ‍ ranged from 1.0 to 0, the trajectory varied with ‍σ‍ (Figure 5—figure supplement 3A), and ‍Eθ‍ 
also decreased as ‍σ‍ decreased (Figure 5—figure supplement 3B). From  ‍σ‍ = 1 to ‍σ‍ = 0.6, ‍S‍ increased 
as ‍σ‍ decreased. From  ‍σ‍ = 0.6 to ‍σ‍ = 0, ‍S‍ decreased as ‍σ‍ decreased. The maximum total traveled 
distance was at  ‍σ‍ = 0.9. From  ‍σ‍ = 0.9 to ‍σ‍ = 0, the total traveled distance decreased as ‍σ‍ decreased.

Discussion
ElegansBot is an advanced kinetic simulator that reproduces C. 
elegans' various locomotion
The known crawling speed range of C. elegans (Cohen et al., 2012; Jung et al., 2016; Omura et al., 
2012; Shen et al., 2012) matches the speed in our simulation. The force dispersion pattern of the 
forward movement of a snake (Hu et al., 2009) is similar to the force dispersion pattern of crawling 
in our model, where the body part placed diagonally in the direction of movement generates thrust. 
The head and tail tracks of our simulation resemble the trace left on the agar plate by C. elegans 
during locomotion (Yeon et al., 2018), providing evidence of the mechanism where C. elegans moves 
forward by pushing along the ground surface. Given that friction and elasticity coefficients can vary 
between experiments, the appropriate selection of these values allows the trajectories of omega-
turns and delta-turns in our simulations to match the experimental videos (Broekmans et al., 2016). 
Previous work (Berri et al., 2009; Boyle et al., 2012) eliminated inertia from the equations of motion, 
but our simulation includes it, allowing calculation even in cases where inertia is significant due to low 

Figure 5. Body shape transition from the shape in water to the shape in agar. (A) Average velocity of the worm as a function of wavenumber (‍ν ‍) 
and period (‍T ‍) for a given friction coefficient. The star symbol indicates the pair of (‍ν ‍, ‍T ‍) that maximizes the worm’s average velocity. (B) For each 
environmental index ‍σ‍, the pair of (‍ν ‍, ‍T ‍) that maximizes the worm’s average velocity. The worm figures inside the small rectangles pointed to by the 
arrows represent the body shape corresponding to the respective (‍ν ‍, ‍T ‍) pair.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Transition of body shape from water (‍σ = 0‍) to agar (‍σ = 1‍).

Figure supplement 2. The effect of the environmental index ‍σ‍ on escaping behavior.

Figure supplement 3. The effect of the environmental index ‍σ‍ on the delta-turn.

https://doi.org/10.7554/eLife.92562
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friction coefficients. Using the crawling and swimming wavenumbers and periods from the experi-
ments (Vidal-Gadea et  al., 2011), we computed sine functions to create trajectories for crawling 
and swimming. We also analyzed how friction forces act on the worm during crawling and swimming, 
studying how the worm gains propulsion. We demonstrated that we could reproduce various locomo-
tion observed in experimental videos, such as forward-backward-(omega turn)-forward constituting 
escaping behavior and delta-turn navigation, by providing the kymogram obtained from representa-
tive physical values from the experimental videos, as well as the kymogram obtained from a program 
(Hebert et al., 2021; Javer et al., 2018) extracting the body angles from actual experimental videos 
into ElegansBot. Our established Newtonian equations of motion are accurate and robust, suggesting 
that not only does our simulation replicate the experimental videos, but it also provides credible esti-
mates for detailed forces.

ElegansBot will serve as a strong bridge for enhancing the knowledge 
in ‘from-synapse-to-behavior’ research
Our method could be used for kinetic analysis of behaviors not covered in this paper. It could also be 
used when analyzing behavior changes caused by mutation or ablation experiments. Given that our 
simulation allows for kinetic analysis, it could be used to calculate the energy expended by the worm 
during locomotion, serving as an activity index. Our simulation only requires the body angles as input 
data, so even if the video angle shifts and trajectory information is lost, the trajectory can be recov-
ered from the kymogram. Our simulation could also be used when studying neural circuit models of 
C. elegans. It could be used to check how signals from neural network models manifest as behaviors 
which is a needed function from previous work (Sakamoto et al., 2021), and it could be used when 
studying compound models of neural circuits and bodies. For example, when creating models that 
receive proprioception input based on body shape (Boyle et al., 2012; Ekeberg, 1993; Izquierdo 
and Beer, 2018; Niebur and Erdös, 1991), our method could be used. Finally, our method could be 
used in general for the broad utility to analyze the motion of rod-shaped animals like snakes or eels 
and to simulate the motion of rod-shaped robots.

Methods
Frequency and wavelength of C. elegans locomotion
Sine function fitting was applied to the crawling and swimming kymograms (Vidal-Gadea et al., 2011) 
to determine the frequency and wavelength of C. elegans locomotion on agar and water.

C. elegans locomotion videos
Videos of C. elegans' escaping behavior and foraging behavior were obtained from previous work 
(Broekmans et  al., 2016). A single representative video out of a total of one hundred escaping 
behavior videos was used as data in this paper. Additionally, only the delta-turning portion of the 
foraging behavior videos was cut out and used as data in this paper.

Obtaining kymograms from video
The following method was used to extract the kymogram from the video of C. elegans: The body 
angles and midline were extracted using Tierpsy Tracker (Javer et al., 2018) from the original video 
where the worm is locomoting. Tierpsy Tracker failed to extract the midline of the worm when the 
body parts meet or the worm is coiled. The midline information of the frames successfully predicted 
by Tierpsy Tracker and the original video information were used as ground truth training data for a 
program called WormPose (Hebert et al., 2021). WormPose trained an artificial neural network to 
extract the body angles and midline of a coiled worm using a generative method based on the input 
data. The body angles were extracted from the original video using the trained WormPose program. 
For the frames where Tierpsy Tracker failed to extract the body angles, it was replaced with the body 
angles extracted by WormPose. Nonetheless, there were frames where the body angle extraction 
failed. If the period of failed body angle prediction was continuously less than three frames (about 
0.01 s), the body angles for that period was predicted using linear interpolation.

Program code and programming libraries
Equations for the chain model, friction model, muscle model, and numerical integration that consti-
tute the ElegansBot were designed from the body angle information and kymogram that change 

https://doi.org/10.7554/eLife.92562
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every moment of time. Python (van Aken et al., 1995) version 3.8 was used to implement the equa-
tions constituting ElegansBot as a program. NumPy (Harris et al., 2020) version 1.19 was used for 
numerical calculations, and Numba (Lam et  al., 2015) version 0.54 was used for CPU calculation 
acceleration. SciPy (Virtanen et al., 2020) version 1.5 was used for curve fitting and Savitzky-Golay 
filter (Savitzky and Golay, 1964) to classify the worm’s behavioral categories. The Matplotlib (Hunter, 
2007) library was used to represent C. elegans' body pose and trajectory in figures and videos. The 
program code used in the research can be obtained from the open database GitHub (Taegon Chung, 
2023, ElegansBot, 1.0.1, https://github.com/taegonchung/elegansbot, copy archived at Chung, 2024) 
or Python software repository PyPI (https://pypi.org/project/ElegansBot/), and the web live demo 
can be found at GitHub Page (https://taegonchung.github.io/elegansbot/). This code calculated the 
ElegansBot simulation of 10 s of simulation time in about 10 s of run-time on an Intel E3-1230v5 CPU.

Physical constants of the ground surface
The friction coefficient values for the ground surface where C. elegans crawled and swam and the 
elastic and damping coefficients of C. elegans muscles were obtained from previous work (Boyle 
et al., 2012). The muscle elasticity and damping coefficients were converted into coefficients for the 
damped torsional spring to be used in our model (Details in ‘Worm’s mass, actuator elasticity coeffi-
cient, and damping coefficient’ of Appendix).

Defining behavioral categories
We determined the classification of the worm’s behavior over time as follows. Let 

‍ξi ≡ (i − 1)/(n − 2)‍ (i.e., ‍0 ≤ ξi ≤ 1‍). We defined a sine function fitting for the body angle ‍θ
(t)
i ‍ as 

‍
θ̂(t)

i = A(t) sin
((

2π/λ(t)
)(

ξi − ξ(t)
0

))
+ θ(t)

0 ‍
 (where ‍A(t) ≥ 0‍ and ‍0 ≤ ξ(t)

0 < λ(t)
‍). Let us denote the set of a 

quantity for all ‍i‍ as ‍
{
∗
}

i‍ . For a given time ‍t‍, by curve fitting the function ‍θ̂
(t)
i ‍ to the set of body angles 

‍

{
θ(t)

i

}
i‍
 , we can obtain the parameters (‍A(t)‍ , ‍λ(t)‍ , ‍ξ

(t)
0 ‍ , ‍θ

(t)
0 ‍) (Figure 4—figure supplement 1). For 

curve fitting, we used 'curve_fit' from the scipy library (Virtanen et al., 2020). ‘curve_fit’ requires the 
function to be fitted, the data, and the initial guess values of the function parameters. Therefore, we 
determined the initial guess values (‍̂A(t)‍ , ‍̂λ(t)‍ , ‍ξ̂

(t)
0 ‍ , ‍θ̂

(t)
0 ‍) as follows. For ‍t = 0‍, we calculated (‍̂A(0)‍ , ‍̂λ(0)‍ , 

‍ξ̂
(0)
0 ‍ , ‍θ̂

(0)
0 ‍) using the following equations:

	﻿‍

Â(0) = 1
2

(
max

i
(θ(0)

i ) − min
i

(θ(0)
i )

)

λ̂(0) = 2
n − 2

(
argmax

i
(θ(0)

i ) − argmin
i

(θ(0)
i )

)

ξ̂(0)
0 = 1

n − 2

(
argmax

i
(θ(0)

i )
)
− λ̂(0)

4

θ̂(0)
0 = 1

n − 1

(∑
i θ

(0)
i

)
‍�

Using these initial guess values, we curve-fitted ‍θ̂
(0)
i ‍ to ‍{θ

(0)
i }i‍ to obtain (‍A(0)‍ , ‍λ(0)‍ , ‍ξ

(0)
0 ‍ , ‍θ

(0)
0 ‍). For 

‍t ≥ ∆t‍, we obtained the initial guess values for curve fitting as ‍̂A(t) = A(t−∆t)‍ , ‍̂λ(t) = λ(t−∆t)‍ , ‍ξ̂
(t)
0 = ξ(t−∆t)

0 ‍ 

, ‍θ̂
(t)
0 = θ(t−∆t)

0 ‍ . Then, using these initial guess values, we curve-fitted ‍θ̂
(t)
i ‍ to 

‍

{
θ(t)

i

}
i‍
 to obtain (‍A(t)‍ , ‍λ(t)‍ 

, ‍ξ
(t)
0 ‍ , ‍θ

(t)
0 ‍). Since the phase ‍ξ

(t)
0 ‍ is not continuous for all time ‍t‍, we defined a continuous value ‍ξ̃

(t)
0 ‍ for all 

time ‍t‍ as follows (Figure 4—figure supplement 1):

	﻿‍

(t)
0 =





ξ(t)
0 if t = 0

ξ(t)
0 − ξ(t−∆t)

0 + ξ̃(t−∆t)
0 if t > 0 and − λ(t)

2
≤ ξ(t)

0 − ξ(t−∆t)
0 ≤ λ(t)

2
ξ(t)

0 − ξ(t−∆t)
0 + ξ̃(t−∆t)

0 + λ(t) if t > 0 and ξ(t)
0 − ξ(t−∆t)

0 < −λ(t)

2
ξ(t)

0 − ξ(t−∆t)
0 + ξ̃(t−∆t)

0 − λ(t) if t > 0 and λ(t)

2
< ξ(t)

0 − ξ(t−∆t)
0 ‍�

To obtain the derivatives of the noise-reduced smoothed values ‍ξ̄
(t)
0 ‍ and ‍θ̄

(t)
0 ‍ for the raw data ‍ξ̃

(t)
0 ‍ 

and ‍θ
(t)
0 ‍ , respectively, we applied a Savitzky-Golay filter (Savitzky and Golay, 1964; Virtanen et al., 

2020). This filter, set with a smoothing time window of 0.5 s, a polynomial order of 2, and a derivative 
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order of 1, yielded ‍
dξ̄(t)

0
dt ‍ and ‍

dθ̄(t)
0

dt ‍ . We then calculated the temporal integrals ‍ξ
′(ζ)
0 ≡

∑ζ
t=0

dξ̄(t)
0

dt ∆t‍ and 

‍θ
′(ζ)
0 ≡

∑ζ
t=0

dθ̄(t)
0

dt ∆t‍. Let us denote the average of a quantity for all time t as ‍⟨∗⟩t‍. We calculated 

‍
ξ̄(t)

0 = ξ′
(t)
0 −

⟨
ξ′

(t)
0

⟩
t

+
⟨
ξ̃(t)

0

⟩
t‍
 and 

‍
θ̄(t)

0 = θ′
(t)
0 −

⟨
θ′

(t)
0

⟩
t

+
⟨
θ(t)

0

⟩
t‍
 (Figure  4—figure supplement 1). 

Finally, we defined the worm’s behavior classification as turn when ‍θ̄
(t)
0 < −0.07‍, as forward loco-

motion when ‍θ̄
(t)
0 ≥ −0.07‍ and ‍

dξ̄(t)
0

dt > 0‍, and as backward locomotion when ‍θ̄
(t)
0 ≥ −0.07‍ and ‍

dξ̄(t)
0

dt ≤ 0‍ 
(Figure 4—figure supplement 1).
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Broekmans OD, 
Rodgers JB, Ryu WS, 
Stephens GJ

2016 Data from: Resolving 
coiled shapes reveals new 
reorientation behaviors in 
C. elegans

http://​dx.​doi.​org/​10.​
5061/​dryad.​t0m6p

Dryad Digital Repository, 
10.5061/dryad.t0m6p
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Appendix 1

Worm’s mass, actuator elasticity coefficient, and damping coefficient
1. Mass
The maximum radius of the worm is 40µm (Boyle et al., 2012). Assuming that the border surrounding 
the cross-section parallel to the anterior-posterior axis is a sine function, the average radius is 
‍γ = 40 × 2/π ≃ 25µm‍. Assuming that the worm is a cylindrical body with a bottom surface radius of 
25µm, the volume of the worm is ‍1mm

(
0.025mm

)2
π ≃ 0.002mm3

‍ , and the density of the worm is 

‍≃ 1000µg/mm3
‍ (Reina et al., 2013), so the weight of the worm is ‍M = 1000µg/mm3 × 0.002mm3 = 2µg‍.

2. Torque elasticity coefficient
In previous research, the muscle elasticity and damping coefficient were designed as functions of 
the input signal (Boyle et  al., 2012). The maximum value of this muscle elasticity coefficient is 

‍
kmax = 2.8 · 108

[
µg/sec2

]
‍
 , and the maximum value of the muscle damping coefficient is ‍

(
kmax/5.6

)
·
(
1sec

)
‍ 

. When ‍θi−1 = θi = θi+1 = 0‍ and the length of the moment arm where the muscle exerts force is equal 
to the average radius ‍γ‍ of the worm, the change in the elastic torque due to the change in ‍θi‍ is the torque 

elasticity coefficient ‍κ‍, so 
‍
κ = dτκ,i

dθi
= d

dθi

(
γ
(
k
(
2γtan

(
θi/2

))))
≃ kγ2 = 1.75 · 105µg · mm2/

(
sec2 · rad

)
‍
 . 

In ElegansBot, it was assumed that this ‍κ‍ value is constant regardless of ‍θi−1‍ , ‍θi‍ , ‍θi+1‍ . In the same 
way, the torque muscle damping coefficient is ‍c =

(
1/5.6

)
· 1.75 · 105µg · mm2/

(
sec · rad

)
‍ .

Minimum information required to describe the motion of each rod
1. Information required to describe the movement of the rod
To describe the motion of all rods, it is necessary to know the position (‍di‍), velocity (‍vi‍), angle 
(‍si‍) measured counterclockwise from the positive x-axis to the direction of vector ‍ri‍ , and angular 
velocity(‍ωi‍) of every i-rod. However, knowing only the position and velocity of the worm (‍dc‍ , ‍vc‍) and 
the angle and angular velocity of every i-rod (‍si‍ , ‍ωi‍) is sufficient to describe the motion of all rods.

2. Boundary conditions for the position of the rod
The center of mass of the worm is 

‍
dc =

[
xc yc

]T
=
(∑n

i=1 mdi
)

/M =
(∑n

i=1 di
)

/n
‍
, and the vector 

parallel to i-rod is 
‍
ri ≡ r

[
cos(si) sin(si)

]T
= r�ri‍

 . If the position vector where i-rod and (i+1)-rod 

meet is ‍dtipi‍ , and the free end of 1-rod and n-rod are ‍dtip0‍ and ‍dtipn‍ , then ‍dtipi
= di + ri = di+1 − ri+1‍ 

(Appendix 1—figure 1A).

3. Method of calculating the relative and absolute position of the rod
If the relative coordinate with ‍dtip0‍ as the origin is designated as ‍d′‍, then the following equations 
satisfy.

	﻿‍

d′
tip0

=


0

0




d′
tipi

=
∑i

j=1 2rj

d′
i =

d′
tipi

+ d′
tipi−1

2
d′

c = 1
n
∑n

i=1 d′
i

di = d′
i − d′

c + dc ‍�

Thus, ‍di‍ can be calculated from ‍dc‍ and ‍si‍ (Appendix 1—figure 1B).

4. Method of calculating the relative and absolute velocity of the rod
Based on the relationship between the worm’s momentum and the rods' momentum, 

‍vc =
(∑n

i=1 mvi
)

/M =
(∑n

i=1 vi
)

/n‍. In the same way as the location information compression, the 
relative velocity vector ‍v′‍ with ‍vtip0‍ as the origin has the following relationships (‍̂z ≡ r̂i × N̂i‍).

https://doi.org/10.7554/eLife.92562
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	﻿‍

v′tip0
=


0

0




v′tipi
=
∑i

j=1 ωj�z × (2rj)

v′i =
v′tipi

+ v′tipi−1

2
v′c = 1

n
∑n

i=1 v′i
vi = v′i − v′c + vc ‍�

Thus, ‍vi‍ can be calculated from ‍vc‍ , ‍si‍ , and ‍ωi‍ (Appendix 1—figure 1C).

Preservation of linearity in friction
The velocity ‍v‍ of an arbitrary point particle which is included by i-rod can be decomposed into 
two velocity components ‍v = vα + vβ‍ . In this case, if the object is subject to an anisotropic Stokes 
friction, there is linearity between the friction ‍Fb,α‍ , ‍Fb,β‍ obtained from each velocity component ‍vα‍ 
, ‍vβ‍ and the friction ‍Fb‍ obtained from velocity ‍v‍.

	﻿‍

Fb,α = −b∥n−1(vα ·�ri)�ri − b⊥n−1(vα · �Ni)�Ni

Fb,β = −b∥n−1(vβ ·�ri)�ri − b⊥n−1(vβ · �Ni)�Ni

Fb = −b∥n−1(v ·�ri)�ri − b⊥n−1(v · �Ni)�Ni

= −b∥n−1 ((vα + vβ
)
·�ri

)�ri − b⊥n−1
((

vα + vβ
)
· �Ni

) �Ni

= −b∥n−1(vα ·�ri)�ri − b⊥n−1(vα · �Ni)�Ni

−b∥n−1(vβ ·�ri)�ri − b⊥n−1(vβ · �Ni)�Ni

= Fb,α + Fb,β ‍�

Frictional torque by rotational motion
Let us denote variable ‍ρ‍ as the distance from the center of i-rod measured along the direction of 
vector ‍̂ri‍ . It is to be noted that ‍ρ‍ is within the range ‍[−r, r]‍ . For an infinitesimal ‍dρ‍ where ‍0 < dρ ≪ 1‍, 
the moment arm vector for the infinitesimal interval ‍

[
ρ− dρ/2, ρ + dρ/2

]
‍ (hereafter referred to as the 

infinitesimal interval ‍ρ‍) from the center of i-rod is ‍ρr̂i‍ . The coefficient of friction for the infinitesimal 
interval ‍ρ‍ is:

	﻿‍
b⊥
n

dρ
2r ‍�

The velocity component due to the rotational motion of the infinitesimal interval ‍ρ‍ is ‍ρωiN̂i‍ . 
Therefore, the frictional force received by the infinitesimal interval ‍ρ‍ due to rotational motion is:

	﻿‍
−b⊥

n
dρ
2r

ρωiN̂i = −1
2

b⊥
nr

ωiρdρN̂i‍�

The torque received by the infinitesimal interval ‍ρ‍ due to rotational motion is:

	﻿‍

dτ = (ρr̂i) × (−1
2

b⊥
nr

ωiρdρN̂i)

= −1
2

b⊥
nr

ωiρ
2dρr̂i × N̂i

= −1
2

b⊥
nr

ωiρ
2dρẑ

‍�

The total frictional torque received by i-rod due to rotational motion is

https://doi.org/10.7554/eLife.92562
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	﻿‍

τ b,i =
´ r
−r dτ

=
´ r
−r −

1
2

b⊥
nr

ωiρ
2dρ�z

= −1
2

b⊥
nr

ωi

[
1
3
ρ3
]r

−r
�z

= −1
2

b⊥
nr

ωi
2
3

r3�z
= −1

3
b⊥
n

r2ωi�z ‍�

Proof of muscle force
The muscle force, which makes the torque ‍τi‍ received from i-actuator to i-rod, was designed as 
follows. The damped torsion spring is connected at the center of each rod and gives a force in a 
direction perpendicular to the rod. The support is connected to i-actuator’s midpoint and i-joint 
(Appendix 1—figure 2A). Let us say that the mass of the support and i-actuator are both 0. The 
support gives forces (‍Fsup1,i‍ , ‍Fsup2,i‍) of the same size to i-rod and (i+1)-rod in a direction parallel to 
the support (Appendix 1—figure 2B). Let us assume that the resultant force received by i-actuator is 
‍0‍ (Appendix 1—figure 2C). Thus, the forces from the actuator generate no torque at the connection 
point in the middle of the rod but at the connection point at the end (Appendix 1—figure 2D).

	﻿‍

Fsup1,i = Fp1,i cos θi
2

τi =
(
ri × Fsup1,i

)
·�z

= rFsup1,i cos θi
2

Fsup1,i = τi

r cos θi
2

Fp1,i =
Fsup1,i

cos θi
2

= τi

r cos2 θi
2 ‍�

The force that i-rod receives from i-actuator is ‍Fp1,i + Fsup1,i‍ and the magnitude of the force 

is 
‍

��Fp1,i + Fsup1,i
�� = Fp1,isin

(
θi/2

)
= τisin

(
θi/2

)
/
(

rcos2 (θi/2
))

‍
 and the direction of the force is 

‍
-
[
cos

(
(si + si+1)/2

)
sin

(
(si + si+1)/2

)]T

‍
 . These equations come down to the following equations.

	﻿‍

Fp1,i + Fsup1,i = −
τi sin θi

2
r cos2 θi

2


cos

( si + si+1
2

)

sin
( si + si+1

2

)


‍�

	﻿‍ Fp1,i + Fsup1,i + Fp2,i + Fsup2,i = 0‍�

	﻿‍

Fp2,i + Fsup2,i =
τi sin θi

2
r cos2 θi

2


cos

( si + si+1
2

)

sin
( si + si+1

2

)


‍�

Therefore, the total force that i-rod receives from i-actuator and (i-1)-actuator is

	﻿‍

Fcκ,i =
0∑

j=−1

(
−1

)j−1
τi+j sin

θi+j
2

rcos2 θi+j
2




cos
(

si+j + si+j+1
2

)

sin
(

si+j + si+j+1
2

)



‍�

https://doi.org/10.7554/eLife.92562
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Joint force calculation method
Let us calculate the joint force ‍Fi‍ from the given values (‍si‍ , ‍Fcκ,i‍ , ‍Fb,i‍ , ‍τcκ,i‍ , ‍τb,i‍). In this part, the 
superscript ‍∗T‍ means the transpose of a vector or a matrix. i-rod and (i+1)-rod always meet at i-joint 
can be expressed as a following vector equation.

	﻿‍ di + ri = di+1 − ri+1‍�

Differentiating this equation twice for time, we can see that the accelerations of the ends of i-rod 
and (i+1)-rod at i-joint are the same.

	﻿‍

d2

dt2
(di + ri) = d2

dt2
(di + r̂ri)

= d
dt

(vi + rωiN̂i)

= ai + r dωi
dt

N̂i + rωi
dN̂i
dt

= ai + rαiN̂i − rω2
i r̂i

= ai + αi × ri − ω2
i ri ‍�

	﻿‍

d2

dt2
(di+1 − ri+1) = d2

dt2
(di+1 − r̂ri+1)

= d
dt

(vi+1 − rωi+1N̂i+1)

= ai+1 − r dωi+1
dt

N̂i+1 − rωi+1
dN̂i+1

dt
= ai+1 − rαi+1N̂i+1 + rω2

i+1r̂i+1

= ai+1 − αi+1 × ri+1 + ω2
i+1ri+1 ‍�

	﻿‍

d2

dt2
(di + ri) = d2

dt2
(di+1 − ri+1)

= ai + αi × ri − ω2
i ri

= ai+1 − αi+1 × ri+1 + ω2
i+1ri+1‍�

Multiplying both sides by ‍m‍ gives:

	﻿‍ m
(
ai + αi × ri

)
− mω2

i ri = m
(
ai+1 − αi+1 × ri+1

)
+ mω2

i+1ri+1‍�

If ‍Fres,i‍ is the total force applied to i-rod other than ‍Fi‍ and ‍−Fi−1‍ , which is ‍Fres,i = Fcκ,i + Fb,i‍ , 
then:

	﻿‍ mai = Fi − Fi−1 + Fres,i‍�

If ‍τ res,i‍ is the total torque applied to i-rod excluding ‍ri ×
(
Fi−1 + Fi

)
‍ , which is ‍τ res,i = τ cκ,i + τ b,i‍ 

, then:

	﻿‍
Iαi = 1

3
mr2αi = ri ×

(
Fi−1 + Fi

)
+ τ res,i‍�

Dividing both sides by ‍
1
3 r2

‍ gives:

	﻿‍ mαi = 3r−2ri ×
(
Fi−1 + Fi

)
+ 3r−2τ res,i‍�

If ‍hres,i ≡ 3r−2τ res,i × ri‍ , then:

	﻿‍

m
(
ai + αi × ri

)
=
(
Fi − Fi−1 + Fres,i

)
+
[
3r−2ri ×

(
Fi−1 + Fi

)
+ 3r−2τ res,i

]
× ri

=
(
Fi − Fi−1

)
+ 3

[�ri ×
(
Fi−1 + Fi

)]
×�ri + Fres,i + 3r−2τ res,i × ri

=
(
Fi − Fi−1

)
+ 3

[(
Fi−1 + Fi

)
· �Ni

] �Ni + Fres,i + hres,i ‍�

Following the same method,

https://doi.org/10.7554/eLife.92562
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	﻿‍
m
(
ai+1 − αi+1 × ri+1

)
=
(
Fi+1 − Fi

)
− 3

[(
Fi + Fi+1

)
· �Ni+1

] �Ni+1 + Fres,i+1 − hres,i+1‍�

To organize the terms of the equations into known values and unknown values,

	﻿‍

ki ≡ Fi − Fi−1

Pi ≡ 3�Ni�NT
i

hi ≡ 3
[(

Fi−1 + Fi
)
· �Ni

] �Ni

= 3�Ni�NT
i
(
Fi−1 + Fi

)

= Pi
(
Fi−1 + Fi

)

m
(
ai + αi × ri

)
= ki + hi + Fres,i + hres,i

m
(
ai+1 − αi+1 × ri+1

)
= ki+1 − hi+1 + Fres,i+1 − hres,i+1

ki + hi + Fres,i + hres,i − mω2
i ri = ki+1 − hi+1 + Fres,i+1 − hres,i+1 + mω2

i+1ri+1

qi ≡ ki + hi − ki+1 + hi+1

= −Fres,i − hres,i + Fres,i+1 − hres,i+1 + mω2
i ri + mω2

i+1ri+1‍�

Therefore, if we know all ‍Fres,i‍ and ‍τ res,i‍ for each i, we can find ‍qi‍ . If 

‍

I≡


1 0

0 1



‍

 , and if we expand 

‍qi‍ ,

	﻿‍

qi ≡ ki + hi − ki+1 + hi+1

= −ki+1 + ki + hi + hi+1

= −Fi+1 + Fi + Fi − Fi−1 + Pi
(
Fi−1 + Fi

)
+ Pi+1

(
Fi + Fi+1

)

= Fi−1
(
Pi − I

)
+ Fi

(
Pi + Pi+1 + 2I

)
+ Fi+1

(
Pi+1 − I

)
‍�

If we set ‍Ai ≡ Pi − I‍ and ‍Bi ≡ Pi + Pi+1 + 2I‍, then:

	﻿‍ qi = AiFi−1 + BiFi + Ai+1Fi+1‍�

If we set 

‍

0 =


0 0

0 0



‍

 and express the above equation in a multidimensional tensor form,

	﻿‍




B1 A2 0 0 0 · · · 0

A2 B2 A3 0 0 · · · 0

0 A3 B3 A4 0 · · · 0

0 0 A4 B4 A5 · · · 0

0 0 0 A5 B5
. . .

...
...

...
...

...
. . .

. . . An−1

0 0 0 0 · · · An−1 Bn−1







F1

F2

F3

F4
...

Fn−2

Fn−1




=




q1

q2

q3

q4
...

qn−2

qn−1



‍�

Let us set:

	﻿‍

D ≡




B1 A2 0 0 0 · · · 0

A2 B2 A3 0 0 · · · 0

0 A3 B3 A4 0 · · · 0

0 0 A4 B4 A5 · · · 0

0 0 0 A5 B5
. . .

...
...

...
...

...
. . .

. . . An−1

0 0 0 0 · · · An−1 Bn−1



‍�

https://doi.org/10.7554/eLife.92562
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	﻿‍

F ≡




F1

F2

F3

F4
...

Fn−2

Fn−1



‍�

	﻿‍

Q ≡




q1

q2

q3

q4
...

qn−2

qn−1



‍�

As ‍Ai‍ and ‍Bi‍ can be calculated from ‍Pi‍ , ‍Pi‍ from ‍̂Ni‍ , and ‍̂Ni‍ from ‍si‍ , we can find ‍D‍ from ‍si‍ .

	﻿‍

qi = −Fres,i + Fres,i+1 − hres,i − hres,i+1 + mω2
i ri + mω2

i+1ri+1

= −Fres,i + Fres,i+1 − 3r−2 (τ res,i × ri + τ res,i+1 × ri+1
)

+ mω2
i ri + mω2

i+1ri+1‍�

Therefore, if we know ‍Fcκ,i‍ , ‍Fb,i‍ , ‍τcκ,i‍ , ‍τb,i‍ , we can find ‍Q‍.

	﻿‍ ∴ DF = Q‍�

We can find ‍F ‍, thus ‍Fi‍ (‍i ∈ {1, · · · , n − 1}‍), by solving this tensor equation.
If we denote each component of the tensor, which are each matrix and the p-th row q-th column 

component of the vector, as ‍(∗)p,q‍, then:

	﻿‍







(B1)1,1 (B1)1,2

(B1)2,1 (B1)2,2







(A2)1,1 (A2)1,2

(A2)2,1 (A2)2,2







0 0

0 0


 · · ·




(A2)1,1 (A2)1,2

(A2)2,1 (A2)2,2







(B2)1,1 (B2)1,2

(B2)2,1 (B2)2,2







(A3)1,1 (A3)1,2

(A3)2,1 (A3)2,2


 · · ·




0 0

0 0







(A3)1,1 (A3)1,2

(A3)2,1 (A3)2,2







(B3)1,1 (B3)1,2

(B3)2,1 (B3)2,2


 · · ·

.

.

.
.
.
.

.

.

.
. . .










(F1)1,1

(F1)2,1







(F2)1,1

(F2)2,1







(F3)1,1

(F3)2,1




.

.

.




=







(q1)1,1

(q1)2,1







(q2)1,1

(q2)2,1







(q3)1,1

(q3)2,1




.

.

.



‍�

And the matrix equation equivalent to this tensor equation is:

https://doi.org/10.7554/eLife.92562
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	﻿‍




(B1)1,1 (B1)1,2 (A2)1,1 (A2)1,2 0 0 · · ·

(B1)2,1 (B1)2,2 (A2)2,1 (A2)2,2 0 0 · · ·

(A2)1,1 (A2)1,2 (B2)1,1 (B2)1,2 (A3)1,1 (A3)1,2 · · ·

(A2)2,1 (A2)2,2 (B2)2,1 (B2)2,2 (A3)2,1 (A3)2,2 · · ·

0 0 (A3)1,1 (A3)1,2 (B3)1,1 (B3)1,2 · · ·

0 0 (A3)2,1 (A3)2,2 (B3)2,1 (B3)2,2 · · ·
...

...
...

...
...

...
. . .







(F1)1,1

(F1)2,1

(F2)1,1

(F2)2,1

(F3)1,1

(F3)2,1
...




=




(q1)1,1

(q1)2,1

(q2)1,1

(q2)2,1

(q3)1,1

(q3)2,1
...



‍�

Let us set:

	﻿‍

D≡




(B1)1,1 (B1)1,2 (A2)1,1 (A2)1,2 0 0 · · ·

(B1)2,1 (B1)2,2 (A2)2,1 (A2)2,2 0 0 · · ·

(A2)1,1 (A2)1,2 (B2)1,1 (B2)1,2 (A3)1,1 (A3)1,2 · · ·

(A2)2,1 (A2)2,2 (B2)2,1 (B2)2,2 (A3)2,1 (A3)2,2 · · ·

0 0 (A3)1,1 (A3)1,2 (B3)1,1 (B3)1,2 · · ·

0 0 (A3)2,1 (A3)2,2 (B3)2,1 (B3)2,2 · · ·
...

...
...

...
...

...
. . .



‍�

Since ‍Ai‍ , ‍Bi‍ are symmetric matrices, ‍D‍ is a heptadiagonal symmetric matrix. Since ‍D‍ is a symmetric 
matrix, the solution to the matrix equation can be found with the Cholesky decomposition. Therefore, 
we can find the x-axis and y-axis components of ‍Fi‍ .

As a result, we can find the joint force ‍Fi‍ from the known values (‍si‍ , ‍Fcκ,i‍ , ‍Fb,i‍ , ‍τcκ,i‍ , ‍τb,i‍).

Proof of numerical integration for the translational motion of a worm 
using semi-implicit Euler method
When the friction coefficients ‍b⊥‍ , ‍b∥‍ are sufficiently large compared to ‍M/∆t‍, numerical integration 

via the explicit Euler method (‍v
(t+∆t)
c = v(t)

c + a(t)
c ∆t = v(t)

c +
∑

i F(t)
b,i

M ∆t‍) becomes unstable (Butcher, 
2003). Therefore, for all friction coefficients greater than or equal to 0, the semi-implicit Euler 

method (
‍
v(t+∆t)

c = v(t)
c + a(t+∆t)

c ∆t ≃ v(t)
c + 1

1+ b⊥∆t
M

∑
i F(t)

b,i
M ∆t

‍
) was used to ensure numerical integration 

remains stable, and its proof is as follows.
Newton’s equation for the translational motion of each i-rod is as follows.

	﻿‍

Fi = mai

= Fb,i + Fcκ,i + Fjoint,i

= −b⊥
n

v⊥,i −
b∥
n

v∥,i + Fcκ,i + Fjoint,i‍�

The integration formula for ‍ai‍ using the implicit Euler method is as follows. (where ‍b⊥ ≥ b∥‍)

	﻿‍

v(t+∆t)
i = v(t)

i + a(t+∆t)
i ∆t

= v(t)
i − ∆t

m

(
b⊥
n

v(t+∆t)
⊥,i +

b∥
n

v(t+∆t)
∥,i

)
+ ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)

= v(t)
i − ∆t

M

(
b⊥v(t+∆t)

⊥,i + b∥v(t+∆t)
∥,i

)
+ ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)

= v(t)
i − ∆t

M

(
b⊥

(
v(t+∆t)
⊥,i + v(t+∆t)

∥,i

)
+ (b∥ − b⊥)v(t+∆t)

∥,i

)
+ ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)

= v(t)
i − ∆t

M

(
b⊥v(t+∆t)

i + (b∥ − b⊥)v(t+∆t)
∥,i

)
+ ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)
(

1 + b⊥∆t
M

)
v(t+∆t)

i = v(t)
i − ∆t

M

(
(b∥ − b⊥)v(t+∆t)

∥,i

)
+ ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)

= v(t)
i +

(b⊥ − b∥)∆t
M

v(t+∆t)
∥,i + ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)
‍�
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Because ‍v
(t+∆t)
⊥,i ‍ and 

‍
v(t+∆t)
∥,i ‍

 are unknown at time ‍t‍, the numerical calculation of the above formula 
is impossible.

	﻿‍

����
(b⊥ − b∥)∆t

M

(
v(t+∆t)
∥,i − v(t)

∥,i

)����
����v(t)

i +
(b⊥ − b∥)∆t

M
v(t+∆t)
∥,i + ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)����
≃ 0

‍�

If the above formula is assumed to be true, the following approximation can be used.

	﻿‍

(
1 + b⊥∆t

M

)
v(t+∆t)

i = v(t)
i +

(b⊥ − b∥)∆t
M

v(t+∆t)
∥,i + ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)

≃ v(t)
i +

(b⊥ − b∥)∆t
M

v(t)
∥,i + ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)
‍�

The approximate value of ‍v
(t+∆t)
i ‍ by the above approximation is as follows.

	﻿‍
v(t+∆t)

i ≃
[

v(t)
i +

(b⊥ − b∥)∆t
M

v(t)
∥,i + ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)]
/
(

1 + b⊥∆t
M

)

‍�

The approximate value of ‍a
(t+∆t)
i ∆t‍ by the approximate value of ‍v

(t+∆t)
i ‍ is as follows.

	﻿‍

a(t+∆t)
i ∆t = v(t+∆t)

i − v(t)
i

≃
[

v(t)
i +

(b⊥ − b∥)∆t
M

v(t)
∥,i + ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)]
/
(

1 + b⊥∆t
M

)
− v(t)

i

=
[
−b⊥∆t

M
v(t)

i +
(b⊥ − b∥)∆t

M
v(t)
∥,i + ∆t

m

(
F(t+∆t)

cκ,i + F(t+∆t)
joint,i

)]
/
(

1 + b⊥∆t
M

)

= ∆t
m

[
−b⊥

n
v(t)

i +
(b⊥ − b∥)

n
v(t)
∥,i + F(t+∆t)

cκ,i + F(t+∆t)
joint,i

]
/
(

1 + b⊥∆t
M

)

= ∆t
m

[
−b⊥

n
(v(t)

i − v(t)
∥,i) −

b∥
n

v(t)
∥,i + F(t+∆t)

cκ,i + F(t+∆t)
joint,i

]
/
(

1 + b⊥∆t
M

)

= ∆t
m

[
−b⊥

n
v(t)
⊥,i −

b∥
n

v(t)
∥,i + F(t+∆t)

cκ,i + F(t+∆t)
joint,i

]
/
(

1 + b⊥∆t
M

)

= ∆t
m

[
F(t)

b,i + F(t+∆t)
cκ,i + F(t+∆t)

joint,i

]
/
(

1 + b⊥∆t
M

)

‍�

If both sides are divided by ‍∆t‍,

	﻿‍

a(t+∆t)
i ≃ 1(

1 + b⊥∆t
M

) F(t)
b,i + F(t+∆t)

cκ,i + F(t+∆t)
joint,i

m
‍�

‍F
(t+∆t)
cκ,i ‍ , ‍F

(t+∆t)
joint,i ‍ satisfy the following because they are the internal forces of the worm (‍⃗0 ‍ is a zero 

vector).

	﻿‍

∑
i

F(t+∆t)
cκ,i = 0⃗

∑
i

F(t+∆t)
joint,i = 0⃗

‍�

Therefore, the approximation of the force ‍Ma(t+∆t)
c ‍ received by the worm is as follows.

https://doi.org/10.7554/eLife.92562
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	﻿‍

Ma(t+∆t)
c =

∑
i ma(t+∆t)

i

≃
∑

i m 1(
1 + b⊥∆t

M

) F(t)
b,i + F(t+∆t)

cκ,i + F(t+∆t)
joint,i

m

= 1(
1 + b⊥∆t

M

)
(∑

i F(t)
b,i +

∑
i F(t+∆t)

cκ,i +
∑

i F(t+∆t)
joint,i

)

= 1(
1 + b⊥∆t

M

) ∑
i F(t)

b,i

‍�

If both sides are divided by ‍M ‍,

	﻿‍

a(t+∆t)
c ≃ 1(

1 + b⊥∆t
M

)
∑

i F(t)
b,i

M
‍�

This approximation ensures computational stability regardless of the size of ‍b⊥‍ , ‍b∥‍ . That is, this 
approximation solves the problem of the decrease in computational stability of numerical integration 
through the explicit Euler method when ‍b⊥‍ , ‍b∥‍ are sufficiently large compared to ‍M/∆t‍.

Numerical integration of the rotational motion of i-rod using semi-
implicit Euler method
First, the numerical integration formulas for ‍ωi‍ and ‍αi‍ using the implicit Euler method are as follows.

	﻿‍ s(t+∆t)
i = s(t)

i + ω(t+∆t)
i ∆t‍�

	﻿‍ ω(t+∆t)
i = ω(t)

i + α(t+∆t)
i ∆t‍�

If we set ‍β ≡ 1
3

b⊥
n r2

‍ , the equation describing the rotation of i-rod is as follows.

	﻿‍

Iαi = τb,i + τcκ,i + τjoint,i

= −βωi + c(ωi+1 − 2ωi + ωi−1) + κ(θi − θi−1 − θctrl,i + θctrl,i−1) + τjoint,i

= −βωi + c(ωi+1 − 2ωi + ωi−1) + κ(si+1 − 2si + si−1 − θctrl,i + θctrl,i−1) + τjoint,i

= cωi−1 − (β + 2c)ωi + cωi+1 + κ(si−1 − 2si + si+1) − κ(θctrl,i − θctrl,i+1) + τjoint,i‍�

If the above formula is expanded for time ‍t + ∆t‍,

	﻿‍

Iα(t+∆t)
i =cω(t+∆t)

i−1 − (β + 2c)ω(t+∆t)
i + cω(t+∆t)

i+1

+ κ(s(t+∆t)
i−1 − 2s(t+∆t)

i + s(t+∆t)
i+1 ) − κ(θ(t+∆t)

ctrl,i − θ(t+∆t)
ctrl,i+1) + τ (t+∆t)

joint,i

=cω(t+∆t)
i−1 − (β + 2c)ω(t+∆t)

i + cω(t+∆t)
i+1

+ κ
(

(s(t)
i−1 + ω(t+∆t)

i−1 ∆t) − 2(s(t)
i + ω(t+∆t)

i ∆t) + (s(t)
i+1 + ω(t+∆t)

i+1 ∆t)
)

− κ(θ(t+∆t)
ctrl,i − θ(t+∆t)

ctrl,i+1) + τ (t+∆t)
joint,i

=(c + κ∆t)ω(t+∆t)
i−1 − (β + 2c + 2κ∆t)ω(t+∆t)

i + (c + κ∆t)ω(t+∆t)
i+1

+ κ(s(t)
i−1 − 2s(t)

i + s(t)
i+1) − κ(θ(t+∆t)

ctrl,i − θ(t+∆t)
ctrl,i+1) + τ (t+∆t)

joint,i ‍�

The above formula is impossible to integrate because ‍θ
(t+∆t)
ctrl,i ‍ , ‍θ

(t+∆t)
ctrl,i+1‍ , ‍τ

(t+∆t)
joint,i ‍ are unknown at 

time t.

	﻿‍

���−κ
(

(θ(t+∆t)
ctrl,i − θ(t)

ctrl,i) − (θ(t+∆t)
ctrl,i+1 − θ(t)

ctrl,i+1)
)

+ (τ (t+∆t)
joint,i − τ (t)

joint,i)
���

���(c + κ∆t)ω(t+∆t)
i−1 − (β + 2c + 2κ∆t)ω(t+∆t)

i + (c + κ∆t)ω(t+∆t)
i+1 + κ(s(t)

i−1 − 2s(t)
i + s(t)

i+1) − κ(θ(t+∆t)
ctrl,i − θ(t+∆t)

ctrl,i+1) + τ (t+∆t)
joint,i

���
≃ 0

‍�

https://doi.org/10.7554/eLife.92562
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If the above formula is assumed to be true, the following approximation can be used.

	﻿‍

Iα(t+∆t)
i =(c + κ∆t)ω(t+∆t)

i−1 − (β + 2c + 2κ∆t)ω(t+∆t)
i + (c + κ∆t)ω(t+∆t)

i+1

+ κ(s(t)
i−1 − 2s(t)

i + s(t)
i+1) − κ(θ(t+∆t)

ctrl,i − θ(t+∆t)
ctrl,i+1) + τ (t+∆t)

joint,i

≃(c + κ∆t)ω(t+∆t)
i−1 − (β + 2c + 2κ∆t)ω(t+∆t)

i + (c + κ∆t)ω(t+∆t)
i+1

+ κ(s(t)
i−1 − 2s(t)

i + s(t)
i+1) − κ(θ(t)

ctrl,i − θ(t)
ctrl,i+1) + τ (t)

joint,i

=(c + κ∆t)ω(t+∆t)
i−1 − (β + 2c + 2κ∆t)ω(t+∆t)

i + (c + κ∆t)ω(t+∆t)
i+1 + τ (t)

κ,i + τ (t)
joint,i

ω(t+∆t)
i =ω(t)

i + α(t+∆t)
i ∆t

=ω(t)
i + ∆t

I

(
(c + κ∆t)ω(t+∆t)

i−1 − (β + 2c + 2κ∆t)ω(t+∆t)
i + (c + κ∆t)ω(t+∆t)

i+1 + τ (t)
κ,i + τ (t)

joint,i

)
‍�

The above formula can be expressed as a matrix formula as follows.

	﻿‍




.

.

.

ω
(t+∆t)
i−1

ω
(t+∆t)
i

ω
(t+∆t)
i+1

.

.

.




≃




.

.

.

ω
(t)
i−1

ω
(t)
i

ω
(t)
i+1

.

.

.




+
∆t

I




. . .
.
.
.

.

.

.
.
.
.

. . .

· · · (c + κ∆t) −(β + 2c + 2κ∆t) (c + κ∆t) · · ·

. . .
.
.
.

.

.

.
.
.
.

. . .







.

.

.

ω
(t+∆t)
i−1

ω
(t+∆t)
i

ω
(t+∆t)
i+1

.

.

.




+
∆t

I




.

.

.

τ
(t)
κ,i−1 + τ

(t)
joint,i−1

τ
(t)
κ,i + τ

(t)
joint,i

τ
(t)
κ,i+1 + τ

(t)
joint,i+1

.

.

.



‍�

In the above vector matrix formula, let us represent the vectors and matrix by the following 
symbols.

	﻿‍

(t) ≡




...

ω(t)
i−1

ω(t)
i

ω(t)
i+1
...



‍�

	﻿‍

Pn×n ≡




. . .
...

...
...

. . .

· · · (c + κ∆t) −(β + 2c + 2κ∆t) (c + κ∆t) · · ·
. . .

...
...

...
. . .



‍�

	﻿‍

(t)
rem ≡




...

τ (t)
κ,i−1 + τ (t)

joint,i−1

τ (t)
κ,i + τ (t)

joint,i

τ (t)
κ,i+1 + τ (t)

joint,i+1
...



‍�

Then, the matrix formula is expressed as follows.

	﻿‍
ω⃗(t+∆t) ≃ ω⃗(t) + ∆t

I
Pn×nω⃗

(t+∆t) + ∆t
I
τ⃗ (t)

rem‍�

Now, the following approximation can be obtained where ‍In×n‍ is a unit matrix of size ‍n × n‍.

	﻿‍
∴ ω⃗(t+∆t) ≃

(
In×n −

∆t
I

Pn×n

)−1 (
ω⃗(t) + ∆t

I
τ⃗ (t)

rem

)

‍�
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Correction formula for the rotational inertia of the entire worm
For a floor surface with low friction like water, when numerically integrating the rotational motion 
of the worm, if ‍∆t > 1 × 10−6 sec‍, the calculation error accumulated for the rotational inertia of the 
whole worm significantly influenced the calculation result ‍ωi‍ and ‍si‍ . To prevent this, the error is 
corrected as follows. If ‍̄xi ≡ xi − xc‍ , ‍̄yi ≡ yi − yc‍ , the moment of inertia of the entire worm at time t 
is as follows by the parallel axis theorem.

	﻿‍
I(t)
body = m

∑
i

((
x̄(t)

i

)2
+
(

ȳ(t)
i

)2
)

+ nI
‍�

If i-rod is approximated as a point particle, the torque applied to the entire worm at time t is as 
follows where subscription x, y indicates x, y components of the vector. (See ‘Numerical integration 
for translational motion’ in Appendix)

	﻿‍

τ (t+∆t)
body ≃

∑
i

(
x̄(t)

i F(t)
b,i,y − ȳ(t)

i F(t)
b,i,x

)

1 + b⊥∆t
M ‍�

If i-rod is approximated as a point particle, the rotational inertia of the whole worm at time ‍t‍ is 
as follows.

	﻿‍
L(t)

body ≃ m
∑

i

(
x̄(t)

i v(t)
i,y − ȳ(t)

i v(t)
i,x

)

‍�

The predicted value of ‍ωi‍ at ‍t + ∆t‍, ‍ω
p
i ‍ , is calculated by the semi-implicit Euler method (See 

‘Numerical integration of the rotational motion’ in Appendix). (
‍
p =

[
· · · ω

p
i · · ·

]T

‍
)

	﻿‍
ω⃗p ≃

(
In×n − ∆t

I
Pn×n

)−1 (
ω⃗(t) + ∆t

I
τ⃗ (t)

rem

)

‍�

The predicted value of ‍si‍ at ‍t + ∆t‍ is as follows.

	﻿‍ sp
i = s(t)

i + ω
p
i ∆t‍�

Predicted values ‍x
p
i ‍ , ‍y

p
i ‍ , ‍v

p
i ‍ for ‍x

(
t+∆t

)
i ‍ , ‍y

(
t+∆t

)
i ‍ , ‍v

(
t+∆t

)
i ‍ are calculated from ‍dc‍ , ‍vc‍ , ‍s

p
i ‍ , ‍ω

p
i ‍ (See 

‘Minimum information required to describe the motion of each rod’ in Appendix).
Using ‍x

p
i ‍ , ‍y

p
i ‍ , ‍v

p
i ‍ , the moment of inertia ‍I

p
body‍ and rotational inertia ‍L

p
body‍ of the entire worm at time 

‍t + ∆t‍ are calculated as follows. (where ‍̄x
p
i ≡ xp

i − xp
c‍ , ‍̄y

p
i ≡ yp

i − yp
c‍ , ‍

vi =
[
vi,x vi,y

]T

‍
)

	﻿‍
Ip
body = m

∑
i

((
x̄p

i
)2 +

(
ȳp

i
)2) + nI

‍�

	﻿‍
Lp

body = m
∑

i

(
x̄p

i vp
i,y − ȳp

i vp
i,x

)

‍�

‍ω
(t+∆t)
i ‍ is calculated as follows.

	﻿‍

ω(t+∆t)
i = ω

p
i +

−
(

Lp
body − L(t)

body

)
+ τ (t+∆t)

body ∆t

Ip
body + I(t)

body
2 ‍�

‍s
(t+∆t)
i ‍ is calculated as follows.

	﻿‍ s(t+∆t)
i = s(t)

i + ω(t+∆t)
i ∆t‍�

By correcting the rotational inertia for the whole worm, numerical integration of the rotational 
motion of the worm was well calculated even for cases when ‍∆t > 1 × 10−6 sec‍, as if ‍∆t ≤ 1 × 10−6 sec‍.

https://doi.org/10.7554/eLife.92562
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Proper selection of friction coefficients
When using the vertical and horizontal friction coefficients ‍bagar, ⊥‍ , ‍bagar, ∥‍ on agar, as proposed in 
the previous work (Boyle et al., 2012), the trajectory of the escaping behavior was not accurately 
replicated. Therefore, we sought appropriate friction coefficients necessary for replicating the 
escaping behavior. We calculated new vertical and horizontal friction coefficients ‍bη,⊥ = ηbagar, ⊥‍ , 

‍bη,∥ = ηbagar, ∥‍ by multiplying scaling factor ‍η‍ to the agar friction coefficients ‍bagar, ⊥‍ , ‍bagar, ∥‍ of the 
previous work (Boyle et al., 2012). Let us denote the set of a quantity for all pairs ‍

(
i, t

)
‍ of index i 

and time ‍t‍ as ‍{∗}i,t‍ . When the kymogram input 
‍

{
θ(t)

ctrl,i

}
i,t‍

 was same as Figure 3A, we observed how 

the trajectory of the escaping behavior changes with ‍η‍ (Appendix  1—figure 3A) and analyzed 
representative values for each trajectory as follows (Appendix 1—figure 3B) (Note that when ‍η‍ was 
less than or equal to 10-6 , the time-step (‍∆t‍) was set to 10-6 sec for higher accuracy of simulation). 
Let us denote the average of a quantity for all pairs ‍(i, t)‍ as ‍⟨∗⟩i,t‍ . When ‍η‍ was 1 ∼ 10-9 , the smaller 

‍η‍, the smaller 
‍
Eθ =

⟨���θ(t)
i − θ(t)

ctrl,i

���
⟩

i,t‍
 was. The reduction in ‍Eθ‍ when ‍η‍ changed from 10-2 to 10-9 was 

about 3% of the reduction when ‍η‍ changed from 1 to 10-9 . When ‍η‍ was between 1 and 10-9 , even 
if ‍η‍ decreased, ‍Eθ‍ did not fall below 0.125 (rad). This is because there was a time delay between the 
input ‍θ

(t)
ctrl,i‍ and the response ‍θ

(t)
i ‍ . As ‍η‍ decreased from 1 to 10-2 , the total traveled distance of the 

worm (
‍
∑

t

���v(t)
c ∆t

���
‍
) and the total absolute angle change (

‍
S =

∑T−∆t
t=0

���
⟨

s(t+∆t)
i

⟩
i
−

⟨
s(t)
i

⟩
i

���
‍
) increased, 

and the trajectory became more similar to the experimental video (Broekmans et al., 2016). When 

‍η‍ was between 10-2 and 10-6 , the worm’s trajectory was almost identical, and thus the total traveled 

distance, ‍S‍, and the pattern of 
‍

∣∣∣F(t)
b,i

∣∣∣
‍
 (Appendix 1—figure 4) were similar across trajectories. If ‍η‍ was 

smaller than 10-6 , the worm’s total traveled distance decreased and ‍S‍ increased, and the trajectory 
was no longer similar to the experimental video. This was because a too small friction coefficients 
hindered the worm from obtaining enough propulsive force from the ground (Appendix 1—figure 
4).

The same method with the kymogram input 
‍

{
θ(t)

ctrl,i

}
i,t‍

 same as Figure 3B used to analyze the 

effect of ‍η‍ on the trajectory of the escaping behavior was applied to analyze the trajectory of the 
delta-turn according to ‍η‍ (Appendix 1—figure 5A). When ‍η‍ was 1 ∼ 10-9 , the smaller ‍η‍, the smaller 

‍Eθ‍ was (Appendix 1—figure 5B). The reduction in ‍Eθ‍ when ‍η‍ changed from 10-2 to 10-9 was about 
3% of the reduction when ‍η‍ changed from 1 to 10-9 . When ‍η‍ was between 1 and 10-9 , even if ‍η‍ 
decreased, ‍Eθ‍ did not fall below 0.15 (rad). As ‍η‍ decreased from 1 to 10-2 , ‍S‍ increased, and the 
trajectory became more similar to the experimental video. When ‍η‍ was between 10-2 and 10-6 , the 
worm’s trajectory was almost identical, and thus the total traveled distance, ‍S‍, and the pattern 

of 
‍

∣∣∣F(t)
b,i

∣∣∣
‍
 (Appendix  1—figure 6) were similar across trajectories. If ‍η‍ was smaller than 10-6 , the 

worm’s total traveled distance decreased and ‍S‍ increased, and the trajectory was no longer similar 
to the experimental video. This is because a too small friction coefficients hindered the worm from 
obtaining enough propulsive force from the ground (Appendix 1—figure 6).

In conclusion, when the ratio between vertical and horizontal friction coefficients was constant at 
40(‍= bη,⊥/bη,∥ = bagar, ⊥/bagar, ∥‍), selecting an appropriate ‍η‍ value (between 10-2 and 10-6) was crucial 
for replicating the trajectory of sequenced locomotive behavior. Therefore, we chose ‍bη,⊥‍ , ‍bη,∥‍ 
(‍η = 10−2

‍) as the friction coefficients that sufficiently reduce ‍Eθ‍ among those closest to the agar 
friction coefficients of the previous work (Boyle et al., 2012) for both escaping behavior and delta-
turn.

https://doi.org/10.7554/eLife.92562
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Appendix 1—figure 1. Method of compressing motion state information. (A) Method of calculating the relative 
position of the rod. (B) Method of calculating the absolute position of the rod. (C) Method of calculating the 
relative velocity of the rod.
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Appendix 1—figure 2. The i-actuator. (A) Composition of i-actuator. (B) Forces that i-actuator gives to i-rod and 
(i+1)-rod. (C) Resultant force given by i-actuator. (D) Force component of i-actuator that applies torque to i-rod.
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Appendix 1—figure 3. The effect of the scaling factor η of the friction coefficients on the escaping behavior. (A) 
Appendix 1—figure 3 continued on next page
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The trajectory of the worm for each scaling factor η. (B) Characteristics of the trajectory. The top graph represents 

‍
Eθ =

⟨���θ(t)
i − θ(t)

ctrl,i

���
⟩

i,t‍
. The middle graph shows the total traveled distance of the worm. The bottom graph 

represents the total absolute angle change (
‍
S =

∑T−∆t
t=0

���
⟨

s(t+∆t)
i

⟩
i
−

⟨
s(t)
i

⟩
i

���
‍
, where T is the total time of the 

experimental video).

Appendix 1—figure 3 continued
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Appendix 1—figure 4. The magnitude of the frictional force 
‍

∣∣∣F(t)
b,i

∣∣∣
‍
 during the escaping behavior depending on 

the scaling factor η of the friction coefficient. The color of each point in the heatmap represents the value of 
‍

∣∣∣F(t)
b,i

∣∣∣
‍
.
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Appendix 1—figure 5. The impact of the scaling factor η of the friction coefficients on the delta-turn. (A) The 
Appendix 1—figure 5 continued on next page
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trajectory of the worm for each scaling factor η. (B) Characteristics of the trajectory. The top graph represents 

‍
Eθ =

⟨���θ(t)
i − θ(t)

ctrl,i

���
⟩

i,t‍
. The middle graph shows the total traveled distance of the worm. The bottom graph 

represents the total absolute angle change (
‍
S =

∑T−∆t
t=0

���
⟨

s(t+∆t)
i

⟩
i
−

⟨
s(t)
i

⟩
i

���
‍
)

Appendix 1—figure 5 continued
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Appendix 1—figure 6. The magnitude of the frictional force 
‍

∣∣∣F(t)
b,i

∣∣∣
‍
 during the delta-turn depending on the scaling 

factor η of the friction coefficient. The color of each point in the heatmap represents the value of 
‍

∣∣∣F(t)
b,i

∣∣∣
‍
.
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